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81531-990, Curitiba-PR, Brazil

cIMECC-UNICAMP, CP 6065, 13083-970, Campinas-SP, Brazil

Abstract

In this paper, we study the strong solutions of incompressible fluids with mass
diffusion. We use an iterative method in order to approach the strong solutions and
some convergence rates for this scheme are obtained, depending on weak, strong
and more regular norms (latter only for strictly positive times).
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1 Introduction

We use an iterative process in order to approximate solutions for a nonhomo-
geneous Navier-Stokes model with mass diffusion.

The general argument is: firstly to obtain a priori estimations for the scheme
sequence (ρn,un, pn) (independent on n); afterwards, to show that (ρn,un, pn)
is a Cauchy-sequence in an appropriate Banach space and finally to pass to the
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limit, in order to prove that the limit (ρ,u, p) is the solution of the problem.
By the way, some error estimates are also obtained.

1.1 The model

Let (ρ,u, p) be a solution of the initial-boundary problem in QT = Ω× (0, T )
(being Ω ⊂ R3 a bounded regular domain) with boundary ΣT = ∂Ω× (0, T ):





ρ(ut + u · ∇u)− µ∆u− λ((u · ∇)∇ρ + (∇ρ · ∇)u) +∇p = ρf in QT

div u = 0 in QT , u|ΣT
= 0, u(0) = u0 in Ω,

ρt − λ∆ρ + u · ∇ρ = 0 in QT ,
∂ρ

∂n

∣∣∣∣
ΣT

= 0, ρ(0) = ρ0 in Ω.

(1)

Data of problem are: initial data (ρ0,u0), external forces f , viscosity and mass
diffusion coefficients µ, λ > 0.

In this paper, we will always assume the hypothesis

0 < m ≤ ρ0 ≤ M in Ω. (2)

An interesting open problem is to extend the results of this paper to the case
m = 0, i.e. assuming only 0 ≤ ρ0 ≤ M in Ω.

The extension of the results of this paper for the complete model, with λ2

terms (considered for instance in [2]), will be studied in a forthcoming paper.

1.2 Space functions and equivalent norms

We introduce standard spaces of the Navier-Stokes framework:

H = {u : u ∈ L2(Ω)3, div u = 0, u · n = 0 on ∂Ω},
V = {u : u ∈ H1(Ω)3, div u = 0, u = 0 on ∂Ω}.

The norms ‖u‖H1 and ‖∇u‖L2 are equivalents in V , and ‖u‖H2 and ‖∆u‖L2

are equivalents in H2(Ω) ∩ V .
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On the other hand, for the density, let us consider the afin space

Hk
N(Ω) =



ρ ∈ Hk(Ω) :

∂ρ

∂n
= 0 sobre ∂Ω,

∫

Ω

ρ(x) =
∫

Ω

ρ0(x)





where k = 2 or 3. Obviously, Hk
N(Ω) = ρ0+Hk

N,0(Ω), where ρ0 = (1/|Ω|) ∫
Ω ρ0(x)dx

and

Hk
N,0(Ω) =



ρ ∈ Hk(Ω) :

∂ρ

∂n
= 0 on ∂Ω,

∫

Ω

ρ(x) = 0



 .

Hence, Hk
N,0(Ω) (k = 2 or k = 3) is a closed subspace of Hk

N(Ω). Conse-
quently, the norms ‖ρ‖H2 and ‖∆ρ‖L2 are equivalents in H2

N(Ω) and ‖ρ‖H3

and ‖∇∆ρ‖L2 are equivalents in H3
N(Ω).

1.3 Known results

Derivation of this model and physical discussion of equations (1) can be seen
in Frank-Kamenestskii [6], Antoncev, Kazhikov and Monakhov [1], Prouse
[12]. We observe that this model includes as a particular case the classical
Navier-Stokes system, which has been very much studied (see, for instance,
the classical books by Ladyzhenskaya [11] and Temam [17] ).

Kazhikov and Smagulov [10] established, using a semi-Galerkin method, the
local existence of weak and strong solutions under certain assumptions about
the viscosity and diffusion coefficients. Also via this method, Salvi [13] proved
the existence of weak solution in a non-cylindrical domain. On the other hand,
Secchi in [16] studied the case Ω = R3, proving without any hypothesis on the
diffusive and viscosity coefficients, local existence and uniqueness of strong
solutions, using a point fixed argument.

For a more complete model (including order λ2 terms in the momentum equa-
tions), Beirão da Veiga [2], Secchi [15], established the local existence of strong
solutions by using linearisation and fixed point argument. In the work [2] re-
strictions on the diffusive and viscosity coefficients are not imposed. The paper
[15] imposed λ/µ small enough, in order to show the existence and uniqueness
of an unique global solution in the 2-dimensional case. Moreover, it is showed
the convergence, as λ → 0, of a subsequence whose limit is a weak solutions of
the non-homogeneous Navier-Stokes problem. A more practical semi-Galerkin
method is being used by Damázio, Guillén-González and Rojas-Medar [5].
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1.4 The iterative scheme

Assuming u0 ∈ V , ρ0 ∈ H2
N(Ω) verifying (2) and f ∈ L2(0, T ; L2(Ω)3), we are

going to consider the (unique) strong solution (ρ,u, p) of (1) defined in some
(maybe small) time interval (0, T ) ([2]):

ρ ∈ L2(0, T ; H3
N(Ω)) ∩ C([0, T ]; H2

N(Ω)), ρt ∈ L2(0, T ; H1(Ω)), (3)

u ∈ L2(0, T ; H2(Ω)3) ∩ C([0, T ]; V ), ut ∈ L2(0, T ; H), (4)

p ∈ L2(0, T ; H1(Ω)), (5)

verifying PDE equations a.e. in QT , boundary conditions and initial conditions
for ρ,u in the sense of spaces H2

N(Ω) and V respectively.

