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Abstract

The paper considers the problem of Phylogenetic tree construction. Our approach
to the the problem bases itself on a non-parametric paradigma seeking a model free
construction and symmetry on Type I and II errors. Trees are constructed through
sequential tests using Hamming distance dissimilarity measures, from internal nodes to
the tips. The method has some advantages over the traditional methods. It is very
fast, computationally efficient, and feasible to be used for very large datasets. Two
other novelties are its capacity to deal directly with multiple sequences per group (and
built its statistical properties upon this richer information) and that the best tree will
not have a predetermined number of tips i.e. the resulting number of tips will be
statistically meaningful. We applied the method in a sample of primate mitochondrial
DNA sequences, illustrating that it can perform quite well even on very unbalanced
design. Computational complexities are also addressed.

Keywords: Phylogenetic Tree; Hamming Distance; Dissimilarity Measures; Statistical
Genetics; Non-parametric Test.

1 Introduction

In the last decades one has seen increasing interest and power of analyzing genetic
data. Scientists are collecting genetic data in exponentially faster speed and synthetic
measures are of great importance for either analyzing a single sample or for comparing
different procedures or samples. One such measure is the phylogenetic tree.

A phylogenetic tree is a graph depicting the ancestor-descendant relationship between
organisms or gene sequences. The sequences are the tips of the tree. Branches of the tree



connect the tips to their (unobservable) ancestral sequences (Holder and Lewis(2003)).
One can use such a representation to infer about temporal relationships between species
or DNA sequences for questions such as: which species are more closely related; is there
a common ancestor for two species; or can we group two species on the tip when facing
a third species?

A survey of phylogenetic trees in both their biological aspects as well as statistical
features is provided by Weir(1996). More recent works with comprehensive surveys are
Salemi and Vandame (2003) and Holder and Lewis (2003).

One can construct phylogenetic trees (for sequences or species) by several differ-
ent methods. Some of the most referred on the literature are parsimony, maximum
likelihood and distance matrices procedures.

Each different method has its own motivation which in one hand provides its strength
but on the other hand burdens it with its weakness. They all do relly on a common
feature: a single sequence for each group. That is attained by either a single specimen
from each group or by the use of a consensual sequence as the legitimate representative
of a group. Apart from the biological limitations of such dimension reduction we do
worry about statistical properties of trees thereof provided.

Here, we develop a methodology that can be used for single specimens cases or mul-
tiple cases with unbalanced sample sizes. The only difference between those situations
is that on the latter one will have more statistical power than on the former one.

Pinheiro et al (2003) has studied a decomposition of Hamming distance that quan-
tifies the amount of diversity between individuals from the same pseudogroup and
diversity within individuals of different groups. That decomposition is interesting from
its interpretation and also because it enables one to employ U-statistics theory to prove
solid statistical properties.

We propose a procedure that sequentially builds the tree from its internal nodes to
its tips. The p-values from each test are computed via bootstrap resampling. More-
over, in each step the topology with larger diversity separation is used. We apply the
methodology to a sample of primate mitochondrial DNA sequences.

The main advantages of this method reside on its flexibility, its statistical properties,

its easeness of use, and its computational performance.

2 Phylogenetic Trees via Hamming Distance

The procedure we propose works for either genes or more complex data. Therefore,
when referring to the differences between sequences we will use the general term group

that should be understood in its context.



Aside from working exclusively with single sequences per group, the usual meth-
ods do not explicitly quantify dissimilarities between groups and dissimilarities within
groups. The latter is not considered biologically relevant. This theoretical insignifi-
cance is numerically represented by a consensual sequence for each group. Therefore,
measuring only the dissimilarities between groups without comparing them to the a pri-
ori neglected within groups dissimilarities generates procedures with a clear conceptual
bias towards group separation.

