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�

Abstra
t. A sequential quadrati
 programming algorithm for solving nonlinear programming

problems is presented. The new feature of the algorithm is related to the de�nition of the merit

fun
tion. Instead of using one penalty parameter per iteration and in
reasing it as the algorithm

progresses, we suggest that a new point is to be a

epted if it stays suÆ
iently below the pie
ewise

linear fun
tion de�ned by some previous iterates on the (f; kCk

2

2

) spa
e. Therefore, the penalty

parameter is allowed to de
rease between su

essive iterations. Besides, one need not to de
ide how

to update the penalty parameter. This approa
h resembles the �lter method introdu
ed by Flet
her

and Ley�er [7℄, but it is less tolerant sin
e a merit fun
tion is still used.

Key words. nonlinear programming, sequential quadrati
 programming, merit fun
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1. Introdu
tion. In this paper we are 
on
erned with the problem

minimize f(x)

subje
t to C(x) = 0(1.1)

l � x � u

where f : IR

n

! IR is a C

2

nonlinear fun
tion, C : IR

n

! IR

m

represents a set of

C

2

nonlinear 
onstraints and we suppose that �1 � l

i

� u

i

� 1, for i = 1; : : : ; n.

Naturally, some of the 
omponents of x in (1.1) may be sla
k variables generated

when 
onverting inequality 
onstrains to this form.

Algorithms based on the sequential quadrati
 programming (SQP) approa
h are

one of the most e�e
tive methods for solving (1.1). Some interesting algorithms of

this 
lass are given, for example, in [2, 3, 9, 15℄. A 
omplete 
overage of su
h methods


an be found in [5, 14℄.

Sin
e SQP algorithms do not require the iterates to be feasible, they have to


on
ern with two 
on
i
ting obje
tives at ea
h iteration: the redu
tion of the infeasi-

bility and the redu
tion of fun
tion f . Both obje
tives must be taken in a
ount when

de
iding if the new iterate is to be a

epted or reje
ted. To make this 
hoi
e, most

algorithms rely on a merit fun
tion.

If the problem 
ontains no inequality 
onstraints or bounds on the variables,

or if the algorithm assures that the bounds are never violated by the iterates, the

augmented Lagrangian, written here in an unusual way as

L(x; �; �) = �[f(x) + C(x)

T

�℄ +

(1� �)

2

kC(x)k

2

2

;(1.2)

is a good 
hoi
e for the merit fun
tion.

In (1.2), � is a \penalty parameter" used as a weight to balan
e the Lagrangian

fun
tion for the equality 
onstrained problem, de�ned as

`(x; �) = f(x) + C(x)

T

�;

�
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with a measure of the infeasibility, given by

'(x) =

1

2

kC(x)k

2

2

:

When the bounds on the variables are not supposed to be satis�ed by the iterates

or when inequality 
onstraints are expli
itly handled by the SQP algorithm, a good

merit fu
tion is the L

1

exa
t penalty fun
tion. For the problem (1.1), this fun
tion


an be de�ned as

	(x; �) = f(x) + �kC(x)k

1

+ �

n

X

i=1

(u

i

� x

i

)

�

+ �

n

X

i=1

(x

i

� l

i

)

�

;

where w

�

= maxf0;�wg. Again, the penalty parameter � is used to establish an

equilibrium between optimality and feasibility.

At iteration k, a new point x

+

= x

k

+s is a

epted if the ratio between the a
tual

and the predi
ted redu
tion of the merit fun
tion (when moving from x

k

to x

+

) is

greater than a positive 
onstant.

When the augmented Lagrangian is used, the a
tual redu
tion of the merit fun
-

tion at the 
andidate point x

+

is de�ned as

A

red

(x

k

; s; �) = L(x

k

; �)�L(x

k

+ s; �):

The predi
ted redu
tion of the merit fun
tion depends on the strategy used to ap-

proximately solve (1.1). One 
ommon 
hoi
e is to approximate (1.1) by the quadrati


programming problem

minimize Q(H; x; �; s) =

1

2

s

T

Hs+r`(x; �)

T

s+ `(x; �)

subje
t to A(x)s + C(x) = 0

l � x+ s � u

where H is a symmetri
 n � n matrix and A(x) = (rC

1

(x); : : : ;rC

m

(x))

T

is the

Ja
obian of the 
onstraints.

In this 
ase, denoting

M(x; s) =

1

2

kA(x)s+ C(x)k

2

2

;

as the approximation of '(x), the predi
ted redu
tion of the augmented Lagrangian

merit fun
tion is given by

P

red

(H; x; s; �) = �P

opt

red

(H; x; s) + (1� �)P

fsb

red

(x; s);(1.3)

where

P

fsb

red

(x; s) =M(x; 0)�M(x; s)(1.4)

is the predi
ted redu
tion of the infeasibility and

P

opt

red

(H; x; s) = Q(H; x; 0)�Q(H; x; s)(1.5)

is the predi
ted redu
tion of the Lagrangian.
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Fig. 1.1. Three merit fun
tions on the ('; `) plane, showing the in
uen
e of the penalty pa-

rameter �. On the left, � = 1=50. In the middle, � = 1=2. On the right, � = 49=50.

Now, let us analyse the role of the penalty parameter �. Supposing, for example,

(1.2) is used as the merit fun
tion, (��1)=� 
an be viewed as the slope of the line that

de�nes the forbidden region in the ('; `)-plane, that is, the semi-spa
e that 
ontains

all the points that are not a

eptable at the 
urrent iteration. This is illustrated

in Figure 1.1, where the forbidden region de�ned by the augmented Lagrangian is

highlighted for di�erent values of �.

In general, an algorithm starts with � � 1 and de
reases this penalty parameter

at some iterations, so feasibility is eventually attained.

Merit fun
tions have been 
riti
ized for many reasons. First, it is not so easy

to 
hoose an initial value for �, sin
e `(x; �) and '(x) usually have very di�erent

meanings and units. Besides, it is ne
essary to de
rease � as the algorithm progresses

to for
e it to �nd a feasible solution. If the initial penalty parameter used is near to

1 and � is de
reased slowly, the algorithm may take too many iterations to rea
h a

feasible point. On the other hand, starting from a small � or de
reasing this fa
tor

too qui
kly may for
e iterates to stay almost feasible, shortening the steps even when

we are far from the optimal solution.

As shown in [9℄, the adoption of a nonmonotone strategy for the redu
tion of � is

very e�e
tive to avoid this premature step shortening, but it also allows the algorithm

to 
i
le between small and large penalty parameters, indu
ing some zigzaging in many


ases.

To over
ome these diÆ
ulties, Flet
her and Ley�er [7℄ introdu
ed the idea of using

a �lter. This approa
h was promptly followed by may authors, mainly in 
onjun
tion

with SLP (sequential linear programming), SQP and interior-point type methods

(see, for instan
e, [1, 4, 5, 6, 8, 10, 11, 12, 13, 16, 17, 18℄). In the SQP-�lter method

presented in [5℄, a point is a

epted whenever it satis�es

�(x) < 
�

j

or f(x) < f

j

� 
�(x) for all (�

j

; f

j

) 2 F ;(1.6)

where

�(x) = maxf0; max

i=1;���;m

jC

i

(x)j; max

i=1;���;n

[x

i

� u

i

℄; max

i=1;���;n

[l

i

� x

i

℄g;

F is a set of previously generated points in the (�; f)-spa
e and 
 2 (0; 1) is a 
onstant.
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However, the eÆ
ien
y of the SQP-�lter method is also questionable, sin
e it is

too tolerant. In fa
t, requiring only the infeasibility or the optimality to be improved

may allow the a

eptan
e of points that are only marginally less infeasible but are

mu
h less optimal (in the sense that f(x) is greater) than the 
urrent iterate, or

vi
e-versa. Besides, one of the obje
tives of the �lter is to avoid adding terms with

di�erent measures, but the last inequality of the a

eptan
e 
riteria (1.6) has a merit

fun
tion 
avor.

