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Abstra
t

The paper 
onsiders the problem of Phylogeneti
 tree 
onstru
tion. Our approa
h

to the the problem bases itself on a non-parametri
 paradigma seeking a model free


onstru
tion and symmetry on Type I and II errors. Trees are 
onstru
ted through

sequential tests using Hamming distan
e dissimilarity measures, from internal nodes to

the tips. The method has some advantages over the traditional methods. It is very

fast, 
omputationally eÆ
ient, and feasible to be used for very large datasets. Two

other novelties are its 
apa
ity to deal dire
tly with multiple sequen
es per group (and

built its statisti
al properties upon this ri
her information) and that the best tree will

not have a predetermined number of tips i.e. the resulting number of tips will be

statisti
ally meaningful. We applied the method in a sample of primate mito
hondrial

DNA sequen
es, illustrating that it 
an perform quite well even on very unbalan
ed

design. Computational 
omplexities are also addressed.

Keywords: Phylogeneti
 Tree; Hamming Distan
e; Dissimilarity Measures; Statisti
al

Geneti
s; Non-parametri
 Test.

1 Introdu
tion

In the last de
ades one has seen in
reasing interest and power of analyzing geneti


data. S
ientists are 
olle
ting geneti
 data in exponentially faster speed and syntheti


measures are of great importan
e for either analyzing a single sample or for 
omparing

di�erent pro
edures or samples. One su
h measure is the phylogeneti
 tree.

A phylogeneti
 tree is a graph depi
ting the an
estor-des
endant relationship between

organisms or gene sequen
es. The sequen
es are the tips of the tree. Bran
hes of the tree

1




onne
t the tips to their (unobservable) an
estral sequen
es (H�older and Lewis(2003)).

One 
an use su
h a representation to infer about temporal relationships between spe
ies

or DNA sequen
es for questions su
h as: whi
h spe
ies are more 
losely related; is there

a 
ommon an
estor for two spe
ies; or 
an we group two spe
ies on the tip when fa
ing

a third spe
ies?

A survey of phylogeneti
 trees in both their biologi
al aspe
ts as well as statisti
al

features is provided by Weir(1996). More re
ent works with 
omprehensive surveys are

Salemi and Vandame (2003) and H�older and Lewis (2003).

One 
an 
onstru
t phylogeneti
 trees (for sequen
es or spe
ies) by several di�er-

ent methods. Some of the most referred on the literature are parsimony, maximum

likelihood and distan
e matri
es pro
edures.

Ea
h di�erent method has its own motivation whi
h in one hand provides its strength

but on the other hand burdens it with its weakness. They all do relly on a 
ommon

feature: a single sequen
e for ea
h group. That is attained by either a single spe
imen

from ea
h group or by the use of a 
onsensual sequen
e as the legitimate representative

of a group. Apart from the biologi
al limitations of su
h dimension redu
tion we do

worry about statisti
al properties of trees thereof provided.

Here, we develop a methodology that 
an be used for single spe
imens 
ases or mul-

tiple 
ases with unbalan
ed sample sizes. The only di�eren
e between those situations

is that on the latter one will have more statisti
al power than on the former one.

Pinheiro et al (2003) has studied a de
omposition of Hamming distan
e that quan-

ti�es the amount of diversity between individuals from the same pseudogroup and

diversity within individuals of di�erent groups. That de
omposition is interesting from

its interpretation and also be
ause it enables one to employ U-statisti
s theory to prove

solid statisti
al properties.

We propose a pro
edure that sequentially builds the tree from its internal nodes to

its tips. The p-values from ea
h test are 
omputed via bootstrap resampling. More-

over, in ea
h step the topology with larger diversity separation is used. We apply the

methodology to a sample of primate mito
hondrial DNA sequen
es.

The main advantages of this method reside on its 
exibility, its statisti
al properties,

its easeness of use, and its 
omputational performan
e.