Now, we define the iterative scheme what we will consider in this work:

Initialization: Let u0(t) = u0 for each t ∈ [0, T ].

Step n ≥ 1: First, given un−1 to find ρn such that

ρn
t − λ∆ρn + (un−1 · ∇)ρn = 0, ρn|t=0 = ρ0 and

∂ρn

∂n

∣∣∣∣
ΣT

= 0. (6)

Afterwards, given un−1 and ρn, to find (un, pn) such that

ρnun
t + (ρnun−1 · ∇)un − µ∆un +∇pn

−λ((un · ∇)∇ρn + (∇ρn · ∇)un)) = ρnf,

div un = 0, un|ΣT
= 0, un|t=0 = u0.

(7)

We have reduced the nonlinear coupled system (1) into a sequence of linear de-
coupled systems (6)-(7). Existence, regularity and uniqueness of approximate
solution (ρn,un, pn) can be obtained (see [2] for instance).

1.5 Main results of this paper

In this paper, we will denote by (f, g) to the inner product in L2(Ω), by |f |
the L2(Ω)-norm and by |f |p the Lp(Ω)-norm (1 ≤ p ≤ +∞). Any other norm
in a space X(Ω) defined in Ω will be denoted by ‖f‖X . Finally, for a cartesian
product space X × Y , we will consider the maximum norm ||(x, y)||X×Y =
max{||x||X , ||y||Y }.
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Our goal is this paper is double: to prove that (ρn,un, pn) is a Cauchy se-
quence in a suitable Banach space which converges towards the strong solution
(ρ,u, p) of problem (1), and to give some estimates of the convergence rates.

More precisely, in this paper we will prove the following three main results,
which corresponding with the convergence rates respect to the weak norms,
strong norms and higher regular norms (latter only for strictly positive times),
see (19) for definition of bound G(n):

Theorem 1.1 Under hypotheses of Theorem 3.2 (see in Section 3), one has
the existence (and uniqueness) of the strong solution (ρ,u) of problem (1),
which is obtained as the limit (in weak norms) of the sequence (ρn,un). More-
over, the following error estimates hold for all t ∈ [0, T ]:

‖(ρn − ρ,un − u)(t)‖2
H1×L2 ≤ G(n), (8)

t∫

0

(
‖(ρn − ρ,un − u)(τ)‖2

H2×H1 + |(ρn
t − ρt)(τ)|2

)
dτ ≤ G(n). (9)

Theorem 1.2 Under hypotheses of Theorem 3.2 (see in Section 3), one has
convergence (in strong norms) of the sequence (ρn,un, pn) towards the strong
solution (ρ,u, p) of problem (1). Moreover, the following error estimates hold
for all t ∈ [0, T ]:

‖(ρn − ρ,un − u)(t)‖2
H2×H1 +

t∫

0

‖(ρn
t − ρt,u

n
t − ut)‖2

H1×L2dτ ≤ G(n),(10)

t∫

0

‖(ρn − ρ,un − u, pn − p)‖2
H3×H2×H1dτ ≤ G(n). (11)

Theorem 1.3 Under hypotheses of Theorem 3.3 (see in Section 3), one has
higher regularity (only for strictly positive times) of the strong solution (ρ,u, p)
of problem (1), which is obtained as the limit of the sequence (ρn,un, pn).
Moreover, if we define σ(t) = min{t, 1}, the following error estimates hold for
all t ∈ [0, T ]:

σ(t)‖(ρn
t − ρt,u

n
t − ut)(t)‖2

H1×L2 ≤ G(n− 1). (12)
t∫

0

σ(τ)‖(ρn
t − ρt,u

n
t − ut)(τ)‖2

H2×H1dτ ≤ G(n− 1), (13)

σ(t)‖(ρn − ρ,un − u, pn − p)(t)‖2
H3×H2×H1 ≤ G(n− 1), (14)

5



t∫

0

σ(τ)‖(ρn − ρ,un − u, pn − p)(τ)‖2
H4×H3×H2dτ ≤ G(n− 1). (15)

Notice that error estimates in weak norms given in Theorem 1.1 are the same
that in strong norms given in Theorem 1.2 (under the same hypotheses). But,
error estimates for regular norms given by Theorem 1.3 are valid only for
strictly positive times and the bound change from G(n) to G(n − 1) (and
more hypotheses on data are necessary).

2 Some estimates of Gronwall’s type

The following well known Gronwall’s Lemma will be frequently used:

Lemma 2.1 (Gronwall) Let a, b, c, d be positive L1(0, T ) functions verifying
the differential inequality: a.e. t ∈ (0, T ),

a′(t) + b(t) ≤ c(t)a(t) + d(t)

then, for any t ∈ (0, T ):

a(t) +

t∫

0

b(s)ds ≤

a(0) +

t∫

0

d(s)ds


 exp




t∫

0

c(s)ds


 .

Now, we present a more specific estimate of Gronwall’s type, which it will
be used in the sequel, in order to obtain either scheme estimates or error
estimates.

