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Abstract

Let f : [a,b] - R be a smooth function and consider M to be an «-
homogeneous Poisson process on Graf(f). The goal is to estimate f having
a sample of an inhomogeneous Poisson process N constructed by dislocating
each point of M perpendicularly to Graf(f) by a normal random variable with
zero mean and constant variance. The function f is estimated directly using a
hybrid spline approach to penalized maximum likelihood.
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1 Introduction

Consider the following hypothetical situation: a plane dropping leaflets passes through
aregion A. Suppose that the leaflets land on the ground at a distance to the trajectory
followed by the plane which is normally distributed with zero mean and constant

variance o2.

Let N be the point process obtained by the position of the leaflets.
Studying the process N we want to estimate the trajectory followed by the plane. This

problem was studied by Garcia (1995) when the plane follows a linear trajectory. In
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this case, the intensity of the process N is straightforward and a parametric approach
can be used. However, when the trajectory is not linear, it is not so immediate to
obtain the intensity of the process. Moreover, the relationship between the intensity
of the process and the trajectory is not trivial and a nonparametric approach has to
be used.

To be precise, let f : [a,b] — R be a smooth function (first derivative f’ is
absolutely continuous and second derivative f” is square integrable) and consider
Graf(f) = {(v,w);a < v < b,w = f(v)} to be the graph of f. We can think of the

problem described above as derived from an a- homogeneous Poisson process
M=) 6w, (1.1)

on Graf(f). Let {¢;,i = 1,2,...} be a sequence of iid zero mean normal random

variables with variance o2 independent of M. Construct a new process N as
N =3 duw (1.2)
i
where for 1 = 1,2, ...
V) — (Ve AV & (- V)P
(X3, Y7) = (Vi, f(V) + (= f'(V2), 1) ATk (1.3)

The point process N defined by (1.2) is a inhomogeneous Poisson process in R
with mean measure A; and intensity function py which have non-trivial relationship
to f (see Theorems 2.1 and 2.2).

Estimation of intensity function of Poisson point processes is not a new subject.
Kutoyants (1979) considered parametric estimation for univariate intensity function.
Ramlau-Hansen (1983) proposed nonparametric estimation through kernel methods.
Afterward several authors considered parametric and nonparametric estimation of the
intensity function for Poisson processes, for a more detailed account see Kutoyants

(1998). However, the problem we focus here has a different flavor, we do not wish to

estimate the intensity function py. We wish to estimate the function f and having an
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estimate of 11y does not necessarily give a good estimate for f. In this work we propose
a modification of the hybrid spline approach to Penalized Likelihood Estimation.
Its novelty comes from estimating interactively the two smoothing components and
keeping the computational cost low.

Notice that the data are presented as pairs of observations of the form {(Xj, Y;),i =
1,2,...,n} and it could be erroneously interpreted as a regression problem. This is
the wrong approach since the errors are perpendicular to the curve and do not occur

only in the Y variable. Therefore, the regression model given by

where €, €9, .. ., €, are iid random variables with zero mean is not appropriate. How-
ever, it would be interesting to compare the nonparametric regression estimation with
the penalized likelihood regression to see if there are some cases where there is not
much difference. The computational cost of the regression approach is much less than
the maximum likelihood estimation.

This paper is organized as follows. In Section 2, Theorems 2.1 and 2.2 present
the mean measure and intensity function of the process N along with some examples.
The proofs of these theorems will be given in Appendices A and B. Section 3 presents
the spline approach to Penalized Maximum Likelihood Estimation and Least Square
regression. Simulation results and the analysis of a real dataset consisting of epicenters
of earthquakes with magnitude over 5 in Southern California between 1980 and 1998

are given in Section 5.

2 Mean Measure and Intensity

Let f : [a,b] — R be a smooth function and consider Graf(f) = {(v,w);a < v <

b,w = f(v)} to be the graph of f. Define an a- homogeneous Poisson process on



Graf(f) as

L

M=) 6w, (2.1)

i=1
where L is a Poisson random variable with mean aC, C' = fab 1+ f/(t)%dt is the
length of the curve f in the interval [a,b] and given L = n, V1,V,, ..., V}, are i.i.d.

random variables with common distribution function given by

0 if r<a
Flz)=¢ L[7/1+ f(t)2dt if a<z<b (2.2)
1 if >0

The proof of this result is immediate and it is left to the reader.
Let {¢;,7=1,2,...} be a sequence of iid zero mean normal random variables with

variance 0?2 independent of M. Construct a new process N as
N =2 dxim) (2:3)
i
where for 1 =1,2,...

i
X, ) =V, fV) + (= (V3), 1) —m—0. 24
(X, i) (f())(f())1+f'(v,-)2 (2.4)
The point process N defined by (2.3) is a inhomogeneous Poisson process in R?

with mean measure Ay and intensity function p; depending on f. The following

theorems give the relationship between Ay, iy and f.