2 Phylogeneti
 Trees via Hamming Distan
e

The pro
edure we propose works for either genes or more 
omplex data. Therefore,

when referring to the di�eren
es between sequen
es we will use the general term group

that should be understood in its 
ontext.
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Aside from working ex
lusively with single sequen
es per group, the usual meth-

ods do not expli
itly quantify dissimilarities between groups and dissimilarities within

groups. The latter is not 
onsidered biologi
ally relevant. This theoreti
al insigni�-


an
e is numeri
ally represented by a 
onsensual sequen
e for ea
h group. Therefore,

measuring only the dissimilarities between groups without 
omparing them to the a pri-

ori negle
ted within groups dissimilarities generates pro
edures with a 
lear 
on
eptual

bias towards group separation.

This bias 
an be qualitatively put as follows. Suppose one is able to quantify mean-

ingfully disimilarity and that there is a theoreti
al dissimilarity value d

0

(unknown)

whi
h is the smallest value for whi
h separation of any two groups is biologi
ally mean-

infgul. Whenever the dissimilarity between two pseudo-groups 
an be exa
tly measured

and it fails to be larger than d

0

one 
an not 
onsider these two pseudo-groups di�erent

but their elements are part of a single group and their 
omputed dissimilarity is only

a measure of individual di�eren
es. Otherwise, if their dissimilarity is larger than d

0

,

one should 
onsider them two legitimate groups.

Let d

L

be the true theoreti
al between groups dissimilarity measure (unknown).

Models whi
h fail to 
omparatively evaluate within and between dissimilarities should

favor grouping with d

L

(< d

0

) 
omputed dissimilary with a higher probability than

not separating groups whose 
omputed dissimilarity is d

0

+ (d

0

� d

L

). This la
k of

simmetry is 
alled in Statisti
s a bias. The degree of bias will depend on the pro
edure

whi
h is taken and on the spe
i�
ities of the sample and genomes being studied. The

theoreti
al aspe
ts of this bias are unknown and abstra
t (at least to our knowledge)

but the 
on
eptual risks of bias toward separation should be 
lear.

We use a non-parametri
 te
hnique whi
h tries to address the bias issue through

a 
areful de
omposition of dissimilarities via U-statisti
s theory. Moreover be
ause we

deal with nonparametri
s one should expe
t distribution and model free results i.e. the

less stru
tured model implemented will give less power but on the other hand it will

work with overall smaller Type I and Type II error probabilities under a larger family of

distributions. Be
ause we are able to extra
t information from ea
h individual sequen
e

the usual power issues with nonparametri
 te
hniques are lessened to a degree in whi
h

one has either really small p-values or really large ones. Therefore any doubt from

a inferential point of view will be less dependent on the method itself and should be

regarded as a 
hara
teristi
 of the problem.

The tree is 
onstru
ted via re
ursive tests based on the U-statisti
s de
omposition

of Hamming distan
e for the sampled sequen
es, as proposed by Pinheiro et al. (2003).

For the sake of 
ompleteness we will des
ribe brie
y the mathemati
al aspe
ts of su
h

a de
omposition and its statisti
al impli
ations.
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Consider a general 
omputational sequen
e analysis (CSA) with K sites, ea
h one

having 4 possible 
ategories (Pinheiro et al. (2003) treats the general C 
ategories


ase) in ea
h site k = 1; 2; : : : ;K. Ea
h 
ategory represents a nu
leotide but that 
an

be used for protein or 
odon sequen
es without any aditional notational burden. Let

X

i

= (X

i1

; X

i2

; : : : ; X

iK

) be a random ve
tor of responses where X

ik

represents the


ategori
al out
ome 
 (
 = 1; 2; 3; 4) at site k for the i-th sequen
e.

One de�nes the Hamming distan
e between a pair (i; i

0

) of sequen
es as:

D

ii

0

=

1

K

K

X

k=1

I (X

ik

6= X

i

0

k

) ; (1)

where I(X

ik

6= X

i

0

k

) is zero if the respe
tive k-th sites on the i-th and i

0

-th sequen
es

are equal and one if they are di�erent. So, D

ii

0

is the proportion of sites where X

i

and

X

i

0

do not mat
h.

Suppose one hasG groups and ea
h group has n

g

sampled sequen
es, g = 1; 2; : : : ; G.

