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Abstract

To a n-dimensional vector space V over a finite field Fq it is pos-
sible to associate a structure of spherical Tits building. The chambers
of such building are maximal flags: maximal sequences of nested sub-
spaces. In the case q = 2, there is a unique (n − 1)-dimensional 1-MDS
code C ⊂ V . We show the existence of chambers associated to such a
code that are chain type (in the sense of codes theory) and given a com-
plete characterization of the connected components of the chain type
chambers.
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1 Introduction

In 1991 Victor Wei introduced the concept of generalized minimum Hamming
weights ([6]) motivated by several applications in cryptography, including the
wire-tap channel of type II. With different motivation, similar properties of
irreducible cyclic codes were studied by Helleseth, Kløve and Mykkeltveit in
1977 (see [1]).

Since generalized weights were introduced several results were obtained
generalizing already known results in codes theory. Great part of these results
can be found in the work [4] of Tsfasman and Vlădut where the generalized
weights are calculated through the projective systems (see book [5]).

Given a k-dimensional linear codes C ⊂ Fn
q , the r-th minimum Hamming

weights is defined as

dr (C) = min {‖D‖ : D ⊂ C, dim(D) = r} ,

∗Centro de Ciências Exatas, Universidade Estadual de Maringá, Av. Colombo 5790,
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with
‖D‖ = #

⋃

v∈D

Supp (v) ,

where Supp (v), the support of v, is the number of non-zero coordinates of
v = (v1, . . . , vn). A code C with minimal weights hierarchy (d1, . . . , dk) is
called a [n; k; d1, . . . , dk]q- code.

Generalized weights naturally leads to the generalization of spectrum, the
r-th spectrum:

E
(r)
i (C) = {D : D ⊂ C, dim (D) = r and ‖D‖ = i} .

As a consequence of the definition we have that

1 6 d1 (C) < d2 (C) < . . . < dk (C) 6 n

([6, theorem 1]) and it follows that

r 6 dr (C) 6 n − k + r

for all r ∈ {1, . . . , k} ([6, theorem 10]). A code such that dr (C) = n−k+r for
a given r ∈ {1, . . . , k} is called r-MDS code (r-maximum distance separable).
If for some r a code is r-MDS then it is also s-MDS for any s > r.

In this work we will study a special family of codes, introduced by Wei
and Yang ([7]), called chain codes. Using a terminology usual in Projective
Geometry, we say a sequence of linear subspaces

{0} = D0 ( D1 ( . . . ( Dk−1 ( Dk = C,

is a flag in C, or a maximal flag in case dim (Ci) = i, for i = 1, 2, ..., k. A code
C is called a chain code (or code of chain type) if there is a flag

D1 ⊂ D2 ⊂ . . . ⊂ Dk = C,

with ‖Dr‖ = dr (C) for every r = 1, 2, . . . , k, where k = dim (C). This is a
particular but significant class of codes, since it includes the Hamming and the
dual Hamming codes, Reed-Muller codes of all the orders, 1-MDS codes and
the Golay codes ([7, theorem 6]). We observe that we can describe a maximal
flag by giving an ordered base {v1, ..., vk} such that for every i = 1, 2, ..., k, Ci

is generated by {v1, ..., vi}. Similar construction can be made for other flags,
not necessarily maximal.

The principal result of this work is Theorem 4.1, where we show that the set
of flags associated to a chain code of codimension 1with fixed weight hierarchy
is connected, in the sense there is a sequence of flags α = α1, α2, . . . , αm =
β, where all αi has the same weight hierarchy and each (αi, αi+1) can be
determined by ordered bases that differ only by a transposition.
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This result is obtained through the characterization of the chain codes as
chambers of a spherical Tits building, as we will see in the following section.
This characterization, together with Theorem 4.1, enable us to count all the
chain codes with a given weight hierarchy (Proposition 4.3 and Corollary 4.1).

In section 2 we introduce basic concepts related to Tits buildings and enun-
ciate the proposed problems in terms of this structure. In the section 3 we
study in details the structure of chain codes with weights hierarchy (2, 3, . . . , n),
beginning the counting procedures, mainly Theorem 3.1. Finally, in the sec-
tion 4 we present the main results in this work: considering the family of all
flags associated to chain codes of codimension 1, we have that each connected
component of this family is determined exclusively by the weights hierarchies
(1, 2, . . . , n − 1) and (2, 3, . . . , n) (Theorem 4.1 and Corollary 4.3).

2 Spherical Tits Buildings

We begin this section with generic definitions on abstract chamber systems
and basic concepts of Tits buildings. We present only the concepts that are
strictly necessary for this work, refering the reader to [3] for more details.

