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Abstrat

The paper onsiders the problem of Phylogeneti tree onstrution. Our approah

to the the problem bases itself on a non-parametri paradigma seeking a model free

onstrution and symmetry on Type I and II errors. Trees are onstruted through

sequential tests using Hamming distane dissimilarity measures, from internal nodes to

the tips. The method has some advantages over the traditional methods. It is very

fast, omputationally eÆient, and feasible to be used for very large datasets. Two

other novelties are its apaity to deal diretly with multiple sequenes per group (and

built its statistial properties upon this riher information) and that the best tree will

not have a predetermined number of tips i.e. the resulting number of tips will be

statistially meaningful. We applied the method in a sample of primate mitohondrial

DNA sequenes, illustrating that it an perform quite well even on very unbalaned

design. Computational omplexities are also addressed.

Keywords: Phylogeneti Tree; Hamming Distane; Dissimilarity Measures; Statistial

Genetis; Non-parametri Test.

1 Introdution

In the last deades one has seen inreasing interest and power of analyzing geneti

data. Sientists are olleting geneti data in exponentially faster speed and syntheti

measures are of great importane for either analyzing a single sample or for omparing

di�erent proedures or samples. One suh measure is the phylogeneti tree.

A phylogeneti tree is a graph depiting the anestor-desendant relationship between

organisms or gene sequenes. The sequenes are the tips of the tree. Branhes of the tree
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onnet the tips to their (unobservable) anestral sequenes (H�older and Lewis(2003)).

One an use suh a representation to infer about temporal relationships between speies

or DNA sequenes for questions suh as: whih speies are more losely related; is there

a ommon anestor for two speies; or an we group two speies on the tip when faing

a third speies?

A survey of phylogeneti trees in both their biologial aspets as well as statistial

features is provided by Weir(1996). More reent works with omprehensive surveys are

Salemi and Vandame (2003) and H�older and Lewis (2003).

One an onstrut phylogeneti trees (for sequenes or speies) by several di�er-

ent methods. Some of the most referred on the literature are parsimony, maximum

likelihood and distane matries proedures.

Eah di�erent method has its own motivation whih in one hand provides its strength

but on the other hand burdens it with its weakness. They all do relly on a ommon

feature: a single sequene for eah group. That is attained by either a single speimen

from eah group or by the use of a onsensual sequene as the legitimate representative

of a group. Apart from the biologial limitations of suh dimension redution we do

worry about statistial properties of trees thereof provided.

Here, we develop a methodology that an be used for single speimens ases or mul-

tiple ases with unbalaned sample sizes. The only di�erene between those situations

is that on the latter one will have more statistial power than on the former one.

Pinheiro et al (2003) has studied a deomposition of Hamming distane that quan-

ti�es the amount of diversity between individuals from the same pseudogroup and

diversity within individuals of di�erent groups. That deomposition is interesting from

its interpretation and also beause it enables one to employ U-statistis theory to prove

solid statistial properties.

We propose a proedure that sequentially builds the tree from its internal nodes to

its tips. The p-values from eah test are omputed via bootstrap resampling. More-

over, in eah step the topology with larger diversity separation is used. We apply the

methodology to a sample of primate mitohondrial DNA sequenes.

The main advantages of this method reside on its exibility, its statistial properties,

its easeness of use, and its omputational performane.

2 Phylogeneti Trees via Hamming Distane

The proedure we propose works for either genes or more omplex data. Therefore,

when referring to the di�erenes between sequenes we will use the general term group

that should be understood in its ontext.
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Aside from working exlusively with single sequenes per group, the usual meth-

ods do not expliitly quantify dissimilarities between groups and dissimilarities within

groups. The latter is not onsidered biologially relevant. This theoretial insigni�-

ane is numerially represented by a onsensual sequene for eah group. Therefore,

measuring only the dissimilarities between groups without omparing them to the a pri-

ori negleted within groups dissimilarities generates proedures with a lear oneptual

bias towards group separation.

This bias an be qualitatively put as follows. Suppose one is able to quantify mean-

ingfully disimilarity and that there is a theoretial dissimilarity value d

0

(unknown)

whih is the smallest value for whih separation of any two groups is biologially mean-

infgul. Whenever the dissimilarity between two pseudo-groups an be exatly measured

and it fails to be larger than d

0

one an not onsider these two pseudo-groups di�erent

but their elements are part of a single group and their omputed dissimilarity is only

a measure of individual di�erenes. Otherwise, if their dissimilarity is larger than d

0

,

one should onsider them two legitimate groups.