Anyway, the SQP-�lter method 
an give us some good hints on how to improve

the algorithms based on merit fun
tions.

The �rst hint is that the same merit fun
tion that is reliable for points in the

('; f)-plane that are near to ('(x

k

); f(x

k

)) may be not so useful when the step is

large, so the trial point is far from the 
urrent iterate. As illustrated in Fig.1.1,

for values of � near to 1, the a

eptan
e 
riteria based on a merit fun
tion 
ut o�

a signi�
ative portion of the feasible region, in
luding, in many 
ases, the optimal

solution of the problem.

The se
ond good idea behind the SQP-�lter method is that a restoration should

be used sometimes. The obje
tive of a restoration is to obtain a point that is less

infeasible than the 
urrent one and is also a

eptable for the �lter. In [5, se
. 15.5℄,

a restoration step is 
omputed when the trust region quadrati
 subproblem is in
om-

patible (i.e. has an empty feasible set), while the algorithm of Gonzaga et al. [10℄


omputes a restoration at every step. We believe that this strategy 
an be used by

an algorithm with a merit fun
tion always that staying away from feasibility seems

not to be worth. Thus, if the de
rease in f is small and the 
urrent point is very

infeasible, it is better to move o� and �nd a more feasible point.

The last lesson we 
an take from the SQP-�lter method is that feasible points


ould never be refused by any merit fun
tion. This assures that the optimal solution

will always be a

epted by the algorithm and a restoration will always su

eed.

Our obje
tive here is to present an algorithm that takes advantages from both

the merit fun
tion and the �lter ideas.

This paper is organized as follows. In the next se
tion, we present the pie
ewise

linear fun
tion we use to a

ept or reje
t points. Se
tion 3 introdu
es the proposed

algorithm. In se
tion 4, we prove that the algorithm is well de�ned. Se
tions 5 and

6 
ontain the main 
onvergen
e results. Finally, in se
tion 7 some 
on
lusion are

pressented, along with lines for future work.

Through the paper, we will omit some (or even all) of the arguments of a fun
tion,

if this does not lead to 
onfusion. Therefore, sometimes Q(H; x; s) will be expressed

as Q(s), for example, if there is no ambiguity on H and x.

2. A pie
ewise linear merit fun
tion. As we have seen, a merit fun
tion

deals with two di�erent 
on
epts: the infeasibility and the optimality of the 
urrent

point.

In this paper, we will introdu
e a new merit fun
tion that 
ompares points gen-

erated at di�erent iterations. For this reason, this fun
tion 
annot be based on the

augmented Lagrangian, as in [9℄, sin
e it depends on the Lagrange multiplier estimates

used and, obviously, these estimates 
hange from one iteration to another. Therefore,

we de
ided to adopt the so 
alled smooth `

2

merit fun
tion, de�ned as:

 (x; �) = �f(x) + (1� �)'(x):(2.1)

Unfortunately, it is well known that this fun
tion su�ers from the Maratos e�e
t

and that an eÆ
ient implementation of the algorithm should in
lude some safeguard
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for this undesired behaviour, su
h as a se
ond order 
orre
tion. However, as the


ir
unvention of the Maratos e�e
t is not required for the 
onvergen
e analysis of our

algorithm, we will not deal with this drawba
k of the merit fun
tion in this paper.

The a
tual redu
tion of the `

2

merit fun
tion is given by

A

red

(x; s; �) = �A

opt

red

(x; s) + (1� �)A

fsb

red

(x; s);

where

A

opt

red

(x; s) = f(x)� f(x+ s) and A

fsb

red

(x; s) = '(x)� '(x + s):

Similarly, the predi
ted redu
tion of the merit fun
tion 
an be de�ned as in (1.3),

repla
ing (1.5) by

P

opt

red

(H; x; s) = Q(H; x; 0)�Q(H; x; s);

where

Q(H; x; s) =

1

2

s

T

Hs+rf(x)

T

s+ f(x):(2.2)

Generally, for a trial point to be a

epted, it is ne
essary that the a
tual redu
tion

of the merit fun
tion satis�es

A

red

(x; s; �) � �P

red

(H; x; s; �);

where � 2 (0; 1) is a given parameter.

However, this s
heme based on a linear merit fun
tion usually is unreliable for

trial points that are far from the 
urrent iterate. Therefore, we suggest the use of a

pie
ewise linear fun
tion to a

ept or reje
t new points.

In order to de�ne this new merit fun
tion, let F be a set of p points ('

i

; f

i

) in

the ('; f) plane. Suppose that these pairs are ordered so that '

1

< '

2

< � � � < '

p

.

Suppose also that ea
h point ('

i

; f

i

) in F is below the line segment joining ('

i�1

; f

i�1

)

and ('

i+1

; f

i+1

), for i = 2; � � � ; p� 1. Thus the pie
ewise linear fun
tion that passes

through all of the points in F is 
onvex.

For ea
h point ('

i

; f

i

) in F , de�ne another point ('

i

; f

i

) by moving a little towards

the southwest. Let F be the set of points ('

i

; f

i

). The 
onvex pie
ewise linear fun
tion

that 
onne
ts the points in F is de�ned by

P(F ; ') =

8

>

>

<

>

>

:

1; if ' < '

1

;

(f

i

�f

i�1

)

('

i

�'

i�1

)

'+

(f

i�1

'

i

�f

i

'

i�1

)

('

i

�'

i�1

)

; if '

i�1

� ' < '

i

;

f

p

� 
('� '

p

); if ' � '

p

:

where 
 is a small positive 
onstant, su
h as 10

�4

.

This new fun
tion, illustrated in Fig. 2.1, is formed by p + 1 line segments that


an be viewed as merit fun
tions in the form (2.1). The i-th of these fun
tions is

de�ned by the penalty parameter

�

i

=

8

>

>

<

>

>

:

0; if i = 0;

'

i+1

�'

i

f

i

�f

i+1

+'

i+1

�'

i

; if i < p;

1=(1 + 
); if i = p:

(2.3)
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( , )j1 1f

( , )j2 2f

( , )j1 1f

( , )j3 3f

( , )j4 4f

( , )j2 2f

( , )j3 3f

( , )j4 4f
P( , )F j

forbidden region

j

f

Fig. 2.1. The set F and the pie
ewise linear fun
tion P(F ; ').

and a parti
ular 
hoi
e of � that will be de�ned below.

At ea
h iteration k, F

k

is generated de�ning, for ea
h point ('

i

; f

i

) 2 F

k

, another

point ('

i

; f

i

) su
h that,

'

i

= minf'

i

� 





P

fsb

red

(x

k

; s




); (1� 


f

)'

i

g;(2.4)

and

f

i

= minff

i

� 


f

P

opt

red

(H

k

; x

k

; s




); f

i

� ('

i

� '

i

)g;(2.5)

for some 0 < 


f

< 





< 1. Reasonable values for these 
onstants are 


f

= 10

�4

and







= 10

�3

.