A chamber system over a set I is triple

(
Λ,

i

−, I

)
, where Λ is a set, I is a set

of indices and for each i ∈ I,
i

− is an equivalence relation in Λ. The elements

of Λ are called chambers and if α
i

− β we say that the chambers α and β are
i-adjacent, or simply adjacent if we do not need to distinguish the adjacency
type. A gallery of length k and type i1i2 . . . ik joining two chambers α and β is
a finite sequence of chambers α = α0, α1, . . . , αk = β such that the chambers
αj−1 and αj are different but ij-adjacent for each j ∈ {1, . . . , k}. A minimal
gallery joining α and β is a (not necessarily unique) gallery of minimal length
joining the chambers. A subset Λ′ ⊆ Λ is said to be connected if any two
chambers can be connected by a gallery. In this case, we define the distance
d (α, β) between two chambers as the length of a minimal gallery joining the
chambers. A subset Λ′ ⊆ Λ is called convex if every minimal gallery between
any two chambers of Λ′ is entirely contained in Λ′.

If every ij belongs to some subset J ⊂ I, we say the gallery is a J-gallery.
A chamber system Λ is connected (or J-connected) if any two chambers can
be joined by gallery (or J-gallery). The J-connected components are called
residues of type J , or simply J-residues. We denote the equivalence class (J-
residue) of an element α ∈ Λ by Res (α; J). The rank of chambers system over
set I is the cardinality of I, and the corank of J ⊂ I is the rank of I\J . A
morphism φ : Λ → Γ between two chambers system over the same index set
I is a map defined on the chambers that preserves i-adjacency for any i ∈ I.
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An isomorphism is a morphism that possess inverse that is also a morphism.

A Coxeter group is a group W finitely generated by a set {r1, ..., rn}, subject
only to the relations (rirj)

mij = 1, where mij ∈ N∪{∞} and mii = 1, for any
i, j ∈ {1, ..., n}. The matrix (mij)

n

i,j=1 is called the Coxeter matrix of W and
denoted for MI . The generators of W define a structure of chambers systems
over I in the group in a canonical way: two elements w,w′ ∈ W are said to be
i-adjacent if and only if w′ = wri. This systems is called Coxeter complex, the
fundamental ”bricks” that constitute a Tits building:

Definition 2.1 Let ∆ be a chamber system and Σ a family of subsystems, all
isomorphic to a given finite Coxeter complex, such that:

(i) For any two chambers there is Σ ∈ Σ containing both of them;

(ii) For each pair Σ, Σ′ ∈ Σ with a chamber in common there is an isomor-
phism of chamber systems φ : Σ → Σ′ that fixes Σ ∩ Σ′ pointwise;

Then the pair (∆,Σ) is called a spherical Tits buildings and the subsystems
of Σ apartments.

Being the Coxeter complex finite, it can be realized as a complex structure
on a metric sphere (see [2]).

Example 2.1 Let Fq be a finite field with q elements and Fn
q the vector space

of dimension n. We use the notation (Di)
l

i=1 to represent the flag of length l

{0} = D0 ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Dl−1 ⊂ Dl = Fn
q .

A maximal flag is a flag of length n, and in this case dim (Dj) = j. We
consider the building (∆,Σ) defined as follows:

∆ = An−1 (q) =
{
(Di)

n−1
i=1 : dim (Dj) = j,Dj ⊂ Fn

q

}

Σ =
{{(〈

vσ(1), . . . , vσ(i)

〉)n−1

i=1
: σ ∈ Sn

}
: {v1, . . . , vn} base of Fn

q

}

where Sn is the symmetric group and
〈
vσ(1), . . . , vσ(i)

〉
is the space of Fn

q spanned

by the vectors
{
vσ(1), . . . , vσ(i)

}
. Fixed a base {v1, . . . , vn} of Fn

q , an apartment
of ∆ is the set of all chambers

(〈
vσ(1), . . . , vσ(i)

〉)n−1

i=1

with σ ∈ Sn. Two chambers (Di)
n−1
i=1 and (D′

i)
n−1
i=1 in ∆ are i-adjacent if Dj =

D′

j for any j 6= i. The Coxeter group associated to the building An−1 (q) is
isomorphic to the symmetric group Sn.

Example 2.2 All J-residue of a Tits building ∆ of the type MI is a Tits
building of type MJ (see [3, theorem 3.5]).
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3 Connecting Chambers by Galleries

We denote by ∆q (d1, d2, . . . , dn−1) the set of all maximal flags of Fn
q that

achieve the weights hierarchy (d1, d2, . . . , dn−1). Each of those flags is called a
chambers of type (d1, d2, . . . , dn−1).

Consider the particular case when the maximal non trivial subspace of the
flag, Mn−1 (2) ⊂ Fn

2 , is the (n − 1)-dimensional 1-MDS code. Since Mn−1 (2)
may be viewed as the set of all words w ∈ Fn

2 with even weight, we have that

∆2 (2, 3, . . . , n) ⊂ Res (α, {1, . . . , n − 2}) .

