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Abstract. We establish the existence and multiplicity of solutions for some resonant el-
liptic systems. The results are proved by applying minimax arguments and Morse Theory.

1. Introduction

Let us consider the problem
{ −∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded smooth domain, N ≥ 3 and f ∈ C1(Ω × R,R) is a subcritical

nonlinearity, that is,

|f(x, s)| ≤ c1(1 + |s|p−1)

for all (x, s) ∈ Ω×R and for some 2 < p < 2∗ = 2N/(N − 2). We say that the problem (1.1)

is asymptotically linear if there exist a function α such that

lim
|s|→∞

f(x, s)

s
= α(x).

It is well known (see [1, 13, 9, 21]) that, in this case, the existence of solutions for (1.1) is

related with the interaction between the limit function α(x) and the spectrum σ(−∆, H1
0 (Ω))

of the linear problem

−∆u = λu in Ω, u = 0 on ∂Ω, (1.2)

A special class of such problems is the resonant case where

α(x) ≡ λk (1.3)

for all x ∈ Ω and for some eigenvalue λk ∈ σ(−∆, H1
0 (Ω)). This kind of problem (and its

variants) is interesting and seems to be more difficult because the associated functional may

not satisfy the classical Palais-Smale condition, which is important to prove the deformation

theorems that we need for applying minimax arguments.
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The aim of this paper is to study some classes of resonant elliptic systems. More specifi-

cally, we deal with the gradient system

(P )





−∆u = Fu(x, u, v) in Ω,

−∆v = Fv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain and N ≥ 3. The function F ∈ C2(Ω × R2,R)

satisfies the subcritical growth condition:

(F ) there exist c1 > 0 and 2 < p < 2∗ such that

|∇F (x, z)| ≤ c1(1 + |z|p−1), ∀ (x, z) ∈ RN × R2.

Under the above hypothesis, the weak solutions of the system (P ) are precisely the critical

points of the C2-functional I : H1
0 (Ω)×H1

0 (Ω) → R given by

I(u, v) =

∫

Ω

(|∇u|2 + |∇v|2) dx−
∫

Ω

F (x, u, v) dx.

In order to obtain such critical points we will impose some conditions in the behavior of

the potential F at the infinity and at the origin. Before to presenting these assumptions,

we need to introduce some notation. So, let us denote by M2(Ω) the set of all symmetric

matrices of the form

A(x) =

(
a(x) b(x)

b(x) c(x)

)
,

where the functions a, b, c ∈ C(Ω,R) satisfy

(M1) A is cooperative, i.e., b(x) ≥ 0 for all x ∈ Ω,

(M2) maxx∈Ω max{a(x), c(x)} > 0.

Given A ∈M2(Ω), we can consider the weighted eigenvalue problem

(LP )




−∆

(
u
v

)
= λA(x)

(
u
v

)
in Ω,

u = v = 0 in ∂Ω.

In view of the conditions (M1) and (M2) above, we can use the spectral theory for compact

operators (see [12]) and some results contained in [7] to obtain a sequence of eigenvalues

0 < λ1(A) < λ2(A) ≤ · · · ≤ λk(A) ≤ · · ·
such that λk(A) → ∞ as k → ∞ (see Section 2 for more details). The problem (LP ) will

substitute the eigenvalue problem (1.2) in the study of our system.

Since we need to control the behavior of F at infinity, we denote by z = (u, v) an arbitrary

vector of R2 and introduce the following condition
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(F∞) there exist A∞ ∈M2(Ω) such that

lim
|z|→∞

2F (x, z)− 〈A∞(x)z, z〉
|z|2 = 0, uniformly for a.e x ∈ Ω,

Note that the natural generalization of the resonant condition (1.3) is to suppose A∞(x) ≡ λk

for some λk ∈ σ(−∆, H1
0 (Ω)). Here we use a more general condition, which already appears

for the scalar problem in [14], by assuming that λk(A∞) = 1, where λk(A∞) is the k-th

positive eigenvalue of the weighted eigenvalue problem (LP ).