Let d

L

be the true theoretial between groups dissimilarity measure (unknown).

Models whih fail to omparatively evaluate within and between dissimilarities should

favor grouping with d

L

(< d

0

) omputed dissimilary with a higher probability than

not separating groups whose omputed dissimilarity is d

0

+ (d

0

� d

L

). This lak of

simmetry is alled in Statistis a bias. The degree of bias will depend on the proedure

whih is taken and on the spei�ities of the sample and genomes being studied. The

theoretial aspets of this bias are unknown and abstrat (at least to our knowledge)

but the oneptual risks of bias toward separation should be lear.

We use a non-parametri tehnique whih tries to address the bias issue through

a areful deomposition of dissimilarities via U-statistis theory. Moreover beause we

deal with nonparametris one should expet distribution and model free results i.e. the

less strutured model implemented will give less power but on the other hand it will

work with overall smaller Type I and Type II error probabilities under a larger family of

distributions. Beause we are able to extrat information from eah individual sequene

the usual power issues with nonparametri tehniques are lessened to a degree in whih

one has either really small p-values or really large ones. Therefore any doubt from

a inferential point of view will be less dependent on the method itself and should be

regarded as a harateristi of the problem.

The tree is onstruted via reursive tests based on the U-statistis deomposition

of Hamming distane for the sampled sequenes, as proposed by Pinheiro et al. (2003).

For the sake of ompleteness we will desribe briey the mathematial aspets of suh

a deomposition and its statistial impliations.
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Consider a general omputational sequene analysis (CSA) with K sites, eah one

having 4 possible ategories (Pinheiro et al. (2003) treats the general C ategories

ase) in eah site k = 1; 2; : : : ;K. Eah ategory represents a nuleotide but that an

be used for protein or odon sequenes without any aditional notational burden. Let

X

i

= (X

i1

; X

i2

; : : : ; X

iK

) be a random vetor of responses where X

ik

represents the

ategorial outome  ( = 1; 2; 3; 4) at site k for the i-th sequene.

One de�nes the Hamming distane between a pair (i; i

0

) of sequenes as:

D

ii

0

=

1

K

K

X

k=1

I (X

ik

6= X

i

0

k

) ; (1)

where I(X

ik

6= X

i

0

k

) is zero if the respetive k-th sites on the i-th and i

0

-th sequenes

are equal and one if they are di�erent. So, D

ii

0

is the proportion of sites where X

i

and

X

i

0

do not math.

Suppose one hasG groups and eah group has n

g

sampled sequenes, g = 1; 2; : : : ; G.

Pinheiro et al. (2003) de�nes three Hamming distane related measures,D

n

(B), D

n

(W )

and

�

D

n

(0)), respetively by:

D

n

(B) =

1

n� 1

8

<

:

G

X

g=1

G

X

g

0

=g+1

n

g

n

g

0

�

2

�

D

gg

0

�

�

D

gg

�

�

D

g

0

g

0

�

9

=

;

(2)

D

n

(W ) =

G

X

g=1

n

g

n

�

D

gg

(3)

�

D

n

(0) = D

n

(W ) +D

n

(B);

(4)

where

�

D

gg

is the average distane within the g-th group, and

�

D

gg

0

is the average

distane between groups g and g

0

, where g; g

0

= 1; 2; : : : ; G and g

0

6= g.

�

D

gg

is a U -statisti of degree 2 and

�

D

gg

0

is a two sample U -statisti of degree (1; 1).

Some deterministi inequalities an then be employed to pursue tests of di�erenes

between groups, with solid asymptoti statistial results for the test statisti D

n

(B).

In appliations, it is very hard to address the exat distribution of D

n

(B). It is

theoretially possible to build the asymptoti distribution diretly from some fairly

omplex funtions of the data but those proedures are omputationally expensive.

There is also th issue of ensuring that the asymptoti approximation is good enough

for the sampled data. The safer proedure is to employ bootstrap resamplig tehniques

and their empirial perentiles for deisions.