Given α ∈ ∆2 (2, 3, . . . , n), the j-sphere of center α and ray 1 is the set of
chambers in ∆2 (2, 3, . . . , n) j-adjacent to α:

Bj (α) =

{
β ∈ ∆2 (2, 3, . . . , n) : d (α, β) = 1 and β

j

− α

}
.

We will show those spheres are rather trivial. We start with a lemma:

Lemma 3.1 Given j ∈ {1, . . . , n − 1} consider Dj ⊂ Mn−1 (2) such that
dim Dj = j and ‖Dj‖ = j + 1. Then

E
(1)
i (Dj) =

{
0 if i is odd(

j+1
i

)
if i is even

.

Proof. Let {m1, . . . ,mj+1} = Supp (Dj). If π : Fn
2 → Fj+1

2 is the projection
π (x1, . . . , xn) =

(
xm1

, . . . , xmj+1

)
, then π (Dj) ⊂ Fj+1

2 is a subcode of dimen-
sion j. Since Dj ⊂ Mn−1 (2), we find that the Hamming weight of any word
in π (Dj) is even. Then

π (Dj) = M j+1 (2) ,

and the result follows. �

Let U ⊂ V ⊂ Fn
q be linear spaces, with dimensions r and t respectively. The

number of s-dimensional subspaces of V containing U equals (see [4, lemma
2.2])

[
t − r
s − r

]
:=

s−r∏

i=1

(qt−r − qi−1)

(qs−r − qi−1)
.

Theorem 3.1 Let n > 2 and α ∈ ∆2 (2, 3, . . . , n). Then

#Bi (α) =

{
2 if i = 1
1 if i 6= 1

.

In particular, B1 (α) ∪ {α} = Res (α; {1}).
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Proof. Let α := (Di)
n−1
i=1 ∈ ∆2 (2, 3, . . . , n). Since dim Di+1/Di−1=2, it has

exactly 3 subspaces of dimension 1. One of them corresponds to the projection
of Di and the other two defines the two chambers i-adjacent to (Di)

n−1
i=1 , but

those are not necessarily contained in ∆2 (2, 3, . . . , n).
If i = 1, it is enough to notice that for any v ∈ D2\ {0}, ‖v‖ = 2 and it

this means that every chamber 1-adjacent to (Di)
n−1
i=1 is in ∆2 (2, 3, . . . , n) and

it follows that #B1 (α) = 2.
If i 6= 1, we consider {v1, . . . , vi+1} a base of Di+1 such that {v1, . . . , vi−1}

generates Di−1 and {v1, . . . , vi} generates Di. Since Di+1 is a chain code, we
can assume that

#

(
l⋃

j=1

Supp (vj)

)
= l + 1,

for every l ∈ {1, . . . , i + 1}. From Lemma 3.1, we find that Di and Di+1

have respectively
(

i+1
2

)
and

(
i+2
2

)
words with weight 2. We claim there is

wi ∈ Di+1, wi 6= vi such that ‖wi‖ = 2 and

#

((
i−1⋃

j=1

Supp (vj)

)
∪ Supp (wi)

)
= i + 1.

In fact, if Supp (〈v1, . . . , vi+1〉) = {m1, ...,mi+2} there are ms ∈ Supp (vi+1)
and mr ∈ Supp (〈v1, . . . , vi〉) such that ms /∈ Supp (〈v1, . . . , vi〉) and then, every
wi ∈ Di+1 such that Supp (wi) = {mr,ms} satisfies the desired conditions. So,
we obtained two i-dimensional codes of chain type, let us say Di and D′

i. The
amount of distinct words of weight 2 in those codes equals

E
(1)
2 (Di) + E

(1)
2 (D′

i) − E
(1)
2 (Di−1) .

Since the number of words of weight 2 in Di+1\ (Di ∪ D′

i) is smaller then the
number of words of weight 2 in Di (or D′

i) that are not in Di−1, that is,

E
(1)
2 (Di+1) −

(
E

(1)
2 (Di) + E

(1)
2 (D′

i) − E
(1)
2 (Di−1)

)
< E

(1)
2 (Di) − E

(1)
2 (Di−1) ,

we conclude that just two i-adjacent chambers can be of chain type, because
the number of distinct words of weight 2 in a code D ⊂ Mn−1 (2) such that
dim D = i and ‖D‖ = i + 1 equals

(
i+1
2

)
(Lemma 3.1). �

From here on, we will withdraw the trivial case F2
q and consider only codes

in n-dimensional spaces with n > 2.
If B (α) =

⋃
j Bj (α) , then #B (α) is called the valency of α, that is, the

number of chambers in ∆2 (2, 3, . . . , n) adjacent to α. The next two corollaries
follows trivially from the preceding theorem.
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Corollary 3.1 Let α = (Di)
n−1
i=1 ∈ ∆2 (2, 3, . . . , n). Then

#

(
r⋃

j=1

Bj (α)

)
=

{
r + 1 if r = 1, 2, . . . , n − 2
r if r = n − 1

.