Lemma 2.2 (Gronwall with recurrence) Let (an), (bn) two sequence of pos-
itive L1(0, T ) functions such that

an(0) = A ∈ R, bn(t) ≥ P an(t) a.e. t ∈ (0, T ) (16)

with P > 0 a constant (independent of t) and verifying the differential inequal-
ity: a.e. t ∈ (0, T ),

a′n(t) + bn(t) ≤ cn(t)an(t) + dn(t)an−1(t) (17)

where (cn), (dn) are two sequence of positive functions, bounded in L1(0, T )
and L2(0, T ) respectively. Then, there exists two constants D > 0 and E > 0

6



independent on n (depending on ‖cn‖L1(0,T ) and ‖dn‖L2(0,T )) such that for any
t ∈ (0, T ) and for any n ≥ 1, one has:

an(t) +

t∫

0

bn(s) ds ≤ E


A eD t/2 + ‖a0‖L∞(0,t)

[
e−2 P t (D t)n

n!
+

(D t)n+1

(n + 1)!

]1/2

 .

Remark 2.3 Notice that, for t ∈ (0, T ) with T > 0 fixed, one has that for
any n ≥ n0 (with n0 = n0(T )),

[
e−2 P t (D t)n

n!
+

(D t)n+1

(n + 1)!

]1/2

≤ 2 e−P t

[
(D t)n

n!

]1/2

.

Therefore, under hypothesis of previous Lemma, one has in particular that for
all n ≥ n0,

an(t) +

t∫

0

bn(s) ds ≤ E


A eD t/2 + ‖a0‖L∞(0,t)e

−P t

[
(D t)n

(n)!

]1/2

 .

PROOF. Using (16) in (17) and applying Gronwall’s Lemma to the inequal-
ity

(ePtan)′ ≤ cnePtan + ePtdnan−1

(recalling that an(0) = A) one has the estimate:

eP tan(t)≤

A +

t∫

0

eP sdn(s) an−1(s) ds


 exp




t∫

0

cn




≤C


A +




t∫

0

|eP san−1(s)|2ds




1/2

 .

Therefore, if we define ãn(t) = |eP tan(t)|2, one has

ãn(t) ≤ D


A2 +

t∫

0

ãn−1(s) ds




hence, by means of an induction argument (applying Fubini’s Theorem), we
arrive at

ãn(t)≤D A2

(
1 + Dt + · · ·+ (C t)n−1

(n− 1)!

)
+ Dn

t∫

0

(t− s)n−1

(n− 1)!
ã0(s) ds

≤D A2 eD t + Dn

t∫

0

(t− s)n−1

(n− 1)!
e2 P sa2

0(s) ds
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Integrating by parts,

ãn(t)≤D A2 eD t + Dn‖a0‖2
L∞(0,t)




[
−(t− s)n

n!
e2 P s

]s=t

s=0

+ 2 P

t∫

0

(t− s)n

n!
e2 P s




≤D A2 eD t + ‖a0‖2
L∞(0,t)

(
(D t)n

n!
+ 2

P

D
e2 P t (D t)n+1

(n + 1)!

)

hence we obtain

an(t)2 ≤ D A2 eD t + ‖a0‖2
L∞(0,t)

(
e−2 P t (D t)n

n!
+ 2

P

D

(D t)n+1

(n + 1)!

)
.

Finally, applying Gronwall’s Lemma to (17) (using again that an(0) = A):

t∫

0

bn(s) ds≤

A +

t∫

0

dn(s)an−1(s)


 exp

t∫

0

cn(s)ds

≤C
(
A + ‖dn‖L2(0,t)‖an−1‖L2(0,t)

)
.

Therefore, applying previous estimates for a2
n−1, one has

t∫

0

bn(s) ds ≤ C


A

(
1 + eD t/2

)
+ ‖A‖L∞(0,t)




t∫

0

e−2 P s (D s)n−1

(n− 1)!
+ 2

P

D

t∫

0

(D s)n

n!




1/2



hence, integrating by parts

t∫

0

e−2 P s (D s)n−1

(n− 1)!
≤ 1

D
e−2 P t (D t)n

(n)!
+ 2

P

D2

(D t)n+1

(n + 1)!

hence we can finish the proof of this Lemma.

Remark 2.4 Arguing as in the proof of previous Lemma, but without hypoth-
esis bn(t) ≥ P an(t), one arrives at the following estimate for all n ≥ 1:

an(t) +

t∫

0

bn(s) ds ≤ E


A eD t/2 + ‖a0‖L∞(0,t)

[
(D t)n

n!

]1/2

 .

Remark 2.5 In this paper, we will use the previous Lemma in two situations,
in order to obtain:

(1) either scheme estimates, using in particular that

an(t) +

t∫

0

bn(s) ds ≤ C
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(2) or error estimates. For this case, A = 0 and then

an(t) +

t∫

0

bn(s) ds ≤ G(n) (18)

where

G(n) = C





[
e−2 P t(D t)n/n! + (D t)n+1/(n + 1)!

]1/2 ∀n ≥ 1, or

[(D t)n/n!]1/2 ∀n ≥ 1, or

e−P t [(D t)n/n!]1/2 ∀n ≥ n0(T ).

(19)

Here and in the sequel, we will denote by C different constants, always inde-
pendent on n.

3 Scheme estimates

In this section, the task is to prove some estimates (uniformly respect to n) for
the sequence (ρn,un, pn). In particular, passing to the limit when n → +∞,
we will obtain the (unique) strong solution (ρ,u, p) of (1) in (0, T ).

Usually, the following classical “interpolation and Sobolev” inequalities will
be used:

|(f, g)| ≤ |f |p|f |q, ∀ p, q : 1/p + 1/q = 1,

|f |3 ≤ |f |1/2
2 |f |1/2

6 ≤ C|f |1/2‖f‖1/2
H1 .

In particular
|f · g| ≤ |f |3|g|6 ≤ C|f |1/2‖f‖1/2

H1 ‖g‖H1 .

Moreover, we will use the following more specific interpolation inequality ([7]):

|f |∞ ≤ C‖f‖1/2
H1 ‖f‖1/2

H2 (20)

In particular
|f · g| ≤ |f |∞|g|2 ≤ C‖f‖1/2

H1 ‖f‖1/2
H2 |g|.

