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Abstract. We consider the quasilinear problem div(|∇u|p−2∇u)+λ|u|q−2u+ |u|p∗−2u = 0
in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a bounded smooth domain, N ≥ p2, λ > 0 and
p < q < p∗ = Np/(N − p). We show that if Ω is invariant under a nontrivial orthogonal
involution then, for λ sufficiently small, there is an effect of the equivariant topology of Ω
on the number of solutions which change sign exactly once.

1. Introduction and statement of results

In this paper we consider the following critical problem

(Dλ)

{ −∆pu = λ|u|q−2u + |u|p∗−2u in Ω,

u = 0 on ∂Ω,

Ω ⊂ RN is a bounded smooth domain, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator,

N ≥ p2, λ > 0 and p ≤ q < p∗ = Np/(N − p).

The starting point on the study of the above problem is the pioneer work of Brezis and

Nirenberg [4], where the authors study (Dλ) in the case p = q = 2 and showed that the

existence of positive solutions for (Dλ) is related with the interaction between the parameter

λ and the first eigenvalue λ1(Ω) of the operator −∆p on W 1,p
0 (Ω), defined by

(1.1) λ1(Ω) = inf

{∫

Ω

|∇u|p dx : u ∈ W 1,p
0 (Ω),

∫

Ω

|u|p dx = 1

}
.

Among other results, they showed that the problem (Dλ) has at least one positive solution

provided p = q = 2, N ≥ 4 and 0 < λ < λ1(Ω). In [10], Garcia Azorero and Peral Alonso

extended the results of [4] to the p-Laplacian operator. The same authors proved in [11]

that, if p2 ≤ N , q ∈ (p, p∗) and λ > 0, then (Dλ) has at least one nontrivial solution (see

also [12]). The main interest in (Dλ) is due to the lack of compactness of the embedding

W 1,p
0 (Ω) ↪→ Lp∗(Ω), which makes that the associated functional does not satisfy the Palais-

Smale condition on some levels.
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After the paper of Brezis and Nirenberg, a lot of papers concerning critical nonlinearities

have been appeared. In particular, we recall that Rey [17] and Lazzo [13] proved, for p =

q = 2, that the problem (Dλ) has at least cat(Ω) positive solutions (see also the well known

paper of Benci and Cerami [2] where the subcritical case was considered), provided λ > 0

is sufficiently close to 0. Here, cat(Ω) stands the usual Ljusternik-Schnirelmann category

of Ω in itself. Recently, Alves and Ding [1] extended these last results for the p-Laplacian

operator and obtained a similar theorem.

We are interest here in nodal solutions of (Dλ), that is, solutions that change sign in Ω.

The first result in this direction is due to Cerami, Solimini and Struwe [6], who considered

the case p = q = 2 and obtained one pair of nodal solutions, provided N ≥ 6 and 0 <

λ < λ1(Ω). Similar results were obtained by Zhang [24] and Tarantello [21]. The question

of multiplicity of nodal solutions was also discussed in [6], where the authors proved the

existence of infinitely many radial solutions when Ω is a ball centered at the origin, p = q = 2,

N ≥ 7 and 0 < λ < λ1(Ω). For domains with some kind of symmetry Fortunato and Jannelli

[9] showed the existence of solutions with arbitrarily large energy for N ≥ 4 and λ > 0.

However, these solutions change sign many times.

In this paper we use a different approach which already appears in Castro and Clapp [5].

In order to obtain nodal solutions for (Dλ) we denote by O(N) the set of orthogonal linear

transformations of RN in RN and suppose that the domain Ω has the following symmetry

property:

(H) there exists τ ∈ O(N) such that τ 6= Id, τ 2 = Id and τ(Ω) = Ω.

This includes, e.g. domains which are symmetric with respect to the origin, as well as

cylindrical or rotationally invariant domains as those considered by Fortunato and Jannelli.

We deal with the symmetric problem

(Dτ
λ)





−∆pu = λ|u|q−2u + |u|p∗−2u in Ω,

u(τx) = −u(x) for all x ∈ Ω,

u = 0 on ∂Ω.

where Ω ⊂ RN is a bounded smooth domain satisfying (H) and the parameters are as before.

