A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
WITH A PIECEWISE LINEAR MERIT FUNCTION

FRANCISCO A. M. GOMES*

Abstract. A sequential quadratic programming algorithm for solving nonlinear programming
problems is presented. The new feature of the algorithm is related to the definition of the merit
function. Instead of using one penalty parameter per iteration and increasing it as the algorithm
progresses, we suggest that a new point is to be accepted if it stays sufficiently below the piecewise
linear function defined by some previous iterates on the (f,||C||3) space. Therefore, the penalty
parameter is allowed to decrease between successive iterations. Besides, one need not to decide how
to update the penalty parameter. This approach resembles the filter method introduced by Fletcher
and Leyffer [7], but it is less tolerant since a merit function is still used.
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1. Introduction. In this paper we are concerned with the problem

minimize f(z)
(1.1) subject to C(z) =0
[<zx<u

where f : IR® — IR is a C? nonlinear function, C' : IR® — IR™ represents a set of
C? nonlinear constraints and we suppose that —oo < I; < u; < o0, for i = 1,...,n.
Naturally, some of the components of z in (1.1) may be slack variables generated
when converting inequality constrains to this form.

Algorithms based on the sequential quadratic programming (SQP) approach are
one of the most effective methods for solving (1.1). Some interesting algorithms of
this class are given, for example, in [2, 3, 9, 15]. A complete coverage of such methods
can be found in [5, 14].

Since SQP algorithms do not require the iterates to be feasible, they have to
concern with two conflicting objectives at each iteration: the reduction of the infeasi-
bility and the reduction of function f. Both objectives must be taken in acount when
deciding if the new iterate is to be accepted or rejected. To make this choice, most
algorithms rely on a merit function.

If the problem contains no inequality constraints or bounds on the variables,
or if the algorithm assures that the bounds are never violated by the iterates, the
augmented Lagrangian, written here in an unusual way as

(12 £, 0,0) =015 () + 0N + S ew)

is a good choice for the merit function.
In (1.2), 6 is a “penalty parameter” used as a weight to balance the Lagrangian
function for the equality constrained problem, defined as

Uz, \) = f(z) + Cx) N,
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with a measure of the infeasibility, given by

ola) = 5lIC@)3.

When the bounds on the variables are not supposed to be satisfied by the iterates
or when inequality constraints are explicitly handled by the SQP algorithm, a good
merit fuction is the L; exact penalty function. For the problem (1.1), this function
can be defined as

U(z,0) = f(x) +0lIC(x)| + GZ(W —z) +0Y (zi—1),

where w~ = max{0, —w}. Again, the penalty parameter € is used to establish an
equilibrium between optimality and feasibility.

At iteration k, a new point z = z + s is accepted if the ratio between the actual
and the predicted reduction of the merit function (when moving from zj to xy) is
greater than a positive constant.

When the augmented Lagrangian is used, the actual reduction of the merit func-
tion at the candidate point x4 is defined as

Area(Tr,s,0) = L(xg,0) — L(zg + 5,0).

The predicted reduction of the merit function depends on the strategy used to ap-
proximately solve (1.1). One common choice is to approximate (1.1) by the quadratic
programming problem

— 1
minimize Q(H,z,\,s) = isTHs + Ve(x, \)T's + £(z, \)
subject to A(z)s +C(z) =0

[<x+s<u

where H is a symmetric n X n matrix and A(z) = (VCy(z),...,VC,(2))T is the
Jacobian of the constraints.
In this case, denoting

M(r,5) = 3lIA()s + C@),

as the approximation of ¢(z), the predicted reduction of the augmented Lagrangian
merit function is given by

(1.3) Prea(H,x,5,0) = 0P°PH(H, z,5) + (1 — §) PL* (z, 5),
where
(1.4) Pz, s) = M(z,0) — M(z,s)

is the predicted reduction of the infeasibility and

(15) Popt(Ham;S) :G(H,CE,O) —G(H,CE,S)

red

is the predicted reduction of the Lagrangian.
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F1G. 1.1. Three merit functions on the (p,£) plane, showing the influence of the penalty pa-
rameter 8. On the left, § = 1/50. In the middle, 6 = 1/2. On the right, § = 49/50.

