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Abstract

We are interested in the parabolic equation ut − ∆u = f(x, u) in a bounded domain of RN with
Dirichlet boundary condition and f : Ω × [0,∞) → [0,∞) a Carathéodory function. We study the
existence of solution, life span and analyze the behavior of the global(when the time t→∞) solution
with respect to the solution of the elliptic corresponding problem −∆u = f(x, u) with the Dirichlet
boundary condition. A typical example where the results are applied is when f(x, s) = a(x)sq+b(x)sp

with 0 < q < 1 < p and a ∈ Lα(Ω), b ∈ Lβ(Ω) with α, β > 1 and α, β > N/2.
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1 Introduction

Let Ω be a bounded domain in RN , N ≥ 1, with smooth boundary ∂Ω, T > 0 and f : Ω×[0,∞) → [0,∞)
is a Carathéodory function. In this work we consider the following nonlinear heat equation ut −∆u = f(x, u) in Ω× (0, T )

u = 0 in ∂Ω× (0, T )
u(0) = u0 in Ω

(1.1)

where u0 ∈ L∞(Ω) and u0 ≥ 0 a.e in Ω. We consider only nonnegative solutions for (1.1).
The equation (1.1) appear in many areas of applications, e. g. in media flows and combustion theory

and has been considered by different authors, see for example [8],[9],[10].
A elliptic version of (1.1) is the equation{

−∆u = f(x, u) in Ω
u = 0 in ∂Ω (1.2)

The existence of solutions of (1.2) has been extensively investigated, see [1],[5],[6],[12] for a survey.
The purpose of the present paper is to study the existence of nonnegative solutions of the initial value

problem (1.1) and the relation between the global(in time) solution of (1.1) and its stationary elliptic
problem (1.2) when the nonlinearity f(x, s) can be concave for s small and convex for s sufficiently
enough. The some sort of concavity and some sort of convexity of f(x, s) will be required to hold only
on open subsets Ω1 and Ω2 of Ω(cf. hypothesis (H2) and (H4)).

A typical example to which our result apply is when the term nonlinear is of the form

f(x, s) = λa(x)sq + b(x)sp for x a.e in Ω, for all s ≥ 0 (1.3)

Here λ > 0 is a parameter, p, q satisfy 0 < q < 1 < p, a ∈ Lα(Ω), b ∈ Lβ(Ω), α, β ≥ 1.
Results for the equations (1.1) and (1.2) with f given by (1.3) are knows. For the equation (1.1)

with a = 0 or b = 0 see [9], [10], [14] and for the case a = b = 1 see [8]. For the equation (1.2) in the
case a = b = 1 see [1] and for a most general case [12].
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Throughout the paper, (S(t))t≥0 is the heat semigroup, i.e, S(t) = et∆. A function u will be called
solution of (1.1) in the interval [0, T ), with T ≤ ∞ if for all T ′ < T we have that u ∈ L∞((0, T ′) × Ω)
and satisfies the equation

u(t) = S(t)u0 +
∫ t

0

S(t− σ)f(x, u(σ))dσ (1.4)

for all t ∈ [0, T ). Here f : Ω × [0,∞) → [0,∞) is a Carathéodory function satisfying the following
conditions:

(H1) t 7→ f(·, t) ∈ C([0,∞), Lγ(Ω)) with γ > 1, γ > N/2 and for every M > 0 there exists a
noincreasing sequence {fn} of functions t 7→ fn(·, t) and a sequence {an} of functions t 7→ an(·, t)
in C([0,∞), Lγ(Ω)) such that ||fn−f ||C([0,M ],Lγ(Ω)) → 0 when n→∞ and for x a.e. in Ω we have

|fn(x, s)− fn(x, t)| ≤ an(x, sθ)|s− t| (1.5)

for all s, t ≥ 0 and sθ is some element of the interval [s, t].

(H2) There exists a nonempty open set Ω1 ⊂ Ω, t0 > 0 and a continuous and concave function
g : [0, t0) → [0,∞), such that

(i) f(x, s) ≥ g(s) a.e x ∈ Ω1 and 0 ≤ s ≤ t0,

(ii) For every M > 0, there exist L > 0 such that

g(s)− g(t) ≤ L

t
(s− t)

for 0 < t ≤ s ≤M .

(iii)
∫ t0

0

dσ

g(σ)
<∞

(H3) For N ≥ 3(respect. N=1,2) there exist 0 < q < 1 < p < 2∗−1,(respect. 0 < q < 1 < p) a ∈ Lα(Ω)
with α > (2∗/(q+1))′(respect α > 1) and a ≥ 0 a.e. in Ω, b ∈ Lβ(Ω) with β > (2∗/(p+1))′(respect.
β > 1) and b ≥ 0 a.e. in Ω such that

f(x, s) ≤ a(x)sq + b(x)sp

a.e. x ∈ Ω and all s ≥ 0. Here 2∗ = (2N)/(N − 2) for N ≥ 3.

(H4) There exist 0 < q < 1 < p, ε2 > 0 and nonnegative functions ã ∈ Lα̃(Ω2), b̃ ∈ Lβ̃(Ω2) with
α̃, β̃ > N/2, α̃, β̃ > 1 defined on a nonempty open set Ω2 ⊂ Ω such that b̃ ≥ ε2 for x a.e. in Ω2,
meas(Ω2 ∩ {ã > 0} ∩ {b̃ > 0}) > 0 and

f(x, s) ≥ ãsq + b̃sp for all x a.e. in Ω2, s ≥ 0.

Here we denote {a > 0} the set of all x ∈ Ω such that a(x) > 0.

(H5) There exist a nonempty open set Ω3 ⊂ Ω, t1 > 0 and a continuous convex function h : [0,∞) →
[0,∞), such that

(i) f(x, s) ≥ h(s) for x a.e in Ω3 and s ≥ 0.

(ii) lim infs→∞
h(s)
s > λ1(Ω3), where λ1(Ω3) is the principal eigenvalue associated to principal

eigenfunction ψ1 of −∆ in H1
0 (Ω3) such that

∫
Ω3
ψ(x)dx = 1.

(iii)
∫ ∞

t1

dσ

h(σ)
<∞.

We make some observations on equation (1.4).
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Remark 1.1 (i) Note that the definition make sense in Lγ(Ω) since t 7→ f(·, t) ∈ C([0,∞), Lγ(Ω)).
(ii) Since γ > 1 and f ∈ L∞((0, T ), Lγ(Ω)) for all T < ∞ we have by maximal regularity that

u(t)− S(t)u0 ∈ W 1,r((0, T ), Lγ(Ω)) ∩ Lr((0, T ),W 2,γ(Ω) ∩W 1,γ
0 (Ω)) for 1 < r < ∞ and u satisfies the

equation (1.1) for a.e. t ∈ (0, T ).
(iv) Since γ > N/2 and γ > 1, then it follows from (ii) and Sobolev’s embedding that u − S(t)u0 ∈

W 1,r((0, T ),H−1(Ω)) ∩ Lr((0, T ),H1
0 (Ω)) for 1 < r <∞.