Our algorithm starts with F

0

= ;. At the beginning of an iteration, say k, we

de�ne the temporary set F

k

as

F

k

= F

k

[

f(f(x

k

); '(x

k

))g:

A new iterate x

+

= x

k

+ s




is reje
ted if f(x

k

+ s




) is above the pie
ewise-linear

fun
tion P(F

k

; '(x

k

+ s




)) or if we predi
t a good redu
tion for the merit fun
tion,

but the real redu
tion is de
eiving. In the SQP jargon, x

k

is not a

epted if

A

red

(x

k

; s




; �

k

) � �P

red

(x

k

; s




; �

k

);(2.6)

or

P

opt

red

(x

k

; s




) � �'(x

k

) and A

red

(x

k

; s




; �

sup

k

) < 


g

P

red

(x

k

; s




; �

sup

k

)

where 


g

2 (0; 1),

�

k

=

8

<

:

�

0

; if '(x

+

) < '

1

;

�

i

; if '

i

� '(x

+

) < '

i+1

;

�

p

; if '(x

+

) � '

p

(2.7)

and

�

sup

k

= supf� 2 [0; 1℄ j P

red

(x

k

; s




; �) � 0:5[M(x

k

; 0)�M(x

k

; s




)℄g:(2.8)
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When using this new s
heme, the parameter � that de�nes the required ratio

between A

red

and P

red


annot be set by hand. In fa
t, it has a very 
ompli
ated

formula. In the 
ase P

fsb

red

� 


f

'

i

=





and P

opt

red

� ('

i

� '

i

)=


f

, for example, this

formula redu
es to

� =

(f

i�1

� f

i

)





P

fsb

red

+ ('

i

� '

i�1

)


f

P

opt

red

(f

i�1

� f

i

)P

fsb

red

+ ('

i

� '

i�1

)P

opt

red

;(2.9)

where i is de�ned in su
h a manner that '

i�1

� '(x

+

) � '

i

.

As it will be
ome 
lear in the next se
tion, depending on the behavior of the

algorithm, the pair (f(x

k

); '(x

k

)) may be permanently added to F

k+1

at the end of

the iteration. Thus, the 
ardinality of the set F

k

is a nonde
reasing fun
tion of k.

3. An SQP algorithm. In the general framework of a trust region sequential

quadrati
 programming algorithm, a step s




is obtained approximating problem (1.1),

in a neighbourhood of an iterate x

k

, by a quadrati
 programming (QP) problem.

In our 
ase, this QP problem has the form

minimize Q(H

k

; x

k

; s)(3.1a)

subje
t to A(x

k

)s+ C(x

k

) = 0(3.1b)

l � x

k

+ s � u(3.1
)

ksk

1

� �;(3.1d)

where Q(H; x; s) is de�ned by (2.2), x

k

is supposed to belong to


 = fx 2 IR

n

j l � x � ug

and H

k

is an approximation of the Hessian of the Lagrangian at x

k

. The in�nity

norm was 
hosen here so the 
onstraints (3.1
) and (3.1d) 
an be grouped into one

simple set of box 
onstraints.

We will use the term '-stationary to say that a point x̂ satis�es the �rst order

optimality 
onditions of

minimize '(x)

subje
t to x 2 
:

Unfortunately, if x

k

is not '-stationary, the 
onstraints of (3.1) may be in
onsis-

tent, so this problem may not have a solution. A 
ommon pra
ti
e to over
ome this

diÆ
ulty is to divide the step s




into two 
omponents. The �rst of these 
omponents,


alled normal step, or simply s

n

, is obtained as the solution of the feasibility problem

redu
e M(x

k

; s)

subje
t to l � x

k

+ s � u(3.2)

ksk

1

� 0:8�:

If M(x

k

; s

n

) = 0, then x

k


an be substituted by x

k

+ s

n

in (3.1) to make this

problem feasible, so it 
an be solved by any QP algorithm. Otherwise, the se
ond


omponent of s




, 
alled the tangential step, or s

t

, is 
omputed so Q is redu
ed but the

predi
ted redu
tion of the infeasibility obtained so far is retained. In other words, s
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is the solution of the (now 
onsistent) problem

redu
e Q(H

k

; x

k

; s)

subje
t to A(x

k

)s = A(x

k

)s

n

(3.3)

l � x

k

+ s � u

ksk

1

� �:

One should noti
e that the trust region radius was in
reased from (3.2) to (3.3).

This is done to enlarge the feasible region when s

n

is in the border of the trust region,

so s

n

is not the only solution of (3.3).

To assure a suÆ
ient de
rease of M , a Cau
hy point, s

de


n

, is 
omputed. This

Cau
hy point is based on a de
ent dire
tion for '(x) given by P

!

(x

k

�r'(x

k

)), the

orthogonal proje
tion of x

k

�r'(x

k

) on 
. The solution of (3.2) is required to keep

at least ninety per
ent of the redu
tion obtained by s

de


n

.

A similar pro
edure is adopted for (3.3). In this 
ase, s

de


t

, the Cau
hy point, is ob-

tained from a des
ent dire
tion for f(x) on the tangent spa
e, given by P

x

(�rQ(s

n

)),

the orthogonal proje
tion of �rQ(s

n

) on the set

T = fy 2 N (A(x

k

)) j (x

k

+ s

n

+ y) 2 
g:

Again, the de
rease on Q obtained by the solution of (3.3) must not be less than

ninety per
ent of the redu
tion supplied by the Cau
hy point.

The main steps of the algorithm are given below, supposing that an initial point

x

0

2 
, an initial trust-region radius �

0

� �

min

and an initial symmetri
 matrix H

0

are given.

We start from k = 0 and take F

0

= ; as the initial set of points used to de�ne

the pie
ewise linear fun
tion P(F ).

Algorithm 3.1. A new SQP algorithm

1. WHILE the stopping 
riteria are not satis�ed

1.1. F

k

 F

k

S

f(f(x

k

); '(x

k

))g;

1.2. IF kC(x

k

)k = 0 (x

k

is feasible),

1.2.1. s

n

 0;

1.3. ELSE

1.3.1. Compute d

n

(a des
ent dire
tion for '(x)):

d

n

 P

!

(x

k

� 


n

r'(x

k

))� x

k

;

1.3.2. Determine s

de


n

(the de
rease step for '(x)), the solution of

minimize M(x

k

; s)

subje
t to l � x

k

+ s � u

ksk

1

� 0:8�

k

s = td

n

; t � 0;

1.3.3. Compute s

n

(the normal step) su
h that

l � x

k

+ s

n

� u,

ks

n

k

1

� 0:8�

k

, and

M(x

k

; 0)�M(x

k

; s

n

) � 0:9[M(x

k

; 0)�M(x

k

; s

de


n

)℄;

1.4. Compute d

t

(a des
ent dire
tion for f(x) on the tangent spa
e):

d

t

 P

x

(�


t

rQ(s

n

));
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1.5. Determine s

de


t

(the de
rease step for f(x)), the solution of

minimize Q(s)

subje
t to l � x

k

+ s � u

ksk

1

� �

k

s = s

n

+ td

t

; t � 0;

1.6. Compute a trial step s




su
h that

A(x

k

)s




= A(x

k

)s

n

,

l � x

k

+ s




� u,

ks




k

1

� �

k

, and

Q(s

n

)�Q(s




) � 0:9[Q(s

n

)�Q(s

de


t

)℄;

1.7. IF (f(x

k

+ s




) � P(F

k

; '(x

k

+ s




))) OR

(P

opt

red

� �'(x

k

) AND A

red

(x

k

; s




; �

sup

k

) < 


g

P

red

(H

k

; x

k

; s




; �

sup

k

)),

1.7.1. �

k

 �

R

minf�

k

; ks




k

1

g; (redu
e �)