The existence (regularity and uniqueness) of solution (ρn,un, pn) for the scheme
(6)-(7), can be obtained (see [2] for instance). Moreover, the “weak maximum
principle” applied to the ρn-problem (6) jointly with the hypothesis (2) imply

0 < m ≤ ρn(x, t) ≤ M in QT (21)

hence in particular,

ρn is bounded in L∞(0, T ; L∞(Ω)).
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On the other hand, from the corresponding energy inequalities of scheme prob-
lems (6) and (7), one can proves ([1,13]) the following weak estimates whatever
λ < 2µ/(M −m): If u0 ∈ H, ρ0 ∈ H1

N(Ω) verifying (2) (but m could be zero)
and f ∈ L2(0, T ; H−1(Ω)3), then

ρn is bounded in L2(0, T ; H2
N(Ω)) ∩ L∞(0, T ; H1

N(Ω)),√
ρnun is bounded in L∞(0, T ; L2(Ω)),

un is bounded in L2(0, T ; H1(Ω)).

However, these last estimates will be not necessary in the sequel. Only, we
are going to use (21). Therefore, the hypothesis of ([1,13]) imposing λ small
enough, λ < 2µ/(M−m), will not be imposed in this paper. Indeed, we will see
directly that under certain smallness restrictions on the data (or equivalently
on the final time), strong and more regular estimates hold.

First, we will prove the following auxiliary result

Lemma 3.1 There exists some positive constants β,C1, C2, C3 (depending on
m,M, µ, Ω but independent on n and λ) such that, for any n ≥ 1

λ
d

dt
|∆ρn|2 +

λ2

4
|∇∆ρn|2 +

1

2
|∇ρn

t |2 ≤
C1

λ
(µ|∇un−1|2)2λ|∆ρn|2,

µ
d

dt
|∇un|2 + m|un

t |2 + β
(
|∆un|2 + |∇pn|2

)
≤ C2|f|2

+C3

(
(µ|∇un−1|2)2 + λ1/2(λ1/2|∆ρn|)(λ|∇∆ρn|)

)
µ|∇un|2

PROOF. Multiplying the density equation (6) by −∆ρn
t , integrating by parts

in Ω (boundary terms vanish) and using Young’s inequalities in an appropriate
form, we obtain:

λ
d

dt
|∆ρn|2 + |∇ρn

t |2≤C|∇(un−1 · ∇ρn)|2.

On the other hand, taking gradient of the density equation (6),

λ2|∇∆ρn|2 ≤ 2|∇ρn
t |2 + 2|∇(un−1 · ∇ρn)|2

Balancing between two previous inequalities and using |∇(un−1 · ∇ρn)|2 ≤
C‖un−1‖2

H1‖ρn‖H2‖ρn‖H3 , one arrives at

λ
d

dt
|∆ρn|2 +

λ2

4
|∇∆ρn|2 +

1

2
|∇ρn

t |2≤C‖un−1‖2
H1‖ρn‖H2‖ρn‖H3 .

10



Then, recalling equivalent norms and using again Young’s inequalities, the
first inequality of this Lemma holds.

For the second inequality, taking un
t as tests function in (7), one has:

µ

2

d

dt
|∇un|2 +

3

4
m |un

t |2

≤ C
(
|f|2 + |(un−1 · ∇)un|2 + λ2|(un · ∇)∇ρn + (∇ρn · ∇)un|2

)

≤ C
(
|f|2 + |un−1|26|∇un|23 + λ2

(
|un|26|∇2ρn|23 + |∇ρn|2∞|∇un|2

))

≤ C|f|2 + ε|∆un|2 + Cε|∇un−1|4|∇un|2 + Cλ2|∆ρn| |∇∆ρn||∇un|2

In order to estimate the H2(Ω)-norm for the velocity un and the H1(Ω)-norm
for the pressure pn, we use that (un, pn) is the solution of a stationary Stokes
equations (considering in (7) all additional terms on the right hand side).
Then, the classical H2 × H1 regularity results of the Stokes equations ([8])
and similar bounds as above for the L2-norm of all additional terms, yield:

|∆un|2 + |∇pn|2≤C|un
t |2 + C|f|2 + ε|∆un|2

+ Cε|∇un−1|4|∇un|2 + Cλ2|∆ρn| · |∇∆ρn| · |∇un|2

Making an appropriate “balance” between the two previous inequalities (see
[2]), one can arrive to the second inequality of this Lemma. 2

As consequence of previous Lemma, by means of an standard induction argu-
ment jointly with Gronwall’s Lemma, we arrive at

Theorem 3.2 Assume u0 ∈ V , ρ0 ∈ H2
N(Ω) verifying (2) and f ∈ L2(QT )3,

such that the following hypotheses hold: there exists K1, K2 > 0 such that

λ|∆ρ0|2 exp
(

C1

λ
K2

1T
)
≤ K2, (22)


µ|∇u0|2 + C3

T∫

0

|f|2

 exp

(
C2(K

2
1T

1/2 + λ1/2K2)T
1/2

)
≤ K1, (23)

then, for any n ≥ 1 and for all t ∈ (0, T ):

λ|∆ρn(t)|2 +

t∫

0

(
λ2

4
|∇∆ρn(τ)|2 + |∇ρn

t (τ)|2
)

dτ ≤ K2,

µ|∇un(t)|2 +

t∫

0

(
m|un

t (τ)|2 + β
(
|∆un(τ)|2 + |∇pn(τ)|2

))
dτ ≤ K1.
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Taking into account equivalent norms in V , H2 ∩ V , H2
N and H3

N , estimates
of previous theorem imply

(ρn,un) is bounded in L∞(H2 ×H1) ∩ L2(H3 ×H2) (24)

(ρn
t ,un

t ) is bounded in L2(H1 × L2) (25)

pn is bounded in L2(0, T ; H1) (26)

Notice that hypotheses (22)-(23) are either smallness restrictions on the data
(f,u0) (but not on ρ0) if we take K2 small enough, or smallness conditions on
the final time T .