Theorem 2.1 The point process N defined by (2.3) is a inhomogeneous Poisson
process in R? with mean measure Ay determined by
Ap(u,v) == Af((—C>O U] (—00,])

min(Z1(u,z),Z2(v, CU)) 2 /9

2mo

Zo(v,x)
-+ / 722/20 dZ]I{ff( )>0}]I{Z1(u,w)<Z2(v,z)}] dx, u,v € R (2.5)

Z1(u,x)
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where
T —u

Zy(u,x) = ) 1+ f'(x)? (2.6)

and
Do(v,3) = (v = f(2)VIF PP (2.7

Recall that for a Poisson point process the relationship between the mean measure

and its intensity function is given by

M) = [ nytey)dod. (2.5)

The following definitions and notations will be used to write the intensity function.

Let a; € [a,b], j = 1, ..., J be the points in the interval [a, b] such that the derivative
of f vanishes, that is, f'(a;) = 0. Define A; = (a;, a;41], j =0, ..., J, with Ay = [a, a4]
and A; = (ays,b], the intervals of [a, b] where f is monotone. Consider
(u—z)

i)
to be the height of the normal curve to the line at the point (x, f(z)) relatively to

hu(x) = f(z) = (2.9)

the axis = u. Figure 2.1 shows the function A, in the interval A; = (0, x| for values
of u to the left, to the right and in the interior of the interval A; for the particular
case f(x) = cos(z), z € (0,7).

Denote {z;, (u,v), k =1, ..., K;} the subset of A;, satisfying

hy (2, (u,v)) = v. (2.10)

Given the interval A;, let Aj (u,v) = (2, (u,v),zj,,,(u,v)], k = 1,..., K; — 1,
Ao (u,v) = (aj, 25, (u,v)], ijj (u,v) = (ijj (u,v), a;4+1], to be the intervals where h

is always bigger or smaller than v. Notice that the set z;, (u,v) can be the empty set.

Definition 2.1 Define the following indicator function

1, ifhy(z)<w, forallze A
Lihuay<oy = (2.11)
0, otherwise.
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Figure 2.1: Function h,(z),u=-2,5,2 for f(z) = cos(z), = € (0, 7).

The indicator function I{n,(4)>.} is defined similarly. We also use the notation

I{s<y} to indicate that this value is 1 if the inequality is true and 0 otherwise.

Theorem 2.2 The intensity piy of the process N is given by

N‘f(uav) = \/;_WO{Z (g4 ( x]k+1 u,v)) = gy (:Ejk(u,v))]x

i=1 | k=

/\

Linu(as, oy <ot Liga;>03 + Ling(as, wo)>or Lipa; )<0}>]H{a1>u} +

Kj—1

Qy $Jl U, U — Qv (mjKj (U,U)) + Z [qv(xjk+1(u’v)) - qv(xjk(uav))} X

| — |

Lihu(as, (o) <ot Lipa;)>01 +H{M(Ajk(u,v))>v}ﬂ{f'(Aj)<0}>] P

Kj—1

xh u, U Z [q")(xjk+1(u’ U)) - q'U(‘rjk (u’ U))]X

k=1

/‘\|—|/\

Lina(as, won<orLira>0r T Linua,, (u,v))>v}]I{f’(Aj)<0})] ]I{aj<u<aj+1}}-
(2.12)

where
(1+ f'(2)2)e- = T@) W+ @)?)/20?

L+ f'(z)? = f(z)(v - f(z))
6

@(T) = (2.13)



hy is given by (2.9) and xj, (u,v) are solutions of (2.10).

The proof of Theorem 2.1 and Theorem2.2 will be presented in Appendices A and

2.1 Examples

In this section we present two examples for the mean measure and the intensity
function. The first example is the simplest case where f is a straight line passing
through the origin. In this case, the expressions can be obtained analytically and it
was previously studied by Garcia (1995). The second case we consider f(z) = cos(z)

and the mean measure and intensity function can only be obtained numerically.
Example 2.1 f(z) = ztan(f), for § >0

First, we notice that (2.10) can be solved explicitly since in this case z(u, v) is the
only point in the line f for which its normal line passes through (u,v), represented

by P in Figure 2.2.

22

200 f(x)=xtan(6) |
18-
16

14r

<

12F

Figure 2.2: x(u,v) for the line f(x) = z tan(f)

Therefore,
(U’ — .’13(11,, U))

ho(x(u,v)) = f(z(u,v)) — f(z(u,v))



which gives the equation

u — z(u,v)

z(u,v)tan — ———~= =
(u, ) tan @
with solution
( ) u -+ vtanf
r(u,v) = —————
sec? 0

Second, we find Z;(u, x) and Z(v, z), given by (2.6) and (2.7), respectively.

Ziu,a) = (2 - u) YV T L o0

f'()

Zy(v,z) = (v — f(x))v/1+ f'(z)? = (v — x tanh) sec .

