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�

Abstrat. A sequential quadrati programming algorithm for solving nonlinear programming

problems is presented. The new feature of the algorithm is related to the de�nition of the merit

funtion. Instead of using one penalty parameter per iteration and inreasing it as the algorithm

progresses, we suggest that a new point is to be aepted if it stays suÆiently below the pieewise

linear funtion de�ned by some previous iterates on the (f; kCk

2

2

) spae. Therefore, the penalty

parameter is allowed to derease between suessive iterations. Besides, one need not to deide how

to update the penalty parameter. This approah resembles the �lter method introdued by Flether

and Ley�er [7℄, but it is less tolerant sine a merit funtion is still used.
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1. Introdution. In this paper we are onerned with the problem

minimize f(x)

subjet to C(x) = 0(1.1)

l � x � u

where f : IR

n

! IR is a C

2

nonlinear funtion, C : IR

n

! IR

m

represents a set of

C

2

nonlinear onstraints and we suppose that �1 � l

i

� u

i

� 1, for i = 1; : : : ; n.

Naturally, some of the omponents of x in (1.1) may be slak variables generated

when onverting inequality onstrains to this form.

Algorithms based on the sequential quadrati programming (SQP) approah are

one of the most e�etive methods for solving (1.1). Some interesting algorithms of

this lass are given, for example, in [2, 3, 9, 15℄. A omplete overage of suh methods

an be found in [5, 14℄.

Sine SQP algorithms do not require the iterates to be feasible, they have to

onern with two oniting objetives at eah iteration: the redution of the infeasi-

bility and the redution of funtion f . Both objetives must be taken in aount when

deiding if the new iterate is to be aepted or rejeted. To make this hoie, most

algorithms rely on a merit funtion.

If the problem ontains no inequality onstraints or bounds on the variables,

or if the algorithm assures that the bounds are never violated by the iterates, the

augmented Lagrangian, written here in an unusual way as

L(x; �; �) = �[f(x) + C(x)

T

�℄ +

(1� �)

2

kC(x)k

2

2

;(1.2)

is a good hoie for the merit funtion.

In (1.2), � is a \penalty parameter" used as a weight to balane the Lagrangian

funtion for the equality onstrained problem, de�ned as

`(x; �) = f(x) + C(x)

T

�;

�
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with a measure of the infeasibility, given by

'(x) =

1

2

kC(x)k

2

2

:

When the bounds on the variables are not supposed to be satis�ed by the iterates

or when inequality onstraints are expliitly handled by the SQP algorithm, a good

merit fution is the L

1

exat penalty funtion. For the problem (1.1), this funtion

an be de�ned as

	(x; �) = f(x) + �kC(x)k

1

+ �

n

X

i=1

(u

i

� x

i

)

�

+ �

n

X

i=1

(x

i

� l

i

)

�

;

where w

�

= maxf0;�wg. Again, the penalty parameter � is used to establish an

equilibrium between optimality and feasibility.

At iteration k, a new point x

+

= x

k

+s is aepted if the ratio between the atual

and the predited redution of the merit funtion (when moving from x

k

to x

+

) is

greater than a positive onstant.

When the augmented Lagrangian is used, the atual redution of the merit fun-

tion at the andidate point x

+

is de�ned as

A

red

(x

k

; s; �) = L(x

k

; �)�L(x

k

+ s; �):

The predited redution of the merit funtion depends on the strategy used to ap-

proximately solve (1.1). One ommon hoie is to approximate (1.1) by the quadrati

programming problem

minimize Q(H; x; �; s) =

1

2

s

T

Hs+r`(x; �)

T

s+ `(x; �)

subjet to A(x)s + C(x) = 0

l � x+ s � u

where H is a symmetri n � n matrix and A(x) = (rC

1

(x); : : : ;rC

m

(x))

T

is the

Jaobian of the onstraints.

In this ase, denoting

M(x; s) =

1

2

kA(x)s+ C(x)k

2

2

;

as the approximation of '(x), the predited redution of the augmented Lagrangian

merit funtion is given by

P

red

(H; x; s; �) = �P

opt

red

(H; x; s) + (1� �)P

fsb

red

(x; s);(1.3)

where

P

fsb

red

(x; s) =M(x; 0)�M(x; s)(1.4)

is the predited redution of the infeasibility and

P

opt

red

(H; x; s) = Q(H; x; 0)�Q(H; x; s)(1.5)

is the predited redution of the Lagrangian.
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Fig. 1.1. Three merit funtions on the ('; `) plane, showing the inuene of the penalty pa-

rameter �. On the left, � = 1=50. In the middle, � = 1=2. On the right, � = 49=50.

Now, let us analyse the role of the penalty parameter �. Supposing, for example,

(1.2) is used as the merit funtion, (��1)=� an be viewed as the slope of the line that

de�nes the forbidden region in the ('; `)-plane, that is, the semi-spae that ontains

all the points that are not aeptable at the urrent iteration. This is illustrated

in Figure 1.1, where the forbidden region de�ned by the augmented Lagrangian is

highlighted for di�erent values of �.

In general, an algorithm starts with � � 1 and dereases this penalty parameter

at some iterations, so feasibility is eventually attained.

Merit funtions have been ritiized for many reasons. First, it is not so easy

to hoose an initial value for �, sine `(x; �) and '(x) usually have very di�erent

meanings and units. Besides, it is neessary to derease � as the algorithm progresses

to fore it to �nd a feasible solution. If the initial penalty parameter used is near to

1 and � is dereased slowly, the algorithm may take too many iterations to reah a

feasible point. On the other hand, starting from a small � or dereasing this fator

too quikly may fore iterates to stay almost feasible, shortening the steps even when

we are far from the optimal solution.

As shown in [9℄, the adoption of a nonmonotone strategy for the redution of � is

very e�etive to avoid this premature step shortening, but it also allows the algorithm

to ile between small and large penalty parameters, induing some zigzaging in many

ases.

To overome these diÆulties, Flether and Ley�er [7℄ introdued the idea of using

a �lter. This approah was promptly followed by may authors, mainly in onjuntion

with SLP (sequential linear programming), SQP and interior-point type methods

(see, for instane, [1, 4, 5, 6, 8, 10, 11, 12, 13, 16, 17, 18℄). In the SQP-�lter method

presented in [5℄, a point is aepted whenever it satis�es

�(x) < �

j

or f(x) < f

j

� �(x) for all (�

j

; f

j

) 2 F ;(1.6)

where

�(x) = maxf0; max

i=1;���;m

jC

i

(x)j; max

i=1;���;n

[x

i

� u

i

℄; max

i=1;���;n

[l

i

� x

i

℄g;

F is a set of previously generated points in the (�; f)-spae and  2 (0; 1) is a onstant.
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However, the eÆieny of the SQP-�lter method is also questionable, sine it is

too tolerant. In fat, requiring only the infeasibility or the optimality to be improved

may allow the aeptane of points that are only marginally less infeasible but are

muh less optimal (in the sense that f(x) is greater) than the urrent iterate, or

vie-versa. Besides, one of the objetives of the �lter is to avoid adding terms with

di�erent measures, but the last inequality of the aeptane riteria (1.6) has a merit

funtion avor.