The difficulty to show the existence of a solution for (1.1) arises because we are supposing that f
can be ”singular” in the sense that can be concave(H2 condition) in the origin and therefore, it will not
be of Lipschitz. In addition, we do not completely have the aid of the maximum principle. In order to
show the existence of a solution of (1.1) we used with some modifications the methods of [9] and [8].

Before enunciating our first result we defined the following.

Definition 1.2 A solution u of (1.1) defined in [0, T ) is a maximal solution of (1.1) in [0, T ) if given
any other solution v of (1.1) defined in [0, T ), we have v ≤ u.

On the existence of a solution we have the following result.

Theorem 1.3 Let u0 ∈ L∞(Ω) be a nonnegative function. If we assume (H1) and (H2) then there exists
a positive function u defined on a maximal time interval [0, Tmax), u ∈ L∞((0, T )×Ω) for all T < Tmax

maximal solution of (1.1).
Moreover, we have the blow up alternative: either Tmax = ∞(global solution) or else Tmax <∞ and

limt→Tmax ||u(t)||L∞ = ∞(blow-up solution).

Here are some comments on the hypotheses (H1), ..., (H4).
In the hypothesis (H1) a continuity of f is a well know condition, because we want to obtain a

solution u through approach of solutions un of (1.1) with fn instead f . The nonincreasing condition of
fn is required to have the limit of the functions un as n→∞.

A situation where (H1) is valid is when f : Ω × [0,∞) → [0,∞) is continuous. Indeed, let M > 0
be and (ρn)n≥1 be a sequence of mollifiers. We define hn = ρn ∗ f , where f is a continuous extension
of f to RN × R. Since hn → f uniformly on compact sets, there exist a sequence (rn) such that
||hrn

− f ||C(Ω×[0,M ]) ≤ 1/[2n(n + 1)]. Set gn = hrn
+ 1/n we have that gn+1 ≤ gn in Ω × [0,M ] and

set fn(x, t) = gn(x, t) for (x, t) ∈ Ω × [0,M ] and fn(x, t) = gn(x,M) for (x, t) ∈ Ω × [T,∞) we obtain
a sequence {fn} nonincreasing and fn → f in C([0,M ], Lγ(Ω)). In order to obtain an we consider
|∂fn

∂s (x, s)| in Ω× [0,M ] and |∂fn

∂s (x,M)| in Ω× [M,∞).
Another situation where (H1) is valid, is when f(x, s) = a(x)h(s) with a ∈ Lγ(Ω) and h : [0,∞) →

[0,∞) is continuous. In this case, fn(x, s) = a(x)hn where hn can be obtained using the same argument
of the previous paragraph.

The condition (H2) is necessary for the existence of a positive solution leaving u(0) = 0. (H3) is a
superior limitation of f , we used it to obtain estimates of energy associated to (1.1). Finally, (H4) and
(H5) are used to obtain blow-up solutions in finite time.

With respect the global solutions, we have the following result.

Theorem 1.4 (Global solutions) Assume u0 ∈ L∞(Ω), u0 ≥ 0, (H1) and (H2). Let u be the maximal
positive solution of (1.1) defined in the maximal interval [0, Tmax). If f satisfies (H3) and f(x, ·) is
nondecreasing for x a.e. in Ω, then we can find explicitly constant η > 0 such that

||a||p−1
Lα ||b||1−q

Lβ < η (1.6)

and there exist δ > 0 such that if ||u0||H1
0
≤ δ with∫

Ω

∇u0∇ϕ−
∫

Ω

f(x, u0)ϕ ≤ 0 (1.7)

for all ϕ ∈ H1
0 (Ω) with ϕ ≥ 0, then Tmax = ∞.
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Moreover, there exist a function w ∈ H1
0 (Ω) such that u(t) → w in L2(Ω) as t → ∞, where w is a

solution of (1.2) in the following sense: for all ϕ ∈ H1
0 (Ω)∫

Ω

∇w∇ϕdx =
∫

Ω

f(x,w)ϕdx. (1.8)

Remark 1.5 The values of η and δ are given by (4.28) and (4.29) respectively.

To our example of application (1.3) with u0 = 0 we have.

Corollary 1.6 Assume f given by (1.3) with α > N/2, β > ( 2∗

p+1 )′, α, β > 1 and u0 = 0. Let u be the
maximal positive solution of (1.1) in a maximal interval [0, Tmax).

Moreover, if 0 < q < 1 < p < 2∗ − 1, there exists ε1 > 0 and nonempty open set Ω1 ⊂ RN such that
a(x) ≥ ε1 for x a.e. in Ω1, then there exist a constant η > 0 such that for all

λ < η||a||−1
Lα ||b||−(1−q)/(p−1)

Lβ

u is global and u(t) converge to w in L2(Ω) as t → ∞, where w is the solution of (1.2) in the sense of
(1.8).

Concerning the blow-up solution we have the following.

Theorem 1.7 (Blow-up solutions) Assume u0 ∈ L∞(Ω), u0 ≥ 0, (H1) and (H2). Let u be the
maximal positive solution of (1.1) defined in the maximal interval [0, Tmax).

(i) If f satisfies (H4), u0 6= 0 satisfies (1.7) and λ1(m̃,Ω2) is the principal eigenvalue of −∆ on H1
0 (Ω)

for the weight m̃ = ã(p−1)/(p−q)b̃(1−q)/(p−q), then it is possible find explicitly a constant c=c(p,q)
such that Tmax <∞, if

λ1(m̃,Ω2) < c(p, q).

(ii) If f satisfies (H5), then there exist η > 0 such that if
∫
Ω3
u0ψ1dx > η, then Tmax <∞.

Remark 1.8 The value of c = c(p, q) is given by (4.22).

To our example of application (1.3) with u0 = 0 we have.

Corollary 1.9 Assume f given by (1.3) with α, β > N/2, α, β > 1, u0 = 0 and u the maximal positive
solution of (1.1) defined in a maximal interval [0, Tmax).

If there exist ε2 > 0 and nonempty open set Ω2 ⊂ RN such that b(x) ≥ ε2 for x a.e. in Ω2 and
meas(Ω2 ∩ {a > 0} ∩ {b > 0}) > 0, then there exists η′ = η′(p, q,Ω2) > 0 such that for λ > η′,
Tmax <∞.

