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Abstract

Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The
algorithms differ in the way in which penalty parameters are updated. Possibly infeasible
accumulation points are characterized. It is proved that feasible limit points that satisfy the
Constant Positive Linear Dependence constraint qualification are KKT solutions. Bounded-
ness of the penalty parameters is proved under suitable assumptions. Numerical experiments
are presented.
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1 Introduction

Let F : IRn → IRn, h : IRn → IRm, `, u ∈ IRn, ` < u, Ω = {x ∈ IRn | ` ≤ x ≤ u}.
Assume that h admits continuous first derivatives on an open set that contains Ω and denote

∇h(x) = (∇h1(x), . . . ,∇hm(x)) = h′(x)T ∈ IRn×m.

Let PA denote the Euclidian projection operator on a closed and convex set A. A point x ∈ Ω
is said to be a KKT point of the problem defined by F, h and Ω if there exists λ ∈ IRm such that

PΩ[x− F (x)−∇h(x)λ]− x = 0, h(x) = 0. (1)
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If F = ∇f for some f : IRn → IR, the equations (1) represent the KKT optimality conditions
of the minimization problem

Minimize f(x) subject to h(x) = 0, x ∈ Ω. (2)

The KKT form (1) allows one to consider more general situations, as equilibrium problems,
variational inequalities and some variations. See [21, 23, 26, 27] and references therein. The
introduction of the Fischer-Burmeister function [23] made it possible to reduce KKT systems
to suitable semismooth nonlinear systems of equations. See [29, 30, 31]. Many authors used the
semismooth approach to obtain interesting algorithms for solving KKT systems. See [18, 19, 20,
36].

The most influential work on practical Augmented Lagrangian algorithms for minimization
with equality constraints and bounds was the paper by Conn, Gould and Toint [11], on which
the LANCELOT package [9] is based. Convergence of the algorithm presented in [11] was proved
under the assumption that the gradients of the general constraints and the active bounds at any
limit point are linearly independent. See, also, [10]. In the present paper we do not use this
assumption at all. Firstly, we characterize the situations in which infeasible limit points might
exist using weaker assumptions than the linear independence condition. Moreover, the fact that
feasible limit points are KKT points will follow using the Constant Positive Linear Dependence
(CPLD) condition [32], which has been recently proved to be a constraint qualification [1] and is
far more general than the regularity condition and other popular constraint qualifications. We
use regularity, following closely the development of [11], only for proving boundedness of the
penalty parameters.

This paper is organized as follows. The two main algorithms are introduced in Section 2. In
Section 3 we characterize the infeasible points that could be limit points of the algorithms. In
Section 4 it is proved that, if the CPLD constraint qualification holds at a feasible limit point,
then this point must be KKT. In Section 5 we prove boundedness of the penalty parameters. In
Section 6 we present numerical experiments. Conclusions and lines for future research are given
in Section 7.

Notation.
Throughout this work, [v]i is the i−th component of the vector v. We also denote vi = [v]i

if this does not lead to confusion.
We denote:

IR+ = {t ∈ IR | t ≥ 0},
IR++ = {t ∈ IR | t > 0},

IN = {0, 1, 2, . . .},
{e1, . . . , en} the canonical basis of IRn.

If J1 and J2 are subsets of {1, . . . , n}, B[J1,J2] is the matrix formed by taking the rows and
columns of B indexed by J1 and J2 respectively and B[J1] is the matrix formed by taking the
columns of B indexed by J1.

If y ∈ IRn, y[J1] is the vector formed by taking the components yi such that i ∈ J1.
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2 Model algorithms

From here on we assume that F is continuous. Given x ∈ Ω, λ ∈ IRm, ρ ∈ IR++ we define

G1(x, λ, ρ) = F (x) +
m∑

i=1

λi∇hi(x) + ρ

m∑

i=1

hi(x)∇hi(x).

For ρ ∈ IRm
++ we define

G2(x, λ, ρ) = F (x) +
m∑

i=1

λi∇hi(x) +
m∑

i=1

ρihi(x)∇hi(x).

If the KKT system is originated in a minimization problem, the mapping F is the gradient
of some f : IRn → IR. In this case we define, for ρ ∈ IR++,

L1(x, λ, ρ) = f(x) +
m∑

i=1

λihi(x) +
ρ

2

m∑

i=1

hi(x)2

and, for ρ ∈ IRm
++,

L2(x, λ, ρ) = f(x) +
m∑

i=1

λihi(x) +
1
2

m∑

i=1

ρihi(x)2.

In these cases we have that ∇L1 = G1 and ∇L2 = G2. The functions L1 and L2 are one-
parameter and many-parameters Augmented Lagrangians associated to the problem (2).

The mappings G1 and G2 will be used to define one-parameter and many-parameters Aug-
mented Lagrangian algorithms for solving the general KKT problem (1). These algorithms are
described below.

Algorithm 1.
Let x0 ∈ Ω, τ ∈ [0, 1), γ > 1, −∞ < λ̄min < λ̄max < ∞, ρ1 > 0, λ̄1 ∈ [λ̄min, λ̄max]m. Let

{εk}k∈IN ⊂ IR++ be a sequence that converges to zero.

Step 1. Initialization
Set k ← 1.

Step 2. Solving the subproblem
Compute xk ∈ Ω such that

‖PΩ[xk −G1(xk, λ̄k, ρk)]− xk‖∞ ≤ εk. (3)

Step 3. Estimate multipliers
Define for all i = 1, . . . , m,

[λk+1]i = [λ̄k]i + ρkhi(xk). (4)

If h(xk) = 0 and PΩ[xk −G1(xk, λ̄k, ρk)]− xk = 0 terminate the execution of the algorithm.
(In this case, xk is a KKT point and λk+1 is the associated vector of Lagrange multipliers.)
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Compute
λ̄k+1 ∈ [λ̄min, λ̄max]m. (5)

Step 4. Update the penalty parameter
If

‖h(xk)‖∞ ≤ τ‖h(xk−1)‖∞ (6)

define
ρk+1 = ρk,

else, define
ρk+1 = γρk.

Step 5. Begin a new iteration
Set k ← k + 1. Go to Step 2.

Algorithm 2 only differs from Algorithm 1 in the way in which penalty parameters are up-
dated. In Algorithm 2 we use one penalty parameter for each constraint.

Algorithm 2.
Let x0 ∈ Ω, τ ∈ [0, 1), γ > 1, −∞ < λ̄min < λ̄max < ∞, ρ1 ∈ IRm

++, λ̄1 ∈ [λ̄min, λ̄max]m. Let
{εk}k∈IN ⊂ IR++ be a sequence that converges to zero.