This bias can be qualitatively put as follows. Suppose one is able to quantify mean-
ingfully disimilarity and that there is a theoretical dissimilarity value dy (unknown)
which is the smallest value for which separation of any two groups is biologically mean-
infgul. Whenever the dissimilarity between two pseudo-groups can be exactly measured
and it fails to be larger than dy one can not consider these two pseudo-groups different
but their elements are part of a single group and their computed dissimilarity is only
a measure of individual differences. Otherwise, if their dissimilarity is larger than dp,
one should consider them two legitimate groups.

Let dr, be the true theoretical between groups dissimilarity measure (unknown).
Models which fail to comparatively evaluate within and between dissimilarities should
favor grouping with dj, (< dp) computed dissimilary with a higher probability than
not separating groups whose computed dissimilarity is dy + (dp — d). This lack of
simmetry is called in Statistics a bias. The degree of bias will depend on the procedure
which is taken and on the specificities of the sample and genomes being studied. The
theoretical aspects of this bias are unknown and abstract (at least to our knowledge)
but the conceptual risks of bias toward separation should be clear.

We use a non-parametric technique which tries to address the bias issue through
a careful decomposition of dissimilarities via U-statistics theory. Moreover because we
deal with nonparametrics one should expect distribution and model free results i.e. the
less structured model implemented will give less power but on the other hand it will
work with overall smaller Type I and Type II error probabilities under a larger family of
distributions. Because we are able to extract information from each individual sequence
the usual power issues with nonparametric techniques are lessened to a degree in which
one has either really small p-values or really large ones. Therefore any doubt from
a inferential point of view will be less dependent on the method itself and should be
regarded as a characteristic of the problem.

The tree is constructed via recursive tests based on the U-statistics decomposition
of Hamming distance for the sampled sequences, as proposed by Pinheiro et al. (2003).
For the sake of completeness we will describe briefly the mathematical aspects of such

a decomposition and its statistical implications.



Consider a general computational sequence analysis (CSA) with K sites, each one
having 4 possible categories (Pinheiro et al. (2003) treats the general C' categories
case) in each site k = 1,2,..., K. Each category represents a nucleotide but that can
be used for protein or codon sequences without any aditional notational burden. Let
X; = (X1, Xi2,...,Xik) be a random vector of responses where X;; represents the
categorical outcome ¢ (¢ = 1,2, 3,4) at site k for the i-th sequence.

One defines the Hamming distance between a pair (i,4') of sequences as:

K
1
Dy = i ];I(Xik # Xi), (1)

where I(X;, # Xyi) is zero if the respective k-th sites on the i-th and i'-th sequences
are equal and one if they are different. So, D;; is the proportion of sites where X; and
X do not match.

Suppose one has G' groups and each group has ny, sampled sequences, g = 1,2,...,G.
Pinheiro et al. (2003) defines three Hamming distance related measures, D,,(B), D, (W)
and D,,(0)), respectively by:

g d
1 _ _ _
Dn(B) = n_1 Z Z ngnyg (2Dggr — Dgg — Dy ) (2)
9=1g'=g+1
G o
D, (W) = Z;ngg (3)
g=1
D,(0) = D,(W)+ D,(B),

(4)

where D, is the average distance within the g-th group, and D, is the average
distance between groups g and ¢g', where g,¢' = 1,2,...,G and ¢' # g.

D, is a U-statistic of degree 2 and D, is a two sample U-statistic of degree (1,1).
Some deterministic inequalities can then be employed to pursue tests of differences
between groups, with solid asymptotic statistical results for the test statistic Dy, (B).

In applications, it is very hard to address the exact distribution of D, (B). It is
theoretically possible to build the asymptotic distribution directly from some fairly
complex functions of the data but those procedures are computationally expensive.
There is also th issue of ensuring that the asymptotic approximation is good enough
for the sampled data. The safer procedure is to employ bootstrap resamplig techniques
and their empirical percentiles for decisions.

Suppose the phylogenetic tree is rooted and binary. Whenever two groups are con-
sidered statistically different there is only one possible tree. However, for more than



two possible groups, say G, a statistically significant difference does not guarantee that
there are G different groups (the test will grasp any minute difference between any two
groups as long as its power is good enough). Therefore for phylogenetic trees construc-
tion one will eventually perform some two groups tests. Moreover for more than two
groups, say {1,2,3}, even after it is statistically inferred that there are three different
groups one must decide among ((1), ((2), (3))), ((2), ((1),(3))), or ((3),((1),(2))), using
a Newick-like notation.