Anyway, the SQP-�lter method an give us some good hints on how to improve

the algorithms based on merit funtions.

The �rst hint is that the same merit funtion that is reliable for points in the

('; f)-plane that are near to ('(x

k

); f(x

k

)) may be not so useful when the step is

large, so the trial point is far from the urrent iterate. As illustrated in Fig.1.1,

for values of � near to 1, the aeptane riteria based on a merit funtion ut o�

a signi�ative portion of the feasible region, inluding, in many ases, the optimal

solution of the problem.

The seond good idea behind the SQP-�lter method is that a restoration should

be used sometimes. The objetive of a restoration is to obtain a point that is less

infeasible than the urrent one and is also aeptable for the �lter. In [5, se. 15.5℄,

a restoration step is omputed when the trust region quadrati subproblem is inom-

patible (i.e. has an empty feasible set), while the algorithm of Gonzaga et al. [10℄

omputes a restoration at every step. We believe that this strategy an be used by

an algorithm with a merit funtion always that staying away from feasibility seems

not to be worth. Thus, if the derease in f is small and the urrent point is very

infeasible, it is better to move o� and �nd a more feasible point.

The last lesson we an take from the SQP-�lter method is that feasible points

ould never be refused by any merit funtion. This assures that the optimal solution

will always be aepted by the algorithm and a restoration will always sueed.

Our objetive here is to present an algorithm that takes advantages from both

the merit funtion and the �lter ideas.

This paper is organized as follows. In the next setion, we present the pieewise

linear funtion we use to aept or rejet points. Setion 3 introdues the proposed

algorithm. In setion 4, we prove that the algorithm is well de�ned. Setions 5 and

6 ontain the main onvergene results. Finally, in setion 7 some onlusion are

pressented, along with lines for future work.

Through the paper, we will omit some (or even all) of the arguments of a funtion,

if this does not lead to onfusion. Therefore, sometimes Q(H; x; s) will be expressed

as Q(s), for example, if there is no ambiguity on H and x.

2. A pieewise linear merit funtion. As we have seen, a merit funtion

deals with two di�erent onepts: the infeasibility and the optimality of the urrent

point.

In this paper, we will introdue a new merit funtion that ompares points gen-

erated at di�erent iterations. For this reason, this funtion annot be based on the

augmented Lagrangian, as in [9℄, sine it depends on the Lagrange multiplier estimates

used and, obviously, these estimates hange from one iteration to another. Therefore,

we deided to adopt the so alled smooth `

2

merit funtion, de�ned as:

 (x; �) = �f(x) + (1� �)'(x):(2.1)

Unfortunately, it is well known that this funtion su�ers from the Maratos e�et

and that an eÆient implementation of the algorithm should inlude some safeguard
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for this undesired behaviour, suh as a seond order orretion. However, as the

irunvention of the Maratos e�et is not required for the onvergene analysis of our

algorithm, we will not deal with this drawbak of the merit funtion in this paper.

The atual redution of the `

2

merit funtion is given by

A

red

(x; s; �) = �A

opt

red

(x; s) + (1� �)A

fsb

red

(x; s);

where

A

opt

red

(x; s) = f(x)� f(x+ s) and A

fsb

red

(x; s) = '(x)� '(x + s):

Similarly, the predited redution of the merit funtion an be de�ned as in (1.3),

replaing (1.5) by

P

opt

red

(H; x; s) = Q(H; x; 0)�Q(H; x; s);

where

Q(H; x; s) =

1

2

s

T

Hs+rf(x)

T

s+ f(x):(2.2)

Generally, for a trial point to be aepted, it is neessary that the atual redution

of the merit funtion satis�es

A

red

(x; s; �) � �P

red

(H; x; s; �);

where � 2 (0; 1) is a given parameter.

However, this sheme based on a linear merit funtion usually is unreliable for

trial points that are far from the urrent iterate. Therefore, we suggest the use of a

pieewise linear funtion to aept or rejet new points.

In order to de�ne this new merit funtion, let F be a set of p points ('

i

; f

i

) in

the ('; f) plane. Suppose that these pairs are ordered so that '

1

< '

2

< � � � < '

p

.

Suppose also that eah point ('

i

; f

i

) in F is below the line segment joining ('

i�1

; f

i�1

)

and ('

i+1

; f

i+1

), for i = 2; � � � ; p� 1. Thus the pieewise linear funtion that passes

through all of the points in F is onvex.

For eah point ('

i

; f

i

) in F , de�ne another point ('

i

; f

i

) by moving a little towards

the southwest. Let F be the set of points ('

i

; f

i

). The onvex pieewise linear funtion

that onnets the points in F is de�ned by

P(F ; ') =

8

>

>

<

>

>

:

1; if ' < '

1

;

(f

i

�f

i�1

)

('

i

�'

i�1

)

'+

(f

i�1

'

i

�f

i

'

i�1

)

('

i

�'

i�1

)

; if '

i�1

� ' < '

i

;

f

p

� ('� '

p

); if ' � '

p

:

where  is a small positive onstant, suh as 10

�4

.

This new funtion, illustrated in Fig. 2.1, is formed by p + 1 line segments that

an be viewed as merit funtions in the form (2.1). The i-th of these funtions is

de�ned by the penalty parameter

�

i

=

8

>

>

<

>

>

:

0; if i = 0;

'

i+1

�'

i

f

i

�f

i+1

+'

i+1

�'

i

; if i < p;

1=(1 + ); if i = p:

(2.3)
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( , )j1 1f

( , )j2 2f
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( , )j3 3f
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P( , )F j

forbidden region

j

f

Fig. 2.1. The set F and the pieewise linear funtion P(F ; ').

and a partiular hoie of � that will be de�ned below.

At eah iteration k, F

k

is generated de�ning, for eah point ('

i

; f

i

) 2 F

k

, another

point ('

i

; f

i

) suh that,

'

i

= minf'

i

� 



P

fsb

red

(x

k

; s



); (1� 

f

)'

i

g;(2.4)

and

f

i

= minff

i

� 

f

P

opt

red

(H

k

; x

k

; s



); f

i

� ('

i

� '

i

)g;(2.5)

for some 0 < 

f

< 



< 1. Reasonable values for these onstants are 

f

= 10

�4

and





= 10

�3

.