Step 1. Initialization
Set k ← 1.

Step 2. Solving the subproblem
Compute xk ∈ Ω such that

‖PΩ[xk −G2(xk, λ̄k, ρk)]− xk‖∞ ≤ εk. (7)

Step 3. Estimate multipliers
Define for all i = 1, . . . , m,

[λk+1]i = [λ̄k]i + [ρk]ihi(xk) (8)

If h(xk) = 0 and PΩ[xk −G2(xk, λ̄k, ρk)]− xk = 0 terminate the execution of the algorithm.
(As in Algorithm 1, xk is a KKT point and λk+1 is the vector of Lagrange multipliers.)

Compute
λ̄k+1 ∈ [λ̄min, λ̄max]m. (9)

Step 4. Update the penalty parameters
For all i = 1, . . . , m, if

|hi(xk)| ≤ τ‖h(xk−1)‖∞
define

[ρk+1]i = [ρk]i.
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Else, define
[ρk+1]i = γ[ρk]i.

Step 5. Begin a new iteration
Set k ← k + 1. Go to Step 2.

Remarks.

1. The difference between Algorithms 1 and 2 relies on the updating formula for the penalty
parameters. In the case in which Algorithm 2 updates at least one penalty parameter,
Algorithm 1 updates its unique penalty parameter. In such a situation, other penalty
parameters may remain unchanged in Algorithm 2. Therefore, the penalty parameters at
Algorithm 2 tend to be smaller than the penalty parameter at Algorithm 1.

2. The global convergence results to be presented in the following sections are independent
of the choice of λ̄k+1 in (5) and (9).

3. The Augmented Lagrangian algorithms are based on the resolution of the inner problems
(3) and (7). In the minimization case (F = ∇f) the most reasonable way for obtaining
these conditions is to solve (approximately) the box-constrained minimization problem

Minimize L1(x, λ̄k, ρk) subject to x ∈ Ω (10)

in the case of Algorithm 1, and

Minimize L2(x, λ̄k, ρk) subject to x ∈ Ω (11)

in the case of Algorithm 2. Both (10) and (11) are box-constrained minimization problems.
Since Ω is compact, minimizers exist and stationary points can be obtained up to any
arbitrary precision using reasonable algorithms. Sufficient conditions under which points
that satisfy (3) and (7) exist and can be obtained by available algorithms in more general
problems have been analyzed in many recent papers. See [18, 19, 20, 21, 26].

3 Convergence to feasible points

At a KKT point we have that h(x) = 0 and x ∈ Ω. Points that satisfy these two conditions are
called feasible. It would be nice to have algorithms that find feasible points in every situation,
but this is impossible. (In an extreme case, feasible points might not exist at all.) Therefore, it
is important to study the behavior of algorithms with respect to infeasibility.

Briefly speaking, in this section we show that Algorithm 1 always converges to stationary
points of the problem of minimizing ‖h(x)‖2

2 subject to ` ≤ x ≤ u. In the case of Algorithm 2
we will show that the set of possible limit points must be solutions of a weighted least-squares
problem involving the constraints.

In the proof of both theorems we will use the following obvious property:

‖PΩ(u + tv)− u‖2 ≤ ‖PΩ(u + v)− u‖2 ∀ u ∈ Ω, v ∈ IRn, t ∈ [0, 1]. (12)
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Theorem 3.1. Assume that the sequence {xk} is generated by Algorithm 1 and that x∗ is a
limit point. Then, x∗ is a stationary point of the problem

Minimize ‖h(x)‖2
2

subject to x ∈ Ω.
(13)

Proof. Let K ⊂ IN be such that limk∈K xk = x∗.
By (3) and the equivalence of norms in IRn, we have that

lim
k→∞

‖PΩ[xk − F (xk)−
m∑

i=1

([λ̄k]i + ρkhi(xk))∇hi(xk)]− xk‖2 = 0. (14)

By (6), if {ρk}k∈K is bounded we have that h(x∗) = 0, so x∗ is a stationary point of (13).
Assume that {ρk}k∈K is unbounded. Since {ρk} is nondecreasing, we have that

lim
k→∞

ρk = ∞. (15)

Then, ρk > 1 for k ∈ K large enough. So, using (12) with

u = xk, v = −F (xk)−
m∑

i=1

([λ̄k]i + ρkhi(xk))∇hi(xk), t = 1/ρk,

we have, by (14), that

lim
k→∞

∥∥∥∥PΩ

[
xk − F (xk)

ρk
−

m∑

i=1

(
[λ̄k]i
ρk

+ hi(xk)
)
∇hi(xk)

]
− xk

∥∥∥∥
2

= 0. (16)

By (15) and (16), since {λ̄k}k∈K is bounded, we obtain:

‖PΩ[x∗ −
m∑

i=1

hi(x∗)∇hi(x∗)]− x∗‖2 = 0.

This means that x∗ is a stationary point of (13), as we wanted to prove. 2

We say that an infeasible point x∗ ∈ Ω is degenerate if there exists w ∈ IRm
+ such that x∗ is

a stationary point of the weighted least-squares problem

Minimize
∑m

i=1 wihi(x)2

subject to x ∈ Ω,
(17)

and
m∑

i=1

wihi(x∗)2 > 0. (18)

Theorem 3.2. Let {xk} be a sequence generated by Algorithm 2. Then, at least one of the
following possibilities hold:
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1. The sequence admits a feasible limit point.

2. The sequence admits an infeasible degenerate limit point.

Proof. Assume that all the limit points of the sequence {xk} are infeasible. Therefore, there
exists ε > 0 such that

‖h(xk)‖∞ ≥ ε (19)

for all k ∈ IN . This implies that
lim

k→∞
‖ρk‖∞ = ∞.

Let K be an infinite subset of IN such that

‖ρk‖∞ > ‖ρk−1‖∞ ∀ k ∈ K. (20)

Let K1 be an infinite subset of K and j ∈ {1, . . . , m} be such that

‖ρk‖∞ = [ρk]j ∀ k ∈ K1. (21)

Then, by (20),
[ρk]j = γ[ρk−1]j ∀ k ∈ K1.

By the definition of the algorithm, we have that, for all k ∈ K1,

|hj(xk−1)| > τ‖h(xk−2)‖∞.

