A NOTE ON THE NUMBER OF NODAL SOLUTIONS OF AN ELLIPTIC EQUATION WITH SYMMETRY

MARCELO F. FURTADO

ABSTRACT. We consider the semilinear problem $-\Delta u + \lambda u = |u|^{p-2}u$ in Ω , u=0 on $\partial\Omega$ where $\Omega\subset\mathbb{R}^N$ is a bounded smooth domain and $2< p< 2^*=2N/(N-2)$. We show that if Ω is invariant by a nontrivial orthogonal involution then, for $\lambda>0$ sufficiently large, the equivariant topology of Ω is related with the number of solutions which change sign exactly once.

1. Introduction

Consider the problem

$$(P_{\lambda}) \qquad \qquad -\Delta u + \lambda u = |u|^{p-2} u \text{ in } \Omega, \ u = 0 \text{ on } \partial \Omega,$$

where $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain and $2 . It is well known that it possesses infinitely many solutions. However, when we require some properties of the sign of the solutions, the problem seems to be more complicated. In the paper [1], Benci and Cerami showed that, if <math>\lambda$ is sufficiently large, then (P_λ) has at least $\operatorname{cat}(\Omega)$ positive solutions, where $\operatorname{cat}(\Omega)$ denotes the Ljusternik-Schnirelmann category of Ω in itself. Since the work [1], multiplicity results for (P_λ) involving the category have been intensively studied (see [2, 3, 4] for subcritical, and [5, 6, 7] for critical nonlinearities).

In the aforementioned works, the authors considered positive solutions. In [8], Bartsch obtained infinite nodal solutions for (P_{λ}) , that is, solutions which change sign. Motivated by this work and for a recent paper of Castro and Clapp [9], we are interested in relating the topology of Ω with the number of solutions which change sign exactly once. This means that the solution u is such that $\Omega \setminus u^{-1}(0)$ has exactly two connected components, u is positive in one of them and negative in the other. We deal with the problem

$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2}u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \\ u(\tau x) = -u(x), & \text{for all } x \in \Omega, \end{cases}$$

where $\tau: \mathbb{R}^N \to \mathbb{R}^N$ is a linear orthogonal transformation such that $\tau \neq \mathrm{Id}$, $\tau^2 = \mathrm{Id}$, and $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain such that $\tau\Omega = \Omega$. Our main result can be stated as follows.

Key words and phrases. Nodal solutions, equivariant category, symmetry.

The author was supported by CAPES/Brazil.

Theorem 1.1. For any $p \in (2, 2^*)$ fixed there exists $\overline{\lambda} = \overline{\lambda}(p)$ such that, for all $\lambda > \overline{\lambda}$, the problem (P_{λ}^{τ}) has at least τ -cat $\Omega(\Omega \setminus \Omega^{\tau})$ pairs of solutions which change sign exactly once.

Here, $\Omega^{\tau}=\{x\in\Omega: \tau x=x\}$ and τ -cat is the G_{τ} -equivariant Ljusternik-Schnirelmann category for the group $G_{\tau}=\{\mathrm{Id},\tau\}$. There are several situations where the equivariant category turns out to be larger than the nonequivariant one. The classical example is the unit sphere $\mathbb{S}^{N-1}\subset\mathbb{R}^N$ with $\tau=-\mathrm{Id}$. In this case $\mathrm{cat}(\mathbb{S}^{N-1})=2$ whereas $\tau\text{-cat}(\mathbb{S}^{N-1})=N$. Thus, as an easy consequence of Theorem 1.1 we have

Corollary 1.2. Let Ω be symmetric with respect to the origin and such that $0 \notin \Omega$. Assume further that there is an odd map $\varphi : \mathbb{S}^{N-1} \to \Omega$. Then, for any $p \in (2, 2^*)$ fixed there exists $\overline{\lambda} = \overline{\lambda}(p)$ such that, for all $\lambda > \overline{\lambda}$, the problem (P_{λ}) has at least N pairs of odd solutions which change sign exactly once.