We say that a solution u of (Dτ
λ) changes sign exactly once if the set Ω \ u−1(0) has exactly

two connected components, u is positive in one of them and negative in the other. We state

below our main results.

Theorem 1.1. Suppose that (H) holds. Then, for any λ ∈ (0, λ1(Ω)), the problem (Dτ
λ) has

at least one pair of solutions which change sign exactly once.
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Theorem 1.2. Suppose that (H) holds. Then there exists λ∗ ∈ (0, λ1(Ω)) such that, for any

λ ∈ (0, λ∗), the problem (Dτ
λ) has at least τ -catΩ(Ω\Ωτ ) pairs of solutions which change sign

exactly once.

Here, Ωτ = {x ∈ Ω : τx = x} and τ -cat is the Gτ -equivariant Ljusternik-Schnirelmann

category for the group Gτ = {Id, τ}. There are several situations where the equivariant

category turns out to be larger than the nonequivariant one. The classical example is the

unit sphere SN−1 ⊂ RN with τ = −Id. In this case cat(SN−1) = 2 whereas τ -cat(SN−1) = N .

Thus, as an easy consequence of Theorem 1.2 we have

Corollary 1.3. Let Ω be symmetric with respect to the origin and such that 0 6∈ Ω. Assume

further that there is an odd map ϕ : SN−1 → Ω. Then there exists λ∗ ∈ (0, λ1(Ω)) such that,

for all λ ∈ (0, λ∗), the problem (Dτ
λ) has at least N pairs of odd solutions which change sign

exactly once.

The problem (Dλ) was introduced by Castro and Clapp [5] in the case p = q = 2. They

obtained existence and multiplicity of solutions which change sign exactly once. The above

results improve the paper [5] in two ways: first because we consider the p-Laplacian operator

and second because we also deal with the case p < q < p∗. Hence, our results seem to be

new even in the semilinear case p = 2. In order to deal with the difference of homogeneity

between ∆pu and λ|u|q−2u, we adapt some ideas introduced in [1]. Our work also complement

the papers [6, 24, 21, 9] that deal with nodal solutions and [17, 13, 1], where only positive

solutions were considered.

The paper is organized as follows: Section 2 is devoted to establish the variational frame-

work as well as to present some technical results. In Section 3, after recalling some facts

about equivariant Ljusternik-Schnirelmann theory, we prove our main results.

2. Variational framework and some technical results

Throughout this paper we will consider the space W 1,p
0 (Ω) endowed with the norm

‖u‖ =

(∫

Ω

|∇u|p dx

)1/p

.

As usual, we denote by S the best constant of the Sobolev embedding W 1,p
0 (Ω) ↪→ Lp∗(Ω)

given by

(2.1) S = inf

{
‖u‖p : u ∈ W 1,p

0 (Ω),

∫

Ω

|u|p∗dx = 1

}
.

It is known that S does not depend of the set Ω and is never achieved except when Ω = RN .
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We note that the involution τ of Ω induces an involution of W 1,p
0 (Ω), which we also denote

by τ , in the following way: for each u ∈ W 1,p
0 (Ω) we define τu ∈ W 1,p

0 (Ω) by

(2.2) (τu)(x) = −u(τx).

The weak solutions of the problem (Dλ) are the critical points of the C1-functional Iλ :

W 1,p
0 (Ω) → R given by

Iλ(u) =
1

p

∫

Ω

|∇u|p dx− λ

q

∫

Ω

|u|q dx− 1

p∗

∫

Ω

|u|p∗ dx.

In order to obtain critical points that satisfy the symmetry condition in (Dλ), we will look

for critical points that lie in the invariant space W 1,p
0 (Ω)τ defined as

W 1,p
0 (Ω)τ = {u ∈ W 1,p

0 (Ω) : τu = u}.

