A NOTE ON THE NUMBER OF NODAL SOLUTIONS OF AN ELLIPTIC EQUATION
WITH SYMMETRY

MARCELO F. FURTADO

ABSTRACT. We consider the semilinear problemA\u + A\u = |u|P~2u in Q, u = 0 on 9 where
Q c RY is a bounded smooth domain ald< p < 2* = 2N/(N — 2). We show that if) is
invariant by a nontrivial orthogonal involution then, far> 0 sufficiently large, the equivariant
topology of(2 is related with the number of solutions which change sign exactly once.

1. INTRODUCTION
Consider the problem
(Py) —Au+ M= [ulP?uin Q, u = 00noQ,

where2 C RY is a bounded smooth domain atek p < 2* = 2N/(N — 2). Itis well known that
it possesses infinitely many solutions. However, when we require some properties of the sign of the
solutions, the problem seems to be more complicated. In the paper [1], Benci and Cerami showed
that, if A is sufficiently large, theiiP, ) has at least cé®) positive solutions, where g&t) denotes
the Ljusternik-Schnirelmann category Qfin itself. Since the work [1], multiplicity results for
(Py) involving the category have been intensively studied (see [2, 3, 4] for subcritical, and [5, 6, 7]
for critical nonlinearities).

In the aforementioned works, the authors considered positive solutions. In [8], Bartsch obtained
infinite nodal solutions fof P, ), that is, solutions which change sign. Motivated by this work and
for a recent paper of Castro and Clapp [9], we are interested in relating the topolQgyitif the
number of solutions which change sign exactly once. This means that the selu@uch that
Q\ v~1(0) has exactly two connected componentss positive in one of them and negative in the
other. We deal with the problem

—Au+ M = |[ulP~?u, inQ,
(PY) u =0, onosl,
u(rx) = —u(x), forall z € Q,

wherer : RY — R¥ is a linear orthogonal transformation such that Id, 72 = Id, andQ2 ¢ RY
is a bounded smooth domain such th&t= 2. Our main result can be stated as follows.

Key words and phrases\Nodal solutions, equivariant category, symmetry.

The author was supported by CAPES/Brazil.
1



2 MARCELO F. FURTADO

Theorem 1.1.For anyp € (2, 2*) fixed there existd = \(p) such that, for all\ > X, the problem
(PY) has at leastr-cat, (2 \ 27) pairs of solutions which change sign exactly once.

Here,Q™ = {x € Q : 7z = z} andr-cat is theG -equivariant Ljusternik-Schnirelmann
category for the groug’, = {Id, 7}. There are several situations where the equivariant category
turns out to be larger than the nonequivariant one. The classical example is the unit8pHere
RY with 7 = —Id. In this case c&f"~!) = 2 whereasr-catSV~!) = N. Thus, as an easy
consequence of Theorem 1.1 we have

Corollary 1.2. Let(2 be symmetric with respect to the origin and such that(2. Assume further
that there is an odd map : S¥~! — Q. Then, for any € (2,2*) fixed there exista = \(p)
such that, for all\ > ), the problem P,) has at leastV pairs of odd solutions which change sign
exactly once.

The above results complement those of [9] where the authors considered the critical semilinear
problem

—Au = u+ [ul* 2u, u € HY(Q), u(tz) = —u(z) in Q,

and obtained the same results for- 0 small enough. It also complement the aforementioned
works that deal only with positive solutions. We finally note that Theorem 1.1 also holds if
Is fixed and the exponenptis sufficiently close t@* (see Remark 3.2).

2. NOTATIONS AND SOME TECHNICAL RESULTS

Throughout this paper, we denote Hythe Hilbert spacéi; (2) endowed with the norrju|| =
{fy ]Vu]gd:c}m. The involutionr of €2 induces an involution off, which we also denote by,
in the following way: for eachn € H we defineru € H by

(tu)(x) = —u(rz). (2.1)

We denote by{™ = {u € H : Tu = u} the subspace af-invariant functions.
Let £, : H — R be given by

1 1
E\(u) = 5 /Q(|Vu|2 + \u?) dz — p /Q |ul? dz,

and its associated Nehari manifold
Ny ={u€ H\{0}: (Ej(u),u) =0} = {ue H\ {0} : |ull® + Aul3 = |ul’}

where|u|, denote the *(Q2)-norm fors > 1. In order to obtairr-invariant solutions, we will look
for critical points of F, restricted to the-invariant Nehari manifold

T={ueN,:tu=u}=N,NH,
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by considering the following minimization problems
= inf E nd m} = inf E,(u).
™=, Pl andmi = gl B
For any7-invariant bounded domaif® C RY we defineE) p, Ny p, N p, map andmj  in

the same way by taking the above integrals dvenstead). For simplicity, we use onlyn, , and
m}, . to denotemn, g, o) andm; 5 . respectively.