Suppose the phylogeneti tree is rooted and binary. Whenever two groups are on-

sidered statistially di�erent there is only one possible tree. However, for more than
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two possible groups, say G, a statistially signi�ant di�erene does not guarantee that

there are G di�erent groups (the test will grasp any minute di�erene between any two

groups as long as its power is good enough). Therefore for phylogeneti trees onstru-

tion one will eventually perform some two groups tests. Moreover for more than two

groups, say f1; 2; 3g, even after it is statistially inferred that there are three di�erent

groups one must deide among ((1); ((2); (3))), ((2); ((1); (3))), or ((3); ((1); (2))), using

a Newik-like notation.

The onstrution of phylogeneti trees goes as follows. Suppose one has G possible

groups for whih one wants to build a three with at most G di�erent groups. We

will exemplify the onstrution with G = 4 but its theoretial aspets are not any

di�erent when G gets large albeit its omputational omplexity may prelude us from

proeeding. There are two possible topologies (up to nominating the tips) with a total

of seven di�erent groupings.

In step 1 seven tests are performed. It is important to notie that, due to the

statistial power of disrimination provided by the multiple sequenes in eah group,

all tentative grouping present a statistially signi�ant small value ofD

n

(B). Therefore,

an additional measure is taken into aount to hoose the most relevant separation. The

ratioD

n

(B)=

�

D

n

(0) = (1+D

n

(W )=D

n

(B))

�1

works as follows. While D

n

(B) quanti�es

the overall di�erene between pair of groups, D

n

(W ) measures those harateristis

that single individuals within their respetive groups. Therefore, is it natural to rejet

grouping for whih the aforementioned ratio is small beause the innergroup diversity

whih is onsidered tolerable and measured by D

n

(W ) is muh larger then the pseudo-

groups diversity (given by D

n

(B)). On the other hand, groups that have the largest

ratioD

n

(B)=

�

D

n

(0) provide the best separation among all possible groups on�guration.

After step 1 is performed one has either a tree with two tips with two pseudo-groups

eah or a tree with one tip with one group and another with tree pseudo-groups. In

the former ase, one will perform the two remainig tests and the �nal tree will have

two, three or four tips if, respetively, none of the D

n

(B)'s in step 2 are statistially

signi�ant, exatly one of them is, or both are. In the latter situation, the three

possible grouping of one against two pseudo groups will be performed. If all D

n

(B)'s

are statistially negligible one will have a �nal two tips tree. Otherwise, one hooses

the path that maximizes the D

n

(B)=D

n

(W ) ratio, having a tree with two tips of one

group eah and a still unresolved tip with two pseudo-groups. Finally the last test for

this tip is performed and if its D

n

(B) is statistially signi�ant one has a four tip tree.

Otherwise, one has a three tip tree.

The following algorithm summarizes the proedure:

(0.1) Let G be the set of all pseudo-groups
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(0.2) Compute all distanes D

ij

, 8i; j 2 G

g

, g = 1; 2; : : : ; G, using equation (1),

where G

g

is the g-th pseudo-group to be tested

(0.3) Take the set of pseudo-groups E = fG

1

;G

2

; : : : ;G

G

g a partition of G and let

N = G

(1) For l = 1 to bN=2

� for all possible partitions f

_

E

1

;

_

E

2

g of E , suh that

_

E

1

ontains l pseudo-groups

and

_

E

2

ontains the remaning N � l pseudo-groups

1. Compute D

n

(B)

true

and D

n

(W )

true

with equations (2) and (3)

2. Repeat for b = 1 to B (the number of bootstraps)

(a) Selet randomly a sample of jEj sequenes with replaement from E

(b) Take the �rst l sequenes to be pseudo-observations from

_

E

b

1

and the

last N � l to be from

_

E

b

2

() Compute D

n

(B)

b

and D

n

(W )

b

from formulas (2) and (3), and store

its values

(2) Consider all D

n

(B)

true

from (1) and let S be the set of all statistially sig-

ni�ant ones, using the perentiles from the bootstraped D

n

(B)

b

, b = 1; 2; : : : ; B

1. If S = ;, there are no statistially signi�ant groups and the proedure for E

is over and E an not be divided any further

2. If S 6= ;, hoose the partition of E as f

~

E

1

;

~

E

2

g for whih the ratio between

D

n

(B) and D

n

(W ) is maximum

3. Repeat the algorithm for E =

~

G

1

and E =

~

G

2

, until there is not a group with

two or more pseudo-groups untested

3 Appliation

The data sets onsists of sequenes of mitohondrial DNA from humans, himpanzees,

gorillas and orangutans with 438bp. The tests were performed with B = 10000 boot-

straped resamples, taken from the original pooled sample. Four tables are presented.