Corollary 3.2 Let α ∈ ∆2 (2, 3, . . . , n). Then the valency of α is n − 1.

Lemma 3.2 Let α ∈ ∆2 (2, 3, . . . , n) and i ∈ {2, 3, . . . , n − 2}. Then there is
a unique chamber (D1, . . . , Dn−1) ∈ An−1 (2) that is i-adjacent to α, and such
that

‖Di‖ = i + 2.

Proof. Suppose Di ⊂ Di+1 ⊂ Mn−1 (2) are codes with ‖Di+1‖ = i + 2. Since
Di ⊂ Di+1 we have that ‖Di‖ 6 ‖Di+1‖ = i + 2. Since Di is i-dimensional we
cannot have ‖Di‖ 6 i, because this means ‖Di‖ < di (M

n−1 (2)), contradicting
the minimality of di (M

n−1 (2)). It follows that ‖Di‖ = i + 1 or ‖Di‖ = i + 2.
Since ‖Di‖ ∈ {i + 1, i + 2} and for i ≥ 2 there are only 2 chambers i-adjacent
to α, exactly one of them of type (2, 3, . . . , n) (Theorem 3.1), we must have
one of them satisfying the equation ‖Di‖ = i + 2. �

Despite the fact it is very simple, Corollary 3.2 has an interesting conse-
quence: given two chambers in the building

(
D1

1, . . . , D
1
n−1

)
,
(
D2

1, . . . , D
2
n−1

)
∈ An−1 (q)

such that dim (D1
i ∩ D2

i ) = i − 1 for any i ∈ {2, 3, . . . , n − 1}, they can be
connected by a galleries of length 2n− 3 (the indexes under the lines indicate
the adjacency type):

(D1
1
, D1

2
, D1

3
, . . . , D1

n−2
, D1

n−1
) (D1

2
∩ D2

2
, D1

2
, D1

3
, . . . , D1

n−2
, D1

n−1
)

1

2

(D1
2
∩ D2

2
, D1

3
∩ D2

3
, . . . , D1

n−1
∩ D2

n−1
, D1

n−1
) . . . (D1

2
∩ D2

2
, D1

3
∩ D2

3
, D1

3
, . . . , D1

n−2
, D1

n−1
)

(D1
2
∩ D2

2
, D1

3
∩ D2

3
, . . . , D1

n−1
∩ D2

n−1
, D2

n−1
)

n−1

. . . (D1
2
∩ D2

2
, D1

3
∩ D2

3
, D2

3
, . . . , D2

n−2
, D2

n−1
)

2

(D2
1
, D2

2
, D2

3
, . . . , D2

n−2
, D2

n−1
) (D1

2
∩ D2

2
, D2

2
, D2

3
, . . . , D2

n−2
, D2

n−1
)

1

If the initial and final chambers of the gallery above are in ∆2 (2, 3, . . . , n),
the whole gallery is contained in ∆2 (2, 3, . . . , n), as follows from the next
theorem.

7



Theorem 3.2 If (D1
i )

n−1
i=1 , (D2

i )
n−1
i=1 ∈ ∆2 (2, 3, . . . , n) and dim (D1

i ∩ D2
i ) =

i − 1 for any i ∈ {2, 3, . . . , n − 2}, then

∥∥D1
r ∩ D2

r

∥∥ = r

for any r ∈ {2, 3, . . . , n − 2}.

Proof. The proof is by induction on r. For r = 2, the result is trivial since
every 0 6= u ∈ Di

2 satisfies ‖u‖ = 2, for i = 1, 2.
We assume now that ‖D1

i ∩ D2
i ‖ = i for every i ∈ {3, . . . , r} and suppose

that
∥∥D1

r+1 ∩ D2
r+1

∥∥ 6= r+1. By Lemma 3.2 we get that
∥∥D1

r+1 ∩ D2
r+1

∥∥ = r+2.
Let {i1, . . . , ir} be the support of D1

r ∩ D2
r . Since

(
D1

r ∩ D2
r

)
⊂
(
D1

r+1 ∩ D2
r+1

)
⊂ Dj

r+1 (j = 1, 2),

we have that
Supp

(
D1

r+1 ∩ D2
r+1

)
= {i1, . . . , ir, l1, l2}

and since (D1
r ∩ D2

r) ⊂ Dj
r+1 (j = 1, 2) we find that

Supp
(
Dj

r+1

)
=
{
i1, . . . , ir, i

j
r+1, i

j
r+2

}
(j = 1, 2).