Our algorithm starts with F

0

= ;. At the beginning of an iteration, say k, we

de�ne the temporary set F

k

as

F

k

= F

k

[

f(f(x

k

); '(x

k

))g:

A new iterate x

+

= x

k

+ s



is rejeted if f(x

k

+ s



) is above the pieewise-linear

funtion P(F

k

; '(x

k

+ s



)) or if we predit a good redution for the merit funtion,

but the real redution is deeiving. In the SQP jargon, x

k

is not aepted if

A

red

(x

k

; s



; �

k

) � �P

red

(x

k

; s



; �

k

);(2.6)

or

P

opt

red

(x

k

; s



) � �'(x

k

) and A

red

(x

k

; s



; �

sup

k

) < 

g

P

red

(x

k

; s



; �

sup

k

)

where 

g

2 (0; 1),

�

k

=

8

<

:

�

0

; if '(x

+

) < '

1

;

�

i

; if '

i

� '(x

+

) < '

i+1

;

�

p

; if '(x

+

) � '

p

(2.7)

and

�

sup

k

= supf� 2 [0; 1℄ j P

red

(x

k

; s



; �) � 0:5[M(x

k

; 0)�M(x

k

; s



)℄g:(2.8)
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When using this new sheme, the parameter � that de�nes the required ratio

between A

red

and P

red

annot be set by hand. In fat, it has a very ompliated

formula. In the ase P

fsb

red

� 

f

'

i

=



and P

opt

red

� ('

i

� '

i

)=

f

, for example, this

formula redues to

� =

(f

i�1

� f

i

)



P

fsb

red

+ ('

i

� '

i�1

)

f

P

opt

red

(f

i�1

� f

i

)P

fsb

red

+ ('

i

� '

i�1

)P

opt

red

;(2.9)

where i is de�ned in suh a manner that '

i�1

� '(x

+

) � '

i

.

As it will beome lear in the next setion, depending on the behavior of the

algorithm, the pair (f(x

k

); '(x

k

)) may be permanently added to F

k+1

at the end of

the iteration. Thus, the ardinality of the set F

k

is a nondereasing funtion of k.

3. An SQP algorithm. In the general framework of a trust region sequential

quadrati programming algorithm, a step s



is obtained approximating problem (1.1),

in a neighbourhood of an iterate x

k

, by a quadrati programming (QP) problem.

In our ase, this QP problem has the form

minimize Q(H

k

; x

k

; s)(3.1a)

subjet to A(x

k

)s+ C(x

k

) = 0(3.1b)

l � x

k

+ s � u(3.1)

ksk

1

� �;(3.1d)

where Q(H; x; s) is de�ned by (2.2), x

k

is supposed to belong to


 = fx 2 IR

n

j l � x � ug

and H

k

is an approximation of the Hessian of the Lagrangian at x

k

. The in�nity

norm was hosen here so the onstraints (3.1) and (3.1d) an be grouped into one

simple set of box onstraints.

We will use the term '-stationary to say that a point x̂ satis�es the �rst order

optimality onditions of

minimize '(x)

subjet to x 2 
:

Unfortunately, if x

k

is not '-stationary, the onstraints of (3.1) may be inonsis-

tent, so this problem may not have a solution. A ommon pratie to overome this

diÆulty is to divide the step s



into two omponents. The �rst of these omponents,

alled normal step, or simply s

n

, is obtained as the solution of the feasibility problem

redue M(x

k

; s)

subjet to l � x

k

+ s � u(3.2)

ksk

1

� 0:8�:

If M(x

k

; s

n

) = 0, then x

k

an be substituted by x

k

+ s

n

in (3.1) to make this

problem feasible, so it an be solved by any QP algorithm. Otherwise, the seond

omponent of s



, alled the tangential step, or s

t

, is omputed so Q is redued but the

predited redution of the infeasibility obtained so far is retained. In other words, s
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is the solution of the (now onsistent) problem

redue Q(H

k

; x

k

; s)

subjet to A(x

k

)s = A(x

k

)s

n

(3.3)

l � x

k

+ s � u

ksk

1

� �:

One should notie that the trust region radius was inreased from (3.2) to (3.3).

This is done to enlarge the feasible region when s

n

is in the border of the trust region,

so s

n

is not the only solution of (3.3).

To assure a suÆient derease of M , a Cauhy point, s

de

n

, is omputed. This

Cauhy point is based on a deent diretion for '(x) given by P

!

(x

k

�r'(x

k

)), the

orthogonal projetion of x

k

�r'(x

k

) on 
. The solution of (3.2) is required to keep

at least ninety perent of the redution obtained by s

de

n

.

A similar proedure is adopted for (3.3). In this ase, s

de

t

, the Cauhy point, is ob-

tained from a desent diretion for f(x) on the tangent spae, given by P

x

(�rQ(s

n

)),

the orthogonal projetion of �rQ(s

n

) on the set

T = fy 2 N (A(x

k

)) j (x

k

+ s

n

+ y) 2 
g:

Again, the derease on Q obtained by the solution of (3.3) must not be less than

ninety perent of the redution supplied by the Cauhy point.

The main steps of the algorithm are given below, supposing that an initial point

x

0

2 
, an initial trust-region radius �

0

� �

min

and an initial symmetri matrix H

0

are given.

We start from k = 0 and take F

0

= ; as the initial set of points used to de�ne

the pieewise linear funtion P(F ).

Algorithm 3.1. A new SQP algorithm

1. WHILE the stopping riteria are not satis�ed

1.1. F

k

 F

k

S

f(f(x

k

); '(x

k

))g;

1.2. IF kC(x

k

)k = 0 (x

k

is feasible),

1.2.1. s

n

 0;

1.3. ELSE

1.3.1. Compute d

n

(a desent diretion for '(x)):

d

n

 P

!

(x

k

� 

n

r'(x

k

))� x

k

;

1.3.2. Determine s

de

n

(the derease step for '(x)), the solution of

minimize M(x

k

; s)

subjet to l � x

k

+ s � u

ksk

1

� 0:8�

k

s = td

n

; t � 0;

1.3.3. Compute s

n

(the normal step) suh that

l � x

k

+ s

n

� u,

ks

n

k

1

� 0:8�

k

, and

M(x

k

; 0)�M(x

k

; s

n

) � 0:9[M(x

k

; 0)�M(x

k

; s

de

n

)℄;

1.4. Compute d

t

(a desent diretion for f(x) on the tangent spae):

d

t

 P

x

(�

t

rQ(s

n

));
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1.5. Determine s

de

t

(the derease step for f(x)), the solution of

minimize Q(s)

subjet to l � x

k

+ s � u

ksk

1

� �

k

s = s

n

+ td

t

; t � 0;

1.6. Compute a trial step s



suh that

A(x

k

)s



= A(x

k

)s

n

,

l � x

k

+ s



� u,

ks



k

1

� �

k

, and

Q(s

n

)�Q(s



) � 0:9[Q(s

n

)�Q(s

de

t

)℄;

1.7. IF (f(x

k

+ s



) � P(F

k

; '(x

k

+ s



))) OR

(P

opt

red

� �'(x

k

) AND A

red

(x

k

; s



; �

sup

k

) < 

g

P

red

(H

k

; x

k

; s



; �

sup

k

)),

1.7.1. �

k

 �

R

minf�

k

; ks



k

1

g; (redue �)

1.8. ELSE

1.8.1. �

k

 A

opt

red

(x

k

; s



)=P

opt

red

(H

k

; x

k

; s



);

1.8.2. IF P

opt

red

(H

k

; x

k

; s



) < �'(x

k

) OR �

k

< 

f

,

1.8.2.1. F

k+1

 F

k

; (inlude (f(x

k

); '(x

k

)) in F )

1.8.3. ELSE F

k+1

 F

k

;

1.8.4. Aept the trial point:

x

k+1

 x

k

+ s



;

�

k+1

 