Let us consider the Nehari manifold associated to the functional Iλ

Nλ =
{
u ∈ W 1,p

0 (Ω) : 〈I ′λ(u), u〉 = 0
}

=
{
u ∈ W 1,p

0 (Ω) : ‖u‖p = λ
∫
Ω
|u|q dx +

∫
Ω
|u|p∗dx

}

and the τ -invariant Nehari manifold

N τ
λ = {u ∈ Nλ : τu = u} = Nλ ∩W 1,p

0 (Ω)τ .

Note that, if u ∈ Nλ, then

(2.3) Iλ(u) = λ

(
1

p
− 1

q

) ∫

Ω

|u|q dx +

(
1

p
− 1

p∗

) ∫

Ω

|u|p∗dx ≥ 0,

and therefore the following minimization problems are well defined

(2.4) mλ = inf
u∈Nλ

Iλ(u) and mτ
λ = inf

u∈N τ
λ

Iλ(u).

For any τ -invariant bounded domain D ⊂ RN we define ‖ · ‖D, Iλ,D, Nλ,D, N τ
λ,D, mλ,D and

mτ
λ,D in the same way, by taking all the integrals over D instead of Ω. We denote by |u|s,D

the Ls(D)-norm of a function u ∈ Ls(D). In order to simplify the notation, whenever we

omit the subscript reference of the set in the above notation, we are assuming that D = Ω.

Also for simplicity, we write only
∫
D u instead of

∫
D u(x)dx.

Lemma 2.1. Suppose either q = p and λ ∈ (0, λ1(Ω)) or p < q < p∗ and λ > 0. Then there

exists rλ,q > 0 such that

(2.5) ‖u‖ ≥ rλ,q,

for all u ∈ N τ
λ . In particular mτ

λ > 0.
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Proof. If q = p and λ ∈ (0, λ1(Ω)), we can use the definition of λ1(Ω) and the Sobolev

embedding W 1,p
0 (Ω) ↪→ Lp∗(Ω) to get

(
1− λ

λ1(Ω)

)
‖u‖p ≤ ‖u‖p − λ|u|pp = |u|p∗p∗ ≤ C1‖u‖p∗ ,

for some C1 > 0. Thus, (
1− λ

λ1(Ω)

)
≤ C1‖u‖p∗−p,

and (2.5) follows for rλ,q =
{

1
C1

(
1− λ

λ1(Ω)

)}1/(p∗−p)

. Consequently, if u ∈ N τ
λ , we have

Iλ(u) =

(
1

p
− 1

p∗

) (‖u‖p − λ|u|pp
)

≥
(

1

p
− 1

p∗

)(
1− λ

λ1(Ω)

)
rp
λ,q,

and therefore mτ
λ > 0.

Suppose now that p < q < p∗ and λ > 0. Then there exists C2 > 0 such that

‖u‖p = λ|u|qq + |u|p∗p∗ ≤ λC2‖u‖q + C1‖u‖p∗ ,

that is

1 ≤ λC2‖u‖q−p + C1‖u‖p∗−p,

for all u ∈ N τ
λ . Since q > p and p∗ > p, the above expression shows that cannot exists

(un) ⊂ N τ
λ with ‖un‖ → 0 and (2.5) follows. To verify that mτ

λ > 0 we suppose, by

contradiction, that mτ
λ = 0. Then there exists (un) ⊂ N τ

λ such that Iλ(un) → 0. It follows

from (2.3) that |un|qq → 0 and |un|p
∗

p∗ → 0. Hence ‖un‖p → 0, contradicting (2.5). The lemma

is proved.

In view of the definition of Nλ,D, an standard calculation shows that m0,D = 1
N

SN/p. On

other hand, if N ≥ p2, Garcia Azorero and Peral Alonzo [10] showed that, for 0 < λ < λ1(D)

and any bounded smooth domain D,

mλ,D <
1

N
SN/p

and mλ,D is achieved by Iλ,D on Nλ,D. Although the number mλ,D depends on the set D we

have the following asymptotic property:

Lemma 2.2. For any bounded smooth domain D ⊂ RN we have that

lim
λ→0+

mλ,D = m0,D =
1

N
SN/p



6 MARCELO F. FURTADO

Proof. This proof follows quite similar lines as the proof of [1, Lemma 2.4] and will be

omitted.