But
(
D1

r+1 ∩ D2
r+1

)
⊂ Dj

r+1 (j = 1, 2), and we can assume with no loss of gener-

ality that l1 = ijr+1 and l2 = ijr+2. But then, Supp
(
D1

r+1

)
= Supp

(
D2

r+1

)
, and

since
∥∥D1

r+1

∥∥ =
∥∥D2

r+1

∥∥ = j +1, it follows from Lemma 3.1 that D1
r+1 = D2

r+1,
and dim

(
D1

r+1 ∩ D2
r+1

)
= r+1, contradicting the hypothesis of that dimension

dim
(
D1

r+1 ∩ D2
r+1

)
= r. �

Corollary 3.3 If (D1
i )

n−1
i=1 , (D2

i )
n−1
i=1 ∈ ∆2 (2, 3, . . . , n), dim (D1

i ∩ D2
i ) = i − 1

for any i ∈ {2, 3, . . . , n − 3} and # (Supp (D1
1) ∩ Supp (D2

1)) = 1, then

∥∥D1
i + D2

i

∥∥ = i + 2

for any i ∈ {1, 2, . . . , n − 3}.

Proof. From Theorem 3.2 we know that support ‖D1
i ∩ D2

i ‖ = i for any
i ∈ {2, 3, . . . , n − 3}. Since ‖D1

i + D2
i ‖ = ‖D1

i ‖ + ‖D2
i ‖ − ‖D1

i ∩ D2
i ‖, we have

that ‖D1
i + D2

i ‖ = i + 2 for any i ∈ {2, 3, . . . , n − 3}. For the case i = 1, we
notice that # {Supp (D1

1) ∩ Supp (D2
1)} = 1, and ‖D1

1‖ = ‖D2
1‖ = 2 and find

that ‖D1
1 + D2

1‖ = 3. �
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4 Connected Components

The main result of this work is presented in Theorem 4.1, where we characterize
the connected components of chain codes. To prove that ∆2 (2, 3, . . . , n) is
connected, we will show that the set of chambers of type (2, 3, . . . , n) can be
described (see Example 2.2 for details) as the disjoint union of apartments in
the Tits Building

Res (α; {1, 2, . . . , n − 2}) , α ∈ ∆2 (2, 3, . . . , n) .

To understand the structure of those buildings defined by residues, we take
a close look at the 4-dimensional case. We notice that ∆2 (2, 3, 4) is the union
of the four apartments defined by the bases bellow:

{(1, 0, 0, 1) , (0, 1, 0, 1) , (0, 0, 1, 1)} , {(0, 1, 0, 1) , (0, 1, 1, 0) , (1, 1, 0, 0)} ,

{(0, 1, 1, 0) , (1, 0, 1, 0) , (0, 0, 1, 1)} , {(1, 0, 0, 1) , (1, 1, 0, 0) , (1, 0, 1, 0)}

The underlined coordinates suggest the picture we wish to generalize: we chose
a co-dimension 1 subspace defned by a non-zero coordinate and in this space
we take a base formed by vectors with weight two. This will produce the
apartments of ∆2 (2, 3, . . . , n) and constitute the foundation of the proof that
∆2 (2, 3, . . . , n) is connected.

Lemma 4.1 Given (Di)
n−1
i=1 ∈ ∆2 (2, 3, . . . , n) there is a base {v1, . . . , vn−1} of

Mn−1 (2) and l ∈ {1, 2, ..., n} such that:

(i) 〈v1, . . . , vi〉 = Di for any i ∈ {1, . . . , n − 1} ;

(ii) Supp (vi) ∩ Supp(vj) = {l}, for any i, j ∈ {1, . . . , n − 1} with i 6= j.

Proof. Since Mn−1 (2) is of chain type, there is a base {w1, . . . , wn−1} of
Mn−1 (2) such that

#

(
i⋃

j=1

Supp (wj)

)
= di

(
Mn−1 (2)

)

and
〈w1, . . . , wi〉 = Di,

with i ∈ {1, . . . , n − 1}. We note that since d1 (Mn−1 (2)) = 2 we have that
‖w1‖ = 2. Lets say Supp (w1) = {i1, i2} and Supp (wj) = {ij, ij+1}, j ∈
{2, 3, . . . , n − 1}, with ij ∈ Supp (wj−1) and ij+1 ∈ {1, . . . , n − 1} \Supp (Dj−1).
Defining

v1 = w1,

vj = vj−1 + wj, j = 2, ..., n
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we find that

v1 = w1, Supp (v1) = {i1, i2} ,

vl−1 = vl−2 + wl−1, Supp (vl−1) = {i1, il} .