�

maxf�

R

minf�

k

; ks



k

1

g;�

min

g; if �

k

< 

g

;

maxf�

A

�

k

;�

min

g; if �

k

� �;

Determine H

k+1

;

k k + 1;

1.9. IF �

k

< �

rest

AND '(x

k

) > �

h

�

2

k

,

1.9.1. Compute a restoration step s

r

so that

('(x

k

+ s

r

) < �

h

�

2

k

AND f(x

k

+ s

r

) < P(F

k

; '(x

k

+ s

r

))) OR

x

k

+ s

r

is '-stationary but infeasible;

1.9.2. F

k+1

 F

k

; (inlude (f(x

k

); '(x

k

)) in F )

1.9.3. Aept the new point:

x

k+1

 x

k

+ s

r

;

�

k+1

 maxf��

rest

;�

min

g;

Determine H

k+1

;

k k + 1;

The onstants used here must satisfy � > 0, 0 < 

f

< 

g

< � < 1, 

n

> 0, 

t

> 0,

�

min

> 0, 0 < �

R

< 1, �

A

� 1, �

h

> 0 and � > 0. Parameters 

n

, 

t

, �

min

, �

h

and �

are problem dependent and may be hosen aording with some measure of problem

data. Reasonable values for the remaining parameters might be 

f

= 0:01, 

g

= 0:1,

� = 0:5, �

R

= 0:5 and �

A

= 2:0. The onstant � should not be onfused with the

parameter � de�ned in (2.9).

If x

k

is feasible, then the ondition P

opt

red

< �'(x

k

) is never satis�ed, sine P

opt

red

is always greater or equal to zero. Besides, the ondition A

opt

red

< 

f

P

opt

red

is also never

satis�ed when x

k

is feasible and f(x

k

+ s



) < P(F

k

; '(x

k

+ s



)). Therefore, all of the

points in F

k

are infeasible, although F

k

may ontain a feasible point. This result is

very important for two reasons. First, it prevents the optimal solution of problem 1.1

to be refused by the algorithm. Moreover, it assures the algorithm is well de�ned, as

stated in the next setion.
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4. The algorithm is well de�ned. An iteration of algorithm 3.1 ends only

when a new point x

k

+ s is below the pieewise linear funtion P(F

k

; '(x

k

+ s)),

besides satisfying some other onditions stated at steps 1.7 or 1.9.1. While suh a

point is not found, the trust region radius is redued and the iteration is repeated. It is

not obvious that an aeptable point will be obtained, as we may generate a sequene

of points that are always rejeted by the algorithm. In this setion, we prove that the

algorithm is well de�ned, i.e. a new iterate x

k+1

an always be obtained unless the

algorithm stops by �nding a '-stationary but infeasible point or a feasible but not

regular point.

In the following lemma, we onsider the ase where x

k

is infeasible.

Lemma 4.1. If x

k

is not '-stationary, then after a �nite number of repetitions

of steps 1.1 to 1.9, a new iterate x

k+1

is obtained by the algorithm.

Proof. At eah iteration k, if f(x

k

+ s



) < P(F

k

; '(x

k

+ s



)) and one of the

onditions P

opt

red

� �'(x

k

) or A

red

(x

k

; s



; �

sup

k

) � 

g

P

red

(H

k

; x

k

; s



; �

sup

k

) is satis�ed,

then x

k

+ s



is aepted and we move to iteration k + 1. Otherwise, �

k

is redued

and after some unfruitful steps, �

k

< �

rest

and '(x

k

) > �

h

�

2

k

, so a restoration is

alled.

Suppose that a '-stationary but infeasible point is never reahed (otherwise the

algorithm fails). As the restoration generates a sequene of steps fs

j

g onverging to

feasibility, and sine F

k

does not inlude feasible points (beause x

k

is infeasible and

no feasible point is inluded in F

k

), there must exist an iterate x

k

+ s

r

that satis�es

'(x

k

+ s

r

) < minf'

1

; �

h

�

2

k

g, so we an proeed to the next iteration.

Now, in order to prove that the algorithm is also well de�ned when x

k

is feasible,

we need to make the following assumptions.

A1. f(x) and C

i

(x) are twie-ontinuously di�erentiable funtions of x.

A2. The sequene of Hessian approximations fH

k

g is bounded.

As a onsequene of A1 and A2, the di�erene between the atual and the pre-

dited redution of the merit funtion is proportional to �

2

, so the step is aepted

for a suÆiently small trust region radius, as stated in the following lemma.

Lemma 4.2. Suppose that A1 and A2 hold and that x

k

is feasible and regular for

problem 1.1 but the KKT onditions do not hold. Then, after a �nite number of trust

region redutions, the algorithm �nds a new point x

k

+ s



that satis�es f(x

k

+ s



) <

P(F

k

; '(x

k

+ s



)) and A

red

(x

k

; s



; �

sup

k

) � 

g

P

red

(H

k

; x

k

; s



; �

sup

k

).

Proof. Sine x

k

is feasible, s

n

= 0. Supposing that x

k

is regular and non-

stationary, there must exist a vetor d

t

6= 0 satisfying

l � x

k

+ d

t

� u; A(x

k

)d

t

= 0; and d

T

t

rf(x

k

) < 0:

Let us de�ne, for all � > 0,

p(�) = t(�)d

t

;

where

t(�) = maxft > 0 j [x

k

; x

k

+ td

t

℄ � 
; and ktd

t

k

1

� �g:

Clearly, x + d

t

2 
, so we have that kt(�)d

t

k

1

= � whenever � � kd

t

k

1

.

De�ne, in this ase,

 = �

1

2

d

T

t

rf(x

k

)=kd

t

k

1

= �

1

2

d

T

t

rQ(0)=kd

t

k

1

> 0:
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SineQ(s

de

t

) � Q(p(�)), by elementary properties of one-dimensional quadratis,

there exists �

1

2 (0; kd

t

k

1

℄ suh that, for all � 2 (0;�

1

),

Q(0)�Q(s

de

t

) � �

1

2

d

T

t

rQ(0)t(�) = �

1

2

d

T

t

rQ(0)

kd

t

k

1

� = �:

Moreover, sine x

k

is feasible and As

n

= 0, we have that M(x

k

; 0) =M(x

k

; s



) =

0, so

P

fsb

red

(x

k

; s



) = 0; and

P

opt

red

(H

k

; x

k

; s



(�)) = Q(0)�Q(s



(�)) � 0:9[Q(0)�Q(s

de

t

)℄ � 0:9�:

One x

k

is feasible, ('(x

k

); f(x

k

)) is the �rst pair in F

k

. Thus, there exists

�

2

2 (0;�

1

℄ suh that, for � < �

2

, we need to onsider only the portion of P(F

k

; ')

de�ned on the interval [0; '

2

℄. This linear funtion may be rewritten so the ondition

f(x

k

+ s



) < P(F

k

; '(x

k

+ s



))

is equivalent to

A

red

(x

k

; s



(�); �

1

) � �

1

P

red

(H

k

; x

k

; s



(�); �

1

);(4.1)

where,

P

red

(H

k

; x

k

; s



(�); �

1

) = �

1

P

opt

red

(H

k

; x

k

; s



(�)) � 0:9��

1

;(4.2)

A

red

(x

k

; s



(�); �

1

) = �

1

[f(x

k

)� f(x

k

+ s



(�))℄ + (1� �

1

)'(x

k

+ s



(�))

and �

1

> 0 is given by (2.3).