1.8. ELSE

1.8.1. �

k

 A

opt

red

(x

k

; s




)=P

opt

red

(H

k

; x

k

; s




);

1.8.2. IF P

opt

red

(H

k

; x

k

; s




) < �'(x

k

) OR �

k

< 


f

,

1.8.2.1. F

k+1

 F

k

; (in
lude (f(x

k

); '(x

k

)) in F )

1.8.3. ELSE F

k+1

 F

k

;

1.8.4. A

ept the trial point:

x

k+1

 x

k

+ s




;

�

k+1

 

�

maxf�

R

minf�

k

; ks




k

1

g;�

min

g; if �

k

< 


g

;

maxf�

A

�

k

;�

min

g; if �

k

� �;

Determine H

k+1

;

k k + 1;

1.9. IF �

k

< �

rest

AND '(x

k

) > �

h

�

2

k

,

1.9.1. Compute a restoration step s

r

so that

('(x

k

+ s

r

) < �

h

�

2

k

AND f(x

k

+ s

r

) < P(F

k

; '(x

k

+ s

r

))) OR

x

k

+ s

r

is '-stationary but infeasible;

1.9.2. F

k+1

 F

k

; (in
lude (f(x

k

); '(x

k

)) in F )

1.9.3. A

ept the new point:

x

k+1

 x

k

+ s

r

;

�

k+1

 maxf��

rest

;�

min

g;

Determine H

k+1

;

k k + 1;

The 
onstants used here must satisfy � > 0, 0 < 


f

< 


g

< � < 1, 


n

> 0, 


t

> 0,

�

min

> 0, 0 < �

R

< 1, �

A

� 1, �

h

> 0 and � > 0. Parameters 


n

, 


t

, �

min

, �

h

and �

are problem dependent and may be 
hosen a

ording with some measure of problem

data. Reasonable values for the remaining parameters might be 


f

= 0:01, 


g

= 0:1,

� = 0:5, �

R

= 0:5 and �

A

= 2:0. The 
onstant � should not be 
onfused with the

parameter � de�ned in (2.9).

If x

k

is feasible, then the 
ondition P

opt

red

< �'(x

k

) is never satis�ed, sin
e P

opt

red

is always greater or equal to zero. Besides, the 
ondition A

opt

red

< 


f

P

opt

red

is also never

satis�ed when x

k

is feasible and f(x

k

+ s




) < P(F

k

; '(x

k

+ s




)). Therefore, all of the

points in F

k

are infeasible, although F

k

may 
ontain a feasible point. This result is

very important for two reasons. First, it prevents the optimal solution of problem 1.1

to be refused by the algorithm. Moreover, it assures the algorithm is well de�ned, as

stated in the next se
tion.
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4. The algorithm is well de�ned. An iteration of algorithm 3.1 ends only

when a new point x

k

+ s is below the pie
ewise linear fun
tion P(F

k

; '(x

k

+ s)),

besides satisfying some other 
onditions stated at steps 1.7 or 1.9.1. While su
h a

point is not found, the trust region radius is redu
ed and the iteration is repeated. It is

not obvious that an a

eptable point will be obtained, as we may generate a sequen
e

of points that are always reje
ted by the algorithm. In this se
tion, we prove that the

algorithm is well de�ned, i.e. a new iterate x

k+1


an always be obtained unless the

algorithm stops by �nding a '-stationary but infeasible point or a feasible but not

regular point.

In the following lemma, we 
onsider the 
ase where x

k

is infeasible.

Lemma 4.1. If x

k

is not '-stationary, then after a �nite number of repetitions

of steps 1.1 to 1.9, a new iterate x

k+1

is obtained by the algorithm.

Proof. At ea
h iteration k, if f(x

k

+ s




) < P(F

k

; '(x

k

+ s




)) and one of the


onditions P

opt

red

� �'(x

k

) or A

red

(x

k

; s




; �

sup

k

) � 


g

P

red

(H

k

; x

k

; s




; �

sup

k

) is satis�ed,

then x

k

+ s




is a

epted and we move to iteration k + 1. Otherwise, �

k

is redu
ed

and after some unfruitful steps, �

k

< �

rest

and '(x

k

) > �

h

�

2

k

, so a restoration is


alled.

Suppose that a '-stationary but infeasible point is never rea
hed (otherwise the

algorithm fails). As the restoration generates a sequen
e of steps fs

j

g 
onverging to

feasibility, and sin
e F

k

does not in
lude feasible points (be
ause x

k

is infeasible and

no feasible point is in
luded in F

k

), there must exist an iterate x

k

+ s

r

that satis�es

'(x

k

+ s

r

) < minf'

1

; �

h

�

2

k

g, so we 
an pro
eed to the next iteration.

Now, in order to prove that the algorithm is also well de�ned when x

k

is feasible,

we need to make the following assumptions.

A1. f(x) and C

i

(x) are twi
e-
ontinuously di�erentiable fun
tions of x.

A2. The sequen
e of Hessian approximations fH

k

g is bounded.

As a 
onsequen
e of A1 and A2, the di�eren
e between the a
tual and the pre-

di
ted redu
tion of the merit fun
tion is proportional to �

2

, so the step is a

epted

for a suÆ
iently small trust region radius, as stated in the following lemma.

Lemma 4.2. Suppose that A1 and A2 hold and that x

k

is feasible and regular for

problem 1.1 but the KKT 
onditions do not hold. Then, after a �nite number of trust

region redu
tions, the algorithm �nds a new point x

k

+ s




that satis�es f(x

k

+ s




) <

P(F

k

; '(x

k

+ s




)) and A

red

(x

k

; s




; �

sup

k

) � 


g

P

red

(H

k

; x

k

; s




; �

sup

k

).

Proof. Sin
e x

k

is feasible, s

n

= 0. Supposing that x

k

is regular and non-

stationary, there must exist a ve
tor d

t

6= 0 satisfying

l � x

k

+ d

t

� u; A(x

k

)d

t

= 0; and d

T

t

rf(x

k

) < 0:

Let us de�ne, for all � > 0,

p(�) = t(�)d

t

;

where

t(�) = maxft > 0 j [x

k

; x

k

+ td

t

℄ � 
; and ktd

t

k

1

� �g:

Clearly, x + d

t

2 
, so we have that kt(�)d

t

k

1

= � whenever � � kd

t

k

1

.

De�ne, in this 
ase,


 = �

1

2

d

T

t

rf(x

k

)=kd

t

k

1

= �

1

2

d

T

t

rQ(0)=kd

t

k

1

> 0:
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Sin
eQ(s

de


t

) � Q(p(�)), by elementary properties of one-dimensional quadrati
s,

there exists �

1

2 (0; kd

t

k

1

℄ su
h that, for all � 2 (0;�

1

),

Q(0)�Q(s

de


t

) � �

1

2

d

T

t

rQ(0)t(�) = �

1

2

d

T

t

rQ(0)

kd

t

k

1

� = 
�:

Moreover, sin
e x

k

is feasible and As

n

= 0, we have that M(x

k

; 0) =M(x

k

; s




) =

0, so

P

fsb

red

(x

k

; s




) = 0; and

P

opt

red

(H

k

; x

k

; s




(�)) = Q(0)�Q(s




(�)) � 0:9[Q(0)�Q(s

de


t

)℄ � 0:9
�:

On
e x

k

is feasible, ('(x

k

); f(x

k

)) is the �rst pair in F

k

. Thus, there exists

�

2

2 (0;�

1

℄ su
h that, for � < �

2

, we need to 
onsider only the portion of P(F

k

; ')

de�ned on the interval [0; '

2

℄. This linear fun
tion may be rewritten so the 
ondition

f(x

k

+ s




) < P(F

k

; '(x

k

+ s




))

is equivalent to

A

red

(x

k

; s




(�); �

1

) � �

1

P

red

(H

k

; x

k

; s




(�); �

1

);(4.1)

where,

P

red

(H

k

; x

k

; s




(�); �

1

) = �

1

P

opt

red

(H

k

; x

k

; s




(�)) � 0:9
��

1

;(4.2)

A

red

(x

k

; s




(�); �

1

) = �

1

[f(x

k

)� f(x

k

+ s




(�))℄ + (1� �

1

)'(x

k

+ s




(�))

and �

1

> 0 is given by (2.3).