The above results complement those of [9] where the authors considered the critical semilinear problem

$$-\Delta u = \lambda u + |u|^{2^*-2}u, \ u \in H_0^1(\Omega), \ u(\tau x) = -u(x) \text{ in } \Omega,$$

and obtained the same results for $\lambda > 0$ small enough. It also complement the aforementioned works that deal only with positive solutions. We finally note that Theorem 1.1 also holds if $\lambda \geq 0$ is fixed and the exponent p is sufficiently close to 2^* (see Remark 3.2).

2. NOTATIONS AND SOME TECHNICAL RESULTS

Throughout this paper, we denote by H the Hilbert space $H_0^1(\Omega)$ endowed with the norm $||u|| = \{\int_{\Omega} |\nabla u|^2 \mathrm{d}x\}^{1/2}$. The involution τ of Ω induces an involution of H, which we also denote by τ , in the following way: for each $u \in H$ we define $\tau u \in H$ by

$$(\tau u)(x) = -u(\tau x). \tag{2.1}$$

We denote by $H^{\tau} = \{u \in H : \tau u = u\}$ the subspace of τ -invariant functions.

Let $E_{\lambda}: H \to \mathbb{R}$ be given by

$$E_{\lambda}(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + \lambda u^2) \, \mathrm{d}x - \frac{1}{p} \int_{\Omega} |u|^p \, \mathrm{d}x,$$

and its associated Nehari manifold

$$\mathcal{N}_{\lambda} = \{ u \in H \setminus \{0\} : \langle E_{\lambda}'(u), u \rangle = 0 \} = \{ u \in H \setminus \{0\} : ||u||^2 + \lambda |u|_2^2 = |u|_p^p \}$$

where $|u|_s$ denote the $L^s(\Omega)$ -norm for $s \geq 1$. In order to obtain τ -invariant solutions, we will look for critical points of E_{λ} restricted to the τ -invariant Nehari manifold

$$\mathcal{N}_{\lambda}^{\tau} = \{ u \in \mathcal{N}_{\lambda} : \tau u = u \} = \mathcal{N}_{\lambda} \cap H^{\tau},$$

by considering the following minimization problems

$$m_{\lambda} = \inf_{u \in \mathcal{N}_{\lambda}} E_{\lambda}(u) \text{ and } m_{\lambda}^{\tau} = \inf_{u \in \mathcal{N}_{\tau}^{\tau}} E_{\lambda}(u).$$

For any τ -invariant bounded domain $\mathcal{D} \subset \mathbb{R}^N$ we define $E_{\lambda,\mathcal{D}}$, $\mathcal{N}_{\lambda,\mathcal{D}}$, $\mathcal{N}_{\lambda,\mathcal{D}}^{\tau}$, $m_{\lambda,\mathcal{D}}$ and $m_{\lambda,\mathcal{D}}^{\tau}$ in the same way by taking the above integrals over \mathcal{D} instead Ω . For simplicity, we use only $m_{\lambda,r}$ and $m_{\lambda,r}^{\tau}$ to denote $m_{\lambda,B_r(0)}$ and $m_{\lambda,B_r(0)}^{\tau}$, respectively.

Lemma 2.1. For any $\lambda \geq 0$, we have that $2m_{\lambda} \leq m_{\lambda}^{\tau}$.

Proof. Note that, if $u \in H^{\tau}$ is positive in some subset $A \subset \Omega$, we can use (2.1) to conclude that u is negative in $\tau(A)$. Thus, for any given $u \in \mathcal{N}_{\lambda}^{\tau}$, we have that $u^{+}, u^{-} \in \mathcal{N}_{\lambda}$, where $u^{\pm} = \max\{\pm u, 0\}$. Hence $E_{\lambda}(u) = E_{\lambda}(u^{+}) + E_{\lambda}(u^{-}) \geq 2m_{\lambda}$, and the result follows. \square

Lemma 2.2. If u is a critical point of E_{λ} restricted to $\mathcal{N}_{\lambda}^{\tau}$, then $E_{\lambda}'(u) = 0$ in the dual space of H.