Now, let us analyse the role of the penalty parameter §. Supposing, for example,
(1.2) is used as the merit function, (# —1)/6 can be viewed as the slope of the line that
defines the forbidden region in the (¢, f)-plane, that is, the semi-space that contains
all the points that are not acceptable at the current iteration. This is illustrated
in Figure 1.1, where the forbidden region defined by the augmented Lagrangian is
highlighted for different values of 6.

In general, an algorithm starts with # ~ 1 and decreases this penalty parameter
at some iterations, so feasibility is eventually attained.

Merit functions have been criticized for many reasons. First, it is not so easy
to choose an initial value for €, since £(z,A) and ¢(z) usually have very different
meanings and units. Besides, it is necessary to decrease € as the algorithm progresses
to force it to find a feasible solution. If the initial penalty parameter used is near to
1 and 6 is decreased slowly, the algorithm may take too many iterations to reach a
feasible point. On the other hand, starting from a small 6 or decreasing this factor
too quickly may force iterates to stay almost feasible, shortening the steps even when
we are far from the optimal solution.

As shown in [9], the adoption of a nonmonotone strategy for the reduction of 6 is
very effective to avoid this premature step shortening, but it also allows the algorithm
to cicle between small and large penalty parameters, inducing some zigzaging in many
cases.

To overcome these difficulties, Fletcher and Leyffer [7] introduced the idea of using
a filter. This approach was promptly followed by may authors, mainly in conjunction
with SLP (sequential linear programming), SQP and interior-point type methods
(see, for instance, [1, 4, 5, 6, 8, 10, 11, 12, 13, 16, 17, 18]). In the SQP-filter method
presented in [5], a point is accepted whenever it satisfies

(1.6) ¢(z) <v¢; or f(z) < fj—7¢p(x) forall (¢;,f;) € F,

where

¢(z) = max{0, max |Cy(z)], max [z; —w], max [l; -z},

1=1,-,m 1=1,---,n i=1,---,n

F is a set of previously generated points in the (¢, f)-space and v € (0,1) is a constant.
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However, the efficiency of the SQP-filter method is also questionable, since it is
too tolerant. In fact, requiring only the infeasibility or the optimality to be improved
may allow the acceptance of points that are only marginally less infeasible but are
much less optimal (in the sense that f(z) is greater) than the current iterate, or
vice-versa. Besides, one of the objectives of the filter is to avoid adding terms with
different measures, but the last inequality of the acceptance criteria (1.6) has a merit
function flavor.

Anyway, the SQP-filter method can give us some good hints on how to improve
the algorithms based on merit functions.

The first hint is that the same merit function that is reliable for points in the
(p, f)-plane that are near to (¢(xy), f(xx)) may be not so useful when the step is
large, so the trial point is far from the current iterate. As illustrated in Fig.1.1,
for values of € near to 1, the acceptance criteria based on a merit function cut off
a significative portion of the feasible region, including, in many cases, the optimal
solution of the problem.

The second good idea behind the SQP-filter method is that a restoration should
be used sometimes. The objective of a restoration is to obtain a point that is less
infeasible than the current one and is also acceptable for the filter. In [5, sec. 15.5],
a restoration step is computed when the trust region quadratic subproblem is incom-
patible (i.e. has an empty feasible set), while the algorithm of Gonzaga et al. [10]
computes a restoration at every step. We believe that this strategy can be used by
an algorithm with a merit function always that staying away from feasibility seems
not to be worth. Thus, if the decrease in f is small and the current point is very
infeasible, it is better to move off and find a more feasible point.

The last lesson we can take from the SQP-filter method is that feasible points
could never be refused by any merit function. This assures that the optimal solution
will always be accepted by the algorithm and a restoration will always succeed.