So, by (19),
|hj(xk−1)| > τε ∀ k ∈ K1. (22)

Moreover, by the definition of the algorithm, (20) and (21), we have:

[ρk−1]j ≥ ‖ρk−1‖∞
γ

∀ k ∈ K1. (23)

Let K2 be an infinite subset of indices of {k − 1}k∈K1 such that

lim
k∈K2

xk = x∗.

By (22) we have that
hj(x∗) 6= 0. (24)

By (7) and the equivalence of norms in IRn, we have:

lim
k→∞

‖PΩ[xk − F (xk)−
m∑

i=1

([λ̄k]i + [ρk]ihi(xk))∇hi(xk)]− xk‖2 = 0. (25)

Clearly ‖ρk‖∞ > 1 for k ∈ K2 large enough. So, using (12) with

u = xk, v = −F (xk)−
m∑

i=1

([λ̄k]i + [ρk]ihi(xk))∇hi(xk), t = 1/‖ρk‖∞,
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we have, by (25), that

lim
k∈K2

∥∥∥∥PΩ

[
xk − F (xk)

‖ρk‖∞ −
m∑

i=1

(
[λ̄k]i
‖ρk‖∞ +

[ρk]i
‖ρk‖∞hi(xk)

)
∇hi(xk)

]
− xk

∥∥∥∥
2

= 0. (26)

But
[ρk]i
‖ρk‖∞ ≤ 1 ∀i = 1, . . . , m.

Therefore, there exist K3 ⊂ K2 and w ∈ IRm
+ such that

lim
k∈K1

[ρk]i
‖ρk‖∞ = wi ∀i = 1, . . . , m.

Moreover, by (23),
wj > 0. (27)

Since {λ̄k}k∈K1 is bounded, taking limits for k ∈ K1 in (26), we get:

‖PΩ[x∗ −
m∑

i=1

wihi(x∗)∇hi(x∗)]− x∗‖2 = 0.

So, x∗ is a stationary point of (17). By (24) and (27), the condition (18) also takes place.
Therefore, x∗ is a degenerate infeasible point. 2

Remark. Clearly, any infeasible stationary point of (13) must be degenerate. Moreover, if x is
infeasible and degenerate, by (18) and the KKT conditions of (17), the gradients of the equality
constraints and the active bound constraints are linearly dependent. The reciprocal is not true.
In fact, consider the set of constraints

h(x) = x = 0 ∈ IR1, −1 ≤ x ≤ 1. (28)

At the points z = −1 and z = 1 the gradients of equality constraints and active bound con-
straints are linearly dependent but these points are not degenerate. In [11] it is assumed that,
at all the limit points of the sequence generated by the Augmented Lagrangian algorithm, the
gradients of equality constraints and active bound constraints are linearly independent (Assump-
tion AS3 of [11]). See, also, [10]. Under this assumption it is proved that the limit points are
feasible. By the considerations above, we see that Assumption AS3 is stronger than assuming
the nonexistence of infeasible degenerate points. In other words, the assumption on the problem
that guarantees that AS3 holds is that the gradients of equality constraints and active bound
constraints are linearly independent at all the points of the box (not merely at the feasible
points). This assumption does not hold in (28) and is much stronger than assuming that there
are no degenerate points in Ω.
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4 Convergence to optimal points

In this section we investigate under which conditions a feasible limit point of a sequence generated
by the Augmented Lagrangian algorithms is a KKT point. The main result is that a feasible
limit point is KKT if it satisfies the Constant Positive Linear Dependence condition (CPLD).
The CPLD condition was introduced by Qi and Wei in [32]. More recently [1], it was proved
that this condition is a constraint qualification. A feasible point satisfies CPLD if one of the
following situations take place:

1. The point satisfies the Mangasarian-Fromovitz constraint qualification [28, 35].

2. The point does not satisfy the Mangasarian-Fromovitz constraint qualification but any set
of positive linear dependent gradients of active constraints (including equality constraints)
remains linearly dependent in a neighborhood of the point.

Obviously, the CPLD condition is weaker than the Mangasarian-Fromovitz constraint qualifi-
cation. The AS3 condition of [11], when applied only to feasible points, is the classical regularity
assumption (linear independence of the gradients of active constraints). In [1] examples where
the CPLD condition holds but the Mangasarian-Fromovitz condition does not were given. Of
course, at points that do not satisfy Mangasarian-Fromovitz the gradients of active constraints
are linearly dependent. Therefore, convergence results based on the CPLD condition are stronger
than convergence results that assume the classical regularity condition.

Theorem 4.1. Assume that {xk} is a sequence generated by Algorithm 1 or by Algorithm 2
and that x∗ is a feasible limit point that satisfies the CPLD constraint qualification. Then, x∗ is
a KKT point.

Proof. Let us write, for Algorithm 1,

Gk = G1(xk, λ̄k, ρk)

and, for Algorithm 2,
Gk = G2(xk, λ̄k, ρk).

Define, for all k ∈ IN ,
vk = PΩ(xk −Gk).

Therefore, vk ∈ IRn solves
Minimize ‖v − (xk −Gk)‖2

2

subject to ` ≤ v ≤ u.

By the KKT conditions of this problem, there exist µu
k ∈ IRn

+, µ`
k ∈ IRn

+ such that, for all k ∈ IN ,

vk − xk + Gk +
n∑

i=1

[µu
k ]iei −

n∑

i=1

[µ`
k]iei = 0 (29)
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and
[µu

k ]i(ui − [xk]i) = [µ`
k]i(`i − [xk]i) = 0 ∀ i = 1, . . . , n. (30)

By (3) and (7),

lim
k→∞

vk − xk = 0,

then, by (29),

lim
k→∞

Gk +
n∑

i=1

[µu
k ]iei −

n∑

i=1

[µ`
k]iei = 0.

So, defining λk+1 as in (4) and (8),

lim
k→∞

F (xk) +∇h(xk)λk+1 +
n∑

i=1

[µu
k ]iei −

n∑

i=1

[µ`
k]iei = 0. (31)

Assume now that K is an infinite subset of IN such that

lim
k∈K

xk = x∗. (32)

Define:
I` = {i ∈ {1, . . . , n} | [x∗]i = `i},
Iu = {i ∈ {1, . . . , n} | [x∗]i = ui},

I0 = {i ∈ {1, . . . , n} | `i < [x∗]i < ui}.
By (32), there exists k0 ∈ IN such that for all k ∈ K, k ≥ k0,

i ∈ I0 ⇒ `i < [xk]i < ui.