It is easy to verify that
] 11

%(x(u, v)) = 1+tan?60  sec2f’
Consequently, by (2.5), we obtain
(u,v) Zs(v,x) N
Af(u,v) = / V14 fl(z e/ dzdx
271—0- Zl U, J;
utvtanf ( tan @) sec @
= @ / et secé’/v ’ e 212" qrdy.
2mo (@ et

The intensity of the process (see (2.12)) is given by
o) o (14 f'(2(u,v))?)e 0 @) 1+ own)?)/20?
pr(u,v) =
d 27m 1+ f'(@(u,v))? = f"(x(u, v) (v = f(z(u,v)))

— 1 (1 + tan 9) ( “'H’it;;'a tan 0) (1+tan? 0) /202

\/27m sec2 0

v—(u+wv tan )sind cos )2 sec? § /202

= e_(
2ro

_ @ e—(v cos 9—usin0)2/202. (2'14)

V2mo

Example 2.2 f(x) = cos(x).

In this case, there is no analytic solutions for the mean measure and intensity
function. Figures 2.3 and 2.4 show the numerical solutions. Notice that the intensity

function presents bumps inside the local warps.
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Figure 2.3: Mean measure for N when f(z) = cos(z)
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Figure 2.4: Intensity function for N when f(z) = cos(x)



3 Penalized Likelihood Estimation

Let (X;,Y;),i=1,2,..., L represent the points of the process N in the set A and
s be the intensity function of this process given by 2.12. Let X = {X;, i =1,...,, L}
and Y = {Y;, i = 1,..., L} be the vector notation of this process. The likelihood
function of N is given by (cf. Daley and Vere-Jones (1988))

La(X,Y,f)=exp {Zlog,uf(Xi,Y;-) - /(uf(x,y) - l)dxdy} . (3.1)

i=1 A

In this case a measure for goodness of fit can be
L(X,Y, f)=—log(La(X,Y, [))- (32)

However, £L(X,Y, f) does not have a maximum over the class of all distributions.
One possible way to overcome this problem is to consider as a measure for goodness
of fit the penalized log-likelihood function. For this let’s assume that f is an element
of the following functional space H = {h : h’ abs. continuous and [(h")? < oo}, and

so the penalized log-likelihood function is:
b
LAY 133) = loglLa(X, Y, 1) = [ (77(0)ds (3.3

= Zlog,uf(Xi,Yi) — /A(,uf(a:,y) — 1)dzdy — )\/ (f"(x))*dx.

i=1

Therefore, the estimation criterion for this curve is composed by two goals: to
maximize the adaptability to the data (likelihood) and to avoid “non-smooth” curves
(penalization). To maximize £*%(X,Y, f;\) represents a compromise between these
two goals.

In order to find the function f that maximizes £%(X,Y, f; A) we are going to use
the H-splines method introduced by Dias (1998) in the case of non-parametric density
estimation, and by Luo and Wahba (1997) and Dias (1999) in the context of non-
parametric regression. The H-splines method combines some features of regression

splines and of traditional smoothing splines to obtain a hybrid smoothing procedure
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which is usually implemented with large data sets and displays a desirable form of
spatial adaptability when the underlying function is spatially inhomogeneous in its
degree of complexity. Basically, choosing appropriately the number of basis functions,
will do most of the work for avoiding over and underfitting. But there is a more
important reason why we want to do a penalized approach, namely numerical stability.
It is well known that as the number of basis functions increases, the problem becomes
more ill-conditioned, which makes the numerical computation less stable. Shortly, we
can think of H-splines as having two smoothing components, the number of basis m
and the smoothing parameter A and a trade-off between them. For each A there is
an appropriate m to achieve the best fitting. The problem is how to choose m and A
iteractively.

It is well-known that for fixed A the solution of the optimization problem (3.3),
[, is a spline function with knots at the data points (see Wahba (1990)). Let N'CS
be the space of the natural cubic splines. Then we can approximate fy by fn,x a

linear combination of B-splines, that is

fm)\ Zﬁz z4§ (34)

where B;4¢(z) =: B;(z) are normalized cubic B-splines with knot sequence ¢ and
m < n.

Therefore, the likelihood £%(X,Y, f,;A) given by (3.3) is a now a function of
the parameter vector 37 = (B,...,y,) and A. Thus, for each \ the estimate of the

function will be given by
fm A Z /Bz z 4 § (35)

where /3’1()\) (the estimates of §; for all ¢ = 1,...,n) are obtained by solving the
numerical problem,
b

L
mg‘leogufm,)\ (Xiv YZ) - /A(:ufm,A (.T, y) - l)dxdy - A (frlr,z,A(x))Qdm
i=1

a
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It remains the problem of finding A\. Usually, the H-splines procedure estimates
A by generalized cross-validation (GCV) method. However, in this particular case,
GCV method would introduce a high computational cost to this problem. In order to
keep the computational cost at moderate rates we suggest the following modification.
At the H-spline step, the estimate of the smoothing parameter A is obtained in such
way that the weight of the smoothness function is the same for the usual Penalized

Least Square Criterion and the Penalized Maximum Likelihood Estimation.