We make to observe the existing relation between the conditions (H1), ..., (H5) used here and the
conditions used in [12] for the show the existence of a solution of (1.2). From [12], we have that if f is
sublinear in 0, superlinear in ∞ on nonempty subdomains Ω1,Ω2 ⊂ Ω respectively, that is,

lim inf
t→0

f(x, s)
s

> λ1(Ω1) uniformly for x ∈ Ω1,

lim inf
t→∞

f(x, s)
s

> λ1(Ω2) uniformly for x ∈ Ω2

(1.9)

(compare with (H2) and (H5)), satisfy a standard subcritical growth condition, a weaker form of the
classical condition of Ambrosetti-Rabinowitz [2] and the bound from above (H3) condition then there
exist η = η(p, q,N) > 0 such that if

||a0||p−1
Lσq ||b0||1−qLσp ≤ η (1.10)
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with σq = ( 2∗

q+1 )′, σp = ( 2∗

p+1 )′, then the problem (1.2) has at less two solution. The solutions of (1.2) are
understood in the sense of (1.8). They also showed that if there exists 0 ≤ q < 1 < p and nonnegative
function ã, b̃ such that

f(x, s) ≥ ãsq + b̃sp for a.e x ∈ Ω and all s ≥ 0 (1.11)

with m̃ = ã(p−1)/(p−q)b̃(1−q)(p−q) 6= 0 on Ω and m̃ ∈ Lr(Ω) for some r > N/2(compare with (H4)),
then it is possible find explicitly a constant c = c(p, q) > 0 such that (1.2) has no positive solution if
λ1(m̃,Ω) < c(p, q), where λ1(m̃,Ω) is the principal eigenvalue of −∆ on H1

0 (Ω) for the weight m̃.
With respect to uniqueness to the problem (1.1) with f given by (1.3) we have the following result.

Theorem 1.10 Assume a ∈ Lα(Ω), b ∈ Lβ(Ω), a 6= 0, α, β > 1, α > N/(q + 1) and β > N/2. Let u be
the solution of (1.3) defined on a maximal time interval [0, Tmax)

(i) If u0 6= 0, then the solution is unique.

(ii) If u0 = 0, then the set solutions of (1.1) consists of

(a) the trivial solution u = 0,
(b) a solution u such that u(x, t) > 0 for any t ∈ (0, Tmax) and x ∈ Ω,
(c) a monoparametric family {uµ}µ>0 defined on the maximal interval [0, Tmax+µ), where uµ(t) =

u((t− µ)+), u is the solution obtained in (b) and z+ = max{z, 0}.

We make a commentary of our results. The Theorem 1.3 has been proved in [8] for f = f(u). We
used some modifications in the arguments used by them.

One of the main results of [8] for a = b = 1 is the following: if u0 = 0, then there exist λ∗ such that
for 0 < λ < λ∗, then Tmax = ∞ and the solution uλ(t) converge to uλ in L∞(Ω) when t→∞, where uλ
is a minimal solution of (1.2). If λ > λ∗, then Tmax <∞. These results too are valid [4] if f(x, s) = f(s)
with f ∈ C1 is convex plus a grown condition in the infinite. Our result(Corollary 1.6 and 1.9) show
that part of these conclusions remain valid.

The paper is organized as follows. In section 2 we state the comparison principle for (1.1) for several
situations of f . In section 3 we show the Theorem 1.3. The Theorem 1.4 is show in section 4. The
Theorem 1.7 and its corollary are prove in the section 5. The section 6 is dedicated to show the Theorem
1.10.

2 Comparison principle

We start by studying a comparison result for the equation (1.1).
We say that a function v ∈ L2

loc((0, T ),H1(Ω))∩W 1,2
loc ((0, T ),H−1(Ω))∩C([0, T ], L2(Ω))∩L∞((0, T )×

Ω) is a supersolution of (1.1) if vt −∆v ≥ f(x, u) in (0, T )× Ω
v ≥ 0 on (0, T )× ∂Ω

v(0) ≥ u0 in Ω.
(2.12)

subsolutions are defined analogously, with reversed inequalities in (2.12).
In the following proposition we establish a comparison result for the equation (1.3).

Proposition 2.1 Let a ∈ Lα(Ω), b ∈ Lβ(Ω), α, β ≥ 1, α > N/(q + 1) and β > N/2. If u is a
supersolution of (1.1) with u(0) ≥ γdΩ for some γ > 0 and v is a subsolution of (1.1) both defined on
the interval [0, T ], T > 0, then u(t) ≥ v(t) for all t ∈ [0, T ].

Proof. Since ut −∆u ≥ 0 and u(0) ≥ γdΩ, there exists η > 0 such that u(t) ≥ ηdΩ for all t ∈ [0, T ].
Multiplying by w = (v − u)+ ∈ H1

0 (Ω) the difference of the inequalities satisfied by u and v, we
obtain

1
2
d

dt

∫
Ω

w2dx+
∫

Ω

|∇w|2dx ≤
∫

Ω

a(vq − uq)wdx︸ ︷︷ ︸
I1

+
∫

Ω

b(vp − up)wdx︸ ︷︷ ︸
I2

(2.13)
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Let α1, α2 ≥ 1 be defined by 1/(α1) = (1 + q)/2− 1/α and 1/α2 = 1− q/2. Using Hölder’s, Hardy’s,
Gagliardo-Niremberg’s and Young’s inequalities, we have

I1 =
∫

Ω

a(vq − uq)wdx

≤ q

∫
{v>u}

auq−1
θ w2dx; uθ = θu+ (1− θ)v for some θ ∈ (0, 1)

≤ q

γ1−q ||a||Lα ||w1+q||Lα1 ||
w1−q

d1−q
Ω

||Lα2

≤ C||a||Lα ||w||q+1
α1(q+1)||∇w||

1−q
L2

≤ C||a||Lα ||w||(q+1)(1−θ1)
L2 ||∇w||θ1(q+1)+(1−q)

L2

≤ ε||∇w||2L2 + C||a||Θ1
Lα ||w||2L2

(2.14)

where θ1 = N/(α(q + 1)) and Θ1 = 2/[(q + 1)(1− θ1)].
Analogously, we have

I2 =
∫

Ω

b(vp − up)dx

≤ pMp

∫
{v>u}

bw2dx

≤ pMp||b||Lβ ||w||2
L2β′

≤ C||b||Lβ ||∇w||2θ2L2 ||w||2(1−θ2)L2

≤ ε||∇w||2L2 + C||b||Θ2
Lβ ||w||2L2

(2.15)

where M = max{||u||L∞((0,T )×Ω), ||v||L∞((0,T )×Ω)}, θ2 = N/(2β) and Θ2 = (2β)/(2β −N).
From (2.13), (2.14), (2.15) doing 0 < ε < 1/2 we obtain

1
2
d

dt

∫
Ω

w2dx ≤ C(||a||Θ1
Lα + ||b||Θ2

Lβ )
∫

Ω

w2dx

from which the result follows. 2

In the following result we analyze the case where u0 = 0.