The next auxiliar result establishes the relation between the numbers defined in (2.4) and

the constant S.

Lemma 2.3. For any λ ∈ (0, λ1(Ω)) we have that

2mλ ≤ mτ
λ <

2

N
SN/p.

Proof. We closely follow the arguments of [5, Proposition 5]. Given u ∈ N τ
λ we can use (2.2)

to conclude that u+, u− ∈ Nλ, where u± = max{±u, 0}. Thus

Iλ(u) = Iλ(u
+) + Iλ(u

−) ≥ 2mλ,

and the first inequality follows. Next, we choose y ∈ Ω, and r > 0 such that y 6= τy,

Br(y) ∈ Ω and Br(y) ∩ Br(τy) = ∅. Since 0 < λ < λ1(Ω) < λ1(Br(0)), we can take a

positive radial function vλ ∈ Nλ,Br(0) such that Iλ,Br(0)(vλ) = mλ,Br(0). By the choice of

r > 0, we get

uλ = vλ(· − y)− vλ(· − τy) ∈ N τ
λ ,

and therefore, since mλ,Br(0) < 1
N

SN/p, we conclude that

mτ
λ ≤ Iλ(uλ) = 2Iλ,Br(0)(vλ) <

2

N
SN/p.

This concludes the proof of the lemma.

Let D1,p(RN) = {u ∈ Lp∗(RN) : |∇u| ∈ Lp(RN)} and denote by M(RN) the Banach space

of finite Radon measures over RN equipped with the norm

µ = sup
φ∈C0(RN ),|φ|∞≤1

∣∣∣∣
∫

RN

φ dµ

∣∣∣∣ .

We say that µn ⇀ µ weakly in M(RN) if for all f ∈ C0(RN),
∫
RN fdµn →

∫
RN fdµ. We

state below a result that is a variant of the concentration-compactness lemma, see [14].

Lemma 2.4. Let (un) ⊂ D1,p(RN) be a sequence such that

(2.6)

un ⇀ u weakly in D1,p(RN),

|∇(un − u)|p ⇀ µ weakly in M(RN),

|un − u|p∗ ⇀ ν weakly in M(RN),

un(x) → u(x) a.e. x ∈ RN ,

∇un(x) → ∇u(x) a.e. x ∈ RN ,
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and define

µ∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R

|∇un|p, ν∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R

|un|p∗ .

Then

(2.7) ν p/p∗ ≤ S−1 µ ,

(2.8) lim sup
n→∞

|∇un|pp,RN = |∇u|p
p,RN + µ + µ∞,

and

(2.9) lim sup
n→∞

|un|p
∗

p∗,RN = |u|p∗
p∗,RN + ν + ν∞.

Moreover, if u = 0 and ν p/p∗ = S−1 µ , then µ and ν are concentrated at single points.

Remark 2.5. In [22, Lemma 1.40] the above lemma is proved for p = 2 without the as-

sumption of pointwise convergence for the gradient. The proof for the general case follows

the same lines of case p = 2 except for the equation (2.8). As noted in [19, Example 2.3],

it can fail for p 6= 2 if we do not impose that ∇un(x) → ∇u(x) for a.e. x ∈ RN . However,

when this last assumption is assumed, equation (2.8) can be verified as in [19, Lemma 2.1

and Remark 2.2].

For any r > 0 we define the set

(2.10) Ω+
r = {x ∈ RN : dist(x, Ω) < r}.

We also define the barycenter map β : W 1,p
0 (Ω) \ {0} → RN by setting

β(u) =

∫
RN |u|p∗x dx∫
RN |u|p∗dx

.

For simplicity, we write mλ,r instead of mλ,Br(0).

The following result is a version of [5, Lemma 14]. As we will see, it is a key ingredient

for the proof of the multiplicity result. Our proof is based in some ideas contained in [22].

Lemma 2.6. For any r > 0 there exist λ0 = λ0(r) > 0 such that, for all 0 < λ < λ0, we

have that β(u) ∈ Ω+
r whenever u ∈ Nλ and Iλ(u) ≤ mλ,r.