Proof. By the Lagrange multiplier rule, there exits $\theta \in \mathbb{R}$ such that

$$\langle E'_{\lambda}(u) - \theta J'_{\lambda}(u), \phi \rangle = 0,$$

for all $\phi \in H^{\tau}$, where $J_{\lambda}(u) = \|u\|^2 + \lambda |u|_2^2 - |u|_p^p$. Since $u \in \mathcal{N}_{\lambda}^{\tau}$, we have

$$0 = \langle E_{\lambda}'(u), u \rangle - \theta \langle J_{\lambda}'(u), u \rangle = \theta(p-2)|u|_{p}^{p}.$$

This implies $\theta = 0$ and therefore $\langle E'_{\lambda}(u), \phi \rangle = 0$ for all $\phi \in H^{\tau}$. The result follows from the principle of symmetric criticality [10] (see also [11, Theorem 1.28]).

By standard regularity theory we know that if u is a solution of (P_{λ}) , then it is of class C^1 . We say it changes sign k times if the set $\{x \in \Omega : u(x) \neq 0\}$ has k+1 connected components. By (2.1), if u is a nontrivial solution of problem (P_{λ}^{τ}) then it changes sign an odd number of times.

Lemma 2.3. If u is a solution of problem (P_{λ}^{τ}) which changes sign 2k-1 times, then $E_{\lambda}(u) \geq km_{\lambda}^{\tau}$.

Proof. The set $\{x \in \Omega : u(x) > 0\}$ has k connected components A_1, \ldots, A_k . Let $u_i(x) = u(x)$ if $x \in A_i \cup \tau A_i$ and $u_i(x) = 0$, otherwise. We have that

$$0 = \langle E_{\lambda}'(u), u_i \rangle = \int_{\Omega} (\nabla u \nabla u_i + \lambda u u_i - |u|^{p-2} u u_i) \, dx = ||u_i||^2 + \lambda |u_i|_2^2 - |u_i|_p^p.$$

Thus,
$$u_i \in \mathcal{N}_{\lambda}^{\tau}$$
 for all $i = 1, ..., k$, and $E_{\lambda}(u) = E_{\lambda}(u_1) + \cdots + E_{\lambda}(u_k) \ge k m_{\lambda}^{\tau}$, as desired. \square

We recall now some facts about equivariant Ljusternik-Schnirelmann theory. An involution on a topological space X is a continuous function $\tau_X: X \to X$ such that τ_X^2 is the identity map of X. A subset A of X is called τ_X -invariant if $\tau_X(A) = A$. If X and Y are topological spaces equipped with involutions τ_X and τ_Y respectively, then an equivariant map is a continuous function

 $f: X \to Y$ such that $f \circ \tau_X = \tau_Y \circ f$. Two equivariant maps $f_0, f_1: X \to Y$ are equivariantly homotopic if there is an homotopy $\Theta: X \times [0,1] \to Y$ such that $\Theta(x,0) = f_0(x)$, $\Theta(x,1) = f_1(x)$ and $\Theta(\tau_X(x),t) = \tau_Y(\Theta(x,t))$, for all $x \in X, t \in [0,1]$.

Definition 2.4. The equivariant category of an equivariant map $f: X \to Y$, denoted by (τ_X, τ_Y) cat(f), is the smallest number k of open invariant subsets X_1, \ldots, X_k of X which cover X and which have the property that, for each $i = 1, \ldots, k$, there is a point $y_i \in Y$ and a homotopy $\Theta_i: X_i \times [0,1] \to Y$ such that $\Theta_i(x,0) = f(x)$, $\Theta_i(x,1) \in \{y_i, \tau_Y(y_i)\}$ and $\Theta_i(\tau_X(x),t) = \tau_Y(\Theta_i(x,t))$ for every $x \in X_i$, $t \in [0,1]$. If no such covering exists we define (τ_X, τ_Y) -cat $(f) = \infty$.