Proposition 2.2 Let a ∈ Lα(Ω), b ∈ Lβ(Ω), α, β ≥ 1. If u is a supersolution positive of (1.1) with
u(0) = 0 and v is a subsoluion of (1.1) defined on some interval [0, T ], T > 0 with u, v ∈ L∞((0, T ) ×
Ω) ∩ C([0, T ], L2(Ω)) ∩ L2((0, T ),H1(Ω)) ∩W 1,2((0, T ),H−1(Ω)) then, u(t) ≥ v(t) for all t ∈ [0, T ].

Proof. Since ut − ∆u ≥ 0, we see that u(t) ≥ S(t − σ)u(σ) for all 0 ≤ s ≤ t ≤ T and since u is
positive, it follows from the strong maximum principle that u(t) ≥ δ(t)dΩ for all t ∈ (0, T ] with δ(t) > 0.
By proposition 2.1 we conclude that u(t + σ) ≥ v(t) for all t ∈ [0, T − σ]. Fixing t ∈ [0, T ], the result
follows letting σ → 0. 2

Remark 2.3 It is possible to observe from the above proof that in the case f satisfies the following
condition: there exist a ∈ C([0,∞), Lγ(Ω)) such that for all 0 ≤ s, t ≤M(M > 0),

|f(x, s)− f(x, t)| ≤ a(x, sθ)|s− t|

and sθ ∈ [s, t]. Then, the maximum principle is hold without the condition u(0) ≥ γdΩ for some γ > 0.
Indeed, with the same notation of the proof of the previous theorem, coming in the same way that (2.13)
and (2.14) we have

d

dt

∫
Ω

w2 +
∫

Ω

|∇w|2 ≤
∫

Ω

[f(x, v)− f(x, v)]wdx

≤
∫

Ω

a(x, uθ)w2dx, uθ = θu+ (1− θ)v for some θ ∈ [0, 1]

≤ ||a||C([0,M ],Lγ)||w||2L2γ′

≤ ε||∇w||2L2 + C||a||Θ2
C([0,M ],Lγ)||w||

2
L2 .
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Therefore, choosing 0 < ε < 1, we obtain

d

dt

∫
Ω

w2 ≤ C||a||Θ2
C([0,M ],Lγ)||w||

2
L2

of which follows the result.

Another situation where the maximum principle is holds is the following.

Remark 2.4 Assume that f : [0,∞) → [0,∞) is continuous and satisfies that for every M > 0, there
exists L > 0 such that

f(y)− f(x) ≤ L

x
(y − x)

for all 0 < x ≤ y ≤M .
In this case the maximum principle is valid as it was shown in [8]. In order to see this we used the

notation of the demonstration of the proposition 2.1. Then,

1
2
d

dt

∫
Ω

w2 +
∫

Ω

|∇w|2 ≤
∫

Ω

[f(v)− f(u)]w

≤ LM

∫
{v>u}

w2

u

≤
∫

Ω

w2

d2
Ω

+ C(ε)
∫

Ω

w2

since (γdΩ)−1 ≤ εd−2
Ω + C(ε). Choosing ε > 0 sufficiently small we obtain

1
2
d

dt

∫
Ω

w2 ≤ C

∫
Ω

w2.

3 proof of Theorem 1.3.

Lemma 3.1 Let Ω ⊂ RN be a domain. If 1 ≤ r ≤ s and u0 ∈ Lr(Ω), then S(t)u0 ∈ Ls(Ω) and

||S(t)u0||Ls(Ω) ≤ t−
N
2 ( 1

r−
1
s )||u0||Lr .

For the proof see [7].
We will divide the proof in some steps.

Step 1. Let M = ||u0||L∞ + 1 > 0 be and suppose that f ∈ C([0,∞), Lγ(Ω)) and there exists a
function a ∈ C([0,∞), Lγ(Ω)) such that

|f(x, s)− f(x, t)| ≤ a(x, sθ)|s− t| (3.16)

where sθ ∈ [s, t], s, t ≥ 0 and x a.e. in Ω.
For T > 0, let E = L∞((0, T ), L∞(Ω)) be and consider the set

B = {u ∈ E;u(t) ≥ 0 and ||u(t)||L∞ ≤M for all t ∈ (0, T )}

and the application φ : B → E defined by

φu(t) = S(t)u0 +
∫ t

0

S(t− σ)f(x, u(σ))dσ.

It is clear that B is a space of Banach with the metric induced by E. We will show that φ : B → B and
it is a strict contraction if T is small enough.
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Since u0 ≥ 0 and f ≥ 0, by the positivity of S(t) we have that φu(t) ≥ 0. By the Lemma 3.1 we
have that

||φu(t)||L∞ ≤ ||u0||L∞ +
∫ t

0

(t− σ)−
N
2γ ||f(·, u(σ))||Lγdσ

≤ ||u0||L∞ +
∫ t

0

(t− σ)−
N
2γ [||a(·, u(σ))||Lγ ||u(σ)||L∞ + ||f(0)||Lγ ]dσ

≤ ||u0||L∞ + T
1− N

2γ

1− N
2γ

[||a||C((0,M),Lγ)M + ||f(0)||Lγ ]

(3.17)

Similarly, one shows that for u, v ∈ B,

||φu(t)− φv(t)||L∞ ≤ T
1− N

2γ

1− N
2γ

||a||C((0,M),Lγ )||u− v||L∞((0,T ),L∞(Ω)) (3.18)

It follows from the estimates (3.17) and (3.18) that if T is small enough (depending on M), then
φ : B → B is a strict contraction. Thus φ has a unique fixed point in B.

Using (3.16) we can to show a uniqueness and thus the solution can be extended to maximal interval
[0, Tmax). On the other hand, since T depend only of ||u0||L∞ the blow-up occurs in standard way.

Step 2. By the assumption (H1) we have that for n ≥ 1, fn satisfies (3.16). Let un be the solution
of (1.1) defined on the maximal interval [0, Tnmax) obtained in the step 1, that is, un ∈ L∞((0, T ) × Ω)
for all T < Tnmax and satisfies (un)t −∆un = fn(x, un) (x, t) ∈ Ω× (0, Tnmax)

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, Tnmax)
u(x, 0) = u0 x ∈ Ω.