Proof. Suppose, by contradiction, that the lemma is false. Then there exist λn → 0+,

un ∈ Nλn such that Iλn(un) ≤ mλn,r but β(un) 6∈ Ω+
r . Note that,

mλn ≤ Iλn(un) =
1

p
‖un‖p − λn

q
|un|qq −

1

p∗
|un|p

∗
p∗ ≤ mλn,r

and

0 = 〈I ′λn
(un), un〉 = ‖un‖p − λn|un|qq − |un|p

∗
p∗ .
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Since Iλn(un) is bounded, we have that (un) is bounded in W 1,p
0 (Ω) (and also in Lq(Ω)).

Hence,

(2.11) mλn + o(1) ≤ 1

p
‖un‖p − 1

p∗
|un|p

∗
p∗ ≤ mλn,r + o(1)

and ‖un‖p − |un|p
∗

p∗ = o(1), as n →∞. Thus,

(2.12) ‖un‖p = b + o(1) and |un|p
∗

p∗ = b + o(1),

for some b ≥ 0. Taking the limit in (2.11) and using Lemma 2.2, we conclude that b = SN/p.

We claim that, up to a subsequence,

(2.13) ∇un(x) → ∇u(x)

for a.e. x ∈ Ω. Indeed, by (2.12), we have that the sequence vn := un

|un|p∗ satisfies |vn|p∗ = 1

and

‖vn‖p =
‖un‖p

|un|pp∗
→ SN/p

S
N
p

(N−p
N

)
= S

N
p

(1−N−p
N

) = S.

Hence, (vn) is a minimizing sequence for the best constant S defined in (2.1) and standard

calculations (see [23, 18, Corollary 3.7]) show that ∇vn(x) → ∇v(x) for a.e. x ∈ Ω. This

convergence, (2.12) and the definition of vn imply that (2.13) holds.

By going if necessary to a subsequence, we may assume that (2.6) holds and un → u in

Lp(Ω). The Lemma 2.4, b = SN/p and (2.12) provide

SN/p = ‖u‖p + µ , SN/p = |u|p∗p∗ + ν

and

ν p/p∗ ≤ S−1 µ , |u|pp∗ ≤ S−1‖u‖p.

Note that, since Ω is bounded, the terms µ∞ and ν∞ do not appear in the above expressions.

The inequality (a + b)t < at + bt for a, b > 0 and 0 < t < 1, and the above expressions

imply that ν and |u|p∗p∗ are equal either to 0 or SN/p. Indeed, if this is not the case, we get

S(N−p)/p = S−1(‖u‖p + µ ) ≥
(
|u|p∗p∗

)p/p∗

+ ν p/p∗

>
(
|u|p∗p∗ + ν

)p/p∗

= S(N−p)/p,

which is absurd. Suppose |u|p∗p∗ = SN/p. Since un ⇀ u weakly in W 1,p
0 (Ω), we have that

‖u‖p ≤ lim inf
n→∞

‖un‖p = SN/p. Hence

‖u‖p

|u|pp∗
≤ SN/p

S(N−p)/p
= S,
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and we conclude that S is attained by u ∈ W 1,p
0 (Ω), which does not make sense. This shows

that u = 0 and therefore ν = SN/p and ν is concentrated at a single point y ∈ Ω. Hence,

β(un) =

∫
RN |un|p∗x dx∫
RN |un|p∗dx

→ S−N/p

∫

Ω

x dν = y ∈ Ω,

which contradicts β(un) 6∈ Ω+
r . The lemma is proved.

3. Proof of the main results

We start this section by noting that, if u is a solution of (Dτ
λ), then it is of class C1. We

say it changes sign n times if the set {x ∈ Ω : u(x) 6= 0} has n + 1 connected components.

Obviously, if u is a nontrivial solution of problem (Dτ
λ), then it changes sign an odd number

of times. The relation between the number of nodal regions of a solution and its energy is

given by the result below. The proof can be done by following the same arguments contained

in [5, Proposition 6] and will be omitted.