In order to overcome the lack of compactness given by the resonant hypothesis, some extra

conditions has been appeared in the literature (see [16, 5]). Here we use the nonquadraticity

condition introduced by Costa and Magalhães [10]. We then suppose that F satisfies

(NQ) lim
|z|→∞

{∇F (x, z) · z − 2F (x, z)} = ∞, uniformly for a.e. x ∈ Ω.

Under the above hypotheses we obtain the existence of a solution for the problem (P ), as

stated in the result below.

Theorem 1.1. Suppose (F ), (F∞) and (NQ) holds. If λk(A∞) = 1 for some k ≥ 2, then

the problem (P ) has at least one solution.

Now we observe that, if ∇F (x, 0, 0) ≡ 0, the problem (P ) possesses the trivial solution

(u, v) = (0, 0). In this case, the key point is to assure the existence of nontrivial solutions

for (P ). With this aim, we need to introduce a condition that give us information about the

behavior of F near the origin. More specifically, we suppose that

(F0) there exist A0 ∈M2(Ω) such that

lim
|z|→0

2F (x, z)− 〈A0(x)z, z〉
|z|2 = 0, uniformly for a.e x ∈ Ω,

Our first result concerning the multiplicity of solutions for (P ) can be stated as

Theorem 1.2. Suppose ∇F (x, 0, 0) ≡ 0 and (F ), (F0), (F∞) and (NQ) holds. If λk(A∞) =

1 for some k ≥ 2 and λm(A0) < 1 < λm+1(A0) for some m 6= k − 1, then the problem (P )

has at least one nontrivial solution.

In our next multiplicity result we suppose a nondegeneration condition and obtain the

existence of two nontrivial solutions. In this case, we consider the complementary case

λ1(A0) > 1 and prove

Theorem 1.3. Suppose ∇F (x, 0, 0) ≡ 0 and (F ), (F0), (F∞) and (NQ) holds. If λk(A∞) =

1 for some k ≥ 3 and λ1(A0) > 1, then the problem (P ) has at least two nontrivial solutions

provided D2F (x, z) ∈M2(Ω) for all (x, z) ∈ Ω× R2.
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In the above theorems we do not allow resonance at the first eigenvalue λ1(A∞). However,

in this case we are able to prove that the functional is coercive and we obtain the existence

of two nontrivial solutions for (P ).

Theorem 1.4. Suppose ∇F (x, 0, 0) ≡ 0 and (F ), (F0) and (F∞) holds. If λm(A0) < 1 <

λm+1(A0), then the problem (P ) has at least two nontrivial solutions, provided either

(i) λ1(A∞) > 1, or

(ii) λ1(A∞) = 1 and (NQ) holds.

For related results in the study of asymptotically linear elliptic systems we can cite [11, 15].

Our results are not comparable and complement it, since we deal with the weighted linear

problem (LP ). It also complement the paper of Bartsch, Chang and Wang [4], where a

Landesman-Lazer condition is assumed. Finally, we would like to cite [23], where a nonco-

operative system is studied with no compactness condition, and the recent paper of Li and

Yang [17], where the case of asymptotically linear Hamiltonian systems was studied.

In the proof of our theorems we use some critical point theorems and Morse Theory. As

it is well known, this kind of theory is based on the existence of a linking structure and on

deformation lemmas [2, 3, 20, 9]. In general, to be able to derive such deformation results,

it is supposed that the functional I satisfies a compactness condition. In this article, we use

the (Ce) condition introduced by Cerami in [6]. We then recall that I satisfies the Cerami

condition at level c ∈ R ((Ce)c for short), if any sequence (zn) ⊂ H1
0 (Ω)×H1

0 (Ω) such that

I(zn) → c and ‖I ′(zn)‖(1 + ‖zn‖) → 0 possesses a convergent subsequence.

The paper is organized as follows: in Section 2, after presenting the abstract framework,

we make a detailed discussion of the weighted eigenvalue problem (LP ). In Section 3 we

prove the Theorem 1.1. Section 4 is devoted to the proof of Theorems 1.2 and 1.3. Theorem

1.4 is proved in the Section 5.