Now, and without additional restriction hypothesis, we will obtain higher reg-
ularity estimates when data are more regular. Last estimates are only verified
for strictly positive times.

Theorem 3.3 Assume u0 ∈ H2(Ω) ∩ V , ρ0 ∈ H3
N(Ω) verifying (2) and f ∈

L2(0, T ; L2(Ω)3) with ft ∈ L2(0, T ; H−1(Ω)3), such that restrictive hypotheses
(22)-(23) hold, then one has the following estimations:

(ρn
t ,u

n
t ) is bounded in L∞(H1 × L2) ∩ L2(H2 ×H1) (27)

In addition, assuming f ∈ L∞(0, T ; L2(Ω)3) ∩ L2(0, T ; H1(Ω)3),

(ρn,un, pn) is bounded in L∞(H3 ×H2 ×H1) ∩ L2(H4 ×H3 ×H2) (28)

Moreover, if ft ∈ L2(0, T ; L2(Ω)3) and f ∈ L∞(0, T ; H1(Ω)3)∩L2(0, T ; H2(Ω)3),

√
σ(t)(ρn

t ,un
t ) is bounded in L∞(H2 ×H1) ∩ L2(H3 ×H2) (29)

√
σ(t)(ρn

tt,u
n
tt) is bounded in L2(H1 × L2) (30)

√
σ(t)(ρn,un, pn) is bounded in L∞(H4 ×H3 ×H2) ∩ L2(H5 ×H4 ×H3)(31)

where σ(t) = min{1, t}.

PROOF. Here, we will do an outline of the proof. First, deriving respect to
t, the problem verified by v = un

t , q = pn
t and η = ρn

t is considered. Then, (27)
is obtained for weak estimates of this problem and (28) from (27) and regu-
larity results for the Poisson problem associated to ρn and the Stokes problem
associated to (un, pn). Finally, (29)-(30) are obtained for strong estimates of

12



the (v, q, η)-problem and (31) from (29) and regularity results for the Poisson
problem associated to ρn and the Stokes problem associated to (un, pn).

4 Error estimates

We use the following notation

u(n,s) = un+s − un, p(n,s) = pn+s − pn and ρ(n,s) = ρn+s − ρn.

The following problems are verified by these variables:

ρ
(n,s)
t − λ∆ρ(n,s) = (u(n−1,s) · ∇)ρn+s + (un−1 · ∇)ρ(n,s), (32)

∂ρ(n,s)

∂n

∣∣∣∣
ΣT

= 0, ρ(n,s)|t=0 = 0. (33)

and

ρnu
(n,s)
t − µ∆u(n,s) +∇p(n,s)

= −ρ(n,s)un+s
t + ρ(n,s)f− (ρ(n,s)un−1+s · ∇)un+s

−(ρnu(n−1,s) · ∇)un+s − (ρnun−1 · ∇)u(n,s)

+λ(u(n,s) · ∇)∇ρn+s + λ(un · ∇)∇ρ(n,s)

+λ(∇ρ(n,s) · ∇)un+s + λ(∇ρn · ∇)u(n,s).

(34)

div u(n,s) = 0, (35)

u(n,s)|ΣT
= 0, u(n,s)|t=0 = 0. (36)

4.1 Proof of Theorem 1.1

Multiplying the equation (32) by −∆ρ(n,s) and integrating (by parts) on Ω,

and “balancing” the result with an estimation of |ρ(n,s)
t |2, we obtain

d

dt
|∇ρ(n,s)|2 + λ|∆ρ(n,s)|2 +

1

4λ
|ρ(n,s)

t |2

≤ C

λ

(
|(u(n−1,s) · ∇)ρn+s|2 + |(un−1 · ∇)ρ(n,s)|2

)

≤ C

λ

(
|u(n−1,s)|2|∇ρn+s|2∞ + |un−1|2∞|∇ρ(n,s)|2

)

13



≤ C

λ

(
|∆ρn+s| |∇∆ρn+s| |u(n−1,s)|2 + |∇un−1| |∆un−1| |∇ρ(n,s)|2

)

Multiplying the velocity equation (34) by u(n,s), integrating in Ω, using the
equality (which is deduced using the equation (6)),

(
ρnu

(n,s)
t + (ρnun−1 · ∇)u(n,s) − λ(∇ρn · ∇)u(n,s),u(n,s)

)
=

1

2

d

dt
|(ρn)

1
2u(n,s)|2

we have

1

2

d

dt
|(ρn)

1
2u(n,s)|2 + µ|∇u(n,s)|2

=−(ρ(n,s)un+s
t ,u(n,s)) + (ρ(n,s)f,u(n,s))

−((ρ(n,s)un−1+s · ∇)un+s,u(n,s))− ((ρnu(n−1,s) · ∇)un+s,u(n,s))

+λ((u(n,s) · ∇)∇ρn+s,u(n,s)) + λ((un · ∇)∇ρ(n,s),u(n,s))

+λ((∇ρ(n,s) · ∇)un+s,u(n,s))