Lemma 2.1. For any A > 0, we have tha2m, < m].

Proof. Note that, ifu € H7 is positive in some subset C (2, we can use (2.1) to conclude
that v is negative int(A). Thus, for any givenu € N7, we have thau™, v~ € N,, where
u® = max{=4u,0}. HenceE\(u) = E\(u") + E\(u~) > 2m,, and the result follows. O

Lemma 2.2. If u is a critical point of E, restricted ta\y, thenE% (u) = 0 in the dual space of/.

Proof. By the Lagrange multiplier rule, there exitsc R such that
(Ex(u) = 0J5(u),¢) =0,
forall ¢ € H™, whereJ, (u) = |ju|® + Au|? — lulb. Sinceu € Ny, we have
0= (Ex(u),u) — 005 (u), u) = 0(p — 2)|ul}.

This impliesd = 0 and thereford £ (u),¢) = 0 for all ¢ € H™. The result follows from the
principle of symmetric criticality [10] (see also [11, Theorem 1.28]). OJ

By standard regularity theory we know thatifis a solution of( P,), then it is of class”?. We
say it changes sigh times if the sef{z € Q : u(z) # 0} hask + 1 connected components. By
(2.1), if u is a nontrivial solution of problemi”y) then it changes sign an odd number of times.

Lemma 2.3. If u is a solution of problent P} ) which changes sigak — 1 times, thenZ, (u) >

;
kEmS.

Proof. The set{xz € Q : u(z) > 0} hask connected components, . .., Ay. Letu;(z) = u(x) if
x € A; UTA; andu;(x) = 0, otherwise. We have that

0= (E\(u),u;) = /(VuVui 4+ Ay — |ulP2un) dr = |ugl]? + w3z — Jui D,
Q

Thus,u; € Ny foralli =1,... k, andE\(u) = E\(u1) + - - - + E\(ug) > km3, as desired. O

We recall now some facts about equivariant Ljusternik-Schnirelmann theory. An involution on
a topological spac& is a continuous functiony : X — X such thatrZ is the identity map
of X. A subsetA of X is calledrx-invariant if rx(A) = A. If X andY are topological spaces
equipped with involutionsy andry respectively, then an equivariant map is a continuous function
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f: X — Y such thatf o 7y = 7y o f. Two equivariant mapg,, f1 : X — Y are equivariantly
homotopic if there is an homotoy : X x [0,1] — Y such tha®(z,0) = fy(z), O(z,1) = fi(z)
andO(7x(z),t) = 7v(O(x,t)), forallz € X,t € [0, 1].

Definition 2.4. The equivariant category of an equivariant map X — Y, denoted by7x, 7v)-
cat f), is the smallest numbér of open invariant subset¥, ..., X; of X which coverX and
which have the property that, for each= 1, ..., k, there is a pointy; € Y and a homotopy
©; : X; x [0,1] — Y such thato,(z,0) = f(z), ©;(x,1) € {y;, v (y;)} and ©;(7x(z),t) =
Ty (©;(x,t)) foreveryr € X, t € [0, 1]. If no such covering exists we defifrg, 7 )-cat( f) = occ.

If Aisary-invariant subset ok and. : A — X is the inclusion map we write
Tx-Caty (A) = (1x, 7x)-cafs) and rx-cat X) = 7x-caty(X).
The following properties can be verified.
Lemma2.5.() If f: X — Y andh:Y — Z are equivariant maps then
(1x,7z)-cath o f) < 1y-calY).
(i) If fo, f1 : X — Y are equivariantly homotopic, thery, 7y )-cat( fo) = (7x, 7v)-cat f1).

Let V be a Banach spac#/ be aC*'-manifold of VV andI : V' — R a C*-functional. We recall
that! restricted taV/ satisfies de Palais-Smale condition at levgPS). for short) if any sequence
(un,) C M such that/(u,) — cand||I'(u,)|« — 0 contains a convergent subsequence. Here we
are denoting by I’'(u)||. the norm of the derivative of the restriction 6o M (see [11, Section
5.3)).

Letr, : V — V be the antipodal involutiom,(u) = —u on the vector spac¥. Equivariant
Ljusternik-Schnirelmann category provides a lower bound for the number of pairsu} of
critical points of an even functional, as stated in the following abstract result (see [12, Theorem
1.1], [13, Theorem 5.7]).