Pinheiro et al. (2003) de�nes three Hamming distan
e related measures,D

n

(B), D

n

(W )

and

�

D

n

(0)), respe
tively by:

D

n

(B) =

1

n� 1

8

<

:

G

X

g=1

G

X

g

0

=g+1

n

g

n

g

0

�

2

�

D

gg

0

�

�

D

gg

�

�

D

g

0

g

0

�

9

=

;

(2)

D

n

(W ) =

G

X

g=1

n

g

n

�

D

gg

(3)

�

D

n

(0) = D

n

(W ) +D

n

(B);

(4)

where

�

D

gg

is the average distan
e within the g-th group, and

�

D

gg

0

is the average

distan
e between groups g and g

0

, where g; g

0

= 1; 2; : : : ; G and g

0

6= g.

�

D

gg

is a U -statisti
 of degree 2 and

�

D

gg

0

is a two sample U -statisti
 of degree (1; 1).

Some deterministi
 inequalities 
an then be employed to pursue tests of di�eren
es

between groups, with solid asymptoti
 statisti
al results for the test statisti
 D

n

(B).

In appli
ations, it is very hard to address the exa
t distribution of D

n

(B). It is

theoreti
ally possible to build the asymptoti
 distribution dire
tly from some fairly


omplex fun
tions of the data but those pro
edures are 
omputationally expensive.

There is also th issue of ensuring that the asymptoti
 approximation is good enough

for the sampled data. The safer pro
edure is to employ bootstrap resamplig te
hniques

and their empiri
al per
entiles for de
isions.

Suppose the phylogeneti
 tree is rooted and binary. Whenever two groups are 
on-

sidered statisti
ally di�erent there is only one possible tree. However, for more than
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two possible groups, say G, a statisti
ally signi�
ant di�eren
e does not guarantee that

there are G di�erent groups (the test will grasp any minute di�eren
e between any two

groups as long as its power is good enough). Therefore for phylogeneti
 trees 
onstru
-

tion one will eventually perform some two groups tests. Moreover for more than two

groups, say f1; 2; 3g, even after it is statisti
ally inferred that there are three di�erent

groups one must de
ide among ((1); ((2); (3))), ((2); ((1); (3))), or ((3); ((1); (2))), using

a Newi
k-like notation.

The 
onstru
tion of phylogeneti
 trees goes as follows. Suppose one has G possible

groups for whi
h one wants to build a three with at most G di�erent groups. We

will exemplify the 
onstru
tion with G = 4 but its theoreti
al aspe
ts are not any

di�erent when G gets large albeit its 
omputational 
omplexity may pre
lude us from

pro
eeding. There are two possible topologies (up to nominating the tips) with a total

of seven di�erent groupings.

In step 1 seven tests are performed. It is important to noti
e that, due to the

statisti
al power of dis
rimination provided by the multiple sequen
es in ea
h group,

all tentative grouping present a statisti
ally signi�
ant small value ofD

n

(B). Therefore,

an additional measure is taken into a

ount to 
hoose the most relevant separation. The

ratioD

n

(B)=

�

D

n

(0) = (1+D

n

(W )=D

n

(B))

�1

works as follows. While D

n

(B) quanti�es

the overall di�eren
e between pair of groups, D

n

(W ) measures those 
hara
teristi
s

that single individuals within their respe
tive groups. Therefore, is it natural to reje
t

grouping for whi
h the aforementioned ratio is small be
ause the innergroup diversity

whi
h is 
onsidered tolerable and measured by D

n

(W ) is mu
h larger then the pseudo-

groups diversity (given by D

n

(B)). On the other hand, groups that have the largest

ratioD

n

(B)=

�

D

n

(0) provide the best separation among all possible groups 
on�guration.