Table 1 shows the results of the proposed proedure with 96 sequenes of whih 58

are from humans, 6 himpanzees, 15 gorilla and 7 orangutan. Chimps sequenes add a

speial avor beause they have three sequenes from the so-alled isolate speimens.

Unless otherwise mentioned all analysis were performed with the isolates and results

without the isolates (not shown) led to the same qualitatively onlusions. For ontrol

purposes, Table 2 and 3 show the results for the Hamming distane proedure with

di�erent pseudo-groups as explained below. In eah table, te most relevant numbers

6



(either the largest D

n

(B)=D

n

(W ) ratio in the step or all D

n

(B) p-values for the last

possible step) are presented in bold fae.

First we performed the tests proedure on the omplete sample, starting with four

possible groups: humans (H), himpanzees (C), gorillas (G) and orangutans (O). Step 1

tests indiate that the best ratio is attained when humans are separated from the other

primates. On a seond step one expets the three primates to be separetd. Again,

all three groupings are statistially signi�ant and the aforementioned ratio selets the

separation of the orangutans from the other two primates. Finally it remains to test

whether it is feasible to separate himpanzees and gorillas and that is on�rmed by the

omputed D

n

(B). We should stress the fat that although a sequene of tests is taken,

their respetive p-values are so small (usually smaller than resolution enables one to

measure), that the overall �xed size of the phylogeneti onstrution an be made as

small as one desires. That means that the resulting struture is statistially sounding.

Table 1: fH;C;G;Og Phylogeneti Tree

p-value

Grouping Ratio

D

n

(W ) D

n

(B)

((H),(C,G,O)) .9946 .0000 .4076

((C),(H,G,O)) .6243 .0001 .0929

((G),(H,C,O)) .9716 .0000 .3154

((O),(H,C,G)) .9168 .0000 .2520

((H,C),(G,O)) .9909 .0000 .3687

((H,G),(C,O)) .8464 .0000 .2008

((H,O),(C,G)) .9800 .0000 .3358

Result after Step 1 - ((H),(C,G,O))

((C),(G,O)) .9413 .0009 .2284

((G),(C,O)) .9966 .0000 .4147

((O),(C,G)) 1.000 .0000 .5584

Result after Step 2 - ((H),((O),(C,G)))

((C),(G)) .9975 .0000 .6129

Result after Step 3 - ((H),((O),((C),(G))))
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Table 2: fH

1

;H

2

; C;Gg and fH

1

;H

2

; C;Og Phylogeneti Trees

p-value p-value

Grouping Ratio Grouping Ratio

D

n

(W )D

n

(B) D

n

(W )D

n

(B)

((H

1

),(H

2

,C,G)) .5832 .0001 .0927 ((H

1

),(H

2

,C,O)) .5069 .0090 .0467

((H

2

),(H

1

,C,G)) .6135 .0000 .1133 ((H

2

),(H

1

,C,O)) .5372 .0021 .0672

((C),(H

1

,H

2

,G)) .6307 .0002 .1337 ((C),(H

1

,H

2

,O)) .6764 .0002 .1771

((G),(H

1

,H

2

,C)) .9921 .0000 .4596 ((O),(H

1

,H

2

,C)) .9333 .0000 .4221

((H

1

,H

2

),(C,G)) .9977 .0000 .5031 (H

1

,H

2

),(C,O)) .9132 .0000 .3867

((H

1

,C),(H

2

,G)) .5240 .0043 .0500 (H

1

,C),(H

2

,O)) .4780 .0253 .0303

((H

1

,G),(H

2

,C)) .5402 .0017 .0612 (H

1

,O),(H

2

,C)) .4931 .0146 .0391

Step 1 - ((H

1

,H

2

),(C,G)) Step 1 - ((H

1

,H

2

,C),(O))

((H

1

),(H

2

)) .4377 .1932 .0015 ((H

1

),(H

2

,C)) .4587 .0642 .0197

((C),(G)) .9979 .0000 .6129 ((H

2

),(H

1

,C)) .4735 .0292 .0335

((H

1

,H

2

),(C)) .6909 .0001 .3508

Step 2 - (((H

1

,H

2

),(C)),(O))