So, by (30), for all k ∈ K, k ≥ k0, we have:

[µu
k ]i = 0 ∀ i /∈ Iu

and
[µ`

k]i = 0 ∀ i /∈ I`.

So, by (31),
lim
k∈K

F (xk) +∇h(xk)λk+1 +
∑

i∈Iu

[µu
k ]iei −

∑

i∈I`

[µ`
k]iei = 0.

Define, for k ∈ K, k ≥ k0,

Ek = F (xk) +∇h(xk)λk+1 +
∑

i∈Iu

[µu
k ]iei −

∑

i∈I`

[µ`
k]iei.

Clearly,
lim
k∈K

Ek = 0
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and
Ek − F (xk) = ∇h(xk)λk+1 +

∑

i∈Iu

[µu
k ]iei −

∑

i∈I`

[µ`
k]iei (33)

for all k ∈ K, k ≥ k0.
By Caratheodory’s Theorem of Cones (see [2], page 689), for all k ∈ K, k ≥ k0 there exist

Ĩk ⊂ {1, . . . , m}, Ĩuk ⊂ Iu, Ĩ`k ⊂ I`,

[λ̃k]i ∀ i ∈ Ĩk, [µ̃u
k ]i ≥ 0 ∀ i ∈ Ĩuk, [µ̃`

k]i ≥ 0 ∀ i ∈ Ĩ`k

such that the vectors

{∇hi(xk)}i∈Ĩk
, {ei}i∈Ĩuk

, {−ei}i∈Ĩ`k

are linearly independent and

Ek − F (xk) =
∑

i∈Ĩk

[λ̃k]i∇hi(xk) +
∑

i∈Ĩuk

[µ̃u
k ]iei −

∑

i∈Ĩ`k

[µ̃`
k]iei. (34)

Since there is only a finite number of possible sets Ĩk, Ĩuk, Ĩ`k, there exists an infinite set of
indices

K1 ⊂ {k ∈ K | k ≥ k0}
such that

Ĩk = Ĩ , Ĩuk = Ĩu, Ĩ`k = Ĩ`

for all k ∈ K1.
Therefore, by (34),

Ek − F (xk) =
∑

i∈Ĩ

[λ̃k]i∇hi(xk) +
∑

i∈Ĩu

[µ̃u
k ]iei −

∑

i∈Ĩ`

[µ̃`
k]iei (35)

and the vectors

{∇hi(xk)}i∈Ĩ , {ei}i∈Ĩu
, {−ei}i∈Ĩ`

are linearly independent (36)

for all k ∈ K1.
Define

Sk = max{max{|[λ̃k]i|, i ∈ Ĩ}, max{[µ̃u
k ]i, i ∈ Ĩu}, max{[µ̃`

k]i, i ∈ Ĩ`}}.

We consider two possibilities:

• {Sk}k∈K1 bounded;

• {Sk}k∈K1 unbounded.
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In the first case there exists K2, an infinite subset of K1, such that

lim
k∈K2

[λ̃k]i = λ̃i,

lim
k∈K2

[µ̃u
k ]i = µ̃u

i ≥ 0 ∀ i ∈ Ĩu

and
lim

k∈K2

[µ̃`
k]i = µ̃`

i ≥ 0 ∀ i ∈ Ĩ`.

So, taking limits in (35) for k ∈ K2 we obtain that x∗ is a KKT point.
Suppose now that {Sk}k∈K1 is unbounded. Let K3 be an infinite subset of K1 such that

limk∈K3 Sk = ∞ and Sk > 1 for all k ∈ K3. Dividing both sides of (35) by Sk for all k ∈ K3, we
get:

Ek − F (xk)
Sk

=
∑

i∈Ĩ

[λ̃k]i
Sk

∇hi(xk) +
∑

i∈Ĩu

[µ̃u
k ]i

Sk
ei −

∑

i∈Ĩ`

[µ̃`
k]i

Sk
ei. (37)

By the definition of Sk, this quantity is the modulus of one of the coefficients [λ̃k]i, [µ̃u
k ]i, [µ̃`

k]i
that occur in (37). Therefore, we can extract an infinite set K4 ⊂ K3 such that, for all k ∈ K4,
Sk is the modulus of the same coefficient. But, since

∣∣∣∣
[λ̃k]i
Sk

∣∣∣∣ ≤ 1,

∣∣∣∣
[µ̃u

k ]i
Sk

∣∣∣∣ ≤ 1,

∣∣∣∣
[µ̃`

k]i
Sk

∣∣∣∣ ≤ 1,

there exists K5, an infinite subset of K4, such that

lim
k∈K5

[λ̃k]i
Sk

= λ̃i, lim
k∈K5

[µ̃u
k ]i

Sk
= µ̃u

i ≥ 0, lim
k∈K5

[µ̃`
k]i

Sk
= µ̃`

i ≥ 0.

Then, taking limits on both sides of (37) for k ∈ K5 we obtain that
∑

i∈Ĩ

λ̃i∇hi(x∗) +
∑

i∈Ĩu

µ̃u
i ei −

∑

i∈Ĩ`

µ̃`
iei = 0.

Moreover, by the choice of K4, the modulus of at least one of the coefficients λ̃i, µ̃
u
i , µ̃`

i is equal
to 1. Therefore, the gradients

{∇hi(x∗)}i∈Ĩ , {ei}i∈Ĩu
, {−ei}i∈Ĩ`

are positively linearly dependent. By the CPLD condition the gradients

{∇hi(x)}i∈Ĩ , {ei}i∈Ĩu
, {−ei}i∈Ĩ`

must be linearly dependent in a neighborhood of x∗. This contradicts (36). So, the theorem is
proved. 2
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5 Boundedness of the penalty parameters

In this section we assume that the sequence {xk}, generated by Algorithm 1 or by Algorithm 2,
converges to a KKT point x∗ ∈ Ω. To simplify the arguments, as in [11], we assume without
loss of generality that [x∗]i < ui for all i = 1, . . . , n and that `i = 0 for all i = 1, . . . , n. The
Lagrange multipliers associated to x∗ will be denoted λ∗ ∈ IRm.

We will assume that F ′(x) and ∇2hi(x) exist and are Lipschitz-continuous for all x ∈ Ω.
Finally, we will also make use of the following Nonsingularity Assumption:

Assumption NS Define

J1 = { i ∈ {1, . . . , n} | [F (x∗) +
m∑

j=1

[λ∗]j∇hj(x∗)]i = 0 and [x∗]i > 0}

J2 = { i ∈ {1, . . . , n} | [F (x∗) +
m∑

j=1

[λ∗]j∇hj(x∗)]i = 0 and [x∗]i = 0}.

