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Abstract

This paper is about spatial econometrics in the context of discrete choice models
for area data. It is presented here a simulation study of a (very useful) Bayesian
econometric model for the probit regression in binary responses with spatially structured
random effects in the latent variable.

Because of the large number of parameters to be estimated by stochastic simulation
and the model complexity itself, in some cases it is not certain the convergence in
the Gibbs sampling procedure. With this respect, it is proposed in this paper some
modifications in the MCMC procedure in order to improve convergence. Also a couple
of particular cases of this spatial model, which are more known in the literature, are
included in the analysis as reference for comparison.

The simulation study considers the spatial structure of the geographical (admin-
istrative) region of Campinas, SP, Brazil, composed by 90 counties. The model is
simulated according to different settings, with three distinct sample sizes, varying the
number of agents in each region, where are generated 150 samples at each area. Also,
it is considered six different values for the spatial parameter. In all settings, it is com-
pared the estimation performance of the proposed procedure with the references in the
econometric literature and the results are discussed. Also, a short illustration of the
main procedures considered is presented involving real data about the 2002 Brazilian
presidential election.

Keywords: Spatial econometrics, discrete choice model, random effects, probit regression,
Gibbs sampling, simulation.



1 Introduction

The aim of this paper is to study econometric regression models with binary responses
for cross-sectional data with spatial dependence, useful in problems of discrete choice, where
the parameters estimation process may present some difficulties.

Econometric models for endogenous continuous variables with spatial dependence are
largely spread out, as in (ANSELIN, 1988, 2002),(LESAGE, 1997), (KELEJIAN; PRUCHA,
1999), and others. However, discrete models, particulary probit regression models for area
data and related tools, which is the subject of this article, although of recognized practical
importance, it has received less attention in the literature. It happens partially because of
the aditional complexity due to the spatial dependence structure incorporated in the model
(FLEMING, 2002).

Some estimation techniques have been proposed for discrete models with spatial struc-
ture as (MCMILLEN, 1992) using the EM algorithm for a spatial probit model, (PINKSE;
SLADE, 1998) used the Generalized Method of Moments (GMM) for a similar probit model.
Other examples of discrete choice models in a spatial context may be found in the econo-
metric literature, as in (LESAGE, 2000) or (HOLLOWAY; SHANKAR; RAHMAN, 2002), both
considering the Bayesian approach.

An important reference for the present paper is (SMITH; LESAGE, 2003) where it is
presented a Bayesian formulation for the spatial dependence through a random effect similar
to the one introduced by (BESAG; YORK; MOLLIE, 1991) and also used in geostatistics
(DIGGLE; TAWN; MOYEED, 1998). In this model it is assumed that the agents or individuals
are grouped in regions where agents inside the regions are homogeneous suggesting that the
spatial dependence occur only among regions.

This model and its corresponding Bayesian estimation method based on MCMC is studied
in the present paper and an improvement in the estimation process is proposed in order to get
better efficiency in the estimation algorithm and to avoid eventual convergence difficulties.
Both implementation procedures (the original and the alternative one proposed here) are
compared in a simulative study as well as some other relate models of a particular or simpler
type.

It is considered here a sampling plan for the Gibbs sampler different from the one used
by (SMITH; LESAGE, 2003), where we fix the spatial dependence parameter for a certain
period in the Markov chain. Also in the Metropolis-in-Gibbs procedure to sample the pos-
terior distribution of the spatial coefficient, instead of considering random walk chains as in
(LESAGE, 2000; SMITH; LESAGE, 2003) and (HOLLOWAY; SHANKAR; RAHMAN, 2002),
we propose the use of independent chains. With these proposed modification, it is obtained
better results in the estimates of the quantities of interest such as regression and spatial
coefficients.

This article is organized as follows. In Section 2, the spatially structured random effect
regression model is presented as a discrete choice model. In Section 3, the Bayesian hierar-
chical model is defined as well as the corresponding Gibbs sampler for its estimation. In the
Section 4 it is presented a simulation study where it is assessed how the estimation process
performs in different settings with the advantages of the proposed procedure being stressed.
Finally, it is presented in the Section 5 a small numerical example with real data about the



Brazilian presidential election of 2002 for a certain geographical region and a final discus-
sion about the results obtained is presented in Section 6, followed by the bibliographical
references.