(3.19)

Since fn+1 ≤ fn and the condition (3.16) is valid, we have by the maximal principle(remark 2.3) that
un+1(t) ≤ un(t) for all t ∈ [0, T ) with T = min{Tnmax, T

n+1
max }. By the blow-up alternative we conclude

that Tnmax ≤ Tn+1
max . Therefore, there exists limn→∞ un(t) = u(t) ≥ 0 for all t ∈ [0, T ] with T < T 1

max.
On the other hand, un satisfies the equation

un(t) = S(t)u0 +
∫ t

0

S(t− σ)fn(·, un(σ))dσ. (3.20)

Let M = ||u1||L∞((0,T )×Ω) be. Since ||un||L∞((0,T )×Ω) ≤M , we obtain of the convergence fn → f in
C([0,M)], Lγ(Ω)) when n→∞ and the Lemma 3.1 that there exist a constant C > 0 such that ||S(t−
σ)fn(·, un(σ))||L∞ ≤ C(t − σ)1−

N
2γ ∈ L1(0, t). In addition, by continuity of f ∈ C([0,M ], Lγ(Ω)) and

the triangular inequality of fn(·, un(σ)), f(·, un(σ)) and f(·, un(σ)) we have that S(t− σ)fn(·, un(σ)) →
f(·, u(σ)) for σ a.e. in (0, t). Using the dominated convergence theorem we conclude of (3.20) doing
n→∞ that u is the nonnegative solution of (1.1).

Step 3. Existence of a maximal solution. Let u the nonnegative defined in the interval [0, T ] and
obtained by the step 2. We claim that u is the maximal solution in [0,T]. Indeed, if v is any other
solution of (1.1) defined on [0, T ] then v is a subsolution of (3.19) in [0, T ], since that f ≤ fn for each
n ≥ 1. By the remark 2.3, un ≥ v for all n. Letting n→∞ we have that u ≥ v.

Uniqueness of the maximal solution implies that the solution can be extended to a maximal interval
[0, Tmax) and the blow-up alternative follows.

Step 4. Existence of a nonnegative solution for u0 = 0. We used the ideas of [8]. For t ∈ [0, t0] we
define

h(t) =
∫ t

0

dσ

g(σ)
.

Then, h(0) = 0 and h is increasing in [0, t0]. Let v(t) = w(t)S(t)1Ω1 for all t ∈ [0, h(t0)] and w(t) =
h−1(t). We have that

vt −∆v = w′(t)S(t)1Ω1 = g(w(t))S(t)1Ω1

8



Since that S(t)1Ω1 ≤ 1 and w(t) ≤ t0 by the concavity of the function g and (i) we have that
g(w(t))S(t)1Ω1 ≤ g(w(t)S(t)1Ω1) = g(v). Thus, v is the subsolution of ut −∆u = g(u) x ∈ Ω1, t > 0

u(t, x) = 0 x ∈ ∂Ω1, t > 0
u(x, 0) = 0 x ∈ Ω1.

Moreover, if λ1(Ω1) is the principal eigenvalue and ψ1 is the corresponding eigenfunction of −∆ in Ω1,
then there exists a constant C > 0 such that

v(t) = w(t)S(t)1Ω1 ≥ Cw(t)S(t)ψ1 = Cw(t)e−λ1(Ω1)t > 0 (3.21)

for all t ∈ (0, h(t0)].
On the other hand, let ũ = u|Ω1 be the restriction of the function u to Ω1. By the Remark 1.1,

we have that ũ ∈ L∞((0, T ) × Ω1) ∩ Lr((0, T ),H1(Ω1)) ∩ W 1,r((0, T ),H−1(Ω1)), r < ∞ where T <
min{Tmax, h(t0)} and by (H2) we have that ũ satisfies ut −∆u ≥ g(u) (x, t) ∈ Ω1 × (0, T )

u(t, x) ≥ 0 (x, t) ∈ ∂Ω1 × (0, T )
u(x, 0) = 0 x ∈ Ω1.

Then, by the maximum principle( remark 2.4) and (3.21) we have that ũ(t) ≥ v(t) > 0. Thus u(t) 6= 0
for all t ∈ [0, T ] and x a.e. in Ω1.

Let t ∈ (0, Tmax) and τ ∈ (0, t) be with τ < T . Since that u(t) ≥ S(t− τ)u(τ) and u(τ) 6= 0, by the
strong maximum principle we have that u(t) > 0 for t > τ . Let τ → 0 we have that u(t) > 0 for t > 0.
2

Remark 3.2 (i) In the proof we consider the sequence approximation (fn)n≥1 and we obtain the maximal
solution un. It is clearly to observe that this solution does not depend of the choice of the sequence (fn).

(ii) Let u be the solution obtained in the Theorem 1.3 and defined on a maximal interval [0, Tmax).
If w(t) = u(t) − S(t)u0 =

∫ t
0
S(t − σ)f(·, u(σ))dσ for all t ∈ [0, Tmax), then w ∈ C([0, Tmax), L∞(Ω)).

This is consequence of the following lemma.

Lemma 3.3 Assume that f : [τ, T ] → Ls(Ω) is measurable for some 1 ≤ s ≤ ∞. If 1 ≤ r ≤ ∞, θ ≥ 0
and

(i) for each t ∈ (τ, T ), S(t− ·)f(·) ∈ D((−∆θ))

(ii) for each t ∈ (τ, T ), (−∆)θS(t− ·)f(·) ∈ L1((τ, T ), Lr(Ω)),

(iii) if τ ≤ t0 < t < T , then limt→to ||
∫ t
t0

(−∆)θS(t− σ)f(σ)dσ||Lr = 0,

then the function w : [τ, T ] → Lr(Ω) defined by

w(t) =
∫ t

τ

(−∆)θS(t− σ)f(σ)dσ

is continuous in [τ, T ].

For the proof, see [15](Lema 2.1). For more information on (−∆)θ see [13].
Proof of (ii) of remark 3.2. Let M ≥ ||u||L∞((0,T )×Ω) be with T ∈ (0, Tmax). For 0 ≤ t0 < t < T it

follows
||w(t)||L∞ ≤

∫ t
t0

(t− σ)−
N
2γ ||f(·, u(σ))||Lγ

≤ C||f ||C([0,M ],Lγ)(t− t0)1−
N
2γ → 0, if t→ t0.
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4 Proof of the Theorem 1.4.

We start this section enunciating some preliminary results.

Lemma 4.1 Let A,B ≥ 0 and 0 ≤ q < 1 < p. Then there exists a constant c = c(p, q) > 0 such that

Asq +Bsp ≥ cA(p−1)/(p−q)B(1−q)/(p−q)s

for all s ≥ 0.

It is followed directly of Young’s inequality. The value of c is

c = (max{p− 1
p− q

,
1− q

p− q
})−1. (4.22)

Lemma 4.2 Assume that 0 ≤ q < 1 < p, A,B > 0, and consider the function f(t) = t2−Atq+1−Btp+1

for t ≥ 0. Then maxt≥0{f(t)} is positive if and only if

Ap−1B1−q < (p− 1)p−1(1− q)1−q(p− q)q−p.