Now, by A1, A2 and the de�nition of P

red

, we have

A

red

(x

k

; s




; �) = P

red

(H

k

; s

k

; s




; �) + 


1

ks




k

2

:(4.3)

So, using (4.2) and (4.3) we dedu
e that

�

�

�

�

A

red

(�)

P

red

(�)

� 1

�

�

�

�

�




1

�

0:9
�

1

:(4.4)

Thus, for � < minf(1� �

1

)0:9
�

1

=


1

;�

2

g = �

3

, the inequality (4.1) ne
essarily

takes pla
e.

Now, using the fa
t that �

sup

k

= 1 for x

k

feasible and repla
ing �

1

by 1 in (4.4),

we 
an 
on
lude that, for

� < minf(1� 


g

)0:9
=


1

;�

3

g = �

4

;(4.5)

the 
ondition A

red

(x

k

; s




(�); �

sup

k

) � 


g

P

red

(H

k

; x

k

; s




(�); �

sup

k

) is also satis�ed and

the step is a

epted.
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5. The algorithm 
onverges to a feasible point. As mentioned in the last

se
tion, our algorithm 
an stop if a '-stationary but infeasible point is found. More-

over, the restoration pro
edure 
an also fail to obtain a more feasible point. Naturally,

this unexpe
ted behavior of the algorithm makes somewhat pretentious the title of

this se
tion.

Formally, what we will prove in this se
tion is that, supposing that a '-stationary

but infeasible point is never rea
hed and that the restoration always su

eeds, an

in�nite sequen
e of iterates 
onverges to feasibility.

In the proofs of the lemmas presented here, we will suppose that A1 and the

following assumption are satis�ed.

A3. The sequen
e of iterates fx

k

g lies within a 
losed and bounded domain 


0

.

As mentioned in [5, p.730℄, assumptions A1 and A3 together ensure that, for all

k,

f

min

� f(x

k

) � f

max

and 0 � '(x

k

) � '

max

for some 
onstants f

min

, f

max

and '

max

> 0. Our analysis will be based on the fa
t

that the re
tangle [0; '

max

℄� [f

min

; f

max

℄ is 
overed by a �nite number of re
tangles

with area greater than a small 
onstant. Therefore, ea
h time we expand the forbidden

region (see �g (2.1)) by adding to it a small re
tangle, we drive the iterates towards

feasibility.

Let us start investigating what happens to '(x) when an in�nite sequen
e of

iterates is added to F .

Lemma 5.1. Suppose that A1 and A3 hold and that fk

i

g is any in�nite subse-

quen
e at whi
h the iterate x

k

i

is added to F . Then

lim

i!1

'(x

k

i

) = 0:

Proof. Let us suppose, for the purpose of obtaining a 
ontradi
tion, that there

exists an in�nite subsequen
e fk

j

g � fk

i

g for whi
h

'(x

k

j

) � �;(5.1)

where � > 0.

At iteration k

j

, the ('; f)-pair asso
iate with x

k

j

is in
luded in F at position

m, whi
h means that '

m�1

� '

k

j

(� '

m

) � '

m+1

and f

m�1

� f

k

j

(� f

m

) � f

m+1

.

Thus, as long as the pair ('

k

j

; f

k

j

) remains in F , no other ('; f)-pair is a

epted

within the re
tangle

r

m

= f('; f) j '

m

� ' � '

m

; f

m

� f � f

m

g:

Noti
e that, by (2.4) and (2.5), the area of this re
tangle is

('

m

� '

m

)(f

m

� f

m

) � ('

m

� '

m

)

2

� [(1� 


f

)'

k

j

℄

2

� (1� 


f

)

2

�

2

:

Assume now that ('

k

j

; f

k

j

) is ex
luded from F by another pair ('

k

l

; f

k

l

), in
luded

in F at an iteration k

l

> k

j

. This 
ase is illustrated in Fig. 5.1. Noti
e that ('

k

l

; f

k

l

)


annot fall in regions I and V sin
e, in this 
ase, ('

k

j

; f

k

j

) will not be ex
luded from

F . It 
an be easily veri�ed that the worst 
ase o

urs when ('

k

l

; f

k

l

) lies on `

1

(') or

`

2

(').
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Suppose ('

k

l

; f

k

l

) lies on `

2

('), as depi
ted in Fig. 5.1. In this 
ase, the re
tangle

r

m

will be entirely above `

2

, the line that 
onne
ts ('

k

l

; f

k

l

) to ('

m+1

; f

m+1

). Sin
e

`

2

will be in
luded in the new pie
ewise linear fun
tion P(F), no point within r

m


an

ever be rea
hed by a new iterate.

The same idea 
an be applied in the 
ase ('

k

l

; f

k

l

) lies on `

1

('). Therefore, on
e

('

k

j

; f

k

j

) is in
luded in F , r

m

will always be above P(F). Sin
e the area of this

re
tangle is at least (1 � 


f

)

2

�

2

and the set A

0

is 
ompletely 
overed by at most

Surf(A

0

)=[(1� 


f

)

2

�

2

℄ of su
h re
tangles, it is impossible for an in�nite subsequen
e

of fk

i

g to satisfy (5.1), and the 
on
lusion follows.

II

I

III
IV V

( , )jm-1 m-1f

( , )jm mf

( , )jm+1 m+1f

rm

( , )jm mf

( , )jkl klf

rkl

rm+1

( , )jm+1 m+1f

l1

l2

l2

l1

j

f

Fig. 5.1. Adding a new iterate that ex
ludes ('

k

j

; f

k

j

) from F .

Finally, we are going to 
onsider the 
ase where no point is added to F

k

for k

suÆ
iently large.

Lemma 5.2. Suppose that assumptions A1 and A3 hold. Suppose also that, for

all k > k

0

, x

k

is never in
luded in F

k

. Then,

lim

k!1

'(x

k

) = 0:(5.2)

Proof. Sin
e x

k

is not in
luded in F

k

, no restorations are made and both 
ondi-

tions stated at step 1.8.2 of algorithm 3.1 are never satis�ed for k > k

0

. Therefore,

we have

f(x

k

)� f(x

k+1

) � 


f

P

opt

red

� 


f

�'(x

k

) � 0;(5.3)

for all k > k

0

, whi
h means that the obje
tive fun
tion always de
rease between

infeasible iterations. Sin
e A1 and A3 imply f

min

� f(x

k

) � f

max

, we must have

lim

k!1

f(x

k

)� f(x

k+1

) = 0:(5.4)

Then, (5.2) follows from (5.3) and (5.4).

6. The algorithm �nds a 
riti
al point. Finally, we are able to prove the


onvergen
e of the algorithm to a stationary point for (1.1). In order to do that, we

will need to make one aditional assumption on the 
hoi
e of the normal step s

n

.
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A4. The 
hoi
e of s

n

at step 1.3.3 of algorithm 3.1 is su
h that

ks

n

(x

k

;�

k

)k � �

n

kC(x

k

)k

2

:

In the following lemma, derived from lemma 6.1 of [9℄, we show that in the

neighborhood of a feasible, regular and non-stationary point, the dire
tional derivative

of the quadrati
 model (2.2) along d

t

is bounded away from zero.