2. Abstract framework

Hereafter we write
∫
Ω

u instead of
∫

Ω
u(x)dx. Let H be the Hilbert space H1

0 (Ω)×H1
0 (Ω)

equipped with the norm

‖z‖2 =

∫

Ω

(|∇u|2 + |∇v|2)
for all z = (u, v) ∈ H. By the Sobolev theorem we know that, for any 2 ≤ σ ≤ 2∗ fixed, the

embedding H ↪→ Lσ(Ω)×Lσ(Ω) is continuous and therefore we can find a positive constant

Sσ such that ∫

Ω

|z|σ ≤ Sσ‖z‖σ. (2.1)

Moreover, if σ < 2∗, the Rellich-Kondrachov theorem implies that the above embedding is

also compact.
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We proceed now with the study of the linear problem associated to (P ). Let

A(x) =

(
a(x) b(x)

b(x) c(x)

)
∈M2(Ω)

and consider the eigenvalue problem with weight A(x)

(LP )





−∆u = λ(a(x)u + b(x)v) in Ω,

−∆v = λ(b(x)u + c(x)v) in Ω,

u = v = 0 on ∂Ω.

A simple calculation shows that λ is an eigenvalue of (LP ) if, and only if,

TA(u, v) =
1

λ
(u, v),

where TA : H → H is the symmetric bounded linear operator defined by

〈TA(u, v), (φ, ψ)〉 =

∫

Ω

〈
A(x)

(
u
v

)
,

(
φ
ψ

)〉

=

∫

Ω

(a(x)u + b(x)v)φ + (b(x)u + c(x)v)ψ.

Since the coefficients of A are continuous functions and the embedding H ↪→ L2(Ω)×L2(Ω)

is compact, we can check that the operator TA is also compact. Thus, we we may invoke

the spectral theory for compact operators to conclude that H possesses a Hilbertian basis

formed by eigenfunctions of (LP ).

Let us denote z = (u, v) and

1

λ1(A)
= µ1(A) = sup {〈TAz, z〉 : ‖z‖ = 1} .

Recalling that A satisfies (M1) − (M2), we can use [7, Theorem 1.1] (see also [8, Theorem

1.1]) to conclude that the eigenvalue µ1(A) is positive, simple and isolated in the spectrum of

TA. Moreover, if we denote by ΦA
1 the normalized eigenfunction associated to λ1(A), we can

suppose that the two function coordinates of ΦA
1 are positive on Ω. By using induction, if

we suppose that µ1(A) > µ2(A) ≥ µk−1(A) are the k− 1 first eigenvalues of TA and {ΦA
i }k−1

i=1

are the associated normalized eigenfunctions, we can define

1

λk(A)
= µk(A) = sup

{
〈TAz, z〉 : ‖z‖ = 1, z ∈ (

span{ΦA
1 , . . . , ΦA

k−1}
)⊥}

.

It is proved in [12, Proposition 1.3] that, if µk(A) > 0, then it is an eigenvalue of TA with

associated normalized eigenfunction ΦA
k . In view of the condition (M2), we can argue as
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in the proof of [12, Proposition 1.11(c)] and conclude that µk(A) > 0. Thus, we obtain a

sequence of eigenvalues for (LP )

0 < λ1(A) < λ2(A) ≤ · · · ≤ λk(A) ≤ · · ·
such that λk(A) → ∞ as k → ∞. Moreover, if we set Vk = span{ΦA

1 , . . . , ΦA
k }, we can

decompose H as H = Vk ⊕ V ⊥
k and the following variational inequalities hold

‖z‖2 ≤ λk(A)

∫

Ω

〈A(x)z, z〉 , ∀ z ∈ Vk, (2.2)

and

‖z‖2 ≥ λk+1(A)

∫

Ω

〈A(x)z, z〉 , ∀ z ∈ V ⊥
k . (2.3)

3. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. As stated in the introduction, we will

look for critical points of the C2-functional I : H → R given by

I(z) =

∫

Ω

(|∇u|2 + |∇v|2)−
∫

Ω

F (x, z).