For the proof see [12].

Lemma 4.3 (A singular Gronwall inequality) Let T > 0, A ≥ 0, r, s ∈ [0, 1] and let f be a non-
negative function with f ∈ Lp(0, T ) for some p > 1 such that p′max{r, s} < 1. Consider a nonnegative
function ϕ ∈ L∞(0, T ) such that

ϕ(t) ≤ At−r +
∫ t

0

(t− σ)−sf(σ)ϕ(σ)dσ for almost all t ∈ [0, T ].

Then there exists C, depending only on T , r, s, p and ||f ||Lp such that

ϕ(t) ≤ ACt−r

for almost all t ∈ [0, T ].

For the proof, see e.g. [7].
For the equation (1.1) we defined the associated energy

E(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

G(u) (4.23)

where G(u) =
∫ u
0
f(x, σ)dσ. We have the following lemma.

Lemma 4.4 Assume u0 ∈ L∞(Ω)∩H1
0 (Ω). If u is the solution of (1.1) defined on the maximal interval

[0, Tmax), then u ∈ C([0, Tmax),H1
0 (Ω)).

Proof. Since S(t)u0 ∈ C([0,∞),H1
0 (Ω)), it suffices show that w(t) =

∫ t
0
S(t − σ)f(·, u(σ))dσ is

continuous at [0, Tmax). Let M ≥ ||u(t, x)||L∞((0,T )×Ω) be with T ∈ (0, Tmax). For 0 ≤ t0 < t < T < Tmax

we have when α < 2,

||w(t)||H1
0

= ||
∫ t
t0
S(t− σ)f(·, u(σ))dσ||H1

0

≤ C
∫ t
t0

(t− σ)−
1
2−

N
2 ( 1

α−
1
2 )||f(·, u(σ))||Lγds

≤ C||f ||L∞(0,T ),Lγ)(t− t0)1−Θ

where Θ = (1/2 +N/2)(1/α− 1/2) < 1. By analogy when α ≥ 2 we have

||w(t)||H1
0
≤ C||f ||L∞(0,T ),Lγ)(t− t0)1/2.
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Hence, w is continuous in [0, T ]. Since T is arbitrary we have that w is continuous in [0, Tmax). 2

Proof of the Theorem 1.4. Proof of (i). We only analyze the case N ≥ 3, because our arguments
can easily be be adapted by standard modifications to the cases N = 1 or N = 2. We consider some
steps.

Step 1. We affirmed that if u0 satisfies (1.7) then the solution u is nondecreasing. Indeed, Let
M ≥ ||u0||L∞ be and let un be the sequence of solutions of (1.1) corresponding to fn, an given by the
(H1) hypothesis and defined in [0, Tnmax), then 0 ≤ ∆u0 + f(x, u0) ≤ ∆u0 + fn(x, u0) a.e in Ω. Thus, u0

is a subsolution of the equation (un)t −∆un = fn(x, un) t > 0, x ∈ Ω
un = 0 t > 0, x ∈ ∂Ω

un(0) = u0, x ∈ Ω

Therefore, by the remark 2.3 we have that un(τ) ≥ u0 for all τ ∈ [0, Tnmax). Again, by the remark 2.3,
we have that un(t + τ) ≥ un(t) for all t ∈ [0, Tnmax − τ). Since un is nonincreasing, doing n → ∞, we
have that u(t+ τ) ≥ u(t) for all t ∈ [0, T 1

max − τ). Thus we concluded that ut ≥ 0.
By the remark 1.1 (ii), we have that ut −∆u = f(x, u) in Lγ(Ω). Since that u(t) ∈W 2,γ ↪→ Lγ

′
(Ω),

u(t) ∈ H1
0 (Ω) and ut ≥ 0 we obtain that

∫
Ω
|∇u|2 ≤

∫
Ω
f(x, u)udx and by (H3) we concluded that∫

Ω

|∇u|2 ≤
∫

Ω

a(x)uq+1 + b(x)up+1. (4.24)

Step 2. We show now that
sup

0<t<Tmax

||u(t)||H1
0
<∞. (4.25)

It follows from (4.24) that

E(u(t)) ≤ 1
2
[
∫

Ω

a(x)uq+1 + b(x)up+1]

and by (H3) we have that

E(u(t)) ≥ 1
2

∫
Ω

|∇u|2 − 1
q + 1

∫
Ω

a(x)uq+1 − 1
p+ 1

∫
Ω

b(x)up+1.

Therefore,
1
2

∫
Ω

|∇u|2 − q + 2
2(q + 1)

∫
Ω

a(x)uq+1 − p+ 2
2(p+ 1)

∫
Ω

b(x)up+1 ≤ 0

and by Holders inequality

1
2
||u||H1

0
− C1||a||Lα ||u||q+1

L2∗ − C2||b||Lβ ||u||p+1

L2∗ ≤ 0

where C1 = q+2
2(q+1) |Ω|

1
α
′ − q+1

2∗ , C2 = p+2
2(p+1) |Ω|

1
β
′ − p+1

2∗ . By Sobolev’s inequality we have that

1
2
||u||H1

0
− C ′1||a||Lα ||u||q+1

H1
0
− C ′2||b||Lβ ||u||p+1

H1
0
≤ 0 (4.26)

where C ′1 = C1/S
(q+1)/2, C ′2 = C2/S

(p+1)/2 and S is the best Sobolev constant, which is independent of
Ω, i.e.

S = inf{
∫

Ω

|∇u|2;u ∈ H1
0 (Ω) and

∫
Ω

|u|2
∗

= 1}.

We consider now the function f(s) = s2 − 2C ′1||a||Lαtq+1 − 2C ′2||b||Lβ tp+1. By the Lemma 4.2 we
have that if

||a||p−1
Lα ||b||1−q

Lβ < η (4.27)
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with

η =
(p− 1)p−1(1− q)1−q(p− q)q−p

2p−qC ′p−1
1 C ′1−q2

(4.28)

then maxs≥0{f(s)} is positive. Let δ > 0 be the smaller root of the equation f(s) = 0, that is,

δ1−q − 2C ′1||a||Lα − 2C ′2||b||Lβδp−q = 0. (4.29)

We choose u0 such that ||u0||H1
0
< δ. Since that u ∈ C([0, Tmax,H

1
0 (Ω)) and (4.26) we conclude that

||u(t)||H1
0

is trapped in the interval [0, s0]. Thus we obtain that (4.25) is valid.