4 Computing the estimates

First, let’s consider the following modification of the penalized likelihood problem

(3.3). Taking v1 = A\/(1 4+ ), we have

Ly(XY, fim) = (1-m) [Zloguf(Xi,Yi)—/

4 (e - 1) da dy]

—n / (f"(z))%dz
= (1LY, f) — 1) (4.1)

where £(X,Y, f) is given by (3.2).

In this case, it is unfeasible to compute A, or equivalently v, by ordinary cross-
validation (CV) or generalized cross-validation (GCV). However, in the regression
context GCV not only has very good properties but also it is extremely easy to
compute. Taking this fact into account, we suggest to use the penalization given by
regression as a starting point for the penalization in the likelihood case. Let’s consider

the Penalized Least Square Criterion:
SPi(7) = (1 =7)SQ+~J(f) (4.2)

where SQ = Y7 (V; — f(X))2, J(f) = [} (f"(x))*dz.
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Intuitively, we can think of the weight of the penalty function J(f) in the Penalized
Least Square (PLS) as
2JIf) (4.3)
SP;(v)
while the weight of the penalty J(f) in the Penalized Log-likelihood Equation (PLE)
is
(1 =m)LX, Y, f)
Equating (4.3) and (4.4), we get 7, as a function of y as

YL(X,Y, f)

"= 5P, (0) ALK Y ) (45)

Notice that 4 (and consequently 4;) depends on the number of basis functions.

H-splines algorithm for maximizing PLE
1. Initialize the number of basis functions m.

2. Find %y, that minimizes

DL (Vi = fng (X0))?

GOV{(y) = 1 —n"'Tr(H(vy) ’

where H(y) = X(XTX + vQ)~'XT.

3. Find 41, in (4.5) as

o mEXY )
" 5Py (m) + AnL (X, Y, )

4. Compute fm,%m using (3.5) as
f%m (z) = Zﬁi(’%m)Bz’(iﬁ)- (4.6)

5. Increase the number of basis functions by one and repeat steps 2 to 4 in order

to get fm+1,’71(m+1) (33)
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6. Compute d(fm,‘rlma fm+1ﬁ1(m+1))'

7. For a fixed § > 0, if the distance d(fmmm, me < 4, stop the procedure.

M (m+1) )

Otherwise go back to 5.

The distance d(-, -) we are using in this work is a pseudo Hellinger distance similar

to (Dias, 1999).

In order to simulate the inhomogeneous Poisson process N, we first simulate an
a-homogeneous Poisson process on Graf(f) as described in Section 2 and then apply
the map (1.3).

The number of initial basis m > 1 is governed by the prior expectation of the
structure of the underlying curve such as maxima, minima, inflection points etc. We
suggest the reader to follow some of the rules recommended by Wegman and Wright
(1983). These recommendations are based on the assumption of fitting a cubic spline

(the most popular case) and are summarized below.

1. Extrema should be center in intervals and inflection points should be located

near knot points.

2. No more than one extremum and one inflection point should fall between knots

(because a cubic could not fit more).

3. Knot points should be located at data points.

If one follows these recommendations the computation can be reduced substan-

tially. Otherwise, one may start the procedure with one basis function.

5 Examples

In this section we present some typical simulated results for several functions with
different degrees of smoothness. Also, we use the proposed approach to estimate a

geological fault based on real data of earthquakes in Southern California.
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5.1 Simulated data

For the simulated data, we are going to compute the estimated curves using Penalized
Likelihood (PLE) via H-splines as described in Section 4 and, just for comparison,
we also show the estimated function using least square regression via H-splines (PLS)
(Dias, 1999). Each figure presents the points of the process N, the true curve f,
the curves estimated using (PLE) and (PLS). Also, we present, for each approach
the affinity derived from the pseudo Hellinger distance between the true function and
the estimated one (see, (Dias, 1999) for details), the penalization coefficient A, the
number of knots and the Mean Square Error (MSE) for both estimates given by

L

MSE =) ~(yi — fi(=:))*/n. (5.1)

i=1

Simulations were run in bi-processed Athlon machine with 2.0 GHz processor
and 1.5 Gb RAM memory. The software used was Matlab, version 6.1 Release 12,
operating in Linux platform.

For the maximization process in PLE, we adopted the following criteria:

e Number of iterations: 300p, where p is the number of parameters to be esti-

mated;

e Convergence rate: Tolerance 10~* for the parameters and for the likelihood

function.

e In order to stop increasing the number of basis functions for the H-spline proce-
dure we required that the affinity between successive estimations would be less

than 0.995.

Example 5.1 The true function f(x) = xtan() is a line that passes through the

oTLgIn.
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Figure 5.1: Estimated curves when the true function is given by f(z) =

xtan(r/4), z € (0,10).