Theorem 2.6.Let] : M — R be an everw'!-functional on a complete symmet¢i¢-!-submanifold
M of some Banach spadé. Assume thal is bounded below and satisfi@BS). for all ¢ < d.
Then, ifIY = {u € M : I(u) < d}, the functionall has at leastr,-cat.«(/?) antipodal pairs
{u, —u} of critical points with/(+u) < d.

3. PROOFS OF THE RESULTS

Givenr > 0, we define the sets

Qf ={z e Q:dist(z,Q) <r} and Q. = {zr € Q: dist(z,0QU Q") > r}.
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Throughout the rest of the paper wefix- 0 sufficiently small in such way that the inclusion maps
Q- — Q\ Q" andQ — QFf are equivariant homotopy equivalences. Without loss of generality
we suppose thas,.(0) C .

We now note that, in [1], Benci and Cerami considered the minimization problem

ﬁl,\:inf{/(]VuF—i-)\uQ) dx:uEH,/ |ulP dz = 1}.
Q

An easy calculation show that, = (%5:2) i}/ ") Therefore, if we denote by : #\ {0} —

R¥ the barycenter map given by
Jo - |[Vu(z)]?* do
Jo [Vu(z)|? dz

Blu) =
we can rephrase [1, Lemma 3.4] as

Lemma 3.1. For any fixedp € (2, 2*) there exist\ = A(p) such that,
(i) my, < 2my,
(i) if w € Ny and E)(u) < my,., theng(u) € QF,

forall A > .

We are now ready to present the proof of our main result.

Proof of Theorem 1.1Letp € (2,2*) and ) be given by the Lemma 3.1. For any> ), since
2 < p < 2%, the even functionak’,, satisfies the Palais-Smale condition at any levelR. Thus,
we can apply Theorem 2.6 to obtaipcat(\'y ﬂEim“) pairstu; of critical points ofF, restricted
to NV verifying
Ex(£u;) < 2my, < 4dmy < 2m],
where we used Lemma 3.1(i) and Lemma 2.1. It follows from Lemmas 2.2 and 2.3 ihatre
solutions of( P{) which change sign exactly once.
It suffices now to check that

To-Ca Ny N E2™7) > r-ca () Q7).
With this aim, we claim that there exist two maps
Q7 25 NI N B 2 (Of

such thato, (72) = —ay(x), ya(—u) = 7y (u), andy, o «a, is equivariantly homotopic to the
inclusion ma2,” — Q.

Assuming the claim and recalling that the mdps — Q\ Q™ andQ — Q; are equivariant
homotopy equivalences, we can use Lemma 2.5 to get

TaCalNT N EY™7) > 7-caly: () = m-cab (2 \ 7).
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In order to prove the claim we follow [9]. Let, € N, 5, (o) be a positive radial function such
thatE)\7Br(0)(’l))\) = My We de'ﬁnm)\ : Qr_ — N;\— N EimA’T by

ay(z) =u\(- —x) —u\(- — T2). (3.1)

It is clear thato, (7x) = —a,(x). Furthermore, since, is radial andr is an isometry, we have
thata,(x) € H™. Note that, for every: € ., we havelx — x| > 2r (if this is not true, then
T = (x + Tx)/2 satisfiedx — T| < r and7z = 7, contradicting the definition df,"). Thus, we
can check thaf/, (a\(z)) = 2m,, anda,(x) € NY. All this considerations show that, is well
defined.

Givenu € N7 N EQm“ we can use (2.1) and theinvariance ofQ) to conclude that.™ € N,
and2E,(ut) = E\(u) < 2m,,. Henceu™ € N, N Em“ and it follows from Lemma 3.1(ii) that
NN Eim* — QF given by, (u) = S(u™) is well defined. A simple calculation shows that
Ya(—u) = 7y, (u). Moreover, using (3.1) and the fact thatis radial we get

(0n(2)) = Jorwy  IVoxly —2)Pdy [y ) (y+2) - [Vo(y)]* dy

Malax(z = =,

Y IBM [Vor(y — o) dy fBT(O) Vor(y)[? dy

for anyz € Q.. This concludes the proof. O

Remark 3.2. Arguing along the same lines of the above proof and using a version of Lemma 4.2
in [1] instead of Lemma 3.1, we can check that Theorem 1.1 also holds if) is fixed and the
exponenp is sufficiently close ta*.

Proof of Corollary 1.2.Let 7 : RY — RY be given byr(z) = —=x. Itis proved in [9, Corollary
3] that our assumptions imphy-cat2) > N. Since0 ¢ Q, Q™ = @. It suffices now to apply
Theorem 1.1. O
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