Then, the matrix
(

[F
′
(x∗) +

∑m
j=1[λ∗]j∇2hj(x∗)][J,J ] (h′(x∗)[J ])

T

h′(x∗)[J ] 0

)

is nonsingular for all J = J1 ∪K such that K ⊂ J2.

Assumption NS, which corresponds to Assumption AS5 of [11], will be supposed to be true
all along the section. Moreover, we will also assume that the computation of λ̄k at Step 2 of
both algorithms is:

[λ̄k]i = max{λ̄min, min{λ̄max, {[λk]i}}} (38)

for all i = 1, . . . , m.
Finally, we will assume that the true Lagrange multipliers [λ∗]i satisfy

[λ̄min]i < [λ∗]i < [λ̄max]i ∀ i = 1, . . . , m.

Lemma 5.1. Assume that the sequence {xk} is generated by Algorithm 1 and that, for all
k ∈ IN ,

λk+1 = λ̄k + ρkh(xk).

Then, there exist k0 ∈ IN , ρ̄, a1, a2, a3, a4, a5, a6 > 0 such that, for all k ≥ k0,

‖λk+1 − λ∗‖∞ ≤ a1εk + a2‖xk − x∗‖∞. (39)

Moreover, if ρk0 ≥ ρ̄, we have:

‖xk − x∗‖∞ ≤ a3εk + a4
‖λ̄k − λ∗‖∞

ρk
,
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‖λk+1 − λ∗‖∞ ≤ a5εk + a6
‖λ̄k − λ∗‖∞

ρk
(40)

and

‖h(xk)‖∞ ≤ a5εk
1
ρk

+ (1 +
a6

ρk
)
‖λ̄k − λ∗‖∞

ρk
. (41)

Proof. The proof is identical to the ones of Lemmas 4.3 and 5.1 of [11], replacing µk by 1/ρk

and using the equivalence of norms in IRn. 2

Lemma 5.2. Assume that the sequence {xk} is generated by Algorithm 1. Then, there exists
k0 ∈ IN such that for all k ≥ k0,

λ̄k = λk.

Proof. By (39) there exists k1 ∈ IN tal que

‖λk+1 − λ∗‖∞ ≤ a1εk + a2‖xk − x∗‖∞ for all k ≥ k1. (42)

Define ε = 1
2 mini{[λ∗]i − λ̄min, λ̄max − [λ∗]i} > 0. Since ‖xk − x∗‖∞ → 0 and εk → 0, by (42)

we obtain that there exists k0 ≥ k1 such that

‖λk+1 − λ∗‖∞ ≤ ε for all k ≥ k0.

By the definition of ε we obtain the desired result. 2

Theorem 5.1 Assume that the sequence {xk} is generated by Algorithm 1 and that εk is such
that

εk = min{ε′k, ‖h(xk)‖∞} (43)

where {ε′k} is a decreasing sequence that tends to zero. Then, the sequence of penalty parameters
{ρk} is bounded.

Proof. Let k0 be as in Lemma 5.2. Then, for all k ≥ k0, we have that λ̄k = λk.
Assume that ρk →∞. By (41) and (43) there exists k1 ≥ k0 such that

‖h(xk)‖∞ ≤ (1 +
a6

ρk
)(

1
1− a5

ρk

)
‖λk − λ∗‖∞

ρk
for all k ≥ k1 (44)

whenever a5
ρk

< 1.
Since λk = λk−1 + ρk−1h(xk−1) we get

‖h(xk−1)‖∞ =
‖λk − λk−1‖∞

ρk−1
≥ ‖λk−1 − λ∗‖∞

ρk−1
− ‖λk − λ∗‖∞

ρk−1
.

Then, by (40) and (43),

‖λk − λ∗‖∞ ≤ 1
a6
−1 − ρk−1

−1
(1 +

a5

a6
)‖h(xk−1)‖∞. (45)
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Replacing (45) in (44) we obtain:

‖h(xk)‖∞ ≤ mk‖h(xk−1)‖∞
whenever

mk =
m̃

ρk
,

where m̃ is a positive constant.
Since limk→∞mk = 0, there exists k2 ≥ k1 such that mk < τ and ρk+1 = ρk for all k ≥ k2.

This is a contradiction. 2

From now on, if the sequence {xk} is generated by Algorithm 2, we define

I∞ = {i ∈ {1, . . . , m} | [ρk]i →∞}, Ia = {i ∈ {1, . . . , m} | [ρk]i is bounded },

ρk = min
i∈I∞

{[ρk]i}, ηk =
∑

i∈Ia

|hi(xk)|.

The following result corresponds to Lemmas 4.3 and 5.1 of [11], adapted for several penalty
parameters.

Lemma 5.3. Assume that the sequence {xk} is computed by Algorithm 2. There exists k0 ∈ IN
and positive constants b1, b2, ρ, α1, α2, α3, α4, α5 such that, for all k ≥ k0,

‖λk+1 − λ∗‖∞ ≤ b1εk + b2‖xk − x∗‖∞. (46)

If [ρk0 ]i ≥ ρ for all i ∈ I∞, then

‖xk − x∗‖∞ ≤ α1εk + α2ηk + α3

∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

(47)

and
‖λk+1 − λ∗‖∞ ≤ α4εk + α5‖h(xk)‖∞. (48)

Proof. The proof of (46) is identical to the one of (39).
Using the definition of G2(xk, λ̄k, ρk), defining IF as in the formula (5.6) of [11] and taking

∆xk = ‖(xk − x∗)[IF ]‖2, we obtain the following version of the inequality (5.27) of Lemma 5.1
of [11]:

∥∥∥∥
(

(xk − x∗)[IF ]

λk+1 − λ∗

)∥∥∥∥
2

≤ M(b14εk + ‖h(xk)‖2 + b11(∆xk)
2 + b12∆xkεk + b13εk

2) (49)

for all k ≥ k0, with b11 = a7 + a9 + a8b2, b12 = 2(a7 + a9) + a8(b10 + b2), b13 = a7 + a9 + a8b10,
b10 = b1 + b2 and for the constants a7, a8 and a9 considered in the proof of our Lemma 5.1.