2 Discrete choice model

It is supposed the existence of data about the choices of a set of agents or individuals
distributed in m areas in a certain geographical region. In particular, it is considered that
only two mutually exclusive choices are relevant and they are referred as 0 and 1. The
observed choice for each individual £ = 1,2,...,n; in the i-th area (i = 1,2,...,m) is the
considered as realization of a random variable Y;;, where,

(2.1)

1 if individual k& of region ¢ chooses 1
Yir, = :
0 otherwise

It is supposed that the choices are based on a random utility function (SMITH; LESAGE,
2003; GREENE, 2003) where the k-th utility, for each one of the two alternatives, have the
form,

Uiko = Y'Wiro + gsik + i0 + €ivo Uier = Y'wira + o i + 031 + €411

, where w;, is a vector of dimension of observed attributes for the alternative a = 0,1 and s;;
is a s-dimensional vector of observed attributes relative to individual k. The term 6;, + €;q,
for a = 0 or 1, represents a contribution to the utility of all other attributes non-observed
for region 7, individual k£ and alternative a. The non-observable regional effect #;, represents
the utility relative to the choice a common to all individuals in region 7, and the individual
effect, ;. represents all other non-observable components relative to individual k. Taking
utility differences for the two possible choices for individual £, we have.

Yii = Up1 — Uo = 2.8+ 0; + cir, (2.2)

where 5 = (7', af — )" is the vector of parameters, z;, = [(wix1 — wiko)’, s%]" is the vector
of attributes, 0; = (6;; — 0;0) is the regional effect, and e;; = (41 — €i10) are the individual
effects, which are independent of the regional effect. As consequence,P[Y;, = 1] = [Y;i > 0].

For the non-observable quantities in the model it is assumed that all dependence among
the utility difference for the agents in different regions are captured by the dependence among
the regional effects (6;,7 = 1,...,n). In particular, the aspects that are common to individuals
in a given region ¢ can be similar to individuals in neighboring regions. This is considered
assuming that the interaction vector ¢ presents a spatial autoregressive structure, given by

91‘ = prWQJ + u;, 1= ]_, .,y (23)
j=1

where the w;; elements are measures of spatial proximity between the regions ¢ and j. The
u; error are considered independent and identically distributed (iid) normal random variable



with zero mean and precision ¢. Writing in matrix form, where = (0, : i = 1,...,m) and
u=(u;:1=1,...,m),we have

szWH—i—u, UNN(O,O'QIm),

where W is the spatial proximity matrix with w; = 0 and [,, is the identity matrix of
dimension m. Assuming that B, = I,, — pIV is non-singular, we have that 6 = B;lu and

0lp, 0% ~ N(0,0°[BB,) 7). (2.4)

The individual effects, ¢;, are assumed normal with zero mean and precision v; inde-
pendent of the regional effects #;. The precisions v;, indexed by region i, imply a intra-
region homocedasticity and inter-region heterocedasticity . If we denote the vector of in-
dividual effects in the region i by &; = (g4 : k = 1,...,n;), and then g; ~ N(0,v; 'I,,,).
Or, in global terms, ¢ = (¢! : k = 1,...,n;)" , then ¢ ~ N(0,V) where V has the form,
V =diag{vy 'L, ....,v 1, }

Now, the likelihood is given by

m  ng

L@yly) = [T w0 tuw=n + Lo low=o} X oy b t:).  (2:5)

k=1 i=1
We can also express (2.2) in matrix form where Y;* = (Yi; : k=1,...,n;)" and X; = (24, :
k=1,..,n;)! and difference in utility for region i is then given by

Y = Xif +0:1; + ¢, i=1..,m, (2:6)

where 1; is a n; x 1 unitary vector. Defining n = > ""n; , Y* = (Y* : i = 1,...,m) and

]

X = (X!:i=1,..,m)" the regional equation (2.6) can be reduced in the form
Y*= X3+ A0 +¢, (2.7)

where A = diag{1,,...,1,,}
When p = 0, the model just presented became a probit model with non-structured
random effect (MCCULLOCH; SEARLE, 2001), where

gi = Uy,

and u; follows an iid normal distribution with zero mean and precision ¢. Consequently, the
model equation (2.7) became,
Y*=XpB+ AU +¢,

where U = (uq, ..., uy)".