Our objective here is to present an algorithm that takes advantages from both
the merit function and the filter ideas.

This paper is organized as follows. In the next section, we present the piecewise
linear function we use to accept or reject points. Section 3 introduces the proposed
algorithm. In section 4, we prove that the algorithm is well defined. Sections 5 and
6 contain the main convergence results. Finally, in section 7 some conclusion are
pressented, along with lines for future work.

Through the paper, we will omit some (or even all) of the arguments of a function,
if this does not lead to confusion. Therefore, sometimes Q(H, z, s) will be expressed
as (s), for example, if there is no ambiguity on H and z.

2. A piecewise linear merit function. As we have seen, a merit function
deals with two different concepts: the infeasibility and the optimality of the current
point.

In this paper, we will introduce a new merit function that compares points gen-
erated at different iterations. For this reason, this function cannot be based on the
augmented Lagrangian, as in [9], since it depends on the Lagrange multiplier estimates
used and, obviously, these estimates change from one iteration to another. Therefore,
we decided to adopt the so called smooth €5 merit function, defined as:

(2.1) P(@,0) =0f(x) + (1 - 0)p(x).

Unfortunately, it is well known that this function suffers from the Maratos effect
and that an efficient implementation of the algorithm should include some safeguard
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for this undesired behaviour, such as a second order correction. However, as the
circunvention of the Maratos effect is not required for the convergence analysis of our
algorithm, we will not deal with this drawback of the merit function in this paper.
The actual reduction of the £ merit function is given by
Aveq(,5,0) = 0AP (2, 5) + (1 — 0) AL (z, s),

red red

where

ATy, 8) = f(z) = fle +5) and  Al7(z,5) = p(z) - p(z + 5).

red red

Similarly, the predicted reduction of the merit function can be defined as in (1.3),
replacing (1.5) by
Pl (H,x,5) = Q(H,x,0) — Q(H,x,5),

red

where
(2.2) Q(H,z,s) = %STHS-FVf(CE)TS-f-f(CE).

Generally, for a trial point to be accepted, it is necessary that the actual reduction
of the merit function satisfies

Ared(xa 570) Z nP’r‘ed(Haxa 870)7

where 1 € (0,1) is a given parameter.

However, this scheme based on a linear merit function usually is unreliable for
trial points that are far from the current iterate. Therefore, we suggest the use of a
piecewise linear function to accept or reject new points.

In order to define this new merit function, let F' be a set of p points (p;, fi) in
the (¢, f) plane. Suppose that these pairs are ordered so that ¢; < ¢, < -+ < @,
Suppose also that each point (p;, f;) in F is below the line segment joining (y;_1, fi—1)
and (@41, fiy1), for i = 2,---,p — 1. Thus the piecewise linear function that passes
through all of the points in F' is convex.

For each point (y;, f;) in F, define another point (3;, f;) by moving a little towards
the southwest. Let F' be the set of points (@;, f;). The convex piecewise linear function
that connects the points in F is defined by

00, lf 4 < @1;
i i o (fio1Pi=1:iPiy) o —
P(F7 90) = (%_é _11))<P + (1@()_0_5__1) : ) lf 901‘,1 S "2 < <pz’
_p_r)/(tp_ap)? lftpzap

where v is a small positive constant, such as 107

This new function, illustrated in Fig. 2.1, is formed by p + 1 line segments that
can be viewed as merit functions in the form (2.1). The i-th of these functions is
defined by the penalty parameter

0, if i =0;

¢i+1_¢i e .
?i _Ti+1+¢i+1_¢i ’ if i <P
1/(1+7), if i = p.

|
-
Il

(2.3)
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FiG. 2.1. The set F' and the piecewise linear function P(f, ®).