Step 3. We show that Tmax = ∞. We use the follow argument. Let s = 2∗/(p − 1) be. Since that
β > ( 2∗

p+1 )′ it is possible to observe that N
2 ( 1

β + 1
s ) < 1. Hence,

||u(t)||L∞ ≤ ||u0||L∞ +
∫ t

0

(t− σ)−
N
2α ||a||Lα ||uq||L∞dσ+∫ t

0

(t− σ)−
N
2 ( 1

β + 1
s )||b||Lβ ||u||pLspdσ.

(4.30)

Since, sp > 2∗, we have that

||u||Lsp ≤ ||u||
p−1

p

L2∗ ||u||
1
p

L∞ . (4.31)

It follows from (4.25), (4.30) and (4.31) that

||u(t)||L∞ ≤ ||u0||L∞ +
∫ t

0

(t− σ)−
N
2α ||a||Lα ||1 + u||L∞dσ+∫ t

0

(t− σ)−
N
2 ( 1

β + 1
s )||b||Lβ ||u||p−1

L2∗ ||u||L∞dσ

≤ ||u0||L∞ + C1t
1− N

2α + C2

∫ t

0

[(t− s)−
N
2α + (t− σ)−

N
2 ( 1

β + 1
s )]||u(σ)||L∞dσ

for all t ∈ (0, Tmax). Therefore, if Tmax <∞, then it follows the generalized Gronwall inequality(Lemma
4.3) that

sup
0≤t<Tmax

{||u(t)||L∞} <∞.

Impossible.

Step 4. Asymptotic behavior. We used the ideas of [4]. Let L = supt≥0{||u(t)||H1
0
} be finite by the

step 2. Multiplying the equation (1.1) by the principal eigenvector ϕ1 of −∆ in H1
0 (Ω) and integrating∫

Ω

utϕ1 −
∫

Ω

∆uϕ1 =
∫

Ω

f(x, u)ϕ1. (4.32)

Since −∆u ∈ Lγ(Ω) ↪→ H−1(Ω) we have that∫
Ω

−∆uϕ1 =< −∆u, ϕ1 >H−1,H1
0

=
∫

Ω

∇u∇ϕ1

≤ L||∇ϕ1||L2 .

(4.33)

On the other hand, by Poincare’s inequality∫
Ω

u(t)ϕ1 ≤
1

λ1(Ω)
||∇u(t)||L2 ||ϕ1||L2 ≤ L

λ1(Ω)
||ϕ1||L2 (4.34)
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Since ut ≥ 0 and f(x, .) is nondecreasing, integrating (4.32) in (t, t + 1) and using (4.33), (4.34) we
have that ∫

Ω

f(x, u(t))ϕ1 ≤
∫ t+1

t

∫
Ω

f(x, u)ϕ

≤ L

λ1
||ϕ1||L2 + L||∇ϕ||L2

≤ L

λ1
(1 + λ1)||ϕ1||H1 .

(4.35)

Since |Ω| <∞ and by (4.35) we have that

sup
t≥0

∫
Ω

u(t, x)dx ≤ L

λ1
|Ω|1/2 (4.36)

and
sup
t≥0

∫
Ω

f(x, u)ϕ1dx ≤
L

λ1
(1 + λ1)||ϕ1||H1 . (4.37)

Since ut ≥ 0 by monotone convergence, it follows from (4.36) and (4.37) that u(t) has a limit w in
L1(Ω) and that f(x, u(t)) converges to f(x,w) in L1(Ω, dΩdx) as t→∞.

Let ζ be with ζ ∈ C(Ω) and ζ|∂Ω = 0. Multiplying (1.1) by ζ and integrating on Ω and (t, t + 1) it
follows

[
∫

Ω

uζ]|t+1
t −

∫ t+1

t

∫
Ω

u∆ζ =
∫ t+1

t

∫
Ω

f(x, u)ζ.

Letting t→∞ we find ∫
Ω

w(−∆ζ) =
∫

Ω

f(x,w)ζ. (4.38)

for all ζ ∈ C2(Ω) with ζ|∂Ω = 0.
From (4.25) we have that there exist a sequence (tn) with tn →∞ when n→∞ such that u(tn) ⇀

z ∈ H1
0 (Ω)(weak convergence). By the compact immersion of H1

0 (Ω) → L2(Ω)(Rellich’s theorem) and
after extracting possibly a subsequence we have that u(tn) → z in L2(Ω) when n → ∞. Therefore, we
conclude that w = z ∈ H1

0 (Ω).
Taking ζ ∈ C∞0 (Ω) in (4.38) and integrating by parts we obtain∫

Ω

∇w∇ζ =
∫

Ω

f(x,w)ζ (4.39)

and by density we have that (4.39) is valid for all ζ ∈ H1
0 (Ω).

5 Proof of the Theorem 1.7

proof of (i). We assumed that Ω2 is smooth enough. Let ψ1 be the positive eigenfunction associated to
the principal Dirichlet eigenvalue λ1(m̃,Ω2) of −∆ on H1

0 (Ω) for the weigh m̃ = ã(p−1)/(p−q)b̃(1−q)/(p−q).
Since α̃, β̃ > N/2 and meas{Ω2 ∩ {a > 0} ∩ {b > 0}} > 0, we have that m̃ ∈ Lr(Ω) for some r > N/2
and m̃ 6= 0. By regularity theory we have that ψ1 ∈ C1(Ω2 ∪ ∂Ω2) ∩H2(Ω) and ∂ψ

∂ν ≤ 0 on ∂Ω2 where
ν denotes the unit exterior normal to Ω2.

Multiplying (1.1) by ψ1, integrating on Ω2, using (H4) and Lemma 4.1 we obtain

d

dt

∫
Ω2

uψ1 −
∫

Ω2

∆uψ1 ≥ c(p, q)
∫

Ω2

m̃uψ. (5.40)

Since u0 satisfies (1.7) we have that u is nondecreasing( step 1 of the proof of (i)). Therefore, if
λ1(m̃,Ω2) < c(p, q) and u0 6= 0, then we have from (5.40)

d

dt

∫
Ω2

uψ1 ≥ [c(p, q)− λ1(m̃,Ω2)]
∫

Ω2

m̃uψ

≥ [c(p, q)− λ1(m̃,Ω2)]
∫

Ω2

m̃u0ψ.
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Thus, we have that ∫
Ω2

u(t)ψ1 ≥ C[c(p, q)− λ1(m̃,Ω2)]t (5.41)

for all t ∈ [0, Tmax), if λ1(m̃,Ω2) < c(p, q).
On the other hand, if φ1 is the principal eigenfunction associated to the principal eigenvalue λ1(Ω2)

of −∆ on H1
0 (Ω2), such that

∫
Ω2
φ1 = 1. Then multiplying (1.1) for φ1, integrating in Ω2, using Jensen’s

inequality and the fact that b ≥ ε2 on Ω2 we obtain

d

dt

∫
Ω2

uφ1 + λ1(Ω2)
∫

Ω2

uφ1 ≥
∫

Ω2

bupφ1

≥ ε2(
∫

Ω2

uφ)p.
(5.42)

From (5.42) we know that if there exist t0 ∈ [0, Tmax) such that∫
Ω2

u(t0)φ1 > (
λ1(Ω2)
ε2

)1/p−1 (5.43)

then u blow-up in finite time. Therefore, if Tmax = ∞, then from (5.41) we have that (5.43) is valid for
some t0 > 0. Impossible.