We estimate the right-hand side of the above equality as follows:

|(ρ(n,s)un+s
t ,u(n,s))| ≤ |ρ(n,s)|6|un+s

t |2|u(n,s)|3
≤Cε|un+s

t |4/3
(
|∇ρ(n,s)|2 + |u(n,s)|2

)
+ ε|∇u(n,s)|2

|(ρ(n,s)f,u(n,s))| ≤ |ρ(n,s)|6|f|2|u(n,s)|3
≤Cε|f|4/3

(
|∇ρ(n,s)|2 + |u(n,s)|2

)
+ ε|∇u(n,s)|2

|((ρ(n,s)un−1+s · ∇)un+s,u(n,s))| ≤ |ρ(n,s)|6|un−1+s|6|∇un+s|2|u(n,s)|6
≤Cε|∇un−1+s|2|∇un+s|2|∇ρ(n,s)|2 + ε|∇u(n,s)|2

|((ρnu(n−1,s) · ∇)un+s,u(n,s))| ≤ |ρn|∞|u(n−1,s)|2|∇un+s|3|u(n,s)|6
≤Cε|∇un+s| |∆un+s| |u(n−1,s)|2 + ε|∇u(n,s)|2

|λ((u(n,s) · ∇)∇ρn+s,u(n,s))| ≤λ|u(n,s)|2|∆ρn+s|3|u(n,s)|6
≤Cελ

2|∆ρn+s| |∇∆ρn+s| |u(n,s)|2 + ε|∇u(n,s)|2
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|λ((un · ∇)∇ρ(n,s),u(n,s))|= |λ(∇un · (∇u(n,s))t, ρ(n,s))|
≤λ|∇un|3|∇u(n,s))|2|ρ(n,s)|6
≤Cελ

2|∇un| |∆un| |∇ρ(n,s)|2 + ε|∇u(n,s)|2

(the above equality is obtained integrating two times by parts)

|λ((∇ρ(n,s) · ∇)un+s,u(n,s))| ≤λ|∇ρ(n,s)|2|∇un+s|3|u(n,s)|6
≤Cελ

2|∇un+s| |∆un+s| |∇ρ(n,s)|2 + ε|∇u(n,s)|2

Adding the previous inequalities and choosing ε small enough, we obtain

d

dt
(|(ρn)1/2u(n,s)|2 + |∇ρ(n,s)|2) + µ|∇u(n,s)|2 + λ|∆ρ(n,s)|2 +

1

4λ
|ρ(n,s)

t |2

≤ ψn,s(t)|u(n−1,s)|2 + ϕn,s(t)
(
|(ρn)1/2u(n,s)|2 + |∇ρ(n,s)|2

)
,

where

ψn,s(t) = C
(1

λ
|∆ρn+s| |∇∆ρn+s|+ |∇un+s| |∆un+s|

)

ϕn,s(t) = C
(1

λ
|∇un−1| |∆un−1|+ |un+s

t |4/3 + |f|4/3 + |∇un−1+s|2|∇un+s|2

+λ2(|∆ρn+s| |∇∆ρn+s|+ |∇un| |∆un| + |∇un+s| |∆un+s|)
)
.

From strong estimates of (ρn,un, pn) given in Theorem 3.2 (see (24)-(25)),
(ψn,s) is bounded in L2(0, T ) and (ϕn,s) is bounded in L3/2(0, T ). Therefore,
Lemma 2.2 implies (recalling that |u(n,s)(0)| = 0 and |∇ρ(n,s)(0)| = 0) the
rates estimates of Theorem 1.1.

Notice that ‖ψn,s‖L2(0,T ) and ‖ϕn,s‖L3/2(0,T ) ↑ +∞ as λ ↓ 0. Consequently,
estimates given in Theorem 1.1 are dependent on λ (and degenerates as λ ↓ 0).
In our opinion, the asymptotic behaviour as λ ↓ 0 remains as an interesting
open problem.

4.2 Proof of Theorem 1.2

Multiplying the density error equation (32) by −∆ρ
(n,s)
t and “balancing” the

result with an estimate of |∇ρ
(n,s)
t |2 (making an analogous argument as in

Lemma 3.1), we obtain

d

dt
|∆ρ(n,s)|2 + λ|∇∆ρ(n,s)|2 +

1

4λ
|∇ρ

(n,s)
t |2
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≤ C

λ

(
|(∇u(n−1,s) · ∇)ρn+s|2 + |u(n−1,s) · ∇2ρn+s|2

+|(∇un−1 · ∇)∇ρ(n,s)|2 + |un−1∇2ρ(n,s)|2
)

≤ C

λ

(
|∆ρn+s| |∇∆ρn+s| |∇u(n−1,s)|2 + |∇un−1| |∆un−1| |∆ρ(n,s)|2

)
.

Multiplying the velocity equation (34) by u
(n,s)
t and balancing with the H2×H1

regularity of Stokes problem verified by (u(n,s), p(n,s)) (arguing again as in
Lemma 3.1), we have

m |u(n,s)
t |2 + µ

d

dt
|∇u(n,s)|2 + β(|∆u(n,s)|2 + |∇p(n,s)|2)

≤C
(
|ρ(n,s)un+s

t |2 + |ρ(n,s)f|2 + |(ρ(n,s)un−1+s · ∇)un+s|2

+|(ρnu(n−1,s) · ∇)un+s|2 + |(ρnun−1 · ∇)u(n,s)|2
+λ2(|(∇ρ(n,s) · ∇)un+s|2 + |(∇ρn · ∇)u(n,s)|2

+|(u(n,s) · ∇)∇ρn+s|2 + |(un · ∇)∇ρ(n,s)|2)
)