Lemma 3.1. If u is a solution of the problem (Dτ
λ) which changes sign 2k − 1 times, then

Iλ(u) ≥ kmτ
λ.

Let V be a Banach space, M be a C1-manifold of V and I : V → R a C1-functional. We

recall that I|M satisfies de Palais-Smale condition at level c if any sequence (un) ⊂ M such

that I(un) → c and ‖I ′(un)‖∗ → 0 contains a convergent subsequence. Here we are denoting

by ‖I ′(u)‖∗ the norm of the derivative of the restriction of I to M [22, Section 5.3].

We establish below a local compactness condition for the functional Iλ on N τ
λ . Note that

the symmetry of the functions provides compactness below the critical level 2
N

SN/p, which

is exactly the double of the critical level for Iλ on W 1,p
0 (Ω).

Lemma 3.2. Suppose either q = p and λ ∈ (0, λ1(Ω)) or q < p < p∗ and λ > 0. Let

(un) ⊂ N τ
λ be such that ‖I ′λ(un)‖∗ → 0 and Iλ(un) → c < 2

N
SN/p. Then (un) possesses a

convergent subsequence.

Proof. Since (un) is a Palais-Smale sequence, standard arguments [10, 12] show that (un) is

bounded in W 1,p
0 (Ω). Since ‖I ′λ(un)‖∗ → 0, there exits (θn) ⊂ R such that

(3.1) I ′λ(un)− θnJ ′λ(un) → 0 in (W 1,p
0 (Ω))∗,

where

(3.2) Jλ(u) = ‖u‖p − λ|u|qq − |u|p
∗

p∗ ,

for all u ∈ W 1,p
0 (Ω). Recalling that (un) ⊂ N τ

λ , we get

〈J ′λ(un), un〉 = λ(p− q)|un|qq + (p− p∗)|un|p
∗

p∗ < 0.
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Thus, we can suppose that 〈J ′λ(un), un〉 → l ≤ 0. If l = 0 the above expression would imply

that ‖un‖ → 0, contradicting (2.5). Hence, l < 0 and we infer from (3.1) that θn → 0, that

is, I ′λ(un) → 0 in (W 1,p
0 (Ω))∗.

Since (un) is bounded there exists u ∈ W 1,p
0 (Ω) such that, up to a subsequence,

un ⇀ u weakly W 1,p
0 (Ω),

un → u in Lp∗
loc(Ω) and Lq(Ω),

un(x) → u(x) a.e. x ∈ Ω.

Moreover, by applying the concentration compactness lemma of P.L. Lions as in [23], we can

also suppose that

∇un(x) → ∇u(x) a.e. x ∈ Ω,

|∇un|p−2∂un

∂xi

⇀ |∇u|p−2 ∂u

∂xi

weakly in (Lp(Ω))∗, 1 ≤ i ≤ N,

from which follows that I ′λ(u) = 0.

Note that

c + o(1) = Iλ(un)− 1

p
〈I ′λ(un), un〉

= λ

(
1

p
− 1

q

)
|un|qq +

(
1

p
− 1

p∗

)
|un|p

∗
p∗ ,

where o(1) → 0 as n →∞. Recalling that un → u in Lq(Ω), we get

(3.3)
1

N
|un|p

∗
p∗ = c + λ

(
1

q
− 1

p

)
|u|qq + o(1) ≤ c + o(1).

Defining wn = un − u, we can use the Brezis-Lieb lemma [3] to obtain

‖wn‖p − λ|wn|qq = ‖un‖p − λ|un|qq − ‖u‖p + λ|u|qq + o(1),

|wn|p
∗

p∗ = |un|p
∗

p∗ − |u|p
∗

p∗ + o(1).

Hence, recalling that (un) ⊂ N τ
λ , I ′λ(u) = 0, and wn → 0 in Lq(Ω), we get

(3.4) ‖wn‖p = b + o(1) and |wn|p
∗

p∗ = b + o(1)

for some b ∈ R. Moreover, by (3.3),

b + o(1) = |wn|p
∗

p∗ = |un|p
∗

p∗ − |u|p
∗

p∗ + o(1) ≤ Nc + o(1),

and therefore

(3.5) b ≤ Nc < 2SN/p.