If A is a τ_X -invariant subset of X and $\iota:A\hookrightarrow X$ is the inclusion map we write

$$\tau_X$$
-cat $_X(A) = (\tau_X, \tau_X)$ -cat $_(\iota)$ and τ_X -cat $_X(X) = \tau_X$ -cat $_X(X)$.

The following properties can be verified.

Lemma 2.5. (i) If $f: X \to Y$ and $h: Y \to Z$ are equivariant maps then

$$(\tau_X, \tau_Z)$$
-cat $(h \circ f) \leq \tau_Y$ -cat (Y) .

(ii) If $f_0, f_1: X \to Y$ are equivariantly homotopic, then (τ_X, τ_Y) -cat $(f_0) = (\tau_X, \tau_Y)$ -cat (f_1) .

Let V be a Banach space, M be a C^1 -manifold of V and $I:V\to\mathbb{R}$ a C^1 -functional. We recall that I restricted to M satisfies de Palais-Smale condition at level c ((PS) $_c$ for short) if any sequence $(u_n)\subset M$ such that $I(u_n)\to c$ and $\|I'(u_n)\|_*\to 0$ contains a convergent subsequence. Here we are denoting by $\|I'(u)\|_*$ the norm of the derivative of the restriction of I to M (see [11, Section 5.3]).

Let $\tau_a:V\to V$ be the antipodal involution $\tau_a(u)=-u$ on the vector space V. Equivariant Ljusternik-Schnirelmann category provides a lower bound for the number of pairs $\{u,-u\}$ of critical points of an even functional, as stated in the following abstract result (see [12, Theorem 1.1], [13, Theorem 5.7]).

Theorem 2.6. Let $I: M \to \mathbb{R}$ be an even C^1 -functional on a complete symmetric $C^{1,1}$ -submanifold M of some Banach space V. Assume that I is bounded below and satisfies $(PS)_c$ for all $c \leq d$. Then, if $I^d = \{u \in M: I(u) \leq d\}$, the functional I has at least τ_a -cat $_{I^d}(I^d)$ antipodal pairs $\{u, -u\}$ of critical points with $I(\pm u) \leq d$.

3. Proofs of the results

Given r > 0, we define the sets

$$\Omega_r^+ = \{x \in \Omega : \operatorname{dist}(x,\Omega) < r\} \text{ and } \Omega_r^- = \{x \in \Omega : \operatorname{dist}(x,\partial\Omega \cup \Omega^\tau) \ge r\}.$$

Throughout the rest of the paper we fix r > 0 sufficiently small in such way that the inclusion maps $\Omega_r^- \hookrightarrow \Omega \setminus \Omega^\tau$ and $\Omega \hookrightarrow \Omega_r^+$ are equivariant homotopy equivalences. Without loss of generality we suppose that $B_r(0) \subset \Omega$.

We now note that, in [1], Benci and Cerami considered the minimization problem

$$\widetilde{m}_{\lambda} = \inf \left\{ \int_{\Omega} (|\nabla u|^2 + \lambda u^2) \, \mathrm{d}x : u \in H, \int_{\Omega} |u|^p \, \mathrm{d}x = 1 \right\}.$$

An easy calculation show that $m_{\lambda} = \left(\frac{p-2}{2p}\right) \widetilde{m}_{\lambda}^{p/(p-2)}$. Therefore, if we denote by $\beta: H \setminus \{0\} \to \mathbb{R}^N$ the barycenter map given by

$$\beta(u) = \frac{\int_{\Omega} x \cdot |\nabla u(x)|^2 \, \mathrm{d}x}{\int_{\Omega} |\nabla u(x)|^2 \, \mathrm{d}x},$$

we can rephrase [1, Lemma 3.4] as

Lemma 3.1. For any fixed $p \in (2, 2^*)$ there exist $\overline{\lambda} = \overline{\lambda}(p)$ such that,

- (i) $m_{\lambda,r} < 2m_{\lambda}$,
- (ii) if $u \in \mathcal{N}_{\lambda}$ and $E_{\lambda}(u) \leq m_{\lambda,r}$, then $\beta(u) \in \Omega_r^+$, for all $\lambda > \overline{\lambda}$.