Then we put l = i1 and find that Supp (vi) ∩ Supp (vj) = {l} for any i, j ∈
{1, . . . , n − 1} with i 6= j and the base {v1, . . . , vn−1} satisfies the requested
conditions. �

Let us define the vector vi
j ∈ Fn

2 as

vi
j :=

{
(0, . . . , 0, 1i, 0, . . . , 0, 1j+1, 0, . . . , 0) if j > i
(0, . . . , 0, 1j, 0, . . . , 0, 1i, 0, . . . , 0) if j < i

where the subindex indicate the corresponding coordinate we are assigning
non-zero values . As Mn−1 (2) is an (n − 1)-dimensional subspace containing
all words of Fn

2 with even weight, and since
{
vi

1, v
i
2, . . . , v

i
n−1

}
is linearly inde-

pendent, we find that for each i ∈ {1, ..., n}, the set
{
vi

j|j = 1, ..., n − 1
}

is a
base of Mn−1 (2). So it defines the apartment Σi ⊂ ∆2 (2, 3, . . . , n):

Σi =
{(〈

vi
σ(1), ..., v

i
σ(j)

〉n−2

j=1
,Mn−1 (2)

)
: σ ∈ Sn−1

}
.

Proposition 4.1 With the notation above defined,

∆2 (2, 3, . . . , n) =
n⋃

i=1

Σi.

Proof. By construction,
⋃n

i=1 Σi ⊂ ∆2 (2, 3, . . . , n) and it is left to prove
that each chamber α = (Di)

n−1
i=1 ∈ ∆2 (2, 3, . . . , n) is contained in some of

those apartments. Let us consider a base {v1, . . . , vn−1} of Mn−1 (2) such
that 〈v1, . . . , vr〉 = Dr and Supp (vi) ∩ Supp (vj) = {l}, whenever i 6= j and
r ∈ {1, 2, . . . n − 1} (existence guaranteed by Lemma 4.1). Setting

i1 ∈ Supp (v1) \ {l} , . . . , in−1 ∈ Supp (vn−1) \ {l}

and
vi,j = (0, . . . , 0, 1i, 0, . . . , 0, 1j, 0, . . . , 0) ,

we have that α = (Di)
n−1
i=1 =

(〈
vl,i1 , . . . , vl,ij

〉n−1

j=1
,Mn−1 (2)

)
∈ Σl and it fol-

lows that ∆2 (2, 3, . . . , n) =
⋃n

i=1 Σi. �

Proposition 4.2 Let i, j ∈ {1, 2, . . . , n} with i 6= j. Then # (Σi ∩ Σj) =
(n − 2)!.
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Proof. Consider two apartments Σi and Σj. Let σ ∈ Sn−1 such that σ (1) = j,
and suppose that j < i. Then

(〈
vi

σ(1), . . . , v
i
σ(l)

〉n−2

l=1
,Mn−1 (2)

)
∈ Σi.

Let h ∈ {2, 3, . . . , n}. Since

vi
σ(1) + vi

σ(h) =

{
vj,σ(h) if σ (h) ∈ {1, 2, . . . , i − 1}
vj,σ(h)+1 if σ (h) ∈ {i, i + 1, . . . , n − 1}

,

we find that (〈
vi

σ(1), . . . , v
i
σ(l)

〉n−2

l=1
,Mn−1 (2)

)
∈ Σj.

and therefore Σi ∩Σj 6= ∅. Since we have an total of (n − 2)! permutations of
type (1j . . .) ∈ Sn−1, we conclude that # (Σi ∩ Σj) = (n − 2)!. �

Corollary 4.1 The number of chambers in ∆2 (2, 3, . . . , n) is n!/2.

Proof. We note that

(Σl ∩ Σi) ∩ (Σl ∩ Σj) = ∅,

if i 6= j and i, j 6= l. So, if we assume that i 6= j with i, j 6= l, we have that

(Σl ∩ Σ1) ∪ (Σl ∩ Σ2) ∪ . . . ∪ (Σl ∩ Σl−1)

is a disjoint union. Therefore

#∆2 (2, 3, . . . , n) = # (Σ1 ∪ . . . ∪ Σn)

= #Σ1 +
n∑

i=2

(
#Σi −

i−1∑

j=1

# (Σi ∩ Σj)

)

= (n − 1)! + (n − 2) (n − 1)! −
(n − 1) (n − 2)

2
(n − 2)!

=
n!

2
.