By (8) and (46),

|hi(xk)| = |[λk+1]i − [λ̄k]i|
[ρk]i

≤ |[λk+1]i − [λ∗]i|+ |[λ̄k]i − [λ∗]i|
[ρk]i
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≤ b1εk + b2‖xk − x∗‖2 + |[λ̄k]i − [λ∗]i|
[ρk]i

. (50)

Now,
‖h(xk)‖2

2 =
∑

i∈I∞

|hi(xk)|2 +
∑

i∈Ia

|hi(xk)|2.

So, using that
∑n

i=1 a2
i ≤ (

∑n
i=1 ai)2 for ai ≥ 0, i = 1, . . . , n, and the inequality (50) for all

i ∈ I∞, we obtain:

‖h(xk)‖2 ≤ ηk +
∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

+ |I∞|(b1εk + b2‖xk − x∗‖2)
ρk

. (51)

Recall that
‖xk − x∗‖2 ≤ ∆xk + εk. (52)

By (52), replacing (51) in (49), we get
∥∥∥∥

(
(xk − x∗)[IF ]

λk+1 − λ∗

) ∥∥∥∥
2

≤ M(b14εk + ηk +
∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

+b̃10
εk

ρk
+ b2|I∞|∆xk

ρk
+ b11∆xk

2 + b12∆xkεk + b13εk
2), (53)

where b̃10 = |I∞|(b1 + b2).
Now, if k is large enough,

εk ≤ min{1,
1

4Mb12
} and ∆xk ≤ 1

4Mb11
. (54)

Define ρ̄ = max{1, 4|I∞|Mb2}. If k is large enough, [ρk]i ≥ ρ̄ for all i ∈ I∞. By (53) and
(54) we get:

∆xk = ‖(xk − x∗)[IF ]‖2 ≤ 4M((b14 + b̃10 + b13)εk + ηk +
∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

).

So, by (52), using the equivalence of norms in IRn, we obtain:

‖xk − x∗‖∞ ≤ α1εk + α2ηk + α3

∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

for suitable constants α1, α2 and α3. This proves (47).
Let us now prove (48). Using (54) in the inequality (49) we obtain:

∆xk = ‖(xk − x∗)[IF ]‖2 ≤ ∆xk

2
+ M(b15εk + ‖h(xk)‖2),

where b15 = b13 + b14. Therefore,

∆xk ≤ 2M(b15εk + ‖h(xk)‖2). (55)
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By (52), (55) and the equivalence of norms in IRn, we obtain:

‖xk − x∗‖∞ ≤ α6εk + α7‖h(xk)‖∞ (56)

for suitable constants α6 and α7.
Replacing (56) in (46) and using again the equivalence of norms in IRn, we obtain the

inequality
‖λk+1 − λ∗‖∞ ≤ α4εk + α5‖h(xk)‖∞

for suitable constants α4 and α5. Then, (48) is proved. 2

Lemma 5.4. Assume that the sequence {xk} is computed by Algorithm 2. Then, there exists
k0 ∈ IN such that, for all k ≥ k0,

λ̄k = λk.

Proof. By (46), the proof is the same of Lemma 5.2. 2

Theorem 5.2. Assume that the sequence {xk} is computed by Algorithm 2 and that εk is such
that

εk = min{εk−1, ‖h(xk)‖∞, ε′k} (57)

where {ε′k} is a decreasing sequence that converges to zero. Then the sequence {ρk} is bounded.

Proof. Suppose that I∞ 6= ∅. Let i0 ∈ I∞.
For all i ∈ Ia there exists k1(i) such that for all k ≥ k1(i), [ρk+1]i = [ρk]i. If k is large enough

we have that, for all i ∈ Ia,
|hi(xk)| ≤ τ‖h(xk−1)‖∞.

Then,
ηk =

∑

i∈Ia

|hi(xk)| ≤ |Ia|τ‖h(xk−1)‖∞. (58)

Let k ≥ k̃ = maxi∈Ia{k0, k1(i)}, where k0 is obtained as in Lema 5.4.
By (8),

|hi0(xk)| = |[λk+1]i0 − [λk]i0 |
[ρk]i0

≤ |[λk+1]i0 − [λ∗]i0 |+ |[λk]i0 − [λ∗]i0 |
[ρk]i0

.

So, by (46),

|hi0(xk)| ≤ b1εk + b2‖xk − x∗‖∞ + |[λk]i0 − [λ∗]i0 |
[ρk]i0

.

Thus, by (47),

|hi0(xk)| ≤ 1
[ρk]i0

[(b1 + b2α1)εk + b2α2ηk + b2α3

∑

i∈I∞

|[λk]i − [λ∗]i|
[ρk]i

+ |[λk]i0 − [λ∗]i0 |].
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Now, by (48) with λk replacing λk+1, (57) implies that

|[λk]i − [λ∗]i| ≤ ‖λk − λ∗‖∞ ≤ (α4 + α5)‖h(xk−1)‖∞ i = 1, . . . , m. (59)

Since εk ≤ εk−1 ≤ ‖h(xk−1)‖∞, combining (58)-(59) we obtain:

|hi0(xk)| ≤ mk(i0)‖h(xk−1)‖∞,

where
mk(i0) =

m̃

[ρk]i0
and m̃ > 0.

Since mk(i0) → 0, there exists k̃(i0) ≥ k̃ such that

|hi0(xk)| ≤ τ‖h(xk−1)‖∞
for all k ≥ k̃(i0). Therefore, [ρk+1]i0 = [ρk]i0 . This is a contradiction. 2

6 Numerical experiments

Our main objective regarding this set of experiments is to decide between Algorithm 1 and
Algorithm 2. From the theoretical point of view, Algorithm 1 has the advantage that the set of
possible infeasible limit points seems to be smaller than the set of possible infeasible limit points
of Algorithm 2. Thus, in principle, Algorithm 2 might converge to infeasible points more often
than Algorithm 1. On the other hand, Algorithm 2 tends to increase the penalty parameters
less frequently than Algorithm 1, a fact that has a positive influence on the conditioning of the
subproblems.

However, we are also interested on testing several different options for the implementation
of the algorithms. Namely: the best values for λ̄min and λ̄max (large or small?), the best value
for the tolerance τ that determines the increase of penalty parameters and the strategy for
choosing εk.

Summing up, the practical algorithms to be tested are defined by:

1. Strategy for updating penalty parameters

Option ONE: Algorithm 1.

Option TWO: Algorithm 2.

2. Choice of the safeguarded Lagrange multiplier approximations

Option BIG: λ̄max = −λ̄min = 1020.

Option SMALL: λ̄max = −λ̄min = 106.