We are now ready to present the proof of our main result.

Proof of Theorem 1.1. Let $p \in (2,2^*)$ and $\overline{\lambda}$ be given by the Lemma 3.1. For any $\lambda > \overline{\lambda}$, since $2 , the even functional <math>E_{\lambda}$ satisfies the Palais-Smale condition at any level $c \in \mathbb{R}$. Thus, we can apply Theorem 2.6 to obtain τ_a -cat $(\mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2m_{\lambda,\tau}})$ pairs $\pm u_i$ of critical points of E_{λ} restricted to $\mathcal{N}_{\lambda}^{\tau}$ verifying

$$E_{\lambda}(\pm u_i) \le 2m_{\lambda,r} < 4m_{\lambda} \le 2m_{\lambda}^{\tau},$$

where we used Lemma 3.1(i) and Lemma 2.1. It follows from Lemmas 2.2 and 2.3 that $\pm u_i$ are solutions of (P_{λ}^{τ}) which change sign exactly once.

It suffices now to check that

$$\tau_a$$
-cat $(\mathcal{N}^{\tau}_{\lambda} \cap E^{2m_{\lambda,r}}_{\lambda}) \geq \tau$ -cat $\Omega(\Omega \setminus \Omega^{\tau})$.

With this aim, we claim that there exist two maps

$$\Omega_r^- \xrightarrow{\alpha_\lambda} \mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2m_{\lambda,r}} \xrightarrow{\gamma_\lambda} \Omega_r^+$$

such that $\alpha_{\lambda}(\tau x) = -\alpha_{\lambda}(x)$, $\gamma_{\lambda}(-u) = \tau \gamma_{\lambda}(u)$, and $\gamma_{\lambda} \circ \alpha_{\lambda}$ is equivariantly homotopic to the inclusion map $\Omega_r^- \hookrightarrow \Omega_r^+$.

Assuming the claim and recalling that the maps $\Omega_r^- \hookrightarrow \Omega \setminus \Omega^\tau$ and $\Omega \hookrightarrow \Omega_r^+$ are equivariant homotopy equivalences, we can use Lemma 2.5 to get

$$\tau_a\operatorname{-cat}(\mathcal{N}^{\tau}_{\lambda}\cap E^{2m_{\lambda,r}}_{\lambda}) \geq \tau\operatorname{-cat}_{\Omega^+_x}(\Omega^-_r) = \tau\operatorname{-cat}_{\Omega}(\Omega\setminus\Omega^{\tau}).$$

In order to prove the claim we follow [9]. Let $v_{\lambda} \in \mathcal{N}_{\lambda, B_r(0)}$ be a positive radial function such that $E_{\lambda, B_r(0)}(v_{\lambda}) = m_{\lambda, r}$. We define $\alpha_{\lambda} : \Omega_r^- \to \mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2m_{\lambda, r}}$ by

$$\alpha_{\lambda}(x) = v_{\lambda}(\cdot - x) - v_{\lambda}(\cdot - \tau x). \tag{3.1}$$

It is clear that $\alpha_{\lambda}(\tau x) = -\alpha_{\lambda}(x)$. Furthermore, since v_{λ} is radial and τ is an isometry, we have that $\alpha_{\lambda}(x) \in H^{\tau}$. Note that, for every $x \in \Omega_{r}^{-}$, we have $|x - \tau x| \geq 2r$ (if this is not true, then $\overline{x} = (x + \tau x)/2$ satisfies $|x - \overline{x}| < r$ and $\tau \overline{x} = \overline{x}$, contradicting the definition of Ω_{r}^{-}). Thus, we can check that $E_{\lambda}(\alpha_{\lambda}(x)) = 2m_{\lambda,r}$ and $\alpha_{\lambda}(x) \in \mathcal{N}_{\lambda}^{\tau}$. All this considerations show that α_{λ} is well defined.