The construction of phylogenetic trees goes as follows. Suppose one has G possible
groups for which one wants to build a three with at most G different groups. We
will exemplify the construction with G = 4 but its theoretical aspects are not any
different when G gets large albeit its computational complexity may preclude us from
proceeding. There are two possible topologies (up to nominating the tips) with a total
of seven different groupings.

In step 1 seven tests are performed. It is important to notice that, due to the
statistical power of discrimination provided by the multiple sequences in each group,
all tentative grouping present a statistically significant small value of D,,(B). Therefore,
an additional measure is taken into account to choose the most relevant separation. The
ratio D,,(B)/D,(0) = (1+D,(W)/D,(B)) ! works as follows. While D,,(B) quantifies
the overall difference between pair of groups, D,,(W) measures those characteristics
that single individuals within their respective groups. Therefore, is it natural to reject
grouping for which the aforementioned ratio is small because the innergroup diversity
which is considered tolerable and measured by D, (W) is much larger then the pseudo-
groups diversity (given by D,,(B)). On the other hand, groups that have the largest
ratio D,,(B)/D,,(0) provide the best separation among all possible groups configuration.

After step 1 is performed one has either a tree with two tips with two pseudo-groups
each or a tree with one tip with one group and another with tree pseudo-groups. In
the former case, one will perform the two remainig tests and the final tree will have
two, three or four tips if, respetively, none of the D, (B)’s in step 2 are statistically
significant, exactly one of them is, or both are. In the latter situation, the three
possible grouping of one against two pseudo groups will be performed. If all D,(B)’s
are statistically negligible one will have a final two tips tree. Otherwise, one chooses
the path that maximizes the D,,(B)/D, (W) ratio, having a tree with two tips of one
group each and a still unresolved tip with two pseudo-groups. Finally the last test for
this tip is performed and if its D, (B) is statistically significant one has a four tip tree.
Otherwise, one has a three tip tree.

The following algorithm summarizes the procedure:

(0.1) Let G be the set of all pseudo-groups
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(0.2) Compute all distances D;;, Vi,j € G,, g = 1,2,...,G, using equation (1),
where G, is the g-th pseudo-group to be tested
(0.3) Take the set of pseudo-groups £ = {G1,Ga,...,Ga} a partition of G and let
N=G
(1) For I =1 to | N/2|
e for all possible partitions {6"1, 52} of £, such that &, contains [ pseudo-groups
and &, contains the remaning N — [ pseudo-groups
1. Compute D, (B)!"“¢ and D, (W) with equations (2) and (3)
2. Repeat for b = 1 to B (the number of bootstraps)
(a) Select randomly a sample of |£| sequences with replacement from &

(b) Take the first [ sequences to be pseudo-observations from £ and the
last N — [ to be from &
(c) Compute D, (B)* and D,(W)? from formulas (2) and (3), and store

its values

(2) Consider all D, (B)!“¢ from (1) and let S be the set of all statistically sig-
nificant ones, using the percentiles from the bootstraped D,(B), b=1,2,...,B
1. If S =, there are no statistically significant groups and the procedure for £
is over and & can not be divided any further
2. If S # 0, choose the partition of £ as {51,52} for which the ratio between
D,(B) and D, (W) is maximum
3. Repeat the algorithm for £ = G; and £ = G, until there is not a group with
two or more pseudo-groups untested

Application

The data sets consists of sequences of mitochondrial DNA from humans, chimpanzees,

gorillas and orangutans with 438bp. The tests were performed with B = 10000 boot-

straped resamples, taken from the original pooled sample. Four tables are presented.

Table 1 shows the results of the proposed procedure with 96 sequences of which 58

are from humans, 6 chimpanzees, 15 gorilla and 7 orangutan. Chimps sequences add a

special flavor because they have three sequences from the so-called isolate specimens.