Now, by A1, A2 and the de�nition of P

red

, we have

A

red

(x

k

; s



; �) = P

red

(H

k

; s

k

; s



; �) + 

1

ks



k

2

:(4.3)

So, using (4.2) and (4.3) we dedue that

�

�

�

�

A

red

(�)

P

red

(�)

� 1

�

�

�

�

�



1

�

0:9�

1

:(4.4)

Thus, for � < minf(1� �

1

)0:9�

1

=

1

;�

2

g = �

3

, the inequality (4.1) neessarily

takes plae.

Now, using the fat that �

sup

k

= 1 for x

k

feasible and replaing �

1

by 1 in (4.4),

we an onlude that, for

� < minf(1� 

g

)0:9=

1

;�

3

g = �

4

;(4.5)

the ondition A

red

(x

k

; s



(�); �

sup

k

) � 

g

P

red

(H

k

; x

k

; s



(�); �

sup

k

) is also satis�ed and

the step is aepted.
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5. The algorithm onverges to a feasible point. As mentioned in the last

setion, our algorithm an stop if a '-stationary but infeasible point is found. More-

over, the restoration proedure an also fail to obtain a more feasible point. Naturally,

this unexpeted behavior of the algorithm makes somewhat pretentious the title of

this setion.

Formally, what we will prove in this setion is that, supposing that a '-stationary

but infeasible point is never reahed and that the restoration always sueeds, an

in�nite sequene of iterates onverges to feasibility.

In the proofs of the lemmas presented here, we will suppose that A1 and the

following assumption are satis�ed.

A3. The sequene of iterates fx

k

g lies within a losed and bounded domain 


0

.

As mentioned in [5, p.730℄, assumptions A1 and A3 together ensure that, for all

k,

f

min

� f(x

k

) � f

max

and 0 � '(x

k

) � '

max

for some onstants f

min

, f

max

and '

max

> 0. Our analysis will be based on the fat

that the retangle [0; '

max

℄� [f

min

; f

max

℄ is overed by a �nite number of retangles

with area greater than a small onstant. Therefore, eah time we expand the forbidden

region (see �g (2.1)) by adding to it a small retangle, we drive the iterates towards

feasibility.

Let us start investigating what happens to '(x) when an in�nite sequene of

iterates is added to F .

Lemma 5.1. Suppose that A1 and A3 hold and that fk

i

g is any in�nite subse-

quene at whih the iterate x

k

i

is added to F . Then

lim

i!1

'(x

k

i

) = 0:

Proof. Let us suppose, for the purpose of obtaining a ontradition, that there

exists an in�nite subsequene fk

j

g � fk

i

g for whih

'(x

k

j

) � �;(5.1)

where � > 0.

At iteration k

j

, the ('; f)-pair assoiate with x

k

j

is inluded in F at position

m, whih means that '

m�1

� '

k

j

(� '

m

) � '

m+1

and f

m�1

� f

k

j

(� f

m

) � f

m+1

.

Thus, as long as the pair ('

k

j

; f

k

j

) remains in F , no other ('; f)-pair is aepted

within the retangle

r

m

= f('; f) j '

m

� ' � '

m

; f

m

� f � f

m

g:

Notie that, by (2.4) and (2.5), the area of this retangle is

('

m

� '

m

)(f

m

� f

m

) � ('

m

� '

m

)

2

� [(1� 

f

)'

k

j

℄

2

� (1� 

f

)

2

�

2

:

Assume now that ('

k

j

; f

k

j

) is exluded from F by another pair ('

k

l

; f

k

l

), inluded

in F at an iteration k

l

> k

j

. This ase is illustrated in Fig. 5.1. Notie that ('

k

l

; f

k

l

)

annot fall in regions I and V sine, in this ase, ('

k

j

; f

k

j

) will not be exluded from

F . It an be easily veri�ed that the worst ase ours when ('

k

l

; f

k

l

) lies on `

1

(') or

`

2

(').
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Suppose ('

k

l

; f

k

l

) lies on `

2

('), as depited in Fig. 5.1. In this ase, the retangle

r

m

will be entirely above `

2

, the line that onnets ('

k

l

; f

k

l

) to ('

m+1

; f

m+1

). Sine

`

2

will be inluded in the new pieewise linear funtion P(F), no point within r

m

an

ever be reahed by a new iterate.

The same idea an be applied in the ase ('

k

l

; f

k

l

) lies on `

1

('). Therefore, one

('

k

j

; f

k

j

) is inluded in F , r

m

will always be above P(F). Sine the area of this

retangle is at least (1 � 

f

)

2

�

2

and the set A

0

is ompletely overed by at most

Surf(A

0

)=[(1� 

f

)

2

�

2

℄ of suh retangles, it is impossible for an in�nite subsequene

of fk

i

g to satisfy (5.1), and the onlusion follows.

II

I

III
IV V

( , )jm-1 m-1f

( , )jm mf

( , )jm+1 m+1f

rm

( , )jm mf

( , )jkl klf

rkl

rm+1

( , )jm+1 m+1f

l1

l2

l2

l1

j

f

Fig. 5.1. Adding a new iterate that exludes ('

k

j

; f

k

j

) from F .

Finally, we are going to onsider the ase where no point is added to F

k

for k

suÆiently large.

Lemma 5.2. Suppose that assumptions A1 and A3 hold. Suppose also that, for

all k > k

0

, x

k

is never inluded in F

k

. Then,

lim

k!1

'(x

k

) = 0:(5.2)

Proof. Sine x

k

is not inluded in F

k

, no restorations are made and both ondi-

tions stated at step 1.8.2 of algorithm 3.1 are never satis�ed for k > k

0

. Therefore,

we have

f(x

k

)� f(x

k+1

) � 

f

P

opt

red

� 

f

�'(x

k

) � 0;(5.3)

for all k > k

0

, whih means that the objetive funtion always derease between

infeasible iterations. Sine A1 and A3 imply f

min

� f(x

k

) � f

max

, we must have

lim

k!1

f(x

k

)� f(x

k+1

) = 0:(5.4)

Then, (5.2) follows from (5.3) and (5.4).

6. The algorithm �nds a ritial point. Finally, we are able to prove the

onvergene of the algorithm to a stationary point for (1.1). In order to do that, we

will need to make one aditional assumption on the hoie of the normal step s

n

.
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A4. The hoie of s

n

at step 1.3.3 of algorithm 3.1 is suh that

ks

n

(x

k

;�

k

)k � �

n

kC(x

k

)k

2

:

In the following lemma, derived from lemma 6.1 of [9℄, we show that in the

neighborhood of a feasible, regular and non-stationary point, the diretional derivative

of the quadrati model (2.2) along d

t

is bounded away from zero.