The first step is to prove that I satisfies the Cerami condition at any level c ∈ R. In order

to verify this, we first note that, given ε > 0, we can use (F∞) to obtain Rε > 0 such that

|2F (x, z)− 〈A∞(x)z, z〉 | ≤ ε|z|2, ∀ x ∈ Ω, |z| ≥ Rε.

This and the continuity of F provide Mε > 0 such that

F (x, z) ≥ 1

2
〈A∞(x)z, z〉 − ε

2
|z|2 −Mε, (3.1)

and

F (x, z) ≤ 1

2
〈A∞(x)z, z〉+

ε

2
|z|2 + Mε, (3.2)

for any (x, z) ∈ Ω× R2.

Lemma 3.1. If (F∞) and (NQ) hold, then I satisfies (Ce)c for any c ∈ R.

Proof. Let (zn) ⊂ H be such that I(zn) → c and ‖I ′(zn)‖H∗(1 + ‖zn‖) → 0. Since the

nonlinearity F has subcritical growth, standard arguments [20] show that the lemma is

proved if we can show that (zn) has a bounded subsequence. Suppose, by contradiction,

that ‖zn‖ → ∞ as n →∞. Then, there exists M > 0 such that

lim inf
n→∞

∫

Ω

H(x, zn) = lim inf
n→∞

∫

Ω

(2I(zn)− 〈I ′(zn), zn〉) ≤ M, (3.3)

where H(x, zn) = ∇F (x, zn)·zn−2F (x, zn). We obtain a contradiction by the following claim:

there exists Ω̂ ⊂ Ω with positive measure, such that up to a subsequence, |un(x)| → +∞ or

|vn(x)| → +∞ as n → +∞, for a.e. x ∈ Ω̂.
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Assuming the claim, by Fatou’s lemma and (NQ), we have

lim inf

∫

Ω

H(x, zn) ≥
∫

Ω

lim inf H(x, zn) = ∞,

which contradicts (3.3).

Now we proceed with the proof of the claim. Given ε > 0, by (3.2) and I(zn) → c we

have, for n sufficiently large,

1

2
‖zn‖2 ≤ (c + 1) +

1

2

∫

Ω

〈A∞(x)zn, zn〉+
ε

2

∫

Ω

|zn|2 + Mε|Ω|

≤ M +
1

2

∫

Ω

〈A∞(x)zn, zn〉+
εS2

2
‖zn‖2.

(3.4)

Defining ẑn = (ûn, v̂n) =
1

‖zn‖(|un|, |vn|), we may assume that ûn → û, v̂n → v̂ strongly

in L2(Ω) and ûn(x) → û(x), v̂n(x) → v̂(x) for a.e. x ∈ Ω. Thus, dividing (3.4) by ‖zn‖2,

taking n →∞, ε → 0, we conclude that

1 ≤
∫

Ω

〈A∞(x)ẑ, ẑ〉 , (3.5)

where ẑ = (û, v̂). By denoting

A∞(x) =

(
a∞(x) b∞(x)

b∞(x) c∞(x)

)

and recalling that b∞(x) ≥ 0, we can use (3.5) and Young’s inequality to obtain

1 ≤
∫

Ω

(
a∞(x)û2 + 2b∞(x)ûv̂ + c∞(x)v̂2

)

≤
∫

Ω

(a∞(x) + b∞(x))û2 +

∫

Ω

(b∞(x) + c∞(x))v̂2,

and therefore there exists Ω̂ ⊂ Ω such that û(x) 6= 0 or v̂(x) 6= 0, a.e. x ∈ Ω̂. The claim is

now proved by observing that we are assuming that ‖zn‖ → +∞ as n → +∞. ¤

Lemma 3.2. If (F∞) and (NQ) holds, then there exist M∞ > 0 such that

F (x, z)− 1

2
〈A∞(x)z, z〉 ≤ M∞, ∀ (x, z) ∈ Ω× R2.