Step 2 - ((H

1

,H

2

),((C),(G))) ((H

1

),(H

2

)) .4334 .1828 .0015

Step 3 - (((H

1

,H

2

),(C)),(O))

In order to illustrate that the main appliation is not simply a spurious numerial

artifat we present also the p-values for the D

n

(W ) and they are (as they should be) all

negligible. The other diagnosti performed was the use of the same method for three

groupings other than groups of single speies. The human group was randomly divided

in two groups of 29 sequenes eah, alled H

1

and H

2

. Table 2 shows the analysis for

two pseudo-group onstrutions - fH

1

; H

2

; C;Gg and fH

1

; H

2

; C;Og. Table 3 shows the

analysis for fH

1

; H

2

; G;Og and fH

1

; H

2

; C;G;Og. Tables 2 and 3 have as a ommon

feature that the proposed proedure is able to derease the four (or �ve) pseudo-groups

to a three (or four) tips phylogeneti tree. All the hosen groups are formed by single

speies and the �ve pseudo-groups proedure results in the same as in Table 1.

Table 4 shows some problems in using a single sequene per group. Phylogeneti

trees are build from single sequenes from eah speies for three groups. When C, G

and O are onsidered the resulting tree always puts himpanzees and gorillas apart

from orangutans. However, for the remaining three ases results will strongly depend

on the sequene hosen.
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4 Computational Complexity

Computational performane of a phylogeneti tree onstrution method an be divided

in two main parts: the number of trees onsidered in the analysis and what will be

done with eah of these trees. Sine eah onsensual sequene method will have a very

spei� approah on this ation on a single tree, a diret performane omparison an

not be made. The numbers we will present in Table 5 are quite onservative towards MP

and ML methods, i.e., the huge omputational disadvantages those paradigmas have

ompared to the proposed method are quite understated. We ompute an upper bound

for our proedure and ompare it to a lower bound for the MP and ML-based methods.

One should notie that the omplexity for Hamming distane are not average numbers,

but the worst possible sequene of events. Moreover a linear omplexity of estimation

proedures is assumed for the MP and ML methods, whih is quite optimisti for all

but the very simplest models. Finally, the omputational omplexity for the Hamming

distane proedure is a sum of the number of sequenes and the produt of a power

of the number of pseudo-groups and the number of sites. The number of sequenes is

therefore only a memory burden but it is not otherwise worrysome in eah step. On

the other hand, the omplexity fo MP(or ML) methods is a fatorial on the number of

sequenes (not on the number of pseudo-groups).

Maximum parsimony methods have omplexity not smaller than (2G � 3)= 1 �

3 � 5 � � � � � (2G � 3) for eah site in onsideration. Maximum likelihood methods

omplexity are even larger beause besides the number of possible trees one deals with

parameters estimation.

Our method has omplexity not smaller than K, the number of sites. Sine all two-

sequenes distanes an be omputed in advane, that will have aG(G�1)=2 omplexity.

Notie that the number of pseudo-groups is muh smaller than the number of sequenes,

say n and that if one uses more than one sequene per group the omplexity of MP or

ML methods will be larger than (2n�3)!!. Some omparative �gures are shown in Table

5, with lower bounds for MP and ML methods and upper bounds for the Hamming

distane method.

For the appliation , the programs were run in C on a AMD Atlon 2100+ 1.73GHz

omputer. Proedures for 4 pseudo-groups, suh as those in Table 2, would take 50

seonds while omputations for 5 pseudo-groups, suh as those in Table 6, would take

149 seonds. For instane, a 10 group program would possibly run in less than two

hours on the same mahine, with no major onern on the number of sequenes for

eah group.
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Table 3: fH

1

;H

2

; G;Og and fH

1

;H

2

; C;G;Og Phylogeneti Trees

p-value p-value

Grouping Ratio Grouping Ratio

D

n

(W )D

n

(B) D

n

(W )D

n

(B)