3. Tolerance for improvement of feasibility

Option TIGHT: τ = 0.1.

Option LOOSE: τ = 0.5.
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4. Strategy for convergence criterion of subproblems

Option FIX : εk = εmin ≥ 0 for all k.

Option INEX: εk = max{0.1k, εmin} for all k.

Option ADPT: ε′k = max{0.1k, εmin} for all k,

εk = max{εmin, min{ε′k, ‖h(xk)‖∞}}

for Algorithm 1 and

εk = max{εmin, min{εk−1, ε
′
k, ‖h(xk)‖∞}}

for Algorithm 2.

Therefore, 24 different methods are defined. Observe that, when εmin = 0, the option ADPT
corresponds to the theoretical hypotheses used in Section 4 to prove boundedness of the penalty
parameters. Obviously, in practical (floating point) computations we must choose some small
εmin > 0.

The implementation decisions that are common to all the options were the following:

1. For solving the box-constrained minimization subproblems (10) and (11) at Step 2 of
both algorithms we used GENCAN [4] with its default parameters. The resulting code
(Augmented Lagrangian with GENCAN) will be called ALGENCAN.

2. We computed the Lagrange multipliers estimates using (4), (8) and (38).

3. We set ρ1 = 10 for Algorithm 1, [ρ1]i = 10 for all i for Algorithm 2 and γ = 10 for both
algorithms.

4. The algorithms were stopped declaring Convergence when

‖PΩ(xk − F (xk)−∇h(xk)λk+1)− xk‖∞ ≤ εmin

and
‖h(xk)‖∞ ≤ εmin.

We used εmin = 10−4.

5. An execution is stopped declaring Time exceeded if the algorithm runs during 10 minutes
without achieving Convergence. Other stopping criteria were inhibited in order to ensure
an homogeneous comparison.

All experiments were done in a Sun Fire 880 with 8 900 Mhz UltraSPARC III Processors, 32
Gb of RAM memory, running SunOS 5.8. The codes were written in FORTRAN 77 and compiled
with Forte Developer 7 Fortran 95 7.0 2002/03/09. We used the option -O4 to optimize the
code.

We considered all the nonlinear programming problems with equality constraints and bounds
of the CUTE collection [8]. As a whole, we tried to solve 128 problems.
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Consider a fixed problem and let x
(M)
final,M = 1, . . . , 24, be the final point of method M applied

to that problem. In this numerical study we say that x
(M)
final is feasible if

∥∥∥∥h

(
x

(M)
final

)∥∥∥∥
∞
≤ εmin.

We define

fbest = min
M

{
f

(
x

(M)
final

)
| x(M)

final is feasible
}

.

We say that method M found a solution of the problem if x
(M)
final is feasible and

f

(
x

(M)
final

)
≤ fbest + 10−3|fbest|+ 10−6.

Let t(M),M = 1, . . . , 24, be the computer CPU time that method M used to arrive to x
(M)
final. We

define
tbest = min

M
{t(M) | method M found a solution},

and we say that method M is one of the fastests method for the problem when

t(M) ≤ tbest + 0.01 tbest.

These definitions are the same used in [3] for comparing different Augmented Lagrangian for-
mulae.

We are interested in comparing the 24 variants of Augmented Lagrangian algorithms with
respect to Feasibility, Robustness and Efficiency. We say that a particular algorithm is robust
for solving some problem if it finds the solution of the problem according to the criterion defined
above. We say that it is feasible if it finds a feasible point and we say that it is efficient if it is
one of the fastests method for solving the problem. In Table 1 we report, for each combination of
parameters, the number of problems in which the corresponding algorithm was robust, feasible
and efficient, respectively. More precisely, the symbol p(q) under column R indicates that the
algorithm found the solution of q problems, according the criterion above and that its rank with
respect to robustness was p. The symbol p(q) under column F means that the algorithm found a
feasible point in q cases and ranked p with respect to feasibility. The same symbol under column
E means that the algorithm was one of the fastests in q cases and ranked p with respect to this
criterion.

Some preliminary conclusions may be drawn by inspection of Table 1.

• One of the methods (Algorithm 2 with τ = 0.5, λ̄max = 1020, εk ≡ εmin) appears to be the
best one, considering feasibility, robustness and efficiency.

• Algorithm 2 is better than Algorithm 1. This means that using different penalty param-
eter and increasing separately each of them is better than increasing “all” the penalty
parameters when the improvement of just one constraint is not enough, as Algorithm 1
does.
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Method Performance
Strategy for Choice of the Tolerance for Strategy for
updating safeguarded improvement convergence
penalty Lagrange of feasibility criterion of R F E
parameters multiplier subproblems

approximations
TWO LOOSE BIG FIX 1(96) 1(102) 1(56)
TWO LOOSE BIG INEX 1(96) 2(101) 13(28)
ONE LOOSE BIG FIX 3(95) 11(100) 5(52)
TWO TIGHT BIG FIX 3(95) 11(100) 4(53)
TWO TIGHT SMALL FIX 3(95) 11(100) 3(54)
TWO LOOSE SMALL FIX 3(95) 2(101) 2(55)
TWO LOOSE SMALL INEX 3(95) 2(101) 14(27)
ONE TIGHT BIG FIX 8(94) 11(100) 5(52)
ONE LOOSE BIG ADPT 8(94) 16( 99) 23(12)
ONE LOOSE SMALL ADPT 8(94) 19( 98) 23(12)
TWO TIGHT BIG ADPT 8(94) 2(101) 15(26)
TWO TIGHT SMALL ADPT 8(94) 2(101) 16(25)
TWO LOOSE BIG ADPT 8(94) 2(101) 22(15)
TWO LOOSE SMALL ADPT 8(94) 2(101) 22(15)
ONE TIGHT BIG INEX 15(93) 11(100) 12(36)
ONE TIGHT SMALL INEX 15(93) 16( 99) 11(37)
ONE LOOSE BIG INEX 15(93) 16( 99) 17(24)
ONE LOOSE SMALL FIX 15(93) 21( 97) 5(52)
ONE LOOSE SMALL INEX 15(93) 19( 98) 17(24)
TWO TIGHT BIG INEX 15(93) 2(101) 9(38)
TWO TIGHT SMALL INEX 15(93) 2(101) 9(38)
ONE TIGHT BIG ADPT 22(92) 23( 95) 19(21)
ONE TIGHT SMALL FIX 22(92) 21( 97) 5(52)
ONE TIGHT SMALL ADPT 22(92) 23( 95) 19(21)

Table 1: Performance of ALGENCAN
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• In general, using a fixed small convergence criterion in the subproblems (εk = εmin) is
better than using inexact choices of εk at least in terms of efficiency. With respect to
feasibility and robustness the different choices of εk are equivalent.