3 Bayesian Hierarchical Model

The model presented in (2.1) with a latent variable given by (2.7) can be formulated as
a hierarchical model with the following structure,
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(I) Conditional on 3,p,,0, and V = diag{v;'I,,,...,v;' I, },the latent variables Y}

oy Umy

follow normal distributions, N (2%, 3+ 0;,v; ') fori =1,...,m;k=1,...,n,.

(IT) Conditional on p and ¢, the spatial effects vector 6 follows a multivariate normal
distribution N(0,¢~'[B.B,|™").

(III) Conditional on matrix V, the error vector ¢ has a multivariate normal distribution
N(0,V).

(IV) Conditional conjugate prior distribution for 3, p, ¢ and V = diag{v; ' IL.,,...,v; I, }

oy Um

B ~ N (v, o) p ~ Beta(a,b)

v % Gamma (g, g) ¢ ~ Gamma(a,n)
where o, and r are the gamma precision hiperparameters, vy and ., are the normal regres-
sion coefficients hiperparameters and a,b are the Beta spatial coefficient hiperparameters
(a = b = 1 corresponds to a uniform non-informative prior distribution). These prior dis-
tributions considered above are very close to the ones used in (SMITH; LESAGE, 2003),
except for a detail in the specification of p. With the more flexible Beta distribution, we are
considering the restriction 0 < p < 1, differently from (SMITH; LESAGE, 2003), since they
consider a uniform distribution in the interval defined by the inverse of largest and smallest
eigenvalue of the matrix W.

3.1 Gibbs sampler

The Bayesian estimation of the above hierarquical model is implemented via the Gibbs
sampler and related algorithms through the random sampling of the following set of (com-
plete) conditional distributions:

(i) Blp 6,0, V*,y*,y ~ N(B, (X'V*X +¥5")7!) where 3 = [X'V*X + X! X V*(y* —
AG) + 55w

(ii) 0|3, p, &, V*, y*,y ~ N(0, M), where M = AV 1A + ¢B,B, and 6 =M 1AW (y* —
AB)

(iii) plB, 0,0,V y* y x ¢% |Bylexp {—56'(B.B,)0} p*(1 — p)*~*

(iv) |8, p,0,V* y*,y ~ Gamma(a/,n'), where o/ = %2& and 1 = %
Z:i Cik+7T

(v) V|8, p,0,0,v%;,y*, y ~ Gamma(g, h), where g = " and h = 5

with e, =y, — 0; — 2, 0.

N(zl B+ 0;,vF) left truncated in 0 if y; = 1

() YiilB, 0, 0,0, V", y ~ { N(zt,8+ 6;,vF) right truncated in 0 if 3; = 0



Blp, d,0,V*, y*,y

Normal
018, p, 0, V*,y*,y YiilB,0,0,0,V*,y
Normal 1=1,....m
k= 1, e,y
Trunc.Normal
U;k’ﬁ?pa ¢7970ii7y*ay
d13,0,0,V*, y*,y i=1,...,m
Gamma ____ p=0_ (i<n) _Gamma
plB,¢,0,V*, y*y

M-H (Z > nl)
Figure 1: Plan 2 - Gibbs sampling for MCMC analysis

(LESAGE, 1997, 2000) notes that the conditional distribution for p has no known form
and suggests a Metropolis-Hastings step (METROPOLIS, 1953; HASTINGS, 1970) inside the
Gibbs procedure. Some suggestions for the proposal of the transition kernel’s chain in the
MCMC are the normal distribution and the ¢ distribution with 3 degree of freedom (LESAGE,
1997). Here in this paper, the proposed transition is formulated independently of the actual
position p’/ of the chain, and this proposal is generated by normal distribution with mean
and variance 72. For the mean p, it is used here the numerical maximum of the conditional
log-likelihood function for p. (CHIB; NARDARI; N.SHEPARD, 2002)suggest also that the
variance 72 could be calculated as minus the numerical second derivative of this conditional
log-likelihood. However, it is used here the first samples for getting the posterior variance
estimate (CARLIN; LOUIS, 2000).