Proof. Defining G(x, z) = F (x, z)− 1
2
〈A∞(x)z, z〉, we have

∇G(x, z) · z − 2G(x, z) = ∇F (x, z) · z − 2F (x, z).
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For any fixed z ∈ R2 with |z| = 1, it follows from (NQ) that, for every M > 0, there is

RM > 0 such that

∇G(x, sz) · (sz)− 2G(x, sz) ≥ M, ∀ |s| ≥ RM .

Thus,
d

ds

[
G(x, sz)

s2

]
=
∇G(x, sz) · (sz)− 2G(x, sz)

s3
≥ M

s3
.

Integrating the above expression over the interval [t, T ] ⊂ [RM , +∞) we obtain

G(x, tz)

t2
≤ G(x, Tz)

T 2
+

M

2

[
1

T 2
− 1

t2

]
.

Letting T → +∞, we conclude that G(x, tz) ≤ −M/2, for t ≥ RM , for a.e. x ∈ Ω. In a

similar way, we have G(x, tz) ≤ −M/2, for t ≤ −RM and a.e. x ∈ Ω. Hence

lim
|z|→∞

G(x, z) = −∞, uniformly for a.e. x ∈ Ω.

The lemma follows from the above equality and the continuity of G. ¤

We are now ready to prove our first theorem.

Proof of Theorem 1.1. Let k ≥ 2 be given by the condition (F∞). For any 1 ≤ j ≤ k− 1,

let ΦA∞
j be the normalized eigenfunction associated to the j-th positive eigenvalue λj(A∞),

as explained in the Section 2. If we define

V = span{ΦA∞
1 , . . . , ΦA∞

k−1} and W = V ⊥,

we have that H = V ⊕W and dim V = k − 1 < ∞. We claim that the functional I satisfies

the geometry of the Saddle Point Theorem, that is,

Claim 1: I(z) → −∞ as ‖z‖ → ∞, z ∈ V ,

Claim 2: there exists γ ∈ R such that I(z) ≥ γ, for all z in W .

Assuming that the above claims are true, use can use Lemma 3.1 and the Saddle Point

Theorem [20, Theorem 4.6] (see also [22, Theorem 2.13]) to get a critical point for I. As

explained before, this critical point is a solution of (P ) and we have done.

It remains to prove the claims. Let us first consider the first one. Since k ≥ 2 and

λ1(A∞) < λ2(A∞) we may suppose, without loss of generality, that λk−1(A∞) < λk(A∞) = 1.

Thus, the inequality (2.2) implies that, for any z ∈ V \ {0},

‖z‖2 ≤ λk−1(A∞)

∫

Ω

〈A∞(x)z, z〉 <

∫

Ω

〈A∞(x)z, z〉 .

Recalling that V is finite dimensional, we obtain δ > 0 such that

‖z‖2 −
∫

Ω

〈A∞(x)z, z〉 ≤ −δ‖z‖2, ∀ z ∈ V.
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Thus, we can use (3.1) and (2.1) to get

I(z) ≤ 1

2
‖z‖2 − 1

2

∫

Ω

〈A∞(x)z, z〉+
ε

2

∫

Ω

|z|2 + Mε|Ω|

≤ 1

2
(−δ + εS2) ‖z‖2 + Mε|Ω|.

By taking ε = δ/(2S2) we conclude that I(z) → −∞ as ‖z‖ → ∞, z ∈ V .

In order the verify the second claim we take z ∈ W and use λk(A∞) = 1, (2.3) and Lemma

3.2, to get

I(z) =
1

2
‖z‖2 − λk(A∞)

2

∫

Ω

〈A∞(x)z, z〉 −
∫

Ω

(
F (x, z)− 1

2
〈A∞(x)z, z〉

)

≥ −M∞|Ω|.
Hence the Claim 2 is true and the theorem is proved. ¤

4. Proof of Theorems 1.2 and 1.3

In this section we prove our multiplicity results concerning the resonance at higher eigen-

values. Since we will apply is Morse Theory, it is useful to recall some concepts. Let z0 ∈ H

be an isolated critical point of I, c = I(z0) and p be a nonnegative integer. We define the

j-th critical group of I at z0 as being

Cj(I, z0) = Hj(I
c, Ic \ {z0}),

where Ic = {u ∈ H : I(u) ≤ c} and Hj(I
c, Ic \ {z0}) denotes the j-th relative singular

homology group with coefficients in (Z, +) (see [9] for more details). The critical groups will

enable us to distinguish the critical points obtained by different kinds of links.