• The option LOOSE for increasing the penalty parameter is slightly better than the option
TIGHT. It is not be very relevant the choice of λ̄max between 106 and 1020. Preliminary
experiments showed that smaller values of λ̄max are not convenient.

In order to test the consistency of our algorithms we compared our winner Augmented La-
grangian algorithm with the default version of LANCELOT [11] and with the same version with
true Hessians and without preconditioners. The last one is more adequate since the version of
GENCAN that we use does not use preconditioners at all. It must be observed that GENCAN
does not use true Hessians either. Matrix-vector products involving Hessians are replaced by
incremental gradient quotients in GENCAN. ALGENCAN was more efficient and robust than
the version of LANCELOT without preconditioners. It was also more efficient than the precon-
ditioned LANCELOT but not as robust as this method. The corresponding performance profile
[14] is shown in Figure 1.

7 Conclusions

Augmented Lagrangian methods are useful tools for solving many practical nonconvex mini-
mization problems with equality constraints and bounds. Its extension to KKT systems and,
in consequence, to a wide variety of equilibrium problems (see [18, 20, 21, 23, 26, 27, 36]) is
straightforward. We presented two Augmented Lagrangian algorithms for this purpose. They
differ only in the way in which penalty parameters are updated. There seems to be an important
difference between these two algorithms with respect to convergence properties. According to
our feasibility results the set of possible infeasible limit points of Algorithm 1 seems to be strictly
contained in the set of possible infeasible limit points of Algorithm 2. This could indicate that
Algorithm 2 converges to infeasible points more frequently than Algorithm 1. However, this
property was not confirmed by numerical experiments, which clearly indicate that Algorithm 2
is better. So, it seems that maintaining moderate values of the penalty parameters is the more
important feature for explaining the practical performance. However, it is still an open problem
if stronger results than Theorem 3.2 can be obtained for Algorithm 2.

The question about convergence to optimal (KKT) points is also relevant. Up to our knowl-
edge, convergence to KKT points of algorithms of this type had been obtained only using
regularity assumptions (linear independence of active constraints). Here we proved that a much
better constraint qualification (CPLD) can be used with the same purpose. Again, the problem
of finding even weaker constraint qualifications under which convergence to KKT points can be
guaranteed remains open.

The superiority of Algorithm 2 over Algorithm 1 in numerical experiments was not a surprise
since every optimization practitioner is conscious of the effect of large penalty parameters on
the conditioning of the subproblems and, hence, on the overall performance of Augmented
Lagrangian and penalty methods. A little bit more surprising was the (slight) superiority of
the algorithms based on accurate resolution of the subproblems over the ones based on inexact
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resolution. Careful inspection of some specific cases lead us to the following explanation for that
behavior. On one hand, GENCAN, the algorithm used to solve the subproblems is an inexact-
Newton method whose behavior is many times similar to Newton’s method especially when the
iterate is close to the solution. This implies that, after satisfying a loose convergence criterion,
the amount of effort needed for satisfying a strict convergence criterion is usually small. In
these cases it is not worthwhile to interrupt the execution for defining a new subproblem. (One
would be “abandoning Newton” precisely in the region where it is more efficient!) On the other
hand, the formula used for updating the Lagrange multipliers is a first-order formula motivated
by the assumption of exact solution of the subproblems. When the resolution is inexact, other
updating formulae ([24], p. 291) might be more efficient (although, of course, more costly).

The conclusion about the relative efficiency of solving accurately or inaccurately the sub-
problem may change if one uses different box-constrained solvers. The excellent behavior of the
spectral gradient method for very large convex constrained minimization [5, 6, 7, 12, 33, 34] is
a strong motivation for pursuing the research on inexact stopping criteria for the subproblems,
since in this case quadratic or superlinear convergence is not expected.

Valuable research has been done in the last 10 years in Augmented Lagrangian methods
for solving quadratic problems originated in mechanical applications [15, 16, 17]. Adaptive
criteria that depend on feasibility of the current point (as in the assumptions of our penalty
boundedness theorems) have been successfully used and justified from several different points of
view. (Antecedents of these practical strategies can be found in [25].) More recently [15], Dostál
showed that, for some convex quadratic programming problems, an updating strategy based on
the increase of the Augmented Lagrangian function have interesting theoretical and practical
properties. Extension of his philosophy to the general nonquadratic and nonconvex case must
be investigated.

The recent development of efficient sequential quadratic programming, interior-point and
restoration methods for nonlinear programming motivates a different line of Augmented La-
grangian research. The “easy” set Ω does not need to be a box and, in fact, it does not need to
be “easy” at all if a suitable algorithm for minimizing on it is available. (The case in which Ω is
a general polytope was considered in [10].) However, many times the intersection of Ω with the
general constraints h(x) = 0 is very complicate. In these cases, using the Augmented Lagrangian
approach to deal with the general constraints and a different nonlinear programming algorithm
to deal with the subproblems is attractive. Certainly, this have been done in practical applica-
tions for many years. The convergence properties of these combinations using weak constraint
qualifications deserve to be studied.

We presented our methods and theory considering KKT systems and not merely minimiza-
tion problems to stress the applicability of the Augmented Lagrangian strategy to the general
KKT case. We performed several experiments for general KKT systems, where the algorithm
used for solving the subproblems was the well known PATH solver (see [13]). We compared the
resulting algorithm with the PATH method for solving directly the original problem. On one
hand, we confirmed the following warning of [22]: “Typically, singularity [of the Jacobian] does
not cause a lot of problems and the algorithm [PATH] can handle the situation appropriately.
However, an excessive number of singularities are cause of concern. A further indication of pos-
sible singularities at the solution is the lack of quadratic convergence to the solution”. In fact,
for some tested problems, the effect of singularity of the Jacobian was more serious in the direct
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application of PATH to the original problem than in the “Augmented Lagrangian with PATH”
algorithm. In many other situations the direct application of PATH to the KKT system was
more efficient. Clearly, the Augmented Lagrangian framework intensely exploits the minimiza-
tion structure of the problem when the source of the KKT system is nonlinear programming
and loses this advantage when the KKT system is general. However, much research is necessary
in order to evaluate the potentiality of the Augmented Lagrangian for equilibrium problems,
variational inequalities and related problems.
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