Lemma 6.1. Suppose that A2 and A4 hold and that fx

k

i

g is an in�nite subse-

quen
e that 
onverges to the feasible and regular point x

�

2 
, whi
h is not stationary

for (1.1). Then, there exists k

1

; 


1

> 0 su
h that

�rQ(s

n

(x;�))

T

d

t

(H; x;�) � 


1

(6.1)

for all x 2 fx

k

i

j k � k

1

g. Moreover, kd

t

(H; x;�)k is bounded and bounded away

from 0 for all x 2 fx

k

i

j k � k

1

g.

Proof. For all x 2 fx

k

i

g, we have that

d

t

(H; x;�) = P

x

(�


t

rQ(s

n

(x;�))) = P

x

(�


t

[Hs

n

(x;�) +rf(x)℄):

By the 
ontra
tive property of the orthogonal proje
tions,

kP

x

(�


t

[Hs

n

(x;�) +rf(x)℄)� P

x

(�


t

rf(x))k

2

� 


t

kHk

2

ks

n

(x;�)k

2

:

So, by A2 and A4, we have that

kd

t

(H; x;�)� P

x

(�


t

rf(x))k

2

� 


1

kC(x)k(6.2)

and, by the 
ontinuity of rf(x) and the fa
t that fx

k

i

g 
onverges, we dedu
e that

krf(x

k

i

)

T

P

x

(�


t

rf(x

k

i

))�rf(x

k

i

)

T

d

t

(H

k

i

; x

k

i

;�

k

i

)k

2

� 


2

kC(x

k

i

)k:(6.3)

Noti
e that P

x

(�


t

rf(x

k

i

)) is the solution of

minimize k � 


t

rf(x

k

i

)� zk

2

2

subje
t to A(x

k

i

)z = 0

l � x

k

i

+ s

n

+ z � u:

Now, de�ne P

x

�

(�


t

rf(x

�

)) as the solution of

minimize k � 


t

rf(x

�

)� zk

2

2

subje
t to A(x

�

)z = 0(6.4)

l � x

�

+ z � u:

Sin
e x

�

is regular but is not a stationary point for (1.1), it follows that z = 0 is

not a solution for (6.4). So, P

x

�

(�


t

rf(x

�

)) 6= 0. Moreover, sin
e z = 0 is feasible

for (6.4), we have that

k � 


t

rf(x

�

)� P

x

�

(�


t

rf(x

�

))k

2

2

< k � 


t

rf(x

�

)k

2

2

;

whi
h implies that rf(x

�

)

T

P

x

�

(�


t

rf(x

�

)) < 0.

Using the fa
t that P

x

(�


t

rf(x)) is a 
ontinuous fun
tion of x and s

n

for all

regular x (see [9℄), we 
an de�ne 


2

; 


3

; 


4

> 0 and k

2

2 IN su
h that, for all x 2 fx

k

i

j

k � k

2

g, we have




2

� kP

x

(�


t

rf(x))k � 


3

and rf(x)

T

P

x

(�


t

rf(x)) � �


4

:(6.5)
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Now, from (6.2), (6.3) and (6.5), the 
ontinuity of C(x) and the feasibility of x

�

,

there exists k

3

� k

2

su
h that, whenever x 2 fx

k

i

j k � k

3

g,




2

2

� kd

t

(H; x;�)k � 2


3

and rf(x)

T

d

t

(H; x;�) �

�


4

2

:

Therefore, kd

t

(H; x;�)k is bounded and bounded away from zero for all x 2 fx

k

i

j

k � k

3

g.

Finally, sin
e d

t

2 N (A(x)), assumptions A2 and A4 hold, and kd

t

k is bounded,

we have that, for all x 2 fx

k

i

j k � k

3

g,

rQ(s

n

)

T

d

t

= rf(x)

T

d

t

+ d

T

t

Hs

n

� �




4

2

+ 


3

kC(x)k;

where 


3

> 0. Then, (6.1) follows de�ning 


1

= 


4

=4 and 
hoosing k

1

> k

3

su
h that

kC(x)k � 


4

=(4


3

).

Using Lemma 6.1, we prove in the next lemma that, in the neighborhood of a

feasible, regular and non-stationary point, the de
rease of the quadrati
 model (2.2)

is proportional to the trust region radius �.

Lemma 6.2. Suppose that A2 and A4 hold and that fx

k

i

g is an in�nite subse-

quen
e that 
onverges to the feasible and regular point x

�

2 
, whi
h is not stationary

for (1.1). Then, there exists 


2

; k

2

> 0 and �

0

2 (0;�

min

) su
h that

Q(x; s

n

(x;�))�Q(x; s




)) � 


2

minf�;�

0

g

for all x 2 fx

k

i

j k � k

2

g.

Proof. See Lemma 6.2 of [9℄.

Now, we are able to present a 
ru
ial lemma, derived from Lemma 6.3 of [9℄, that

relates P

opt

red

to the trust region radius in the neighborhood of a feasible point. Besides,

we also show that, in this 
ase, P

opt

red

is suÆ
iently large so �

sup

= 1.

Lemma 6.3. Suppose that A1, A2 and A4 hold and that fx

k

i

g is an in�nite

subsequen
e that 
onverges to the feasible and regular point x

�

2 
, whi
h is not

stationary for (1.1). Then, there exists �; 


3

; k

3

> 0 and �

1

2 (0;�

min

) su
h that,

for k

i

> k

3

, if

'(x

k

i

) � ��

2

;(6.6)

we have that

P

opt

red

(x

k

i

; s




) = Q(x

k

i

; 0)�Q(x

k

i

; s




) � 


3

minf�;�

1

g(6.7)

and

�

sup

k

i

= 1:(6.8)

Proof. By Lemma 6.2, assumptions A1 and A4 and the 
onvergen
e of fx

k

i

g, we

have that

Q(0)�Q(s




) � Q(s

n

)�Q(s




)� jQ(0)�Q(s

n

)j � 


2

minf�;�

1

g � 


4

kC(x)k

for all x 2 fx

k

i

j k � k

2

g, where 


2

, k

2

and �

1

are de�ned as in Lemma 6.2 and




4

> 0. Therefore, (6.7) follows if we 
hoose 


3

< 


2

and k

3

� k

2

su
h that � �

�

2

(


2

� 


3

)

2

=(2


2

4

), where � = minf1;�

1

=�g.



16 FRANCISCO A. M. GOMES

Now, from assumption A4, we have that

M(0)�M(s




) =M(0)�M(s

n

) � 


5

kC(x

k

i

)k;

so

P

red

(x

k

i

; s




; 1)� 0:5[M(x

k

i

; 0)�M(x

k

i

; s




)℄ � 


3

minf�;�

1

g � 


5

kC(x

k

i

)k:

Again, (6.8) follows if we 
hoose � � �

2




2

3

=(2


2

5

).

We next examine what happens if � is bounded away from zero and an in�nite

subsequen
e of points is added to F .

Lemma 6.4. Suppose that A1, A2, A3 and A4 hold and that fx

k

j

g is an in�nite

subsequen
e at whi
h x

k

j

is added to F . Suppose furthermore that the restoration

always terminates su

essfully and that �

k

i

� �

2

, where �

2

is a positive s
alar.

Then there exists a limit point of this sequen
e that is a stationary point for (1.1).