and a particular choice of n that will be defined below.
At each iteration k, F'j, is generated defining, for each point (y¢;, fi) € F}, another

point (@;, f;) such that,

(24) @z = mln{(pz _rycpyisdb(xkasc)a(l _ryf)(pl}a
and
(25) 7@ = mln{f@ - pr::)dt(Hkaxka SC): fl - ((pz - @z)}:

for some 0 < ¢ < 7. < 1. Reasonable values for these constants are v = 10™* and
¥e = 1073,

Our algorithm starts with Fy = (. At the beginning of an iteration, say k, we
define the temporary set Fj, as

Fi = B\ J{(F (@), o)}

A new iterate x4 = x, + s, is rejected if f(zy + s.) is above the piecewise-linear
function P(Fi, o(zy + sc)) or if we predict a good reduction for the merit function,
but the real reduction is deceiving. In the SQP jargon, zj is not accepted if

(26) Ared(mk;sc;ek) Sﬁpred(mkaswek);
or
PP (g, 50) > kp(ar) and Apeqlar, se,05F) < Yy Prea(r, s¢,05F)

where v, € (0,1),

?O; if 90(1'+) <¢1;

(2.7) Or =4 i, D <o(zy) <Pigq;
0177 if 90(1'+) Z @p

and

(2.8) 6;"" = sup{6 € [0,1] | Prea(k,5c,8) > 0.5[M (xx,0) — M (x4, s¢)]}-
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When using this new scheme, the parameter 77 that defines the required ratio
between A,eq and Pr.q cannot be set by hand. In fact, it has a very complicated
formula. In the case Pis; > yrpi/ve and PP > (o, — B;) /7y, for example, this
formula reduces to

(Fic1 — ?i)%Prf:db + (B — B )V P
7 T sb — — 0;
(fi1— fi)Prfed + (@ — @ifl)Prepall:

(2.9) n=

’

where i is defined in such a manner that 3, ; < ¢(z1) < ;.

As it will become clear in the next section, depending on the behavior of the
algorithm, the pair (f(zx),¢(xr)) may be permanently added to Fji1 at the end of
the iteration. Thus, the cardinality of the set F}, is a nondecreasing function of k.

3. An SQP algorithm. In the general framework of a trust region sequential
quadratic programming algorithm, a step s.. is obtained approximating problem (1.1),
in a neighbourhood of an iterate xy, by a quadratic programming (QP) problem.

In our case, this QP problem has the form

3.1a) minimize Q(Hy,zg,s)

3.1b) subject to A(zr)s +C(xg) =0
3.1c) [<zp+s<u
3.1d) Isllec <A,

where Q(H,x,s) is defined by (2.2), z) is supposed to belong to
Q={zeR"|l<z<u}

and Hj, is an approximation of the Hessian of the Lagrangian at xj. The infinity
norm was chosen here so the constraints (3.1c) and (3.1d) can be grouped into one
simple set of box constraints.

We will use the term @-stationary to say that a point Z satisfies the first order
optimality conditions of

minimize ()

subject to x € (.

Unfortunately, if zj is not p-stationary, the constraints of (3.1) may be inconsis-
tent, so this problem may not have a solution. A common practice to overcome this
difficulty is to divide the step s. into two components. The first of these components,
called normal step, or simply s,, is obtained as the solution of the feasibility problem

reduce M (xzy,s)
(3.2) subject to | <zp+s<u
15/l < 08A.

If M(xg,sn) = 0, then x can be substituted by zy + s, in (3.1) to make this
problem feasible, so it can be solved by any QP algorithm. Otherwise, the second
component of s., called the tangential step, or s, is computed so ) is reduced but the
predicted reduction of the infeasibility obtained so far is retained. In other words, s,
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is the solution of the (now consistent) problem

reduce Q(Hp,z,s)
(3.3) subject to A(xy)s = A(xg)sn
l<zp+s<u
lIslleo < A.

One should notice that the trust region radius was increased from (3.2) to (3.3).
This is done to enlarge the feasible region when s,, is in the border of the trust region,
s0 s, is not the only solution of (3.3).