In this case, Garcia (1995) computed the closed form for the maximum likelihood

estimator of # which is given by

- 1 2>, XY, T
§ = —arctan At 4+ —sgn XY |1 (X7 -Y?) <0].
2 YoAXT-Y?) 2 (; ) (Z

A

where A is the set where the process is observed. Thus, the parametric estimator is
given by f(z) = z tan(d).

In this example we can notice that as expected, the parametric procedure provides
a better fitting (MSE = 0.0066). Nevertheless, the PLE estimate is very close to the
true curve. On the other hand, the PLS has a poorer performance both in terms of

MSE and does not fit a straight line.
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Parameters | PLE PLS
Affinity - 0.9998
A 0.001 | 0.0123
Knots 9 12
MSE 0.0226 | 0.0666

Table 5.1: Comparative results for the estimation procedures when the true function

is a straight line.

Example 5.2 Here we present several test functions with different degrees of smooth-

ness. The functions used are: fi(x) = cosdz, fo(z) = cos(dnz)e * /2, fy(z) =

2 — 5z + be 10005 4nd f,(x) = 3 sin(2rz?).

In these cases, the integrals and maximization required in (3.3) cannot be obtained

analytically and we are going to use Monte Carlo methods to obtain them.

Affinity
A
Number of knots

MSE

S

f fs Ja

0.0
12
62

1

0.07 0.04 0.03
17 ) 8
86 o7 97

PLE

PLS

PLE PLS PLE PLS PLE PLS

o

9954

0272
14

0.0341

o

0.9998
0.0039
13
0.0583

0.9963 | 0.9966 | 0.9951 | 0.9996 | 0.9963 | 0.9995
0.0167 | 0.0123 | 0.0012 | 0.0039 | 0.0015 | 0.0015
20 17 14 15 15 14
0.0827 | 0.1260 | 0.1464 | 0.7270 | 0.1671 | 0.3980

Table 5.2: Comparative results for the estimation procedures

By construction of the inhomogeneous Poisson process N, although we have a uni-

dimensional error, it produces error in both coordinates. Looking at Figures 5.2-5.5
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Figure 5.2: Curve estimates for f;(z)

cos(4z), x € (1.2,2.8).
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Figure 5.4: Curve estimates for f;3(z)
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Figure 5.5: Curve estimates for f(z)

3sin(272?), z € (0.2,1).
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we can notice an important characteristic of the process N. It accumulates points
inside the curvature of the function f. Therefore, an erroneous model like PLS pro-
duces estimates that crosses the true function, that is it goes over the true function
when this is concave and under the function when it is convex.

The model used for the PLE takes into account the true nature of the errors
and as expected it gives much better results. The intensity and mean measure are
computed exactly using the function f. In all presented examples we can see that
PLE is adequate and fits well. Its main disadvantage is the computational cost.
For each iteration of the likelihood, the intensity has to be computed numerically.
The function h(u,z) given by (2.9) needs to be computed over the points of the
process to be afterward used in (2.10). Just to give a rough idea in order to estimate
a curve with m B-spline basis the time elapsed varies between 3600 seg x m and
15000 seg x m. This variation depends on the smoothness of the function. Another
factor that increases the computational cost is the penalty term in (3.3). In this case,
it is unfeasible to compute GCV for PLE since for each point (X;,Y;) in the process
N we should estimate f taking out this point (leave-one-out method). However, by
using the same weight of the smoothness function PLE and PSL the computational

cost was substancially reduced.

5.2 Earthquake data

In this section we apply the PLE to a dataset of 95 earthquakes with magnitude 5
or bigger which occurred in Southern California in the period between 1980 and 1999.
This public dataset was obtained from http://www.scecdc.scec.org/sanandre.html.

We considered that earthquakes epicenters can be modeled as inhomogeneous
Poisson process with distances which are normally distributed and perpendicular to
a smooth curve f (maybe a smooth approximation for a geological fault). Since we
are taking only high magnitude shocks we can consider that the number of events

occurring in disjoint sets are independent random variables.
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Figure 5.6: PLE and PLS estimated curves for earthquake data

For this data set, we can use the same procedure as used in the simulation with
the additional fact that ¢ and « are also parameters in the model and have to be
estimated. The likelihood function now is £%(f;A) = L% (5, o, 03 A).

As it can be seen from Figure 5.6, our estimate of the geological fault is close to

a straight line.
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Parameters PLE PLS
Affinity 0.9989 | 0.9999
A 0.081 | 0.011
Number of Knots 13 13
MLE 0.2396 | 0.2280
o 0.2554 | 0.2943
Q 12.40 -

Table 5.3: Comparative results for the estimation procedure of earthquake data
A Proof of Theorem 2.1

In order to find the mean measure we are going to use the fact that a deterministic

transformation of a Poisson process is still a Poisson process. Formally,

Proposition A.1 Let T : E; — FE5 to be a map between Euclidean spaces E1 and
E,. If N, is a Poisson process on E, with mean measure Ay, then Ny = N oT! is

a Poisson process on Ey with mean measure Ay := Ay o T7L.