Given $u \in \mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2m_{\lambda,r}}$ we can use (2.1) and the τ -invariance of Ω to conclude that $u^+ \in \mathcal{N}_{\lambda}$ and $2E_{\lambda}(u^+) = E_{\lambda}(u) \leq 2m_{\lambda,r}$. Hence, $u^+ \in \mathcal{N}_{\lambda} \cap E_{\lambda}^{m_{\lambda,r}}$ and it follows from Lemma 3.1(ii) that $\gamma_{\lambda} : \mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2m_{\lambda,r}} \to \Omega_{r}^{+}$ given by $\gamma_{\lambda}(u) = \beta(u^+)$ is well defined. A simple calculation shows that $\gamma_{\lambda}(-u) = \tau \gamma_{\lambda}(u)$. Moreover, using (3.1) and the fact that v_{λ} is radial we get

$$\gamma_{\lambda}(\alpha_{\lambda}(x)) = \frac{\int_{B_r(x)} y \cdot |\nabla v_{\lambda}(y-x)|^2 dy}{\int_{B_r(x)} |\nabla v_{\lambda}(y-x)|^2 dy} = \frac{\int_{B_r(0)} (y+x) \cdot |\nabla v_{\lambda}(y)|^2 dy}{\int_{B_r(0)} |\nabla v_{\lambda}(y)|^2 dy} = x,$$

for any $x \in \Omega_r^-$. This concludes the proof.

Remark 3.2. Arguing along the same lines of the above proof and using a version of Lemma 4.2 in [1] instead of Lemma 3.1, we can check that Theorem 1.1 also holds if $\lambda \geq 0$ is fixed and the exponent p is sufficiently close to 2^* .

Proof of Corollary 1.2. Let $\tau: \mathbb{R}^N \to \mathbb{R}^N$ be given by $\tau(x) = -x$. It is proved in [9, Corollary 3] that our assumptions imply $\tau\text{-cat}(\Omega) \geq N$. Since $0 \notin \Omega$, $\Omega^{\tau} = \emptyset$. It suffices now to apply Theorem 1.1.

REFERENCES

- [1] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, *Arch. Rational Mech. Anal.* **114** (1991), 79–93.
- [2] V. Benci, G. Cerami and D. Passaseo, On the number of positive solutions of some nonlinear elliptic problems, Nonlinear Analysis, A tribute in honour of G. Prodi, *Quaderno Scuola Norm. Sup.*, Pisa, 1991, 93–107
- [3] V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, *Cal. Var. Partial Differential Equations* **2** (1994), 29–48.
- [4] M. Clapp, On the number of positive symmetric solutions of a nonautonomous semilinear elliptic problem, *Nonlinear Anal.* **42** (2000), 405–422.
- [5] O. Rey, A multiplicity result for a variational problem with lack of compactness, *Nonlinear Anal.* **13** (1989), 1241–1249.
- [6] M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec léxposant critique de Sobolev, *C. R. Acad. Sci. Paris* **314** (1992), 61–64.

- [7] C.O. Alves and Y.H. Ding, Multiplicity of positive solutions to a *p*-Laplacian equation involving critical nonlinearity, *J. Math. Anal. Appl.* **279** (2003), 508–521.
- [8] T. Bartsch, Critical point theory in partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001), 117–152.
- [9] A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, *Nonlinearity* **16** (2003), 579–590.
- [10] R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30.
- [11] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
- [12] M. Clapp and D. Puppe, Critical point theory with symmetries, J. Reine. Angew. Math. 418 (1991), 1–29.
- [13] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990.

UNICAMP-IMECC, Cx. Postal 6065, 13083-790 Campinas-SP, Brazil

E-mail address: furtado@ime.unicamp.br