Lemma 6.1. Suppose that A2 and A4 hold and that fx

k

i

g is an in�nite subse-

quene that onverges to the feasible and regular point x

�

2 
, whih is not stationary

for (1.1). Then, there exists k

1

; 

1

> 0 suh that

�rQ(s

n

(x;�))

T

d

t

(H; x;�) � 

1

(6.1)

for all x 2 fx

k

i

j k � k

1

g. Moreover, kd

t

(H; x;�)k is bounded and bounded away

from 0 for all x 2 fx

k

i

j k � k

1

g.

Proof. For all x 2 fx

k

i

g, we have that

d

t

(H; x;�) = P

x

(�

t

rQ(s

n

(x;�))) = P

x

(�

t

[Hs

n

(x;�) +rf(x)℄):

By the ontrative property of the orthogonal projetions,

kP

x

(�

t

[Hs

n

(x;�) +rf(x)℄)� P

x

(�

t

rf(x))k

2

� 

t

kHk

2

ks

n

(x;�)k

2

:

So, by A2 and A4, we have that

kd

t

(H; x;�)� P

x

(�

t

rf(x))k

2

� 

1

kC(x)k(6.2)

and, by the ontinuity of rf(x) and the fat that fx

k

i

g onverges, we dedue that

krf(x

k

i

)

T

P

x

(�

t

rf(x

k

i

))�rf(x

k

i

)

T

d

t

(H

k

i

; x

k

i

;�

k

i

)k

2

� 

2

kC(x

k

i

)k:(6.3)

Notie that P

x

(�

t

rf(x

k

i

)) is the solution of

minimize k � 

t

rf(x

k

i

)� zk

2

2

subjet to A(x

k

i

)z = 0

l � x

k

i

+ s

n

+ z � u:

Now, de�ne P

x

�

(�

t

rf(x

�

)) as the solution of

minimize k � 

t

rf(x

�

)� zk

2

2

subjet to A(x

�

)z = 0(6.4)

l � x

�

+ z � u:

Sine x

�

is regular but is not a stationary point for (1.1), it follows that z = 0 is

not a solution for (6.4). So, P

x

�

(�

t

rf(x

�

)) 6= 0. Moreover, sine z = 0 is feasible

for (6.4), we have that

k � 

t

rf(x

�

)� P

x

�

(�

t

rf(x

�

))k

2

2

< k � 

t

rf(x

�

)k

2

2

;

whih implies that rf(x

�

)

T

P

x

�

(�

t

rf(x

�

)) < 0.

Using the fat that P

x

(�

t

rf(x)) is a ontinuous funtion of x and s

n

for all

regular x (see [9℄), we an de�ne 

2

; 

3

; 

4

> 0 and k

2

2 IN suh that, for all x 2 fx

k

i

j

k � k

2

g, we have



2

� kP

x

(�

t

rf(x))k � 

3

and rf(x)

T

P

x

(�

t

rf(x)) � �

4

:(6.5)
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Now, from (6.2), (6.3) and (6.5), the ontinuity of C(x) and the feasibility of x

�

,

there exists k

3

� k

2

suh that, whenever x 2 fx

k

i

j k � k

3

g,



2

2

� kd

t

(H; x;�)k � 2

3

and rf(x)

T

d

t

(H; x;�) �

�

4

2

:

Therefore, kd

t

(H; x;�)k is bounded and bounded away from zero for all x 2 fx

k

i

j

k � k

3

g.

Finally, sine d

t

2 N (A(x)), assumptions A2 and A4 hold, and kd

t

k is bounded,

we have that, for all x 2 fx

k

i

j k � k

3

g,

rQ(s

n

)

T

d

t

= rf(x)

T

d

t

+ d

T

t

Hs

n

� �



4

2

+ 

3

kC(x)k;

where 

3

> 0. Then, (6.1) follows de�ning 

1

= 

4

=4 and hoosing k

1

> k

3

suh that

kC(x)k � 

4

=(4

3

).

Using Lemma 6.1, we prove in the next lemma that, in the neighborhood of a

feasible, regular and non-stationary point, the derease of the quadrati model (2.2)

is proportional to the trust region radius �.

Lemma 6.2. Suppose that A2 and A4 hold and that fx

k

i

g is an in�nite subse-

quene that onverges to the feasible and regular point x

�

2 
, whih is not stationary

for (1.1). Then, there exists 

2

; k

2

> 0 and �

0

2 (0;�

min

) suh that

Q(x; s

n

(x;�))�Q(x; s



)) � 

2

minf�;�

0

g

for all x 2 fx

k

i

j k � k

2

g.

Proof. See Lemma 6.2 of [9℄.

Now, we are able to present a ruial lemma, derived from Lemma 6.3 of [9℄, that

relates P

opt

red

to the trust region radius in the neighborhood of a feasible point. Besides,

we also show that, in this ase, P

opt

red

is suÆiently large so �

sup

= 1.

Lemma 6.3. Suppose that A1, A2 and A4 hold and that fx

k

i

g is an in�nite

subsequene that onverges to the feasible and regular point x

�

2 
, whih is not

stationary for (1.1). Then, there exists �; 

3

; k

3

> 0 and �

1

2 (0;�

min

) suh that,

for k

i

> k

3

, if

'(x

k

i

) � ��

2

;(6.6)

we have that

P

opt

red

(x

k

i

; s



) = Q(x

k

i

; 0)�Q(x

k

i

; s



) � 

3

minf�;�

1

g(6.7)

and

�

sup

k

i

= 1:(6.8)

Proof. By Lemma 6.2, assumptions A1 and A4 and the onvergene of fx

k

i

g, we

have that

Q(0)�Q(s



) � Q(s

n

)�Q(s



)� jQ(0)�Q(s

n

)j � 

2

minf�;�

1

g � 

4

kC(x)k

for all x 2 fx

k

i

j k � k

2

g, where 

2

, k

2

and �

1

are de�ned as in Lemma 6.2 and



4

> 0. Therefore, (6.7) follows if we hoose 

3

< 

2

and k

3

� k

2

suh that � �

�

2

(

2

� 

3

)

2

=(2

2

4

), where � = minf1;�

1

=�g.
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Now, from assumption A4, we have that

M(0)�M(s



) =M(0)�M(s

n

) � 

5

kC(x

k

i

)k;

so

P

red

(x

k

i

; s



; 1)� 0:5[M(x

k

i

; 0)�M(x

k

i

; s



)℄ � 

3

minf�;�

1

g � 

5

kC(x

k

i

)k:

Again, (6.8) follows if we hoose � � �

2



2

3

=(2

2

5

).

We next examine what happens if � is bounded away from zero and an in�nite

subsequene of points is added to F .

Lemma 6.4. Suppose that A1, A2, A3 and A4 hold and that fx

k

j

g is an in�nite

subsequene at whih x

k

j

is added to F . Suppose furthermore that the restoration

always terminates suessfully and that �

k

i

� �

2

, where �

2

is a positive salar.

Then there exists a limit point of this sequene that is a stationary point for (1.1).

Proof. From assumption A3, we know that there exists a onvergent subsequene

fx

k

i

g. Let us suppose that the limit point of this subsequene is not stationary for

(1.1).