Proof of Theorem 1.2. Let w be the solution given by Theorem 1.1. It is sufficient to

show that w 6= 0. With this aim we first note that, since w was obtained by the Saddle

Point Theorem with the finite dimensional subspace having dimension k− 1, we know by [9,

Theorem 1.5 of Chapter 2] that

Ck−1(I, w) 6= 0. (4.1)

Recalling that F ∈ C2(Ω × R2,R) and using some calculations we can see that the matrix

A0(x) given by the condition (F0) is precisely the second derivative D2F (x, 0). Thus, the

condition λm(A0) < 1 < λm+1(A0), implies that 0 is a nondegenerated critical point and the

Morse index of I at 0, which we denote by m(I, 0), is equal to m. Thus, by applying [9,

Theorem 4.1 of Chapter 1], we get

Cj(I, 0) =

{
Z, if j = m,

0, otherwise
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Since we are assuming that m 6= k − 1 the above equation and (4.1) show that w 6= 0 and

the theorem is proved. ¤

Before to presenting the proof of Theorem 1.3 we need the following result.

Lemma 4.1. Suppose ∇F (x, 0, 0) ≡ 0 and (F ), (F0) and (F∞) holds. If λ1(A0) > 1 and

λk(A∞) = 1 for some k ≥ 3, then the functional I has the mountain pass geometry, that is,

I(0) = 0 and

(i) there exist α, ρ > 0 such that I(z) ≥ α, for all z ∈ H such that ‖z‖ = ρ,

(ii) there exists e ∈ H such that ‖e‖ > ρ and I(e) ≤ 0.

Proof. Given ε > 0, we can use (F0) to obtain δε > 0 such that

|2F (x, z)− 〈A0(x)z, z〉 | ≤ ε|z|2, ∀ x ∈ Ω, |z| < δε.

Moreover, condition (F ) provides Aε > 0 such that

|F (x, z)| ≤ Aε|z|p, ∀ x ∈ Ω, |z| ≥ δε.

It follows from the two above inequalities that

F (x, z) ≤ 1

2
〈A0(x)z, z〉+

ε

2
|z|2 + Aε|z|p (4.2)

for any (x, z) ∈ Ω× R2.

Thus, for any z ∈ H, we can use the above inequality, (2.3) and (2.1) to get

I(z) ≥ 1

2
‖z‖2 − 1

2

∫

Ω

〈A0(x)z, z〉 − ε

2

∫

Ω

|z|2 − Aε

∫

Ω

|z|p

≥ 1

2

(
1− 1

λ1(A0)
− εS2

)
‖z‖2 − AεSp‖z‖p.

Recalling that λ1(A0) > 1, we can take ε > 0 small in such way that (1− 1/λ1(A0)− εS2) =

ν > 0, and conclude that

I(z) ≥ ν

2
‖z‖2 − AεSp‖z‖p =

(ν

2
− AεSp‖z‖p−2

)
‖z‖2.

Thus, we can check that the item (i) holds for ρ = (ν/(4AεSp))
1/(p−2) and α = ρ2ν/4.