�

Corollary 4.2 For any n ≥ 3, ∆2 (2, 3, . . . , n) is connected.
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Proof. Let α, β ∈ ∆2 (2, 3, . . . , n). If α, β ∈ Σi for some i, then the chambers
can be connected by a gallery, since each apartment Σi is convex ([3, theorem
3.8]). Suppose now that α ∈ Σi and β ∈ Σj with α, β /∈ Σi ∩ Σj. Since the
intersection is not empty (Proposition 4.2), we can connect α to γ ∈ Σi ∩ Σj

through a gallery in Σi, and β to γ through a gallery in Σj. Making the jux-
taposition of these two galleries, we obtain a gallery joining α to β (passing
through γ), entirely contained in Σi ∪ Σj ⊂ ∆2 (2, 3, . . . , n). �

Proposition 4.3 The set of chambers ∆q (1, 2, . . . , n − 1) is an apartment of
An−1 (q). In particular, ∆q (1, 2, . . . , n − 1) is convex.

Proof. Consider the canonical base e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),. . . ,
en = (0, . . . , 0, 1). It follows immediately from the definition that

{(〈
eσ(1), . . . , eσ(i)

〉)n−1

i=1
: σ ∈ Sn

}
⊆ ∆q (1, 2, . . . , n − 1) .

Let α = (D1, . . . , Dn−1) ∈ ∆q (1, 2, . . . , n − 1) and choose a base {v1, . . . , vn−1}
of Dn−1 such that

#

(
i⋃

j=1

Supp (vj)

)
= di(Dn−1)

for any i ∈ {1, . . . , n − 1}. We have to prove there is a permutation σ ∈ Sn

such that
〈v1, . . . , vi〉 =

〈
eσ(1), . . . , eσ(i)

〉
, i = 1, ..., n.

This means that, up to re-scaling by scalars, this ordered base is just a per-
mutation of the canonical one.

Indeed, since d1(Dn−1) = 1, we find that

v1 = (0, . . . , 0, k1, 0, . . . , 0), k1 6= 0,

so that k−1
1 v1 = ej for some j ∈ {1, . . . , n − 1}. Since ‖〈v1, v2〉‖ = 2, we

have that Supp (v2) = {j, l} or Supp (v2) = {l} (assuming, without loss of
generality, that l > j). In the second of these possibilities we have that v2 =
(0, . . . , 0, k2, 0, . . . , 0), k2 6= 0, or in other words, that k−1

2 v2 = el. In the first
case, we find that

v2 = (0, . . . , 0, k3, 0, . . . , 0, k4, 0, . . . , 0)

and it follows that (−k3) ej + k−1
4 v2 = el. Proceeding with this process in the

same manner, we find that α ∈
{(〈

eσ(1), . . . , eσ(i)

〉)n−1

i=1
: σ ∈ Sn

}
.
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The convexity follow of the fact that apartments are convex ([3, theorem
3.8]). �

Let us notice now that there are many codes C ⊂ Fn
2 of codimension 1

with weights hierarchy
(
1, 2, . . . , m̂ + 1, . . . , n

)
. Indeed, any such code may

be described as the kernel of a linear functional ϕ :→ F2; the code Mn−1 (2) is
the kernel of ϕ (v1, . . . , vn) = v1 + . . . + vn. In the general case, a code of type(
1, 2, . . . , m̂ + 1, . . . , n

)
is the kernel of

ϕ (v1, . . . , vn) = v1 + . . . + v̂i1 + . . . + v̂im + . . . + vn. (1)

With this we have a total of

n +

(
n

2

)
+

(
n

3

)
+ . . . +

(
n

n − 2

)
= 2

(
2n−1 − 1

)
− n

codes of codimension 1 in Fn
2 that are neither of the type (2, 3, . . . , n) nor

(1, 2, . . . , n − 1).
We denote by ∆2 {i1, . . . , im} the set of chambers with weights hierarchy(

1, 2, . . . , m̂ + 1, . . . , n
)

that has the codimension 1 code defined as the kernel

of a functional as in (1).

Theorem 4.1 The set ∆2

(
1, 2, . . . , m̂ + 1, . . . , n

)
is a disjoint union of the

J-connected components ∆2I, with I = {i1, . . . , im} and J ={1, 2, . . . , m̂, . . . ,
n − 2}. Consequently the set

⋃

(d1,...,dn−1)

∆2 (d1, . . . , dn−1)

has exactly 2n − n connected components.

Proof. Each partial flag (Di)
m

i=1 ∈ ∆2 {i1, . . . , im} may be described as the se-
quence of subspaces defined by an ordered base {ei1 , . . . , eim} of Dm. In others
word, the set of all such partial flags is J ′-connected, for J ′ = {1, 2, . . . ,m − 1}.

The partial flags (Di)
n−1
i=m+1 in ∆2 {i1, . . . , im} are obtained from the vectors

(0, . . . , 0, 1j1 , 0, . . . , 0, 1j2 , 0, . . . , 0) ,

where j1 is the first non-zero position in {1, 2, . . . , n} \I and j2 ∈ {1, 2, . . . , n} \I,
j2 6= j1. The set of all such partial flags is J ′′-connected, J ′′ ={m + 1, m + 2,
. . . , n − 2}. It follows that ∆2 {i1, . . . , im} is J ′ ∪ J ′′-connected.