Proposition A.2 Suppose that {V,,n = 1,2,...} are random elements of an Eu-

clidean space E, such that
>,

is a Poisson process with mean measure A. Suppose that {on,n = 1,2,...} are
random elements of another Fuclidean space Ey with cumulative distribution function

F, independent of {V,,n =1,2,...}. Thus, the point process

Z 6(Vna¥’n)

on Ey X Ey is a Poisson process with mean measure A x F, that is for A; C B(E;), i =

1,2, we have
(Ax F)(A; x Ay) = (A x F)({(e1,e2) : €1 € Aj,e5 € Ay}) = A(A1)F(A42). (A1)
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The proof of Propositions A.2 and A.1 can be found in Resnick (1992).

Proof of Theorem 2.1
We know that {¢;,i =1,2,...} are i.i.d. N(0,0?) random variables and they are
independent of the process M. Also, M' = )" 0dy, is a Poisson process with mean

measure
AA) = a / 1+ 2t
Aq

and

1 2 2
F,(A,) :/ e /% dz.
Ay V2O

By Proposition A.2,

is a Poisson process with mean measure

Ar(Ar, 4y) = a / JIFFORd [ —— e q, A A, € B(R).
Aq Ay 'V 277-0-

Consider the following map

T(Viy @) = (Vi F(Va)) + (= (Va), 1) — e (A.2)

VI+ (V)
Notice that
N(A1 X A3) = 611, 00 (A1 X Ay). (A.3)

Therefore, N is a Poisson process on R2.

To find its mean measure, consider the family of rectangles

A = {A(u,v) = (—o0,u] X (—o0,v],u,v € R},

which generates the Borel sets on R%. It is enough to find the mean measure for
elements of A.

The inverse image of A(u,v) under 7T is given by
T Y (A(u,v)) = {z € [a,b],z € R: T(z,2) € A(u,v)}.
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+ Points of Process N

f(x)=cos(x)

Figure A.1: The function gy, , where M = 6w, rv.))-

Given z € [a, b], consider

1
f'(z)

to be the line perpendicular to the curve f at the point (z, f(x)). Therefore, if V,, is

9:(t) = f(x) — (t = =), (A.4)

a point of the point process M, then the possible point (X,,,Y,) corresponding to N
will be on the line gy, (t) ( see Figure A.1).
According to (1.3),

(Pi = (Yn - f(Vn))2 + (Xn - Vn)Za

that is, ¢, is the Euclidean distance between (X, Y,,) and (V,, f(V5)).

The point where g,(t) intersects the vertical axis ¢ = u is (u, f(x) — }‘%:f)) and
the point where g,(t) intersects the horizontal axis y = v is (z + f'(z)(f(z) — v),v).
Therefore, Z;(u,x) and Z(v, ), given by (2.6) and (2.7), are the distance between
(z, f(x)) and (u, f(z) — %) and (z, f(z)) and (z + f'(x)(f(z) — v),v), respectively.

Notice that distance here are referred as to be positive or negative according to the

orientation to the normal curve the f at the point (z, f(z)).
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Consequently, we have

T Y A(u,v)) = {r€lab),zeR:T(x,2) € A(u,v)}
= {z €a,b],z € (—oo,min{Z (u, x), Z5(v, ) }]I{f(z)<0} U

[Z1(u, ), Zo(v, )11 2, (u,2)< Zo(0,2) L 1(2) >0} }»

and the mean measure for the process N is given by

min(Z1(u,z),Z2(v,z))

(0] b _
Arluv) = \/ﬂa/ V14 f(z)? / e 27 A2l pay<oy +

—0o0

Z>(v,z)
i /z ¢ "7 A posolinua<nway | Ao (AD)

1(u,w)

B Proof of Theorem 2.2

According to (2.8), the intensity of the process N can be obtained by differentiating

the mean measure as
O* Ay (u,v)
w0 = = o

where Ay is given by (A.5).

The following basic theorem allows us to differentiate integrals (see for example

Dudewicz and Mishra (1988)):

Theorem B.1 (Leibniz’s Theorem ) If f(x,0) is an integrable function with respect
0f (,0)
a0

to x and 1§ a continuous function x and 6, then

d " _ d((9)) dal®) " 0f(z.0)
= /aw) (e, 0)dz = 000),0) "0 f(a0),0) 129D /aw) .0 4o, (1)

Proof of Theorem 2.2 Let Af(u,v); be the function Ay(u,v) restricted to the

interval A;. Thus,

24



Ap(u,v); =

KJ 1 Zg(vl‘

Z / V1+ fl(z)? 727" d2dal g, ay, () <o) Lipag) 20+
Aj, (uw)

Z1(u,x)

2ro
Z1(u,x)

+ [ / V1+ f(x)? / e dadat
A]-O(u,v) —

Z1(u,z)