Now, we estimate the right-hand side of the above equality as follows (using
L∞(0, T ) estimates for (ρn,un, pn) given in Theorem 3.2):

|ρ(n,s)un+s
t |2 ≤ |ρ(n,s)|2∞|un+s

t |2 ≤ C|un+s
t |2|∆ρ(n,s)|2

|ρ(n,s)f|2 ≤ C|∆ρ(n,s)|2|f|2

|(ρ(n,s)un−1+s · ∇)un+s|2 ≤ |ρ(n,s)|2∞|un−1+s|2∞|∇un+s|2 ≤ C|∆un−1+s| |∆ρ(n,s)|2

|(ρnu(n−1,s) · ∇)un+s|2 ≤ |ρn|2∞|u(n−1,s)|26|∇un+s|23 ≤ C|∆un+s| |∇u(n−1,s)|2

|(ρnun−1 · ∇)u(n,s)|2 ≤ |ρn|2∞|un−1|2∞|∇u(n,s)|2 ≤ C|∆un−1| |∇u(n,s)|2

λ2|(∇ρ(n,s) · ∇)un+s|2 ≤ λ2|∇ρ(n,s)|26|∇un+s|23 ≤ C|∆un+s| |∆ρ(n,s)|2

λ2|(∇ρn · ∇)u(n,s)|2 ≤ λ2|∇ρn|2∞|∇u(n,s)|2 ≤ C|ρn|H3|∇u(n,s)|2

λ2|(u(n,s) · ∇)∇ρn+s|2 ≤ λ2|u(n,s)|26|∇2ρn+s|23 ≤ C|ρn+s|H3|∇u(n,s)|2
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λ2|(un · ∇)∇ρ(n,s)|2 ≤ λ2|un|2∞|∇2ρ(n,s)|2 ≤ C|∆un| |∆ρ(n,s)|2

Adding all the previous inequalities, we have

d

dt
(µ|∇u(n,s)|2 + |∆ρ(n,s)|2) +

1

4λ
|∇ρ

(n,s)
t |2 + λ|∇∆ρ(n,s)|2

+m|u(n,s)
t |2 + β

(
|∆u(n,s)|2 + |∇p(n,s)|2

)
(37)

≤ η1(t)|∇u(n−1,s)|2 + η2(t)|∆ρ(n,s)|2 + η3(t)|∇u(n,s)|2.

where

η1(t) = C
(
|∆un+s(t)|+ ‖ρn+s(t)‖H3

)
,

η2(t) = C
(
|un+s

t (t)|2 + |∆un−1+s(t)|+ |∆un+s(t)|
+|∆un(t)|+ |f(t)|2 + |∆un−1(t)|

)
,

η3(t) = C
(
|∆un−1|+ ‖ρn(t)‖H3 + ‖ρn+s(t)‖H3

)

From strong estimates of Theorem 3.2 (see (24)-(25)), sequences η1 and η3 are
bounded in L2(0, T ) and η2 is bounded in L1(0, T ). Therefore, since |∇u(n,s)(0)| =
0 and |∆ρ(n,s)(0)| = 0, applying Lemma 2.2 we obtain the rates estimates of
Theorem 1.2.

Corollary 4.1 Under hypothesis of Theorem 1.2, one has for each t ∈ (0, T ),

|(ρn
t − ρt)(t)|2 ≤ G(n− 1).

PROOF. From the error density equation (32) and using L∞(0, T ) estimates
given in Theorem 3.2, we have

|ρ(n,s)
t | ≤ C

(
|∇u(n−1,s)|+ |∆ρ(n,s)|

)

hence applying Theorem 1.2, we can finish the proof.

4.3 Proof of Theorem 1.3

Differentiating the error equation of velocity (34) with respect to t, taking

u
(n,s)
t as test function and using the equality

(ρnu
(n,s)
tt + (ρnun−1 · ∇)u

(n,s)
t − λ(∇ρn · ∇)u

(n,s)
t ,u

(n,s)
t ) =

1

2

d

dt
|√ρnu

(n,s)
t |2,
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we have

1

2

d

dt
|√ρnu

(n,s)
t |2 + µ|∇u

(n,s)
t |2

=−(ρn
t u

(n,s)
t ,u

(n,s)
t )− (ρ

(n,s)
t un+s

t ,u
(n,s)
t ) + (ρ(n,s)un+s

tt ,u
(n,s)
t )

−((ρ
(n,s)
t un−1+s · ∇)un+s,u

(n,s)
t )− ((ρ(n,s)un−1+s

t · ∇)un+s,u
(n,s)
t )

−((ρ(n,s)un−1+s · ∇)un+s
t ,u

(n,s)
t )− ((ρn

t u
(n−1,s) · ∇)un+s,u

(n,s)
t )

−((ρnu
(n−1,s)
t · ∇)un+s,u

(n,s)
t )− ((ρnu(n−1,s) · ∇)un+s

t ,u
(n,s)
t )

−((ρn
t u

n−1 · ∇)u(n,s),u
(n,s)
t )− ((ρnun−1

t · ∇)u(n,s),u
(n,s)
t )

+λ((u
(n,s)
t · ∇)∇ρn+s,u

(n,s)
t )

+λ((u(n,s) · ∇)∇ρn+s
t ,u

(n,s)
t ) + λ((un

t · ∇)∇ρ(n,s),u
(n,s)
t )

+λ((un · ∇)∇ρ
(n,s)
t ,u

(n,s)
t ) + λ((∇ρ

(n,s)
t · ∇)un+s,u

(n,s)
t )

+λ((∇ρ(n,s) · ∇)un+s
t ,u

(n,s)
t ) + λ((∇ρn

t · ∇)u(n,s),u
(n,s)
t )

+(ρ
(n,s)
t f,u

(n,s)
t ) + (ρ(n,s)ft,u

(n,s)
t ).