After step 1 is performed one has either a tree with two tips with two pseudo-groups

ea
h or a tree with one tip with one group and another with tree pseudo-groups. In

the former 
ase, one will perform the two remainig tests and the �nal tree will have

two, three or four tips if, respetively, none of the D

n

(B)'s in step 2 are statisti
ally

signi�
ant, exa
tly one of them is, or both are. In the latter situation, the three

possible grouping of one against two pseudo groups will be performed. If all D

n

(B)'s

are statisti
ally negligible one will have a �nal two tips tree. Otherwise, one 
hooses

the path that maximizes the D

n

(B)=D

n

(W ) ratio, having a tree with two tips of one

group ea
h and a still unresolved tip with two pseudo-groups. Finally the last test for

this tip is performed and if its D

n

(B) is statisti
ally signi�
ant one has a four tip tree.

Otherwise, one has a three tip tree.

The following algorithm summarizes the pro
edure:

(0.1) Let G be the set of all pseudo-groups
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(0.2) Compute all distan
es D

ij

, 8i; j 2 G

g

, g = 1; 2; : : : ; G, using equation (1),

where G

g

is the g-th pseudo-group to be tested

(0.3) Take the set of pseudo-groups E = fG

1

;G

2

; : : : ;G

G

g a partition of G and let

N = G

(1) For l = 1 to bN=2


� for all possible partitions f

_

E

1

;

_

E

2

g of E , su
h that

_

E

1


ontains l pseudo-groups

and

_

E

2


ontains the remaning N � l pseudo-groups

1. Compute D

n

(B)

true

and D

n

(W )

true

with equations (2) and (3)

2. Repeat for b = 1 to B (the number of bootstraps)

(a) Sele
t randomly a sample of jEj sequen
es with repla
ement from E

(b) Take the �rst l sequen
es to be pseudo-observations from

_

E

b

1

and the

last N � l to be from

_

E

b

2

(
) Compute D

n

(B)

b

and D

n

(W )

b

from formulas (2) and (3), and store

its values

(2) Consider all D

n

(B)

true

from (1) and let S be the set of all statisti
ally sig-

ni�
ant ones, using the per
entiles from the bootstraped D

n

(B)

b

, b = 1; 2; : : : ; B

1. If S = ;, there are no statisti
ally signi�
ant groups and the pro
edure for E

is over and E 
an not be divided any further

2. If S 6= ;, 
hoose the partition of E as f

~

E

1

;

~

E

2

g for whi
h the ratio between

D

n

(B) and D

n

(W ) is maximum

3. Repeat the algorithm for E =

~

G

1

and E =

~

G

2

, until there is not a group with

two or more pseudo-groups untested

3 Appli
ation

The data sets 
onsists of sequen
es of mito
hondrial DNA from humans, 
himpanzees,

gorillas and orangutans with 438bp. The tests were performed with B = 10000 boot-

straped resamples, taken from the original pooled sample. Four tables are presented.

Table 1 shows the results of the proposed pro
edure with 96 sequen
es of whi
h 58

are from humans, 6 
himpanzees, 15 gorilla and 7 orangutan. Chimps sequen
es add a

spe
ial 
avor be
ause they have three sequen
es from the so-
alled isolate spe
imens.

Unless otherwise mentioned all analysis were performed with the isolates and results

without the isolates (not shown) led to the same qualitatively 
on
lusions. For 
ontrol

purposes, Table 2 and 3 show the results for the Hamming distan
e pro
edure with

di�erent pseudo-groups as explained below. In ea
h table, te most relevant numbers

6



(either the largest D

n

(B)=D

n

(W ) ratio in the step or all D

n

(B) p-values for the last

possible step) are presented in bold fa
e.

First we performed the tests pro
edure on the 
omplete sample, starting with four

possible groups: humans (H), 
himpanzees (C), gorillas (G) and orangutans (O). Step 1

tests indi
ate that the best ratio is attained when humans are separated from the other

primates. On a se
ond step one expe
ts the three primates to be separetd. Again,

all three groupings are statisti
ally signi�
ant and the aforementioned ratio sele
ts the

separation of the orangutans from the other two primates. Finally it remains to test

whether it is feasible to separate 
himpanzees and gorillas and that is 
on�rmed by the


omputed D

n

(B). We should stress the fa
t that although a sequen
e of tests is taken,

their respe
tive p-values are so small (usually smaller than resolution enables one to

measure), that the overall �xed size of the phylogeneti
 
onstru
tion 
an be made as

small as one desires. That means that the resulting stru
ture is statisti
ally sounding.