((H

1

),(H

2

,G,O)) .5937 .0000 .0851 ((H

1

),(H

2

,C,G,O)) .6383 .0000 .0886

((H

2

),(H

1

,G,O)) .6378 .0000 .1064 ((H

2

),(H

1

,C,G,O)) .6658 .0000 .1084

((G),(H

1

,H

2

,O)) .9777 .0000 .3815 ((C),(H

1

,H

2

,G,O)) .6344 .0001 .0928

((O),(H

1

,H

2

,G)) .9166 .0000 .2908 ((G),(H

1

,H

2

,C,O)) .9697 .0000 .3154

((H

1

,H

2

),(G,O)) .9935 .0000 .4547 ((O),(H

1

,H

2

,C,G)) .9136 .0000 .2520

((H

1

,G),(H

2

,O)) .5701 .0013 .0650 ((H

1

,H

2

),(C,G,O)) .9962 .0000 .4076

((H

1

,O),(H

2

,G)) .5577 .0010 .0621 ((H

1

,C),(H

2

,G,O)) .5533 .0011 .0536

Step 1 - ((H

1

,H

2

),(G,O)) ((H

1

,G),(H

2

,C,O)) .5328 .0018 .0465

((H

1

),(H

2

)) .4425 .1924 .0015 ((H

1

,O),(H

2

,C,G)) .5749 .0010 .0647

((G),(O)) .9999 .0000 .8112 ((H

2

,C),(H

1

,G,O)) .5814 .0002 .0675

((H

2

,G),(H

1

,C,O)) .5256 .0024 .0466

((H

2

,O),(H

1

,C,G)) .5809 .0003 .0690

((C,G),(H

1

,H

2

,O)) .9785 .0000 .3358

((C,O),(H

1

,H

2

,G)) .8497 .0000 .2008

((G,O),(H

1

,H

2

,C)) .9909 .0000 .3687

Step 1 - ((H

1

,H

2

),(C,G,O)

Step 2 - ((H

1

,H

2

),((G),(O))) ((C),(G,O)) .9424 .0010 .2284

((G),(C,O)) .9978 .0000 .4147

((O),(C,G)) .9998 .0000 .5584

Step 2 - ((H

1

,H

2

),((C,G),(O))

((H

1

),(H

2

)) .4500 .1890 .0015

((C),(G)) .9972 .0000 .6129

Step 3 - ((H

1

,H

2

),(((C),(G)),(O)))
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Table 4: Phylogeneti Tree with a single sequene from eah speies

with the 3 Isolates without the Isolates

Topology Samples Samples

100 1000 10000 All 100 1000 10000 All

((H,C),G) .6000 .6110 .5987 .5981 .3900 .2710 .2921 .2915

((H,G),C) .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

((C,G),H) .4000 .3890 .4013 .4039 .6100 .7290 .7079 .7085

((H,C),O) .9800 .9880 .9841 .9843 .9800 .9880 .9841 .9826

((H,O),C) .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

((C,O),H) .0200 .0120 .0159 .0157 .0200 .0120 .0159 .0174

((H,G),O) .9800 .9880 .9841 .9843

((H,O),G) .0000 .0000 .0000 .0000

((C,G),H) .0200 .0120 .0159 .0157

((C,G),O) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

((C,O),G) .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

((G,O),C) .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Table 5: Computational Complexity of Phylogeneti Tree Constrution

G (for Hamming) Worst Case Lower Estimate

n (for ML or MP) for Hamming for ML or MP

2 1 1

3 4 3

4 11 15

5 26 105

10 1013 34459425

50 1:125 � 10

15

2:752 � 10

76

100 1:267 � 10

30

3:349 � 10

184

500 3:273 � 10

150

1:008 � 10

1280

1000 1:071 � 10

301

3:847 � 10

2863

10000 1:995 � 10

3010

1:601 � 10

38663
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5 Disussion

We present an alternative method for the onstrution of phylogeneti trees. The

method has some advantages over the traditional methods. For instane, sine it uses

Hamming distane and it is sequentially built through binary separations it is very fast

and omputationally eÆient. It is based on non-parametri ideas what makes it less

prone to model bias. Moreover its statistial properties an be asserted using its diret

U-statistis representation. One an learly relate the within and in-between dissimi-

larities to speies and individual harateristis. Two other novelties are its apaity to

deal with multiple (and di�erent) sequenes per group (and built its statistial proper-

ties upon this riher information) and that the best tree will not have a predetermined

number of tips i.e. the resulting number of tips will be statistially meaningful. We

applied the method in a sample of primate mitohondrial DNA sequenes, illustrating

that it an perform quite well even on very unbalaned design and that is feasible to

be used for very large datasets.
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