Let ΦA∞
1 be the normalized eigenfunction associated to λ1(A∞). In view of (3.1) and (2.3)

we have,

I(tΦA∞
1 ) =

1

2
‖tΦA∞

1 ‖2 −
∫

Ω

F (x, tΦA∞
1 )

≤ t2

2
− t2

2

∫

Ω

〈
A∞(x)ΦA∞

1 , ΦA∞
1

〉
+

t2ε

2

∫

Ω

|ΦA∞
1 |2 + Mε|Ω|

=
t2

2

(
1− 1

λ1(A∞)
+ ε

∫

Ω

|ΦA∞
1 |2

)
+ Mε|Ω|
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Since λ1(A∞) < λk(A∞) = 1 we can choose ε > 0 small in such way that (1 − 1/λ1(A∞) +

ε
∫

Ω
|ΦA∞

1 |2) = κ < 0, and therefore

I(tΦA∞
1 ) ≤ t2

2
κ + Mε|Ω| → −∞,

as t → ∞. Thus, for sufficiently large t0 > ρ we have I(t0Φ
A∞
1 ) ≤ 0. This proves item (ii)

and concludes the proof of the lemma. ¤

Proof of Theorem 1.3. Let w be the nontrivial solution given by Theorem 1.2. In view of

Lemmas 4.1 and 3.1, we can apply the Mountain Pass theorem [20, Theorem 2.2] to obtain

a nontrivial solution w of the problem (P ). In order to prove the theorem it suffices to show

that w 6= w.

Firstly, we note that

C1(I, w) 6= 0.

Now, by the Shifting theorem ([9, Corollary 5.1 of Chapter 1]) we have that m(I, w) ≤ 1. If

m(I, w) = 1 then, by the Shifting theorem, we have

Cj(I, w) =

{
Z, if j = 1,

0, otherwise.
(4.3)

If m(I, w) = 0 then w is a degenerated critical point and the assumption that D2F (x, w) ∈
M2(Ω) implies that dim KerI ′′(w) = 1 (see [7]). Again, we can use [9, Theorem 1.6 of

Chapter 2] to conclude that (4.3) also holds in this case.

Recalling that k > 2, we conclude that Ck−1(I, w) = 0 and it follows from (4.1) that

w 6= w. The theorem is proved. ¤

5. Proof of Theorem 1.4

In this final section we consider the resonance at the first eigenvalue λ1(A∞). We start by

proving that, in this case, the functional I is coercive on H.

Lemma 5.1. IF (F∞) holds and we have either

(i) λ1(A∞) > 1, or

(ii) λ1(A∞) = 1 and (NQ) holds,

then the functional I is coercive on H, i.e., I(z) →∞ whenever ‖z‖ → ∞.
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Proof. We first present the proof of (i). Given ε > 0 small we can use (3.2), (2.3) and

λ1(A∞) > 1 to obtain

I(z) ≥ 1

2
‖z‖2 − 1

2

∫

Ω

〈A∞(x)z, z〉 − ε

∫

Ω

|z|2 −Mε|Ω|

≥ 1

2

(
1− 1

λ1(A∞)
− εS2

)
‖z‖2 −Mε|Ω|

≥ ν

2
‖z‖2 −Mε|Ω|,

(5.1)

for some ν > 0. Thus, I(z) → +∞ as ‖z‖ → +∞ and the lemma is proved in this first case.

For the second case (ii) we note that, if

G(x, z) = F (x, z)− 1

2
〈A∞(x)z, z〉 ,

then we can argue as in the proof of Lemma 3.2 and conclude that

lim
|z|→∞

G(x, z) = −∞, uniformly for a.e. x ∈ Ω. (5.2)

Now we suppose, by contradiction, that the lemma is false. Then there exists (zn) ⊂ H

such that ‖zn‖ → ∞ as n → ∞ and I(zn) ≤ C, for some C ∈ R. By writing zn = (un, vn)

we define the new sequence ẑn = zn

‖zn‖ = (ûn, v̂n, ). Passing to a subsequence if necessary, we

may suppose that

ẑn ⇀ ẑ = (û, v̂) weakly in H,

ẑn → ẑ in L2(Ω)× L2(Ω),

ẑn(x) → ẑ(x) for a.e. x ∈ Ω.