Table 1: fH;C;G;Og Phylogeneti
 Tree

p-value

Grouping Ratio

D

n

(W ) D

n

(B)

((H),(C,G,O)) .9946 .0000 .4076

((C),(H,G,O)) .6243 .0001 .0929

((G),(H,C,O)) .9716 .0000 .3154

((O),(H,C,G)) .9168 .0000 .2520

((H,C),(G,O)) .9909 .0000 .3687

((H,G),(C,O)) .8464 .0000 .2008

((H,O),(C,G)) .9800 .0000 .3358

Result after Step 1 - ((H),(C,G,O))

((C),(G,O)) .9413 .0009 .2284

((G),(C,O)) .9966 .0000 .4147

((O),(C,G)) 1.000 .0000 .5584

Result after Step 2 - ((H),((O),(C,G)))

((C),(G)) .9975 .0000 .6129

Result after Step 3 - ((H),((O),((C),(G))))
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Table 2: fH

1

;H

2

; C;Gg and fH

1

;H

2

; C;Og Phylogeneti
 Trees

p-value p-value

Grouping Ratio Grouping Ratio

D

n

(W )D

n

(B) D

n

(W )D

n

(B)

((H

1

),(H

2

,C,G)) .5832 .0001 .0927 ((H

1

),(H

2

,C,O)) .5069 .0090 .0467

((H

2

),(H

1

,C,G)) .6135 .0000 .1133 ((H

2

),(H

1

,C,O)) .5372 .0021 .0672

((C),(H

1

,H

2

,G)) .6307 .0002 .1337 ((C),(H

1

,H

2

,O)) .6764 .0002 .1771

((G),(H

1

,H

2

,C)) .9921 .0000 .4596 ((O),(H

1

,H

2

,C)) .9333 .0000 .4221

((H

1

,H

2

),(C,G)) .9977 .0000 .5031 (H

1

,H

2

),(C,O)) .9132 .0000 .3867

((H

1

,C),(H

2

,G)) .5240 .0043 .0500 (H

1

,C),(H

2

,O)) .4780 .0253 .0303

((H

1

,G),(H

2

,C)) .5402 .0017 .0612 (H

1

,O),(H

2

,C)) .4931 .0146 .0391

Step 1 - ((H

1

,H

2

),(C,G)) Step 1 - ((H

1

,H

2

,C),(O))

((H

1

),(H

2

)) .4377 .1932 .0015 ((H

1

),(H

2

,C)) .4587 .0642 .0197

((C),(G)) .9979 .0000 .6129 ((H

2

),(H

1

,C)) .4735 .0292 .0335

((H

1

,H

2

),(C)) .6909 .0001 .3508

Step 2 - (((H

1

,H

2

),(C)),(O))

Step 2 - ((H

1

,H

2

),((C),(G))) ((H

1

),(H

2

)) .4334 .1828 .0015

Step 3 - (((H

1

,H

2

),(C)),(O))

In order to illustrate that the main appli
ation is not simply a spurious numeri
al

artifa
t we present also the p-values for the D

n

(W ) and they are (as they should be) all

negligible. The other diagnosti
 performed was the use of the same method for three

groupings other than groups of single spe
ies. The human group was randomly divided

in two groups of 29 sequen
es ea
h, 
alled H

1

and H

2

. Table 2 shows the analysis for

two pseudo-group 
onstru
tions - fH

1

; H

2

; C;Gg and fH

1

; H

2

; C;Og. Table 3 shows the

analysis for fH

1

; H

2

; G;Og and fH

1

; H

2

; C;G;Og. Tables 2 and 3 have as a 
ommon

feature that the proposed pro
edure is able to de
rease the four (or �ve) pseudo-groups

to a three (or four) tips phylogeneti
 tree. All the 
hosen groups are formed by single

spe
ies and the �ve pseudo-groups pro
edure results in the same as in Table 1.