Unless otherwise mentioned all analysis were performed with the isolates and results

without the isolates (not shown) led to the same qualitatively conclusions. For control

purposes, Table 2 and 3 show the results for the Hamming distance procedure with

different pseudo-groups as explained below. In each table, te most relevant numbers



(either the largest D, (B)/D, (W) ratio in the step or all D, (B) p-values for the last
possible step) are presented in bold face.

First we performed the tests procedure on the complete sample, starting with four
possible groups: humans (H), chimpanzees (C), gorillas (G) and orangutans (O). Step 1
tests indicate that the best ratio is attained when humans are separated from the other
primates. On a second step one expects the three primates to be separetd. Again,
all three groupings are statistically significant and the aforementioned ratio selects the
separation of the orangutans from the other two primates. Finally it remains to test
whether it is feasible to separate chimpanzees and gorillas and that is confirmed by the
computed D,,(B). We should stress the fact that although a sequence of tests is taken,
their respective p-values are so small (usually smaller than resolution enables one to
measure), that the overall fized size of the phylogenetic construction can be made as
small as one desires. That means that the resulting structure is statistically sounding.

Table 1: {H,C,G, 0O} Phylogenetic Tree

p-value

Grouping Ratio
Dn(W)  Dn(B)

((H),(C,G,0)) | 9946  .0000 | .4076
((C),(H,G,0)) | .6243  .0001 | .0929
((G),(H,C,0)) | 9716  .0000 | .3154
((0),(H,C,G)) | 9168  .0000 | .2520
((H,0),(G,0)) | .9909  .0000 | .3687
((H,G),(C,0)) | .8464  .0000 | .2008
((H,0),(C,G)) | .9800  .0000 | .3358

Result after Step 1 - ((H),(C,G,0))
((C),(G,0)) | 9413  .0009 | .2284
((G),(C,0)) | .9966  .0000 | .4147
((0),(C,G)) | 1.000  .0000 | .5584
Result after Step 2 - ((H),((0),(C,Q)))

((0),(G)) | 9975 .0000 | .6129
Result after Step 3 - ((H),((O),((C),(G))))




Table 2: {Hy,Hy,C,G} and {Hy, Hy,C,O} Phylogenetic Trees

p-value p-value
Grouping Ratio Grouping Ratio
D, (W)D, (B D, (W)D, (B

((H1),(H5,CGQG))|.5832 .0001 |.0927 || ((Hy),(Ho,C,O))|.5069 .0090 | .0467
((H2),(H1,CQG))|.6135 .0000 |.1133 || ((H2),(H1,C,O))|.5372 .0021|.0672
((C),(H,Hy,G)) | .6307 .0002|.1337 | ((C),(H,Ho0))|.6764 .0002|.1771
((G),(H,H9C)) | .9921  .0000 |.4596 | ((O),(H1,Ho,C))|.9333 .0000 |.4221
((H,H2),(C,G)) | .9977 .0000|.5031 | (H1,H2),(CO)) |.9132 .0000| 3867
((H,C),(Hg,G)) | .5240 .0043 | .0500 || (H1,C),(H20)) |.4780 .0253|.0303
(( )

5402 .0017|.0612 || (H,O),(HyC)) |.4931 .0146 | .0391
Step 1 - ((H1,H)(CG)) Step 1 - ((H,Hy,C),(0))
((H),(Hp)) |.4377 .1932.0015 || ((H;).(HxC)) |.4587 .0642|.0197
((CL(G))  |.9979 .0000|.6129 | ((H,),(H,C)) |.4735 .0292].0335
((H,H2),(C)) |.6909 .0001|.3508

Step 2 - (((H,H2),(C)),(0))
Step 2 - ((Hy,Ha)((C),(G))) ((F1),(Hz)) |.4334 .1828].0015

Step 3 - (((Hl,H2),(C)),(0))