From Lemma 5.1 we know that there exists k

5

2 IN suh that, for k

i

> k

5

,

'(x

k

i

) < �

h

�

2

2

:

Thus, a restoration is never alled for k

i

> k

5

. So, the hypotesis that x

k

i

is added

to F

k

i

implies that one of the inequalities stated at step 1.8.2 of the algorithm must

be satis�ed at iteration k

i

.

Suppose, for the purpose of obtaining a ontradition, that fx

k

i

g onverges to

a point that is not stationary for (1.1). So, from Lemma 5.1 and (6.7), there exists

k

6

� k

5

suh that '(x

k

i

) < ��

2

k

i

and

P

opt

red

(x

k

i

; s



) � 

3

minf�

1

;�

2

g;

for all k

i

> k

6

.

Using Lemma 5.1 again, we an dedue that there exists k

7

� k

6

suh that

'(x

k

i

) < (

3

=�)minf�

1

;�

2

g and the ondition P

opt

red

< �'(x

k

) is never satis�ed for

k

i

> k

7

.

Therefore, f(x

k

i

) � f(x

k

i

+ s



) < 

f

P

opt

red

must hold. To show that this is not

possible, let us write the inequality A

red

(x

k

i

; s



; �

sup

k

i

) � 

f

P

red

(x

k

i

; s



; �

sup

k

i

) as

�

sup

k

i

(f(x

k

i

)� f(x

k

i

+ s



)) + (1� �

sup

k

i

)('(x

k

i

)� '(x

k

i

+ s



)) �



g

�

sup

k

i

P

opt

red

(x

k

i

; s



) + 

g

(1� �

sup

k

i

)P

fsb

red

(x

k

i

; s



):

Using the hypothesis that f(x

k

i

)�f(x

k

i

+s



) < 

f

P

opt

red

(x

k

i

; s



) and the fat that

P

fsb

red

(x

k

i

; s



) � 0, we have

�

sup

k

i



f

P

opt

red

(x

k

i

; s



) + (1� �

sup

k

i

)('(x

k

)� '(x

k

+ s



)) � 

g

�

sup

k

i

P

opt

red

(x

k

i

; s



):

Then, taking k

4

> k

3

(de�ned in Lemma 6.3), we dedue from (6.7) that, for

k

i

> k

4

,

(1� �

sup

k

i

)('(x

k

i

)� '(x

k

i

+ s



)) � (

g

� 

f

)�

sup

k

i



3

minf�

1

;�

2

g:

But, sine, 

g

> 

f

and lim

i!1

'

k

i

= 0, we must have

lim

i!1

�

sup

k

i

= 0;
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whih ontradits (6.8). Therefore, fx

k

i

g must onverge to a stationary point for

(1.1).

Supposing again that � is bounded away from zero, we will now omplete our

analysis investigating what happens when no iterates are added to F for k suÆiently

large.

Lemma 6.5. Suppose that A1, A2, A3 and A4 hold, that x

k

is always aepted but

F

k

remains unhanged for k > k

5

and that �

k

� �

3

, for some positive �

3

. Suppose

also that the limit points of the in�nite sequene fx

k

g are feasible and regular. Then

there exists a limit point of fx

k

g that is a stationary point of (1.1).

Proof. Assumption A3 implies that there exists a onvergent subsequene fx

k

i

g.

If the limit point of this subsequene is not stationary for (1.1), then from Lemma

6.3, we have

P

opt

red

� 

3

minf�

3

;�

1

g

for all k

i

> maxfk

5

; k

3

g. Moreover, sine x

k

i

is always aepted and F

k

is not hanged,

we dedue that

f(x

k

i

)� f(x

k

i

+ s



) � 

f

P

opt

red

:

Therefore, f(x

k

i

)� f(x

k

i

+ s



) � 

f



3

minf�

1

;�

3

g for all k

i

suÆiently large, whih

ontradits the ompatness assumption A3.

In the last part of this setion, we will disuss the behavior of the algorithm when

�! 0. We will start showing that the predited redution of the quadrati model is

suÆiently large when � is small.

Lemma 6.6. Suppose that A2 and A4 hold and that fx

k

i

g is an in�nite subse-

quene that onverges to the feasible and regular point x

�

2 
, whih is not stationary

for (1.1). Suppose also that '

k

satis�es (6.6) and that

� < minf

3

=(��);�

1

g = �

5

(6.9)

for k

i

> k

7

, where 

3

, � and �

1

are de�ned as in Lemma 6.3. Then P

opt

red

> �'(x

k

i

).

Proof. Suppose, for the purpose of obtaining a ontradition, that P

opt

red

� �'(x

k

)

for some k

i

> k

7

. Then, from (6.7), we have



3

minf�;�

1

g � P

opt

red

� �'(x

k

i

) � ���

2

;

whih is impossible beause of (6.9). Thus P

opt

red

> �'(x

k

i

) must hold.

The purpose of the next four lemmas is to prove that there exists a suÆiently

small trust region radius so the step is always aepted and � is not redued further

at step 1.7.1 of algorithm 3.1.

The �rst lemma will be used to show the relation between the predited redution

of the infeasibility and �.

Lemma 6.7. Suppose that assumption A1 holds and that x

k

is not '-stationary.

Then, there exists �

6

; 

4

> 0 suh that

P

fsb

red

(x

k

; s



) � 

4

�

k

;(6.10)

if �

k

2 (0;�

6

).

Proof. Sine x

k

is not '-stationary, we have that d

n

6= 0. Thus, we an de�ne

t

max

(�) = maxft > 0 j [x

k

; x

k

+ td

n

℄ 2 
 and ktd

n

k � 0:8�g:
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Clearly, if � � 1:25kd

n

k, then kt

max

(�)d

n

k = 0:8� (sine x

k

+ d

n

2 
). Now,

de�ne

 = �

1

2

d

T

n

r'(x

k

)

kd

n

k

> 0:

By some elementary properties of one-dimensional quadratis, there exists �

6

2

(0; kd

n

k℄ suh that

M(0)�M(t

max

(�)) � �

1

2

d

T

n

r(x

k

)t

max

(�) = kd

n

kt

max

(�) = 0:8�:

for all � 2 (0;�

6

). Therefore, for the normal step s

n

omputed at step 1.3.3 of

algorithm 3.1, we have

M(0)�M(s

n

) � 0:72�

k

:

But, sine A(x

k

)s



= A(x

k

)s

n

, we dedue from (1.4) that

P

fsb

red

(x

k

; s



) � 0:72�

k

and the desired inequality follows.

In order to prove that x

k

+ s



will be aepted, we need to onsider how ' and

f are omputed. Let us begin using the previous lemma to show that, for a small �,

'

i

, de�ned in (2.4), will depend on the predited redution of the infeasibility.

Lemma 6.8. Suppose that A1 holds and that x

k

is not '-stationary. Then there

exists �

7

> 0 suh that





P

fsb

red

(x

k

; s



) > 

f

'(x

k

);

if '(x

k

) < �

h

�

2

k

and �

k

2 (0;�

7

).