Table 4 shows some problems in using a single sequen
e per group. Phylogeneti


trees are build from single sequen
es from ea
h spe
ies for three groups. When C, G

and O are 
onsidered the resulting tree always puts 
himpanzees and gorillas apart

from orangutans. However, for the remaining three 
ases results will strongly depend

on the sequen
e 
hosen.
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4 Computational Complexity

Computational performan
e of a phylogeneti
 tree 
onstru
tion method 
an be divided

in two main parts: the number of trees 
onsidered in the analysis and what will be

done with ea
h of these trees. Sin
e ea
h 
onsensual sequen
e method will have a very

spe
i�
 approa
h on this a
tion on a single tree, a dire
t performan
e 
omparison 
an

not be made. The numbers we will present in Table 5 are quite 
onservative towards MP

and ML methods, i.e., the huge 
omputational disadvantages those paradigmas have


ompared to the proposed method are quite understated. We 
ompute an upper bound

for our pro
edure and 
ompare it to a lower bound for the MP and ML-based methods.

One should noti
e that the 
omplexity for Hamming distan
e are not average numbers,

but the worst possible sequen
e of events. Moreover a linear 
omplexity of estimation

pro
edures is assumed for the MP and ML methods, whi
h is quite optimisti
 for all

but the very simplest models. Finally, the 
omputational 
omplexity for the Hamming

distan
e pro
edure is a sum of the number of sequen
es and the produ
t of a power

of the number of pseudo-groups and the number of sites. The number of sequen
es is

therefore only a memory burden but it is not otherwise worrysome in ea
h step. On

the other hand, the 
omplexity fo MP(or ML) methods is a fa
torial on the number of

sequen
es (not on the number of pseudo-groups).

Maximum parsimony methods have 
omplexity not smaller than (2G � 3)= 1 �

3 � 5 � � � � � (2G � 3) for ea
h site in 
onsideration. Maximum likelihood methods


omplexity are even larger be
ause besides the number of possible trees one deals with

parameters estimation.

Our method has 
omplexity not smaller than K, the number of sites. Sin
e all two-

sequen
es distan
es 
an be 
omputed in advan
e, that will have aG(G�1)=2 
omplexity.

Noti
e that the number of pseudo-groups is mu
h smaller than the number of sequen
es,

say n and that if one uses more than one sequen
e per group the 
omplexity of MP or

ML methods will be larger than (2n�3)!!. Some 
omparative �gures are shown in Table

5, with lower bounds for MP and ML methods and upper bounds for the Hamming

distan
e method.

For the appli
ation , the programs were run in C on a AMD Atlon 2100+ 1.73GHz


omputer. Pro
edures for 4 pseudo-groups, su
h as those in Table 2, would take 50

se
onds while 
omputations for 5 pseudo-groups, su
h as those in Table 6, would take

149 se
onds. For instan
e, a 10 group program would possibly run in less than two

hours on the same ma
hine, with no major 
on
ern on the number of sequen
es for

ea
h group.
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Table 3: fH

1

;H

2

; G;Og and fH

1

;H

2

; C;G;Og Phylogeneti
 Trees

p-value p-value

Grouping Ratio Grouping Ratio

D

n

(W )D

n

(B) D

n

(W )D

n

(B)