In order to illustrate that the main application is not simply a spurious numerical
artifact we present also the p-values for the D, (W) and they are (as they should be) all
negligible. The other diagnostic performed was the use of the same method for three
groupings other than groups of single species. The human group was randomly divided
in two groups of 29 sequences each, called H; and H,. Table 2 shows the analysis for
two pseudo-group constructions - { Hy, Hy, C, G} and {H;, Hs,C, O}. Table 3 shows the
analysis for {Hy, H2,G,0} and {Hy, H2,C,G,0}. Tables 2 and 3 have as a common
feature that the proposed procedure is able to decrease the four (or five) pseudo-groups
to a three (or four) tips phylogenetic tree. All the chosen groups are formed by single
species and the five pseudo-groups procedure results in the same as in Table 1.

Table 4 shows some problems in using a single sequence per group. Phylogenetic
trees are build from single sequences from each species for three groups. When C, G
and O are considered the resulting tree always puts chimpanzees and gorillas apart
from orangutans. However, for the remaining three cases results will strongly depend

on the sequence chosen.



4 Computational Complexity

Computational performance of a phylogenetic tree construction method can be divided
in two main parts: the number of trees considered in the analysis and what will be
done with each of these trees. Since each consensual sequence method will have a very
specific approach on this action on a single tree, a direct performance comparison can
not be made. The numbers we will present in Table 5 are quite conservative towards MP
and ML methods, i.e., the huge computational disadvantages those paradigmas have
compared to the proposed method are quite understated. We compute an upper bound
for our procedure and compare it to a lower bound for the MP and ML-based methods.
One should notice that the complexity for Hamming distance are not average numbers,
but the worst possible sequence of events. Moreover a linear complexity of estimation
procedures is assumed for the MP and ML methods, which is quite optimistic for all
but the very simplest models. Finally, the computational complexity for the Hamming
distance procedure is a sum of the number of sequences and the product of a power
of the number of pseudo-groups and the number of sites. The number of sequences is
therefore only a memory burden but it is not otherwise worrysome in each step. On
the other hand, the complexity fo MP(or ML) methods is a factorial on the number of
sequences (not on the number of pseudo-groups).

Maximum parsimony methods have complexity not smaller than (2G — 3)= 1 x
3 x5 x---x (2G — 3) for each site in consideration. Maximum likelihood methods
complexity are even larger because besides the number of possible trees one deals with
parameters estimation.

Our method has complexity not smaller than K, the number of sites. Since all two-
sequences distances can be computed in advance, that will have a G(G—1)/2 complexity.
Notice that the number of pseudo-groups is much smaller than the number of sequences,
say n and that if one uses more than one sequence per group the complexity of MP or
ML methods will be larger than (2n—3)!!. Some comparative figures are shown in Table
5, with lower bounds for MP and ML methods and upper bounds for the Hamming
distance method.

For the application , the programs were run in C on a AMD Atlon 2100+ 1.73GHz
computer. Procedures for 4 pseudo-groups, such as those in Table 2, would take 50
seconds while computations for 5 pseudo-groups, such as those in Table 6, would take
149 seconds. For instance, a 10 group program would possibly run in less than two
hours on the same machine, with no major concern on the number of sequences for

each group.