Proof of (ii). Assume that Tmax = ∞. Since that ψ1 is the principal eigenfunction of −∆u in H1
0 (Ω3)

we have that ∂ψ1
∂ν < 0 on ∂Ω3. Multiplying the equation (1.1) by ψ1, integrating on Ω3 and using (i) of

(H5) we obtain
d

dt

∫
Ω3

uψ1 + λ1(Ω3)
∫

Ω3

uψ1 ≥
∫

Ω3

h(u)ψ1. (5.44)

Again by (ii) of (H5), there exist η, κ > 0 such that

h(s) ≥ λ1(Ω3) + κh(s), for all s ≥ η. (5.45)

From (5.44), (5.45) and since that ψ1 is normalized, that is,
∫
Ω3
ψ1 = 1, we obtain using Jensen’s

inequality that
d

dt

∫
Ω3

uψ1 ≥ κh(
∫

Ω3

uψ1). (5.46)

Thus, from (iii) of (H5) and (5.46) we have that
∫
Ω3
uψ1 blow up in finite time, if

∫
Ω3
u0ψ1 ≥ η.

Impossible.

Proof of the Corollary 1.9. Since u is positive there exist τ > 0 such that u(τ) > 0. Let
v(t) = u(t + τ) for all t ∈ [0, Tmax − τ). Since that u is nondecreasing(step 1 of the proof of Theorem
1.4) we have that v(0) = u(τ) satisfies (1.7) and therefore, the result is followed of the Theorem 1.4.

Remark 5.1 In (5.40), (5.42) and (5.44) we used the following inequality∫
Ω

(−∆u)φ ≤ λ1(Ω)
∫

Ω

uφ

where u ∈ W 2,γ(Ω), γ > N/2 and φ1 is the principal eigenfunction associated to principal eigenvalue
λ1(Ω) of −∆ in H1

0 (Ω). This is clear if u ∈ C∞0 (Ω), since φ = 0 on ∂Ω and ∂φ
∂ν < 0 by Green’s identities.

For the general case we used a density argument.

6 Proof of the theorem 1.10.

For the proof we consider some steps.

Step 1. Uniqueness of the positive solution for u0 = 0. Let u the maximal solution and v any other
solution positive with v(0) = 0. Since that u is maximal, we have that u ≥ v. On the other hand, since
v is a positive solution by the maximum principle (Proposition 2.2) it follow that v ≥ u. Thus, u = v.
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Step 2. Non-uniqueness for u0 = 0. It is clear that for every µ > 0, uµ(t) = u((t − µ)+),
t ∈ [0, Tmax + µ), is a solution of (1.1). We show that if v be an other nontrivial solution of (1.3) with
v(0) = 0 defined on the maximal interval [0, T̃max) and different of the positive solution u, then v belongs
to the family {uµ}µ>0.

Since v is nontrivial and different of a positive solution

τ = inf{t; v(x, t) > 0 for some x ∈ Ω}

verifies τ ∈ (0, T̃max). Then v(τ) = 0 and since that v(t) 6= 0 for t ∈ (τ, T̃max) it follows that v(t) >
0 for t ∈ (τ, T̃max). Defining ũ(t) = v(t + τ) for t ∈ [0, T̃max − τ) we concluded by the maximum
principle(Proposition 2.2) and the uniqueness of positive solution that ũ = u and T̃max = Tmax + τ .
Therefore, v = uτ .

Step 3. Uniqueness for u(0) = u0 6= 0. Let u be a maximal solution of (1.3) obtained in the Theorem
1.3 and let v be another solution of (1.1) such that v(0) = u0. We assume that both solutions are defined
in the same interval [0, T ], T > 0. Thus u(t) ≥ v(t) for all t ∈ [0, T ].

Let M > max{||u||L∞((0,T )×Ω), ||v||L∞((0,T )×Ω)} be. Since up − vp ≤ pMp−1(u− v) it follows that

(u− v)t −∆(u− v) = a(uq − vq) + b(up − vp)
≤ a(u− v)q + pbMp−1(u− v)

and (u− v)(0) = 0. Let us consider now z the positive solution of the equation ut −∆u = auq + pMp−1bu in (0, T1)× Ω
u = 0 on (0, T1)× ∂Ω

u(0) = 0 in Ω.
(6.47)

Then, by the proposition 2.2 we have that z ≥ u− v in [0, T2) with T2 = min{T, T1}.
On the other hand, since u0 6= 0, exist T3 ∈ (0, T2] such that u(t) ≥ z(t) in [0, T3](Remark 3.2 (ii)).

Thus, if w(t) = z(t)− u(t) + v(t) ≥ 0 for all t ∈ [0, T2), then w(0) = 0 and

wt −∆w ≥ a(zq − uq + vq) + pbMp−1(z − u+ v)
≥ awq + pbMp−1w

where the last inequality is obtained from following inequality

(x+ α)q − (y + α)q ≤ xq − yq

for 0 ≤ y ≤ x, α ≥ 0, doing x = v, y = z − u+ v, α = u− v. Therefore, w is a supersolution of (6.47) in
[0, T2]. Suppose that w = 0, this is u = z + v, in some interval [0, τ) with τ < T3 sufficiently small, then

a(z + v)q + b(z + v)p = ut −∆u
= zt −∆z + vt −∆v
= a(zq + vq) + b(pMp−1z + vp).

Thus a[(z+ v)q − (zq + vq)] + b[(z+ v)p− vp− pMp−1z] = 0, which is absurd, because as z, v is positive
we have (z+v)q < zq+vq and for some θ ∈ (0, 1), (z+v)p−vp−pMp−1z = pz[(θz+v)p−1−Mp−1] < 0,
if τ is choosing such that ||z||L∞((0,τ)×Ω) + ||v||L∞((0,τ)×Ω) < M . Therefore, for all t ∈ (0, T3) w(t) 6= 0.
But since w ≥ 0 we deduce from (6.47) that w(t) > 0 for all t ∈ (0, T2). By the Step 1, we have that
w = z in [0, T3), this is u = v in [0, T3). 2
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