((H

1

),(H

2

,G,O)) .5937 .0000 .0851 ((H

1

),(H

2

,C,G,O)) .6383 .0000 .0886

((H

2

),(H

1

,G,O)) .6378 .0000 .1064 ((H

2

),(H

1

,C,G,O)) .6658 .0000 .1084

((G),(H

1

,H

2

,O)) .9777 .0000 .3815 ((C),(H

1

,H

2

,G,O)) .6344 .0001 .0928

((O),(H

1

,H

2

,G)) .9166 .0000 .2908 ((G),(H

1

,H

2

,C,O)) .9697 .0000 .3154

((H

1

,H

2

),(G,O)) .9935 .0000 .4547 ((O),(H

1

,H

2

,C,G)) .9136 .0000 .2520

((H

1

,G),(H

2

,O)) .5701 .0013 .0650 ((H

1

,H

2

),(C,G,O)) .9962 .0000 .4076

((H

1

,O),(H

2

,G)) .5577 .0010 .0621 ((H

1

,C),(H

2

,G,O)) .5533 .0011 .0536

Step 1 - ((H

1

,H

2

),(G,O)) ((H

1

,G),(H

2

,C,O)) .5328 .0018 .0465

((H

1

),(H

2

)) .4425 .1924 .0015 ((H

1

,O),(H

2

,C,G)) .5749 .0010 .0647

((G),(O)) .9999 .0000 .8112 ((H

2

,C),(H

1

,G,O)) .5814 .0002 .0675

((H

2

,G),(H

1

,C,O)) .5256 .0024 .0466

((H

2

,O),(H

1

,C,G)) .5809 .0003 .0690

((C,G),(H

1

,H

2

,O)) .9785 .0000 .3358

((C,O),(H

1

,H

2

,G)) .8497 .0000 .2008

((G,O),(H

1

,H

2

,C)) .9909 .0000 .3687

Step 1 - ((H

1

,H

2

),(C,G,O)

Step 2 - ((H

1

,H

2

),((G),(O))) ((C),(G,O)) .9424 .0010 .2284

((G),(C,O)) .9978 .0000 .4147

((O),(C,G)) .9998 .0000 .5584

Step 2 - ((H

1

,H

2

),((C,G),(O))

((H

1

),(H

2

)) .4500 .1890 .0015

((C),(G)) .9972 .0000 .6129

Step 3 - ((H

1

,H

2

),(((C),(G)),(O)))
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Table 4: Phylogeneti
 Tree with a single sequen
e from ea
h spe
ies

with the 3 Isolates without the Isolates

Topology Samples Samples

100 1000 10000 All 100 1000 10000 All

((H,C),G) .6000 .6110 .5987 .5981 .3900 .2710 .2921 .2915

((H,G),C) .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

((C,G),H) .4000 .3890 .4013 .4039 .6100 .7290 .7079 .7085

((H,C),O) .9800 .9880 .9841 .9843 .9800 .9880 .9841 .9826

((H,O),C) .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

((C,O),H) .0200 .0120 .0159 .0157 .0200 .0120 .0159 .0174

((H,G),O) .9800 .9880 .9841 .9843

((H,O),G) .0000 .0000 .0000 .0000

((C,G),H) .0200 .0120 .0159 .0157

((C,G),O) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

((C,O),G) .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

((G,O),C) .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Table 5: Computational Complexity of Phylogeneti
 Tree Constru
tion

G (for Hamming) Worst Case Lower Estimate

n (for ML or MP) for Hamming for ML or MP

2 1 1

3 4 3

4 11 15

5 26 105

10 1013 34459425

50 1:125 � 10

15

2:752 � 10

76

100 1:267 � 10

30

3:349 � 10

184

500 3:273 � 10

150

1:008 � 10

1280

1000 1:071 � 10

301

3:847 � 10

2863

10000 1:995 � 10

3010

1:601 � 10

38663
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5 Dis
ussion

We present an alternative method for the 
onstru
tion of phylogeneti
 trees. The

method has some advantages over the traditional methods. For instan
e, sin
e it uses

Hamming distan
e and it is sequentially built through binary separations it is very fast

and 
omputationally eÆ
ient. It is based on non-parametri
 ideas what makes it less

prone to model bias. Moreover its statisti
al properties 
an be asserted using its dire
t

U-statisti
s representation. One 
an 
learly relate the within and in-between dissimi-

larities to spe
ies and individual 
hara
teristi
s. Two other novelties are its 
apa
ity to

deal with multiple (and di�erent) sequen
es per group (and built its statisti
al proper-

ties upon this ri
her information) and that the best tree will not have a predetermined

number of tips i.e. the resulting number of tips will be statisti
ally meaningful. We

applied the method in a sample of primate mito
hondrial DNA sequen
es, illustrating

that it 
an perform quite well even on very unbalan
ed design and that is feasible to

be used for very large datasets.
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