Table 3: {Hy, Hy,G,0} and {Hy, H2,C,G, O} Phylogenetic Trees

p-value p-value
Grouping Ratio Grouping Ratio
Do (W)Dy(B Do (W)Dy(B
((Hy),(Ho,GO))| .5937 .0000| .0851 ||((Hy)(HsC,GO))|.6383 .0000 | .0886
((H2),(H1,G,O))| .6378 .0000| .1064 ||((H2),(H,CGO))|.6658 .0000 |.1084
((G),(H,H9,0))| .9777 .0000| .3815 ||((C),(H,HyGO))|.6344 .0001 | .0928
((O),(H,H5,G))| .9166 .0000 | .2908 || ((G),(Hy,Ho,CO)){.9697 .0000| 3154
((H,H2),(G,0))| .9935 .0000 | .4547 | ((O),(H1,Ho,CG))|.9136 .0000 | .2520
((H,G),(H9,0))| .5701 .0013| .0650 || ((Hy,H2),(C,GO))|.9962 .0000 |.4076
((H,0),(Ho,G))| .5577 .0010| .0621 ||((H1,C),(H2,GO))|.5533 .0011 |.0536
Step 1 - ((H1,H2),(GO)) ((H,G),(H9,C,O))|.5328 .0018| 0465
((Hy),(Hg)) |.4425 .1924| .0015 || ((H1,0),(Ho,CG))|.5749 .0010|.0647
((G),(0)) 9999 .0000| .8112 | ((HyC),(H1,GO))|.5814 .0002|.0675
((Hg,G),(H1,CO)) | .5256 .0024 | .0466
((H9,0),(H1,C,G)) | .5809 .0003 | .0690
((C,G),(H,Hy0))|.9785 .0000| 3358
((CO),(H,Hy,G)) | .8497 .0000 | .2008
((GO),(H,H5,C))[.9909 .0000 | .3687
Step 1 - ((H1,H2),(C,GO)
Step 2 - ((H1,H2),((G),(0))) ((C),(GO)) 9424 .0010 | .2284
((G)L(C0)) 29978 .0000 | .4147
((0X(CQ)) 29998  .0000 |.5584
Step 2 - ((H,H2),((CG),(0))

((Hy),(Ha)) 4500 .1890| .0015
((C)L(G)) 9972 .0000| .6129

Step 3 - (HyH2),(((C),(G))(0)))

10



Table 4: Phylogenetic Tree with a single sequence from each species

with the 3 Isolates without the Isolates
Topology Samples Samples
100 1000 10000  All 100 1000 10000  All

((H,C),G) | .6000 .6110 .5987 .5981 | .3900 .2710 .2921 .2915
((H,G),C) | .0000 .0000 .0000 .0000 | .0000 .0000 .0000 .0000
((C,G),H) | .4000 .3890 .4013 .4039 | .6100 .7290 .7079 .7085
((H,C),0) | .9800 .9880 .9841 .9843 | .9800 .9880 .9841 .9826
((H,0),C) | .0000 .0000 .0000 .0000 |.0000 .0000 .0000 .0000
((C,0),H) | .0200 .0120 .0159 .0157 | .0200 .0120 .0159 .0174
((H,G),0) | .9800 .9880 .9841 .9843

((H,0),G) | .0000 .0000 .0000 .0000

((C,G),H) | .0200 .0120 .0159 .0157

((C,G),0) | 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
((C,0),G) | .0000 .0000 .0000 .0000 | .0000 .0000 .0000 .0000
((G,0),C) | .0000 .0000 .0000 .0000 |.0000 .0000 .0000 .0000

Table 5: Computational Complexity of Phylogenetic Tree Construction

G (for Hamming) Worst Case Lower Estimate
n (for ML or MP) | for Hamming  for ML or MP
2 1 1
3 4 3
4 11 15
5 26 105
10 1013 34459425
50 1.125 x 10%° 2.752 x 1076
100 1.267 x 1030 3.349 x 10'8*
500 3.273 x 10150 1.008 x 10'280
1000 1.071 x 10301 3.847 x 102863
10000 1.995 x 103910 1,601 x 1038663
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5 Discussion

We present an alternative method for the construction of phylogenetic trees. The
method has some advantages over the traditional methods. For instance, since it uses
Hamming distance and it is sequentially built through binary separations it is very fast
and computationally efficient. It is based on non-parametric ideas what makes it less
prone to model bias. Moreover its statistical properties can be asserted using its direct
U-statistics representation. One can clearly relate the within and in-between dissimi-
larities to species and individual characteristics. Two other novelties are its capacity to
deal with multiple (and different) sequences per group (and built its statistical proper-
ties upon this richer information) and that the best tree will not have a predetermined
number of tips i.e. the resulting number of tips will be statistically meaningful. We
applied the method in a sample of primate mitochondrial DNA sequences, illustrating
that it can perform quite well even on very unbalanced design and that is feasible to

be used for very large datasets.
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