K;—1 ;
+ 3 l/ 1+ [0 / €= P2 dedr T (ay, (u) <o)+
k=1 Ajk (u,’u) -

+

Z2(U7$)
+ /A (u.0) 1+ f'(z)? / €% dzdal i, 45, (u,0))>0)
iy, (usv o

Z1(u,x)
- /A (u0) 1+ f'(x)? / e dzdx | Tpan<op | Lagou)
jKj u,v —00

B K;j Z(v,T)
+ Z/A ) 1+ f'(z)? / e dada L in (ay, (o <ot Liziag)>o) +
k):O jk u,v

Zluz

r Z2(v,x) 9o o
+ / 1+ f/(z)? / e 7 dzdz+
Aj (u,v) —0o0

Zlum

KJ -1
N [/ \/T/ —z2/20 dzdx]l{hu(A]k(u v))<v}t

25



Zo(v,x)
i /A . 1+f’(x)2/ 6—22/202d2d$]l{hu(,4jk(u,v))>v}
i (W5 —00

Zs(v,x)

+ / 1+ f'(z)? / e # 1?7 dzde | Tipay<ot | Lajpicu)
AjKj(u,v) -

Zo(v,x)

+ [[/ W e~ 129" Qoda+
Ajo(u,v

Z1(u,x)

K;-1 Z(v,x)

n Z / \/T / g% /2" dzdxlin, (a5, (wo))<o} | Lipa;)>01
Zo(v,x) 5o o
= 1+f@ﬁ/ &1
Ajo (u,) -0

Z1(u,z)

K;—1
227952
+ > [/A( VIt Py / e 127 dzdal g,y (umy <o+
k=1 i (Y -
Zo(v,xz) 2 J0g? ]
+ /A< ) 1+ f'(z)? / e 1% dadaTin(a (wop)>oy | +
g (W50 -

Z1(u,x)

—22/9242
+ /A (0) 1+ f'(x)? / e 7 dadz | Tipag<op | Tia<ucar)
]Kj u,v - i

In order to differentiate As(u,v); with respect to the variable v, we need to study
not only each case f'(A4;) > 0 and f'(A4;) < 0 separately, but also, when a; > u,
aj+1 < v and a; < u < aj4; since in this case the expressions simplify.

FiI’St, notice that Zl(u’ Zjp, (’u,’ U)) = ZQ(’U,.Z‘jk (u, U)), since hu(l']k (U,U)) =,

(u.v)) — (u_xjk(uav)) _
S 0) = 5 )

That is

o)) = (2, (u,v)) — u
v ) = T ) >
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Therefore,

Zl (U’7

Applying (B.1),

Case 1: a; > u

) = D i Pl )

= (v— f(zj,(u,v)) \/1 + f!(zj, (u,v))?
= Zy(v,zj, (u,v)).

we have

a) If f'(4;) > 0:

0

—(Aglu,v);) =

b) If f'(A;) <0

Kj—1

(6% _ z))2 /252
Z/ ( )(1+f'(3?)2)€ G127 A 4, (i) <oy~ (B-3)
k=1 AT

2mo

VA (U’J"jl (u,v))

a 2 2
a [av(acﬁuv \/1+f (z, (u, v))/ e 27 ot

2no —o0

K;—-1 9 Z1(u,wjk+1(u,'u)) 722/20-2
5 s )1+ P ) | e 1 ot

k=1 -0

M2

o Z1 (u,zj, (u,))

s a1+ P o) [ e ds

— o0

+

a Z (u’ijj (uav))

%(xjxj (u, U))\/l + f’(ijj (u,v)?) / o222,

—00

=

-1

/A ( )(1+f( 2)?)e PO 2 gl A o)
k=1 g \ UV
K1

- — ,T o
/oo Z /A ( )(1 + f,(x)z)e (Zo(v))” /207 dx]I{hu (Ajy, (uy0))>v} -
i—1 jk Uu,v
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Case 2: a;;1 <u

a) If f'(A;) > 0:

0 « / 2 /9,2
—(As(u,v);) = 1+ f'(z)?)e (Z22)7/20% gy
o ) = S [ s

K;—1

+Z/A

( )(1 + f’(x)Q)e—(Z2(v,zc))2/2a2d.’L‘I[{hu(Ajk(u,q}))<u}
k=1 g (WY

* / 1+ f'(x)?)e”ZaDD/20% gy | (B.5)
AJKJ (U’U)
b) If f'(A;) <0
0
g L (w,v)5) =
(6 0 Zz(v,mj, (u,0)) e
V2ro [%(mjl(u’ U))\/l + f'(zj, (U,v))Q/ o2 gy

v [ pape e gy

Ajo ()

\gh

k=1

—oQ

KJ 1 a ZZ(Uazjk+1 (u,'u)) _ 2/2 5
D S EAEN RS N e ooy | e da

a Zz(’l),ﬂ:jk (u,v)) 9 9
- —(xj (u,v + /2 (u,v e zZ+
o Jk 1 fl Jk 2 = d
v —00
+ » )(1 + f,(x)Q)e_(ZZ(v’m))z/ZOQdx]l{h(Ajk(u,'u))>’u} +
j (Wsv
6 Z2(va$jKj (U‘z'u))

i (0 0) T Flag (o) [

—0o0

efz2/202dz +

b [ @ e
AjK. (u,v)
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«

14+ "1 2 e—(Z2(v,x))2/202dx+
vamo [/Ajo(u,v)( T

Kj—1

+Z/

k=1 Ajk (uv'u)