In this paper it is considered a modification in the Gibbs sampler implementation, which
we refer here as Plan 2, where it is fixed the spatial coefficient with a reference value p = 0
for a certain number n; of iteration in the Gibbs sampler and only after that number of
iteration we include this parameter in the sampling and updating process (Figure 1).

4 Simulation Study

The spatially structured random effects probit (SSREP) model simulation is made using the
neighborhood map given by the administrative region of Campinas, Brazil, composed by 90



counties, shown at figure 2.
The data are generated through a SSREP model with two covariates, and latent structure
for the k-th individual in i-th region given by

0 = Bimis + Batoi, + 0; + €
Hi = prUHJ —I—ui,
J

where the generation values are 3, = 3,14, 3, = —1,62, p = 0,70 and w;; =

w*. .
“_— with
25 wi
w;; = 1 if counties are contiguous and zero otherwise. For simplicity, the error terms e
and u; are generated as standard normals. The covariate xy;; is uniform variable in [-5,5]
and xo;; is generated using a normal variable with zero mean and variance 3. Finally, by
discretization rule, it is generated the response data as

(1 ifY; >0,
m_{ 0 if Y;; <0. (48)

As mentioned earlier in this paper, the simulation study is formed by two parts or exper-
iments. In the first one , it is studied the number of individuals or observation per area. In
this part, it is considered three situations. In case 1, which is the more difficult to estimate,
there is only one observation or individual per area. This case is very common for area data,
where information is aggregated in order to reflect the average behavior of a given area. In
the cases 2 and 3 it is simulated a larger number of individuals per area, n; = 5 and n; = 15,
respectively.

In the second part of the simulation experiment are considered different values for the spa-
tial dependence parameter p and it is studied the model estimation performance (difference
in mean square error of point estimates relative to generation values).

4.1 Varying the number n; of observations per area (p fixed)

In this section it is studied the model estimation performance considering different num-
bers of agents or individuals per area. We consider the following cases: n; = 1, 5 and
15.

The spatially structured random effect model is fitted to the simulated data in two ver-
sions: the original version presented by (SMITH; LESAGE, 2003) (computer routine semip g)
and the alternative one proposed in this paper which we call Plan 2. In order to implement

this procedure, we consider the following prior settings,
(a) gamma prior for ¢: a = 0,001 and n = 1000
(b) gamma prior for v: r = 100
(c) Beta prior for p: @ =3 and b = 1.

)

(d) Normal prior for 8: py = (0,0) and Xy = 10°1,



Figure 2: Administrative (geographical) Region of Campinas

It is also considered a burn-in of 2000 iterations and the following 2000 iteration are
sampled. In particular, at Plan 2, it is fixed p = 0 in the first 2000 iterations.

In order to obtain a point estimate of each of the components (3, p, ¢, v) it is necessary
to define a resume measure for the marginal posterior distribution such as mean, median
or mode. When the posterior distribution is symmetric, the mean and the median will be
equal, and for unimodal symmetric posterior, all three measures will be the same. For non-
symmetric posterior distributions however, the choice is not so clear. Although the median
is eventually preferable since it is an intermediate measure between the mode (just considers
the value corresponding to the maximum of the density) and the mean (it can eventually
give large weight to extreme values) (CARLIN; LOUIS, 2000). (SMITH; LESAGE, 2003) adopt
the sampled posterior mean as a point estimate for the parameters. In order to study better
this model and its estimation procedure, there were generated (simulated) 150 samples of
data and, for each one, it was fitted the hierarchical model using both proposed Plan 2
(implemented in MATLAB) and the former procedure considered by (SMITH; LESAGE,
2003) through the semip g routine of the Econometric Toolbox, in MATLAB.