Proof. From assumption A3, we know that there exists a 
onvergent subsequen
e

fx

k

i

g. Let us suppose that the limit point of this subsequen
e is not stationary for

(1.1).

From Lemma 5.1 we know that there exists k

5

2 IN su
h that, for k

i

> k

5

,

'(x

k

i

) < �

h

�

2

2

:

Thus, a restoration is never 
alled for k

i

> k

5

. So, the hypotesis that x

k

i

is added

to F

k

i

implies that one of the inequalities stated at step 1.8.2 of the algorithm must

be satis�ed at iteration k

i

.

Suppose, for the purpose of obtaining a 
ontradi
tion, that fx

k

i

g 
onverges to

a point that is not stationary for (1.1). So, from Lemma 5.1 and (6.7), there exists

k

6

� k

5

su
h that '(x

k

i

) < ��

2

k

i

and

P

opt

red

(x

k

i

; s




) � 


3

minf�

1

;�

2

g;

for all k

i

> k

6

.

Using Lemma 5.1 again, we 
an dedu
e that there exists k

7

� k

6

su
h that

'(x

k

i

) < (


3

=�)minf�

1

;�

2

g and the 
ondition P

opt

red

< �'(x

k

) is never satis�ed for

k

i

> k

7

.

Therefore, f(x

k

i

) � f(x

k

i

+ s




) < 


f

P

opt

red

must hold. To show that this is not

possible, let us write the inequality A

red

(x

k

i

; s




; �

sup

k

i

) � 


f

P

red

(x

k

i

; s




; �

sup

k

i

) as

�

sup

k

i

(f(x

k

i

)� f(x

k

i

+ s




)) + (1� �

sup

k

i

)('(x

k

i

)� '(x

k

i

+ s




)) �




g

�

sup

k

i

P

opt

red

(x

k

i

; s




) + 


g

(1� �

sup

k

i

)P

fsb

red

(x

k

i

; s




):

Using the hypothesis that f(x

k

i

)�f(x

k

i

+s




) < 


f

P

opt

red

(x

k

i

; s




) and the fa
t that

P

fsb

red

(x

k

i

; s




) � 0, we have

�

sup

k

i




f

P

opt

red

(x

k

i

; s




) + (1� �

sup

k

i

)('(x

k

)� '(x

k

+ s




)) � 


g

�

sup

k

i

P

opt

red

(x

k

i

; s




):

Then, taking k

4

> k

3

(de�ned in Lemma 6.3), we dedu
e from (6.7) that, for

k

i

> k

4

,

(1� �

sup

k

i

)('(x

k

i

)� '(x

k

i

+ s




)) � (


g

� 


f

)�

sup

k

i




3

minf�

1

;�

2

g:

But, sin
e, 


g

> 


f

and lim

i!1

'

k

i

= 0, we must have

lim

i!1

�

sup

k

i

= 0;
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whi
h 
ontradi
ts (6.8). Therefore, fx

k

i

g must 
onverge to a stationary point for

(1.1).

Supposing again that � is bounded away from zero, we will now 
omplete our

analysis investigating what happens when no iterates are added to F for k suÆ
iently

large.

Lemma 6.5. Suppose that A1, A2, A3 and A4 hold, that x

k

is always a

epted but

F

k

remains un
hanged for k > k

5

and that �

k

� �

3

, for some positive �

3

. Suppose

also that the limit points of the in�nite sequen
e fx

k

g are feasible and regular. Then

there exists a limit point of fx

k

g that is a stationary point of (1.1).

Proof. Assumption A3 implies that there exists a 
onvergent subsequen
e fx

k

i

g.

If the limit point of this subsequen
e is not stationary for (1.1), then from Lemma

6.3, we have

P

opt

red

� 


3

minf�

3

;�

1

g

for all k

i

> maxfk

5

; k

3

g. Moreover, sin
e x

k

i

is always a

epted and F

k

is not 
hanged,

we dedu
e that

f(x

k

i

)� f(x

k

i

+ s




) � 


f

P

opt

red

:

Therefore, f(x

k

i

)� f(x

k

i

+ s




) � 


f




3

minf�

1

;�

3

g for all k

i

suÆ
iently large, whi
h


ontradi
ts the 
ompa
tness assumption A3.

In the last part of this se
tion, we will dis
uss the behavior of the algorithm when

�! 0. We will start showing that the predi
ted redu
tion of the quadrati
 model is

suÆ
iently large when � is small.

Lemma 6.6. Suppose that A2 and A4 hold and that fx

k

i

g is an in�nite subse-

quen
e that 
onverges to the feasible and regular point x

�

2 
, whi
h is not stationary

for (1.1). Suppose also that '

k

satis�es (6.6) and that

� < minf


3

=(��);�

1

g = �

5

(6.9)

for k

i

> k

7

, where 


3

, � and �

1

are de�ned as in Lemma 6.3. Then P

opt

red

> �'(x

k

i

).

Proof. Suppose, for the purpose of obtaining a 
ontradi
tion, that P

opt

red

� �'(x

k

)

for some k

i

> k

7

. Then, from (6.7), we have




3

minf�;�

1

g � P

opt

red

� �'(x

k

i

) � ���

2

;

whi
h is impossible be
ause of (6.9). Thus P

opt

red

> �'(x

k

i

) must hold.

The purpose of the next four lemmas is to prove that there exists a suÆ
iently

small trust region radius so the step is always a

epted and � is not redu
ed further

at step 1.7.1 of algorithm 3.1.

The �rst lemma will be used to show the relation between the predi
ted redu
tion

of the infeasibility and �.

Lemma 6.7. Suppose that assumption A1 holds and that x

k

is not '-stationary.

Then, there exists �

6

; 


4

> 0 su
h that

P

fsb

red

(x

k

; s




) � 


4

�

k

;(6.10)

if �

k

2 (0;�

6

).

Proof. Sin
e x

k

is not '-stationary, we have that d

n

6= 0. Thus, we 
an de�ne

t

max

(�) = maxft > 0 j [x

k

; x

k

+ td

n

℄ 2 
 and ktd

n

k � 0:8�g:
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Clearly, if � � 1:25kd

n

k, then kt

max

(�)d

n

k = 0:8� (sin
e x

k

+ d

n

2 
). Now,

de�ne


 = �

1

2

d

T

n

r'(x

k

)

kd

n

k

> 0:

By some elementary properties of one-dimensional quadrati
s, there exists �

6

2

(0; kd

n

k℄ su
h that

M(0)�M(t

max

(�)) � �

1

2

d

T

n

r(x

k

)t

max

(�) = 
kd

n

kt

max

(�) = 0:8
�:

for all � 2 (0;�

6

). Therefore, for the normal step s

n


omputed at step 1.3.3 of

algorithm 3.1, we have

M(0)�M(s

n

) � 0:72
�

k

:

But, sin
e A(x

k

)s




= A(x

k

)s

n

, we dedu
e from (1.4) that

P

fsb

red

(x

k

; s




) � 0:72
�

k

and the desired inequality follows.

In order to prove that x

k

+ s




will be a

epted, we need to 
onsider how ' and

f are 
omputed. Let us begin using the previous lemma to show that, for a small �,

'

i

, de�ned in (2.4), will depend on the predi
ted redu
tion of the infeasibility.

Lemma 6.8. Suppose that A1 holds and that x

k

is not '-stationary. Then there

exists �

7

> 0 su
h that







P

fsb

red

(x

k

; s




) > 


f

'(x

k

);

if '(x

k

) < �

h

�

2

k

and �

k

2 (0;�

7

).