(5.3)

In view of Lemma 3.2, we have that

C ≥ I(zn)

=
1

2
‖zn‖2 − 1

2

∫

Ω

〈A∞(x)zn, zn〉 −
∫

Ω

G(x, zn)

≥ 1

2
‖zn‖2 − 1

2

∫

Ω

〈A∞(x)zn, zn〉 −M∞|Ω|.

Dividing this expression by ‖zn‖2, letting n →∞ and using (5.3), we obtain

1 ≤
∫

Ω

〈A∞(x)ẑ, ẑ〉 .

On the other hand, recalling the weak convergence in (5.3) and that λ1(A∞) = 1, we can

use (2.3) to get

1 ≤
∫

Ω

〈A∞(x)ẑ, ẑ〉 ≤ ‖ẑ‖2 ≤ lim inf
n→∞

‖ẑn‖2 = 1,

from which follows that ‖ẑ‖ = 1. This and the above expression show that ẑ = ±ΦA∞
1 , the

first eigenfunction of (LP ). Since in both cases the components of ẑ have the same constant
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sign, we conclude that |un(x)| → ∞ and |vn(x)| → ∞ as n → ∞. This fact, λ1(A∞) = 1,

(2.3) and (5.2) imply that

C ≥ I(zn) =
1

2
‖zn‖2 − 1

2

∫

Ω

〈A∞(x)zn, zn〉 −
∫

Ω

G(x, zn)

≥ −
∫

Ω

G(x, zn) →∞,

as n →∞. This is a contradiction and the lemma is proved. ¤

In order to verify that I has a local linking at the origin, we take A0 be the function given

by hypothesis (F0). Recalling the spectral theory of the operator TA0 discussed in Section 2,

we set

V = span{ΦA0
1 , ΦA0

2 , . . . , ΦA0
m } and W = V ⊥.

Thus, we have the direct decomposition H = V ⊕W . Moreover, the following holds.

Lemma 5.2. If (F0) holds and λm(A0) < 1 < λm+1(A0), then the functional I has a local

link at the origin, i.e.,

(i) there exists ρ1 > 0 such that I(z) ≤ 0, for all z ∈ V ∩Bρ1(0),

(ii) there exists ρ2 > 0 such that I(z) > 0, for all nonzero z ∈ W ∩Bρ2(0).

Proof. Given ε > 0, we can use (F0) and (F ) as in the proof of Theorem 1.3, to obtain

δε, Aε > 0 such that

F (x, z) ≥ 1

2
〈A0(x)z, z〉 − ε

2
|z|2 − Aε|z|p, (5.4)

for any (x, z) ∈ Ω× R2.

By taking ε > 0 sufficiently small we can use (5.4), (2.2), (2.1) and λk(A0) < 1 to obtain

I(z) ≤ 1

2
‖z‖2 − 1

2

∫

Ω

〈A0(x)z, z〉+
ε

2

∫

Ω

|z|2 + Aε

∫

Ω

|z|p

≤ 1

2

(
1− 1

λk(A0)
+ εS2

)
‖z‖2 + AεSp‖z‖p

≤
(κ

2
+ AεSp‖z‖p−2

)
‖z‖2

for some κ < 0 and for all z ∈ V . Hence, the condition (i) holds for ρ1 = (−κ/2AεSp)
1/(p−2) >

0.

In order to verify (ii), we choose ε > 0 small and use (4.2), (2.3), (2.1) and λk+1(A0) > 1,

to get

I(z) ≥ 1

2

(
1− 1

λk+1(A0)
− εS2

)
‖z‖2 − AεSp‖z‖p

≥
(µ

2
+ AεSp‖z‖p−2

)
‖z‖2,
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for some µ > 0 and for all z ∈ W . As before, we can check that (ii) holds for ρ2 =

(µ/2AεSp)
1/(p−2) > 0. The lemma is proved. ¤

Proof of Theorem 1.4. In view of Lemmas 5.1 and 5.2, we can invoke the Three Critical

Point Theorem [18] (see also [19, Theorem 2.1]) to obtain two nontrivial critical points for I.

As before, these critical points are nontrivial solutions of (P ) and the theorem is proved. ¤
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