Proof. Lemma 6.7 ensures that







f

P

fsb

red

(x

k

; s



) �







f



4

�

k

> 0:

De�ning �

7

= minf





4

=(

f

�

h

);�

6

g, where �

6

is given in Lemma 6.7, we have

that







f

P

fsb

red

(x

k

; s



) � �

h

�

7

� > �

h

�

2

� '(x

k

);

for all � 2 (0;�

7

), so the desired result follows.

Using Lemma 6.7 again, we an also show that f , de�ned in (2.5), will depend on

P

opt

red

if De is suÆiently small.

Lemma 6.9. Suppose that A1, A2 and A4 hold, that fx

k

i

g is an in�nite subse-

quene that onverges to the feasible and regular point x

�

2 
, whih is not stationary

for (1.1), and that '

k

is given by (2.4). Then there exists �

8

> 0 suh that



f

P

opt

red

(H

k

; x

k

; s



) � ('(x

k

)� '

k

);

if '(x

k

) < minf�

h

; �g�

2

k

and �

k

2 (0;�

8

), where � is de�ned as in Lemma 6.3.

Proof. From Lemma 6.3 we dedue that, if �

k

2 (0;�

1

℄, then



f

P

opt

red

(H

k

; x

k

; s



) � 

f



3

�

k

:
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Now, de�ning �

8

= minf

f



3

=�

h

;�

1

g, we have



f

P

opt

red

(H

k

; x

k

; s



) � ep

h

�

8

� � �

h

�

2

k

� '(x

k

) � ('(x

k

)� '

k

)

and the desired onlusion follows.

Lemma 6.6 assures that P

opt

red

is suÆiently large when � is small. Let us prove

now that the atual redution of the merit funtion is suÆiently large so the seond

ondition used in step 1.7 of algorithm 3.1 to derease the trust region radius is never

satis�ed.

Lemma 6.10. Suppose that A1 and A4 hold and that �

k

< �

sup

k

, where �

k

is

de�ned by (2.7) and �

sup

k

is de�ned by (2.8). Then there exists �

9

> 0 suh that

A

red

(x

k

; s



; �

sup

k

) < 

g

P

red

(H

k

; x

k

; s



; �

sup

k

)

for all �

k

2 (0;�

9

).

Proof. If �

k

< �

sup

k

, then P

red

(H

k

; x

k

; s



) � (1=2)P

fsb

red

. This inequality, together

with (6.10), gives that

P

red

(H

k

; x

k

; s



) �



4

2

�

k

;

for all �

k

2 (0;�

6

), where 

4

and �

6

are de�ned in Lemma 6.7. But, from A1 and

A4, we also have that

jA

red

(�

k

)� P

red

(�

k

)j � 

5

�

2

k

:

for some 

5

> 0. From the last two inequalities, we dedue that

jA

red

(�

k

)� P

red

(�

k

)j

P

red

(�

k

)

=

�

�

�

�

A

red

(�

k

)

P

red

(�

k

)

� 1

�

�

�

�

�

2

5



4

�

k

:(6.11)

Therefore, de�ning �

9

= minf(1� 

g

)

4

=(2

5

);�

6

g, we obtain the required result.

In our last lemma, we will use the previous results to prove that, if Æ ! 0, there

is no in�nite subsequene that onverges to a point that is not stationary for (1.1).

Lemma 6.11. Suppose that A1, A2, A3 and A4 hold. Suppose also that the limit

points of the in�nite sequene fx

k

g are feasible and regular and that lim

k!1

�

k

= 0.

Then there exists a limit point of fx

k

g that is a stationary point of (1.1).

Proof. Assumption A3 implies that there exists a onvergent subsequene fx

k

i

g.

Let us suppose, for the purpose of obtaining a ontradition, that the limit point of

this subsequene is not stationary for (1.1).

Sine lim

i!1

'(x

k

i

) = 0 and, at the begining of iteration k, the trust region

radius satis�es �

k

i

� �

min

, there must exist k

8

� k

3

(de�ned in Lemma (6.3)) suh

that, for k

i

> k

8

, the ondition '(x

k

i

) � ��

2

k

i

is satis�ed, so (6.8) holds.

But, from (2.7) and (2.3), we have that �

k

i

< 1, so Lemma 6.10 applies and (6.11)

also holds if �

k

i

< �

9

.

Thus, supposing that k

i

> k

8

and �

k

i

< �

9

, the point x

k

i

+ s



would only be

rejeted and, onsequently, the trust region radius would only be redued if f(x

k

i

+

s



) � P(F

k

i

; '(x

k

i

+ s



)).

Now, we need to onsider separately two mutually exlusive situations. First, let

us suppose that x

k

i

is feasible. In this ase, Lemma 4.2 assures that, for � < �

4

(de�ned in (4.5)), the step is aepted and the trust region radius need not to be

redued further.
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On the other hand, if x

k

i

is not '-stationary, Lemmas 6.8 and 6.9 assure that for

�

k

i

� minf�

7

;�

8

g = �

10

, the de�nition of � given in (2.9) holds, so 0 < � < 1 and

f(x

k

i

+ s



) > P(F

k

i

; '(x

k

i

+ s



)) is equivalent to (2.6).

Now, following the same steps used in Lemma 6.10, we an use (6.11) one more

time to show that, when �

k

i

< minf(1� �)

4

=(2

5

);�

6

g = �

11

, where �

6

is de�ned

in Lemma 6.7, inequality (2.6) is satis�ed and �

k

i

is not redued at step 1.7.1 of

Algorithm 3.1.

Therefore, �

k

i

� �

R

minf�

4

;�

9

;�

10

;�

11

g, whih ontradits the hypotesis that

lim

k!1

�

k

= 0, so we onlude that the limit point of the subsequene fx

k

i

g is a

stationary point of (1.1).

Finally, let us state a theorem that puts together all of the results presented so

far.

Theorem 6.12. Suppose that A1, A2, A3 and A4 hold and that fx

k

g is an

in�nite sequene generated by algorithm 3.1. Then either the restoration onverges

to a '-stationary but infeasible point of (1.1), or lim

k!1

'(x

k

) = 0. Moreover, if

the restoration always sueeds and all of the limit points of fx

k

g are regular, there

exists a limit point x

�

that is a stationary point for (1.1). In partiular, if all of the

'-stationary points area feasible and regular, then there exists a subsequene of fx

k

g

that onverges to a feasible, regular ans stationary point of (1.1).

Proof. This result is a diret onsequene of Lemmas 5.1, 5.2, 6.4, 6.5 and 6.11.

7. Conlusions. In this paper, we depit the general framework of an SQP algo-

rithm that uses a pieewise linear merit funtion to aept and rejet steps. This ap-

proah ombines ideas from both merit funtions and the �lter introdued by Flether

and Lei�er in [7℄.

The use of several penalty parameters de�ned automatially by the previous it-

erates avoids the premature redution of � as well as the zigzagging that an our

when a nonmonotone strategy is used to update this parameter. The new method is

also less tolerant than the �lter method, sine we do not aept points that marginally

redue the infeasibility or the objetive funtion.

As the next steps of this work, we intend to test the algorithm with some problems

from the CUTEr library and devise a strategy to irunvent the Maratos e�et.
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