4.1.1 Casel: n, =1

In a simulation study similar to the one presented here, (SMITH; LESAGE, 2003), say that
the hierarchical model estimation procedure via MCMC estimates the regression coefficients
very well but it underestimate the spatial coefficient p. These authors however do not explain



why or suggest alternatives to approach this problem.

o 500 1000 1500 2000 o 500 1000 1500 2000

Marginal Distribution— (,=—3.14 Marginal Distribution— p(_=—1.62
350 soo0

300 |
250
200 |

150 1 200 |
100

so |

o
a = 8 10 =s —a —3 —= —a o

o.s |
o.e
o.a

o.z2 |

o 500 1000 1500 2000 o 500 1000 1500 2000

Marginal Distribution— p=0.7 Marginal Distribution—  ¢=1
s00 2000

aoo

300 |

200

100

o o.2 o.a o.e o.s8 a o =3 a =3

Figure 4: MCMC chains for p and ¢ - semip ¢

The posterior distribution of the spatial coefficient p, in Plan 2, shows some non-symmetry
(Figure 4 and Figure 6), but the posterior mode is very close to the parameter generation
value(p = 0,70). When (SMITH; LESAGE, 2003) conclude that there is underestimation of
p, in fact they are considering the mean as a resume for a non-symmetric distribution instead
of considering the other alternative measures such as the median and mode.

The results from the 150 generated samples, given at Table 4.1, show that (considering
the 3 main point estimators: posterior mean, median or mode) the median is the measure of
better performance considering the set of all 3 parameters of interest, with the smallest mean
square error - MSE (taking the generation values). Also, it is clear from this table that the
point estimates from (SMITH; LESAGE, 2003) are very bad because their estimates are very
far from the generated values taken as references (3, = 3,14, 5, = —1,62 and p = 0, 70).
On the other hand, the results obtained from the proposed procedure (Plan 2) give point
estimates much closer to the reference values and with smaller MSE values.

4.1.2 Case 2: n; =5 and Case 3: n; = 15

In these cases, when there are more agents for each area, the sample has more information,
particularly about the regional effects 6;, and consequently, more information about the
spatial dependence parameter p. Consequently, we have more information about the spatial
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Figure 6: MCMC chains for p and ¢ - Plan 2

parameter, p. The posterior distribution of p in case 2 (Figure 7) is more well behaved than
in case 1.

In this case, the median was the better point estimate for the parameter of interest ac-
cording to the mean square error criterion. For the [ regression coefficients, the estimates
by the three different point estimators (mean, median and mode) are reasonably close be-
cause of the posterior distribution symmetry for these parameters. The spatial dependence
parameter p however presents larger differences between the different point estimates as a
consequence of its non-symmetric posterior distribution (Figure 7). It is worth to notice that
with the semip_ g routine, as the sample size n; increases, their estimates get closer to the
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Figure 7: Posterior distribution for p - n; = 15
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respective generation values. These estimates however are not so good (in relation to the
MSE measure) as the ones obtained through the proposed Plan 2 procedure.

In general, when the number of observation per area increases, the three posterior resume
measures get closer, as can be seem from Table 4.1. The non-symmetry of the spatial
dependence coefficient p tend to decrease with the increase of information about regional
effects 6;. In particular, for the case 3, any of the three measures could be used since all
of them are quite close. In this sense we suggest the use of the posterior median as point
estimate for the quantities of interest.

4.2 Varying the p values (n; fixed)

In this section it is studied the model estimation process considering different settings for
the spatial dependence parameter. This is made simulating the spatially structured random
effects probit model (SSREP) in (4.8) using small, moderate and large values for the p
parameter. It is introduced in this analysis not only the implementation of the hierarchical
model but also the estimation results from the non-structured random effect probit model
(NSREP) and the standard probit model taken as reference. This simpler random effects
model, even being not spatially structured, it introduces correlation or dependence between
the observations through common effects (MCCULLOCH; SEARLE, 2001). Therefore, we
expect that in the presence of small or moderate dependence, this non spatial model could
be a simple alternative to deal with this problem, since without the estimation of p, there is
no Metropolis step in the Gibbs sampler.

It is considered in this study six increasing values for the p parameter: 0, 0,05, 0,10, 0,20,
0,50 and 0,70. One hundred simulated samples were generated under the spatial structure
shown at figure 2, with n; = 5 observations per geographical area and the same values for
the regressions coefficients and other parameters considered in the previous section. Also, it
was considered vague prior distributions in the model implementation.