Finally, we prove that

∆2 {i1, . . . , im} ∪ ∆2 {j1, . . . , jm} ,

13



is not connected, for {i1, . . . , im} 6= {j1, . . . , jm}. Assuming so, there is an
jr /∈ {i1, . . . , im}. As happens with connected spaces in topology, we will have
only to prove that ∆2 {i1, . . . , im} ∩ ∆2 {j1, . . . , jm} = ∅.

Indeed, let α = (Di)
m

i=1 ∈ ∆2 {i1, . . . , im} and β =
(
D

′

i

)m
i=1

∈ ∆2 {j1, . . . , jm},
and suppose that α and β can be connected by a gallery in ∆2 {i1, . . . , im} ∪
∆2 {j1, . . . , jm}. But adjacency in An−1 (q) is defined by permutations of the
elements of a given base, so that a gallery joining α to β needs to change, at
some place the subspace Dm by the subspace D′

m. But in order to do so, we
must have {ei1 , . . . , eim , ejr

} ⊂ Dn−1 ∩ D′

n−1. But in this case, the subspace
〈ei1 , . . . , eim , ejr

〉 ⊂ Fn
2 has dimension m+1 and generalized weight equal m+1,

contradicting the minimality of dm+1 = m + 2. �

Let 1 ≤ r1 < . . . < rk ≤ n be a sequence of integers, N = {1, 2, . . . , n},
I := {i1, . . . , im} ⊂ N and Ic = N\I. We denoted by Fn (r1, . . . , rk) the
set of all the flags Dr1

⊂ . . . ⊂ Drk
formed by subspaces of Fn

2 such that
dim

(
Drj

)
= rj. We define the inclusions

iI : Fm
2 → Fn

2 ,

îI : Am−1 (2) → Fn (1, . . . ,m)

and

̂̂
iI : An−m−1 (2) → Fn (m + 1, . . . , n − 1)

respectively as

iI (x1, . . . , xm) =
(
0, . . . , 0, (x1)i1

, 0, . . . , 0, (xm)im
, 0, . . . , 0

)
,

îI (D1 ⊂ . . . ⊂ Dm) = iI (D1) ⊂ . . . ⊂ iI (Dm)

and

̂̂
iI (D1 ⊂ . . . ⊂ Dn−m−1) = iIc (D1) ⊕ iI (Fm

2 ) ⊂ . . . ⊂ iIc (Dn−m−1) ⊕ iI (Fm
2 ) .

Given chamber systems Λ1, Λ2 over I1, I2, the direct product Λ1 × Λ2 is
a chamber system over the disjoint union I1 ∪ I2. Its chambers are the pairs
(α1, α2) , with αi ∈ Λi, and (α1, α2) is said to be i-adjacent to (β1, β2) for i ∈ It

(t = 1 or 2) if αj = βj for j 6= t and αt

i

− βt in Λt.
Notice now that the direct product

îI (∆2 (1, 2, . . . ,m − 1)) ×
̂̂
iI (∆2 (2, 3, . . . , n − m))

is isomorphic to the set ∆2I. So, if we place ∆ = ∆2 (1, 2, . . . ,m − 1) and
∆′ = ∆2 (2, 3, . . . , n − m), we have the coproduct

(n

m)∐

k=1

∆ × ∆′ =
⋃

I

îI (∆) ×
̂̂
iI (∆′)
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and as a particular case of Theorem 4.1 we have the following:

Corollary 4.3 The set ∆2

(
1, 2, ..., m̂ + 1, ..., n

)
is isomorphic to the coprod-

uct
(n

m)∐

k=1

∆ × ∆′,

where the codes of dimension m and n − m − 1 in each product ∆ × ∆′ are

identified with the codes
〈{

eij

}m

j=1

〉
and

〈{
vj1

j2

}〉
, j1, j2 ∈ Ic. Consequently

∆2

(
1, 2, . . . , m̂ + 1, . . . , n

)
has exactly n!/2 chambers.

5 Final Remark

We have characterized the connected components of the union of chambers of
chain type in Fn

2 ,
⋃

(d1,...,dn−1)

∆2 (d1, . . . , dn−1), and determined the cardinality

of each such connected component. Those results are summarized in the table
below.

∆2 (1, 2, . . . , n − 1) n! Proposition 4.3
∆2 (2, 3, . . . , n) n!/2 Corollary 4.2
∆2 {i1, . . . , im} m! (n − m)!/2 Theorem 4.1

∆2

(
1, 2, . . . , m̂ + 1, . . . , n

)
n!/2 Corollary 4.3
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