—(Z2(v,x))2 /202
(1+ f(2)*)e 2O P27l 4, wwy>o)

+ / (1 + fl($)2)ef(Z2(v,ac))2/202dx
AjK- (u,v)

(B.7)

Case 3: a; < u < aj41
a) If f'(4;) >0
D) = 2| [ (e papetne ety
ov P V21o A (uw)

K;j—1

_ v.T 2 0.2
+ Z/A ( )(1+f'(x)2)€ (Za(v,x))? /2 dI]I{hu(Ajk(u,v)Kv}
k=1 G (WY
(B.8)
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%(Af(u’ v);) =
(6 0 Za(vyzjy (u,0)) s
V2ro [%(aﬁﬁ(u, U))\/l + f!(z;, (u,v))2/ 2o g
* (14 f'(x)?)e (@ /20% gy 4
Ajo(uyv)
K;-1 Zo(v,x; (u,w))
8 2 Jk+1 2952
+ Z [%(fvjﬂl(u,v))\/l+f/($jk+1(u,v)2)/ 2 gL
=1 o
0 Z2(v,mj, (u,0)) Y
_ 8—U($jk (u,v))\/l +f’(xjk(u,v)2)/ 120 g
V,T o2
+ /A ( )( +f( )) (Z2(v,x))? /2 d‘r]l{hu(Ajk(u,v))>u}
i (W5
0 Z1(u,xjp  (u,0)) o
_ 6—U($jxj(u,v))\/1—|—f/(mjKj(u’U)2)/ j =227 g |
(6%
- l/ (1+ f'(x)?)eZ22)*/20% gy
2wo jo(u)
4

Z/ ( (1+ f'(z )e*(22(v @))% /207 dl’ﬂ{hu(A]k(uy))>v}]
Ik U'U

(B.9)

The second derivatives are done in similar way. First, it is necessary to find

7 (@1,

v)). From (B.2), we have

z(u,v) —u= f'(z(u,v))(v— f(z(u,v))). (B.10)

And implicitly differentiating (B.10), it follows

u

" 0
5y Ewv) =1 = fia(u,v)) 5 (2(u,0))(v = f(z(u, ) +



Obtaining
0 1

5u ") = T o) = Fa(u o)) (0 = F @) (B-11)
Notice that
la,0)) = 2 (a(u,0)) (14 F'(alon ) o2

Case 1: a; > u
a) If f'(4;) > 0:

0? o

Gugy N (us0)) = o kz:; [0(2, 0 (0, 0)) = @ (5, (4, 0)) ] Tina(a;, (u))<o) -
b) If f'(4;) <0

82 o K;—-1

gy A v);) = — ; [G0(2, 0 (10, 0)) = @ (5, (1, )] Lin(a;, (uo))>o) -
Case 2: a;;1 <u

a) If f'(A;) > 0

0? A . o

Gugy L (W v);) = oL [a0(2, (u,v)) — o (@), (u,v)) +

K;—
z Qo x]lﬂ—l U, v)) = Gy (a"jk(u’v))} ]I{h»u(Ajk(uav))<'U}]'
k=
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b) If f/(4;) < 0

g (A0 = a3 (1,0) = oy 1) +

+ 3 [0 (w,0)) = o, (1, 0))] Ln(ay, oy

Case 3: a; < u < aj4q

a) If f'(4;) > 0:

aSW(Af(U,U)j) = ﬁ[qv(:ﬂjl (u,v))+ Z (40 (), (4, 0)) — go(@, (u,v))] Lha (4, () <0} ]-

k=1
b) If f'(A;) <0

52 Kj—1

Buo M (025) = 5l 00+ 3 o 0:0) = 0o 0, 0)] B, oot

Finally, we obtain that the intensity function of the process V is given by

Mf(U,U) = ZWU{Z Z [qv x]k+1 u,v ) Qv (xjk(u,v))]x

=1

Tina(as, (won) <oy Lipa; 0y + H{huujk<u,v)>>v}ﬂ{ff(Aj><0}]] Haj>u +

Kj—1

(]u(le (ua U)) - %(xjxj (U” U)) + Z I:qv(lec+1(u7 U)) - q'U(mjk (uv U)):| X

B k=1

Tina(as, won<orlira>op + Linuay, (u,v))>v}H{f’(Aj)<0}}] Lajeacuy +

0o ) + 3 s (1)) — 0, (1,0))]

k=1

Lha(aj, (won<otLipcan>0p + Linuay, (u,v))>v}H{f’(Aj)<0}} ] Haj<u<ajin) } :
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