Proof. Lemma 6.7 ensures that










f

P

fsb

red

(x

k

; s




) �










f




4

�

k

> 0:

De�ning �

7

= minf








4

=(


f

�

h

);�

6

g, where �

6

is given in Lemma 6.7, we have

that










f

P

fsb

red

(x

k

; s




) � �

h

�

7

� > �

h

�

2

� '(x

k

);

for all � 2 (0;�

7

), so the desired result follows.

Using Lemma 6.7 again, we 
an also show that f , de�ned in (2.5), will depend on

P

opt

red

if De is suÆ
iently small.

Lemma 6.9. Suppose that A1, A2 and A4 hold, that fx

k

i

g is an in�nite subse-

quen
e that 
onverges to the feasible and regular point x

�

2 
, whi
h is not stationary

for (1.1), and that '

k

is given by (2.4). Then there exists �

8

> 0 su
h that




f

P

opt

red

(H

k

; x

k

; s




) � ('(x

k

)� '

k

);

if '(x

k

) < minf�

h

; �g�

2

k

and �

k

2 (0;�

8

), where � is de�ned as in Lemma 6.3.

Proof. From Lemma 6.3 we dedu
e that, if �

k

2 (0;�

1

℄, then




f

P

opt

red

(H

k

; x

k

; s




) � 


f




3

�

k

:
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Now, de�ning �

8

= minf


f




3

=�

h

;�

1

g, we have




f

P

opt

red

(H

k

; x

k

; s




) � ep

h

�

8

� � �

h

�

2

k

� '(x

k

) � ('(x

k

)� '

k

)

and the desired 
on
lusion follows.

Lemma 6.6 assures that P

opt

red

is suÆ
iently large when � is small. Let us prove

now that the a
tual redu
tion of the merit fun
tion is suÆ
iently large so the se
ond


ondition used in step 1.7 of algorithm 3.1 to de
rease the trust region radius is never

satis�ed.

Lemma 6.10. Suppose that A1 and A4 hold and that �

k

< �

sup

k

, where �

k

is

de�ned by (2.7) and �

sup

k

is de�ned by (2.8). Then there exists �

9

> 0 su
h that

A

red

(x

k

; s




; �

sup

k

) < 


g

P

red

(H

k

; x

k

; s




; �

sup

k

)

for all �

k

2 (0;�

9

).

Proof. If �

k

< �

sup

k

, then P

red

(H

k

; x

k

; s




) � (1=2)P

fsb

red

. This inequality, together

with (6.10), gives that

P

red

(H

k

; x

k

; s




) �




4

2

�

k

;

for all �

k

2 (0;�

6

), where 


4

and �

6

are de�ned in Lemma 6.7. But, from A1 and

A4, we also have that

jA

red

(�

k

)� P

red

(�

k

)j � 


5

�

2

k

:

for some 


5

> 0. From the last two inequalities, we dedu
e that

jA

red

(�

k

)� P

red

(�

k

)j

P

red

(�

k

)

=

�

�

�

�

A

red

(�

k

)

P

red

(�

k

)

� 1

�

�

�

�

�

2


5




4

�

k

:(6.11)

Therefore, de�ning �

9

= minf(1� 


g

)


4

=(2


5

);�

6

g, we obtain the required result.

In our last lemma, we will use the previous results to prove that, if Æ ! 0, there

is no in�nite subsequen
e that 
onverges to a point that is not stationary for (1.1).

Lemma 6.11. Suppose that A1, A2, A3 and A4 hold. Suppose also that the limit

points of the in�nite sequen
e fx

k

g are feasible and regular and that lim

k!1

�

k

= 0.

Then there exists a limit point of fx

k

g that is a stationary point of (1.1).

Proof. Assumption A3 implies that there exists a 
onvergent subsequen
e fx

k

i

g.

Let us suppose, for the purpose of obtaining a 
ontradi
tion, that the limit point of

this subsequen
e is not stationary for (1.1).

Sin
e lim

i!1

'(x

k

i

) = 0 and, at the begining of iteration k, the trust region

radius satis�es �

k

i

� �

min

, there must exist k

8

� k

3

(de�ned in Lemma (6.3)) su
h

that, for k

i

> k

8

, the 
ondition '(x

k

i

) � ��

2

k

i

is satis�ed, so (6.8) holds.

But, from (2.7) and (2.3), we have that �

k

i

< 1, so Lemma 6.10 applies and (6.11)

also holds if �

k

i

< �

9

.

Thus, supposing that k

i

> k

8

and �

k

i

< �

9

, the point x

k

i

+ s




would only be

reje
ted and, 
onsequently, the trust region radius would only be redu
ed if f(x

k

i

+

s




) � P(F

k

i

; '(x

k

i

+ s




)).

Now, we need to 
onsider separately two mutually ex
lusive situations. First, let

us suppose that x

k

i

is feasible. In this 
ase, Lemma 4.2 assures that, for � < �

4

(de�ned in (4.5)), the step is a

epted and the trust region radius need not to be

redu
ed further.
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On the other hand, if x

k

i

is not '-stationary, Lemmas 6.8 and 6.9 assure that for

�

k

i

� minf�

7

;�

8

g = �

10

, the de�nition of � given in (2.9) holds, so 0 < � < 1 and

f(x

k

i

+ s




) > P(F

k

i

; '(x

k

i

+ s




)) is equivalent to (2.6).

Now, following the same steps used in Lemma 6.10, we 
an use (6.11) one more

time to show that, when �

k

i

< minf(1� �)


4

=(2


5

);�

6

g = �

11

, where �

6

is de�ned

in Lemma 6.7, inequality (2.6) is satis�ed and �

k

i

is not redu
ed at step 1.7.1 of

Algorithm 3.1.

Therefore, �

k

i

� �

R

minf�

4

;�

9

;�

10

;�

11

g, whi
h 
ontradi
ts the hypotesis that

lim

k!1

�

k

= 0, so we 
on
lude that the limit point of the subsequen
e fx

k

i

g is a

stationary point of (1.1).

Finally, let us state a theorem that puts together all of the results presented so

far.

Theorem 6.12. Suppose that A1, A2, A3 and A4 hold and that fx

k

g is an

in�nite sequen
e generated by algorithm 3.1. Then either the restoration 
onverges

to a '-stationary but infeasible point of (1.1), or lim

k!1

'(x

k

) = 0. Moreover, if

the restoration always su

eeds and all of the limit points of fx

k

g are regular, there

exists a limit point x

�

that is a stationary point for (1.1). In parti
ular, if all of the

'-stationary points area feasible and regular, then there exists a subsequen
e of fx

k

g

that 
onverges to a feasible, regular ans stationary point of (1.1).

Proof. This result is a dire
t 
onsequen
e of Lemmas 5.1, 5.2, 6.4, 6.5 and 6.11.

7. Con
lusions. In this paper, we depi
t the general framework of an SQP algo-

rithm that uses a pie
ewise linear merit fun
tion to a

ept and reje
t steps. This ap-

proa
h 
ombines ideas from both merit fun
tions and the �lter introdu
ed by Flet
her

and Lei�er in [7℄.

The use of several penalty parameters de�ned automati
ally by the previous it-

erates avoids the premature redu
tion of � as well as the zigzagging that 
an o

ur

when a nonmonotone strategy is used to update this parameter. The new method is

also less tolerant than the �lter method, sin
e we do not a

ept points that marginally

redu
e the infeasibility or the obje
tive fun
tion.

As the next steps of this work, we intend to test the algorithm with some problems

from the CUTEr library and devise a strategy to 
ir
unvent the Maratos e�e
t.
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