The results are presented at Tables 4.2 and 4.3. For the samples generated with small
spatial dependence (p between 0 and 0,20) there is little difference between the structured
and the non-structured model. As p increases, as expected, the estimates obtained by the
spatial model tend to improve in relation to the simpler models, as shown in terms of mean
square error at Table 4.2. For instance, when the spatial dependence is high (p = 0,70)
the estimates from the non-structured model and from the standard probit model, differ
very much from the corresponding generation values, as measured through the MSE, and
therefore, it is preferable in this case to use the hierarchical spatial model.
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Table 4.1: Simulation Results from the 150 samples

Plan 2 (SMITH; LESAGE, 2003)
Estimates Std.Dev MSE | Estimates Std.Dev MSE
Casel-n; =1
Mean 3,438 0,775 0,650 7,44 4,980 41,650
51 Median 3,062 0,6249  0,3706 7,292 5,177 42,250
Mode 2,724 0,569 0,476 6,857 5,562 42,680
Mean -1,758 0,536 0,290 - 3,771 2,547 10,720
B2  Median -1,580 0,470 0,207 - 3,728 2,772 11,660
Mode  -1,401 0,480 0259 | -3564 3,144 13,04
Mean 0,624 0,066 0,043 0,501 0,439 0,186
p  Median 0,681 0,077 0,034 0,530 0,536 0,268
Mode 0,695 0,080 0,034 0,642 0,649 0,268
Case2-n;=5
Mean 3,346 0,761 0,602 3,688 0,972 1,214
51 Median 3,327 0,834 0,707 3,691 1,088 1,447
Mode 3,286 0,882 0,773 3,714 1,140 1,585
Mean - 1,739 0,411 0,179 - 1,917 0,551 0,388
B> Median - 1,728 0,431 0,193 - 1,923 0,604 0,450
Mode - 1,712 0,494 0,247 - 1,943 0,632 0,497
Mean 0,622 0,215 0,051 0,521 0,190 0,066
p Median 0,646 0,219 0,049 0,528 0,201 0,068
Mode 0,684 0,230 0,049 0,539 0,229 0,068
Case 3-n; =15
Mean 3,234 0,279 0,083 2,958 0,292 0,114
(1 Median 3,234 0,281 0,084 2,957 0,294 0,115
Mode 3,213 0,301 0,091 2,958 0,310 0,124
Mean - 1,650 0,159 0,025 - 1,507 0,154 0,033
(> Median - 1,650 0,158 0,025 - 1,505 0,153 0,033
Mode - 1,640 0,154 0,023 - 1,504 0,152 0,033
Mean 0,673 0,109 0,012 0,650 0,137 0,020
p Median 0,681 0,108 0,011 0,656 0,137 0,019
Mode 0,700 0,109 0,011 0,667 0,138 0,019
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Table 4.2: Point estimates with MSE of p for 100 simulated samples

Generation Value 0y =3,14 By = —1,62 p
A. Estimates for p =0
Standard probit 2.251(0.844) - 1.149(0.235) -
Mean  3.362(0.445) - 1.716(0.135) -
NSREP Median 3.355(0.461) - 1.708(0.129) -
Mode  3.357(0.578) - 1.689(0.119) -
Mean  3.374(0.454) - 1.728(0.161) 0.173(0.289)
SSREP - Plan 2 Median 3.347(0.459) - 1.719(0.169) 0.142(0.325)
Mode  3.290(0.488) - 1.697(0.200) 0.085(0.325)

B. Estimates for p = 0,05

Standard probit

NSREP

SSREP - Plan 2

2.255(0.833) - 1.144(0.236)
Mean  3.399(0.478) - 1.716(0.122)
Median 3.370(0.436) - 1.703(0.114)
Mode  3.283(0.317) - 1.662(0.097)
Mean  3.387(0.408) - 1.713(0.133)
Median 3.344(0.391) - 1.693(0.134)
Mode  3.278(0.408) - 1.663(0.156)

0.202(0.2603)
0.172(0.2960)
0.106(0.2960)