Since (wn) ⊂ W 1,p
0 (Ω)τ , we know that ‖wn‖p = 2‖w+

n ‖p and |wn|p
∗

p∗ = 2|w+
n |p

∗
p∗ . Thus

S|w+
n |pp∗ ≤ ‖w+

n ‖p = b/2 + o(1).
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Taking the limit we conclude that S(b/2)p/p∗ ≤ b/2. We have now two possibilities: b = 0

or b ≥ 2SN/p. The second case cannot occurs by (3.5). Thus b = 0 and we infer from (3.4)

that un → u strongly in W 1,p
0 (Ω). The lemma is proved.

We are now ready to present the proof of our existence result.

Proof of Theorem 1.1. Let (un) ⊂ N τ
λ be a minimizing sequence for mτ

λ. By Ekeland’s

variational principle [8], we may assume that it is a Palais-Smale sequence. In view of Lemma

2.3, we have that mτ
λ < 2/NSN/p and therefore, by Lemma 3.2, we obtain a minimum u

of Iλ on N τ
λ . Now, Lemma 3.1 and the principle of symmetric criticality [16] (see also [15,

Proposition 1]) imply that u (and also −u) is a solution of (Dτ
λ) which changes sign exactly

once.

Before presenting the proof of Theorem 1.2, we recall some facts about equivariant Ljusternik-

Schnirelmann theory. An involution on a topological space X is a continuous function

τX : X → X such that τ 2
X is the identity map of X. A subset A of X is called τX-invariant if

τX(A) = A. If X and Y are topological spaces equipped with involutions τX and τY respec-

tively, then an equivariant map is a continuous function f : X → Y such that f ◦τX = τY ◦f .

Two equivariant maps f0, f1 : X → Y are equivariantly homotopic if there is an homotopy

Θ : X× [0, 1] → Y such that Θ(x, 0) = f0(x), Θ(x, 1) = f1(x) and Θ(τX(x), t) = τY (Θ(x, t)),

for all x ∈ X, t ∈ [0, 1].

Definition 3.3. The equivariant category of an equivariant map f : X → Y , denoted by

(τX , τY )-cat(f), is the smallest number k of open τX-invariant subsets X1, . . . , Xk of X which

cover X and which have the property that, for each i = 1, . . . , k, there is a point yi ∈ Y and

a homotopy Θi : Xi × [0, 1] → Y such that Θi(x, 0) = f(x), Θi(x, 1) ∈ {yi, τY (yi)} and

Θi(τX(x), t) = τY (Θi(x, t)) for every x ∈ Xi, t ∈ [0, 1]. If no such covering exists we define

(τX , τY )-cat(f) = ∞.

If A is a τX-invariant subset of X and ι : A ↪→ X is the inclusion map we write

τX-catX(A) = (τX , τX)-cat(ι) and τX-cat(X) = τX-catX(X).

The following properties can be verified.

Lemma 3.4. (i) If f : X → Y and h : Y → Z are equivariant maps then

(τX , τZ)-cat(h ◦ f) ≤ τY -cat(Y ).

(ii) If f0, f1 : X → Y are equivariantly homotopic, then (τX , τY )-cat(f0) = (τX , τY )-cat(f1).

We denote by τa : V → V the antipodal involution τa(u) = −u on the vector space V .

A τa-invariant subset of V is usually called a symmetric subset. Equivariant Ljusternik-

Schnirelmann category provides a lower bound for the number of pairs {u,−u} of critical
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points of an even functional, as stated in the following abstract result (see [7, Theorem 1.1],

[20, Theorem 5.7]).

Theorem 3.5. Let M ⊂ V be a complete symmetric C1,1-submanifold of some Banach space

V . Suppose I ∈ C1(V,R) is even, bounded below on M and satisfies (PS)c for all c ≤ d. Then

the functional I has at least τa-cat({u ∈ M : I(u) ≤ d}) antipodal pairs {u,−u} of critical

points with I(±u) ≤ d.