Estimating in a similar manner as in Theorem 3.3, we have

d

dt
|√ρnu

(n,s)
t |2 + µ|∇u

(n,s)
t |2

≤ C|∇ρ
(n,s)
t |2(|f|2 + |∆un|+ 1) + C|u(n,s)

t |2(|∇ρn
t |+ 1)

+ C|∆ρ(n,s)|2(|un+s
tt |2 + |∇un

t |2 + |∇un+s
t |2 + ‖ft‖2

H−1)

+ C|∇u(n,s)|2(|∆ρn+s
t |2 + |∆ρn

t |2 + 1)

+ C|∇ρn+s
t | |∆u(n−1,s)| |∇u(n−1,s)|+ C|∆un+s| |u(n−1,s)

t |2.

On the other hand, differentiating the error density equation (32) with respect

to t, multiplying by ∆ρ
(n,s)
t , integrating on Ω and estimating in a similar

manner as in Theorem 1.1, we have

d

dt
|∇ρ

(n,s)
t |2 + λ|∆ρ

(n,s)
t |2≤C

(
|(u(n−1,s)

t · ∇)ρn+s|2 + |(u(n−1,s) · ∇)ρn+s
t |2

+|(un−1
t · ∇)ρ(n,s)|2 + |(un−1 · ∇)ρ

(n,s)
t |2

)

≤C
(
‖ρn+s‖H3|u(n−1,s)

t |2 + |∇u(n−1,s)| |∆u(n−1,s)| |∇ρn+s
t |2

+|∇un−1
t | |∆ρ(n,s)|2 + |∆un−1| |∇ρ

(n,s)
t |2

)
.

Adding the two previous inequalities, we obtain

d

dt

[
|√ρnu

(n,s)
t |2 + |∇ρ

(n,s)
t |2

]
+ µ|∇u

(n,s)
t |2 + λ|∆ρ

(n,s)
t |2
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≤ C|u(n,s)
t |2(|∇ρn

t |+ 1) + C(|∆un−1|+ |∆un|+ |f|2 + 1)|∇ρ
(n,s)
t |2

+C|∆ρ(n,s)|2(|un+s
tt |2 + |∇un

t |2 + |∇un+s
t |2 + |∇un−1

t |+ ‖ft‖2
H−1)

+C|∇u(n,s)|2(|∆ρn+s
t |2 + |∆ρn

t |2 + 1)

+C|∇ρn+s
t | |∇u(n−1,s)| |∆u(n−1,s)|+ C‖ρn+s‖H3|u(n−1,s)

t |2

Notice that estimates will be for positive times, because of the term |un+s
t |2,

which appears from the nonlinear term ρut. Therefore, the function σ(t) must
be introduced.

Multiplying by σ(t) = min{1, t}, recalling that m|u(n,s)
t |2 ≤ |√ρnu

(n,s)
t |2 ≤

M |u(n,s)
t |2 and σ′(t) ≤ 1, we get

d

dt

[
σ(t)

(
|√ρnu

(n,s)
t |2 + |∇ρ

(n,s)
t |2

)]
+ σ(t)

[
µ|∇u

(n,s)
t |2 + λ|∆ρ

(n,s)
t |2

]

≤ C(‖ρn‖2
H3 + 1 + |∆un−1|+ |∆un|+ |f|2)

[
σ(t)

(
|u(n,s)

t |2 + |∇ρ
(n,s)
t |2

)]

+σ′(t)
[√

ρnu
(n,s)
t |2 + |∇ρ

(n,s)
t |2

]

+Cσ(t)|∆ρ(n,s)|2(|un+s
tt |2 + |∇un

t |2 + |∇un+s
t |2 + |∇un−1

t |2 + ‖ft‖2
H−1)

+Cσ(t)|∇u(n,s)|2(|∆ρn+s
t |2 + |∆ρn

t |2 + 1)

+Cσ(t)|∇ρn+s
t | |∆u(n−1,s)| |∇u(n−1,s)|+ Cσ(t)‖ρn+s‖H3|u(n−1,s)

t |2

≤ an(t)
[
σ(t)

(
|√ρnu

(n,s)
t |2 + C|∇ρ

(n,s)
t |2

)]
+ bn(t) + cn(t)

where an(t) is bounded in L1(0, T ), ‖bn‖L1(0,t) ≤ G(n) and ‖cn‖L1(0,t) ≤
G(n− 1) thanks to Theorem 1.2, Theorem 3.2 and Theorem 3.3. Then, using
Gronwall’s Lemma, taking into account that σ(0) = 0, we obtain (12)-(13).

From the H2 ×H1 regularity of Stokes problem verified by (u(n,s), p(n,s)), we
obtain (bounding as in proof of Theorem 1.1)

σ(t)
(
|∆u(n,s)(t)|2 + |∇p(n,s)(t)|2

)
≤ Cσ(t)

(
|u(n,s)

t (t)|2

+ η1(t)|∇u(n−1,s)(t)|2 + η2(t)|∆ρ(n,s)(t)|2 + η3(t)|∇u(n,s)(t)|2
)

Thus, by using estimates (10) and (12) we obtain (14) for the (u, p)-errors.

On the other hand, taking gradient in (32), we have

σ(t)|∇∆ρ(n,s)|2≤Cσ(t)
(
|∇ρ

(n,s)
t |2 + |∆un−1| |∆ρ(n,s)|2

+|∇∆ρn+s| |∇u(n−1,s)|2
)
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Thus, by using estimates (10) and (12) we obtain (14) for the ρ-error.

Finally, estimate (15) can be proved with analogous arguments, using now the
H3 × H2 regularity of Stokes problem verified by (u(n,s), p(n,s)) and the H4

regularity of Poisson problem verified by ρ(n,s).
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