C. Estimates for p =0, 10

Standard probit

2.286(0.787) - 1.186(0.207

NSREP

Mean  3.444(0.466) - 1.785(0.161
Median 3.424(0.449) - 1.775(0.160

SSREP - Plan 2

Mean  3.427(0.474) -1.776(0.171
Median 3.393(0.452) - 1.761(0.164

) (0.207)
(0.466) (0.161)
(0.449) (0.160)
Mode  3.397(0.486) - 1.773(0.185)
(0.474) (0.171)
(0.452) (0.164)
Mode  3.352(0.528) - 1.743(0.184)

0.192(0.268)
0.161(0.305)
0.097(0.305)
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Table 4.3: Point estimates with MSE of p for 100 simulated samples

Generation Value 0 =3,14 Py = —1,62 p
D. Estimates for p = 0, 20
Standard probit 2,231 (0,856)  -1,125(0,246) -
Mean 3,324 (0,174) -1,694 (0,059) -
NSREP Median 3,317 (0,163) -1,686 (0,053) -
Mode 3,327 (0,201) -1,663 (0,055) -
Mean 3,243 (0,116) -1,650 (0,048) 0,259 (0,204)
SSREP - Plan 2 Median 3,210 (0,101) -1,633 (0,046) 0,242 (0,225)
Mode 3,218 (0,229) -1,626 (0,058) 0,166 (0,225)
E. Estimates for p = 0,5
Standard probit 2,071 (1,182) -1,093 (0,280) -
Mean 3,351 (0,131) -1,749 (0,049) -
NSREP Median 3,284 (0,090) -1,737 (0,040) -
Mode 3,088 (0,233) -1,693 (0,046) -
Mean 3,184 (0,036) -1,645 (0,013) 0,477 (0,053)
SSREP - Plan 2 Median 3,208 (0,053) -1,653 (0,013) 0,498 (0,045)
Mode 3,383 (0,162) -1,725 (0,0511) 0,541 (0,031)
F. Estimates for p = 0,7
Standard probit 2,010 (1,307) -1,118 (0,259) -
Mean 3,677 (0,648) -2,039 (0,299) -
NSREP Median 3,694 (0,669) -2,053 (0,318) -
Mode 3,665 (0,795) -2,092 (0,391) -
Mean 3,156 (0,115) -1,730 (0,078) 0,687 (0,013)
SSREP - Plan 2 Median 3,138 (0,115) -1,716 (0,074) 0,704 (0,011)
Mode 3,237 (0,244) -1,698 (0,064) 0,705 (0,011)
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5 A Short example with real data

In order to give one more confirmation or illustration of the usefulness of the models and
procedures studied and proposed in this paper, it is presented in this section a short example
of application of these tools with real data.

The data set considered here is about the Brazilian presidential election of 2002. In fact,
the data are the results of the second turn of the election in the Administrative Region of
Campinas, Brazil (Figure 2), composed by 90 counties. The dependent variable is defined
as Y; = 1 if the main candidate Luiz Inacio Lula da Silva ( the most voted in the first turn
election) has obtained the majority of votes in county i, and Y; = 0 otherwise. As a final
result, Lula won in 55 of the 90 counties of the region.

As a covariate or regression variable it was considered one component of Human Devel-
opment Index related to education, calculated in the year 2000 for each of the counties in the
region. This variable was chosen based on empirical grounds since it it the component of the
HDI with better association with the response variable and also because it is a prediction
with known value previously to the electin.

5.1 Models estimation

As an illustration of the spatial econometrics tools for discrete choice, it is fitted the following
models with the data described above.

(A) Standard probit model;
(B) Random effects probit model;
(C) Spatial random effect probit model.

Although these models could be estimated by other methods sucha as maximum likeli-
hood or generalized method of moments (FLEMING, 2002; TAKEYAMA; BARBOSA, 2004),
it is considered here the same Bayesian approach developed previously in this paper for the
implementation of all the three models, since the first two of them are particular cases of
the last (spatial random effects model formulated as a Bayesian hierarchical model).

The hiperparameter values considered for the vague prior distributions are

(a) o =0 and 3y = 10° for 3 in the models A, B and C.
(b) @ =0.001 and n = 1000 for ¢ and r = 7 for v in the models B and C.
(¢c) a=1and b =1 for p in the model C.