Coming back to our problem we set, for any given r > 0,

Ω−
r = {x ∈ Ω : dist(x, ∂Ω ∪ Ωτ ) ≥ r}.

From now on we fix r > 0 small in such way that the inclusion maps Ω−
r ↪→ Ω \ Ωτ and

Ω ↪→ Ω+
r are equivariant homotopy equivalences and Br(0) ⊂ Ω. In order to simplify the

notation we denote by Id
λ the set {u ∈ N τ

λ : Iλ(u) ≤ d}.

Lemma 3.6. Let λ0 > 0 be given by Lemma 2.6. Then, for any λ ∈ (0, λ0), we have

τa-cat(I
2mλ,r

λ ) ≥ τ -catΩ(Ω \ Ωτ ).

Proof. Let λ ∈ (0, λ0) be fixed. We claim that there exist two maps

Ω−
r

αλ−→ I
2mλ,r

λ

γλ−→ Ω+
r

such that αλ(τy) = −αλ(y), γλ(−u) = τγλ(u), and γλ ◦αλ is equivariantly homotopic to the

inclusion map Ω−
r ↪→ Ω+

r . If the claim is true, it follows from Lemma 3.4 and the choice of

r that

τa-cat(I
2mλ,r

λ ) ≥ τ -catΩ+
r
(Ω−

r ) = τ -catΩ(Ω \ Ωτ ).

In order to prove the claim we take vλ ∈ Nλ,Br(0) a positive radial function such that

Iλ,Br(0) = mλ,r and define, for y ∈ Ω−
r ,

αλ(y) = vλ(· − y)− vλ(· − τy).

It is clear that αλ(τy) = −αλ(y). Furthermore, since vλ is radial and τ is an isometry, we

have that αλ(y) ∈ W 1,p
0 (Ω)τ . Note that, for every y ∈ Ω−

r , we have |y−τy| ≥ 2r (if this is not

true, then y = (y+τy)/2 satisfies |y−y| < r and τy = y, contradicting the definition of Ω−
r ).

Thus, we can check that αλ(y) ∈ Nλ and Iλ(αλ(y)) = 2mλ,r, and therefore αλ(y) ∈ I
2mλ,r

λ .

If u ∈ I
2mλ,r

λ , we can use (2.2) to conclude that u+ ∈ Nλ and Iλ(u
+) = Iλ(u)

2
≤ mλ,r.

Hence, by Lemma 2.6, we conclude that γλ(u) = βλ(u
+) ∈ Ω+

r . A simple calculation shows

that γλ(−u) = τγλ(u) and γλ(αλ(y)) = y, for every y ∈ Ω−
r . The lemma is proved.

We are now ready to present the proof of Theorem 1.2.
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Proof of Theorem 1.2. Since mλ and mλ,r have the same limit as λ → 0+, there exists λ̃0 > 0

such that

(3.6) mλ,r < 2mλ

for all 0 < λ < λ̃0. We will prove that the theorem holds for λ∗ = min{λ0, λ̃0}, where λ0 is

given by Lemma 2.6.

Let 0 < λ < λ∗ be fixed. By Lemma 2.3 we have that 2mλ,r < 2/NSN/p and therefore Iλ

restricted to N τ
λ satisfies (PS)c for any c ∈ [mτ

λ, 2mλ,r]. It follows from Theorem 3.5, Lemma

3.6 and the principle of symmetric criticality that Iλ has at least τ -catΩ(Ω \ Ωτ ) pairs ±ui

of critical points such that Iλ(±ui) ≤ 2mλ,r. By using (3.6) and Lemma 2.3, we get

Iλ(±ui) ≤ 2mλ,r < 4mλ ≤ 2mτ
λ.

Hence, we conclude from Lemma 3.1 that the solutions ±ui change sign exactly once. The

theorem is proved.

Proof of Corollary 1.3. Let τ : RN → RN be given by τ(x) = −x. It is proved in [5, Corollary

3] that our assumptions imply τ -cat(Ω) ≥ N . Since 0 6∈ Ω, Ωτ = ∅. It suffices now to apply

Theorem 1.2.
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