The number of iteration considered here is different for each model. The standard probit
model model (A) has a quicker convergence since it has less parameters; it was considered a
burn-in of 500 iterations followed by sampling 2000 posteriors. For model B it was considered
the same procedure. For model C, it was fixed p = 0 for the first 500s iteration followed by
a burn-in of 2000 iterations, and the sampling of the next 2000 iterations.
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Table 5.4: Estimation Results

A. Standard probit
25%  25% median mode 75%  97.5%
Gy 12,959 20,271 24,009 24,287 27,894 35,829

B. Random effects probit
25%  25% median mode 5%  97,5%
Gy 13,432 21,622 27,135 27,863 33,135 47,228
¢ 0,724 2591 4826 3,787 9,525 24910

C1. Spatial random effect probit - Plan 2
25%  25% median mode 75%  97.5%
Gy 11,609 20,065 25,703 23,144 33,292 48,165
0,044 0,393 0,585 0,627 0,713 0,872
0,300 1,199 4,458 3,702 10,899 30,663

ASEI

C2. Spatial random effect probit - semip g
25%  25% median mode 5%  97,5%
£y 19,870 48,022 65,939 55,077 87,787 112,373
p 0,243 0,994 0,998 0,925 0,998 0,999
¢ 0,214 3,465 6,673 1,853 11,065 18,864

5.2 Fitting results

The main estimation results from the four fitted models (the last two are different im-
plementations of the same spatial model) are presented at Table 5.4.

In general terms, the models A, B and C1 present reasonably similar results in the
estimation of 3. However, when the results are analyzed taking the deviance as a measure
of performance for each model (Table 5.5), it is clear that the introduction of the spatial
random effect, considering Plan 2, improves considerably the model fitting quality. The
same also occurs (with less intensity) with model B which is a particular case of C when
p = 0, and presents a better fitting than the standard probit model A. In Figure 9, it is
shown the sampled chains for the spatial dependence parameter p (considering both Plan 2
and semip g routine), where it is visible the instability of the chain produced by the Lesage
routine. It is all noted that the posterior for p under this routine is too much concentrated
near 1, while the one given by Plan 2 is more smooth and less asymmetric.

It is also clear from Table 5.5 that the proportion of correct prediction from the spatial
model with the Plan 2 procedure is the highest, followed by the one given by the simple
random effects model, that confirm and illustrates once more the usefulness of the proposed
tools.
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Table 5.5: Goodness of fit measures

Models Deviance Prop
A. Standard probit 103,603  0.677
B. Random effects probit 88,773  0.744

C1. Spatial random effect probit - Plan 2 76,529  0.766
C2. Spatial random effect probit - semip g 148,799 0.723
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Figure 8: MCMC chains for § generated by Plan 2 and semip g
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Figure 9: MCMC chains for p generated by Plan 2 and semip g

18



6 Final Conclusion

It has been studied in this paper two possible ways of analysis and implementation of a
probit regression model for binary data with spatial dependence (useful in the econometric
analysis of discrete choice problems) through a simulation study. It is also included in this
analysis the study of a few related models of simpler structure and easier implementation,
as well as the fitting of all models to a binary choice real data set.

The main results and conclusions from the study are the following. (i) As expected
but not obvious, the standard probit model is not appropriate for analysis of spatial binary
data, even with small spatial dependence. Or, in other words, it is necessary to consider non-
standard models in such cases in order to have quality in the data analysis. (ii) The Bayesian
hierarchical model has shown to be a powerful tool for investigation of spatial dependencies in
discrete choice. This is particularly the case of the spatially structured random effects model
considered in the study. (iii) A particular case of this model where the random effect is non
structured, which is simpler and more known in the literature, has shown to be very effective
even in cases of moderate spatial dependence. One of the advantages of this model is that
the estimation procedure is simpler, using Gibbs sampling (it is not necessary Metropolis in
Gibbs), what shorten considerably the computational burden.

Finally, (iv) the proposed modification for the implementation of the spatial model have
improved the parameter estimates in relation to others algorithm found in the econometric
literature. In particular, the modification in the Gibbs sampling procedure has produced
more stable chains in the MCMC with better final estimates, as presented in the simulation
study and also illustrated with a real spatial data set of binary choice.
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