To assure a sufficient decrease of M, a Cauchy point, s4¢¢, is computed. This
Cauchy point is based on a decent direction for ¢(z) given by Py (zr — V(xy)), the
orthogonal projection of zy — Vip(zy) on Q. The solution of (3.2) is required to keep
at least ninety percent of the reduction obtained by sdec.

A similar procedure is adopted for (3.3). In this case, s¢¢, the Cauchy point, is ob-
tained from a descent direction for f(z) on the tangent space, given by Pp(—=VQ(sy)),

the orthogonal projection of —VQ(s,) on the set
T ={y €e N(A(zy)) | (zf, + s +y) € N}

Again, the decrease on ) obtained by the solution of (3.3) must not be less than
ninety percent of the reduction supplied by the Cauchy point.

The main steps of the algorithm are given below, supposing that an initial point
xp € (2, an initial trust-region radius Ag > A,,;;, and an initial symmetric matrix Hy
are given.

We start from & = 0 and take Fy = ) as the initial set of points used to define
the piecewise linear function P(F).

ALGORITHM 3.1. A new SQP algorithm

1. WHILE the stopping criteria are not satisfied
L1 Fi  Fe U{(f (@r), o(ae)) }:
1.2. IF |C(zk)|| =0 (x is feasible),
1.2.1. Sp < 0;
1.3. ELSE
1.3.1. Compute d,, (a descent direction for ¢(z)):
dn, < Py(zr — v Ve(xr)) — z;
1.3.2. Determine sd¢¢ (the decrease step for ¢(z)), the solution of

minimize M (zy,s)
subjectto | <zp+s<u
lIs]loo < 0.8A
s =td,, t>0;
1.3.3. Compute s, (the normal step) such that
I <zp +s, <u,
lIsnllco < 0.8A%, and
M(xka 0) - M(mlm Sn) > OQ[M(mka 0) - M(xka Sgec)];
1.4 Compute d; (a descent direction for f(z) on the tangent space):
di < Po(=7VQ(sn));
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15. Determine s¢¢¢ (the decrease step for f(x)), the solution of

minimize Q(s)
subjectto | <zp+s<u
lIslloo < Ak
§=8p +tdy, t>0;
1.6. Compute a trial step s, such that
A(zg)se = A(xk)sn,
I<zp+s.<u,
[|sclloo < Ak, and
Qsn) — Q(s2) > 0.9[Q(5) — Q(s8<)]:

1.7. IF (f(zx + sc) = P(Fr,o(xr +sc))) OR
(P;):; Z 1‘390(331:) AND Ared(mka Sc,ezup) < 'YgPred(Hk;mk; Sc,ezup)),
1.7.1. A < apmin{Ayg,||sc|lc}: (reduce A)
1.8. ELSE
181 pr = A7 (wk, 50) [ Py (Hy, o, se);
1.8.2. IF Pfg’;(Hk,mk,sc) < kp(zr) OR p < ¢,
1.8.2.1. Fiyy1 + Fi: (include (f(zg),o(xr)) in F)
1.8.3. ELSE Fk+1 + Fy;
1.8.4. Accept the trial point:

Try1 < Tk + Se;

Avst max{ar min{Ag,||s¢||co }, Amin}, if pr <7y,
ki max{aalg, Amin}, if pr > m;

Determine Hy1;

k< k+1;
1.9. IF A < Ayest AND @(zp) > e A7,
1.9.1. Compute a restoration step s, so that

(o(zk + sr) < enAF AND f(zi + 5,-) < P(Fr,0(x + 5,))) OR
Ty + S, is p-stationary but infeasible;
1.9.2. Fiy1 < Fi; (include (f(zx), p(xr)) in F)
1.9.3. Accept the new point:
Th41 < Tk + Sr;
AIchl <~ max{ﬁArest; Amzn}x
Determine Hyy1;
k< k+1;

The constants used here must satisfy £ > 0,0 < vy <7y, <n<1,7,>0,v% >0,
Apin >0,0<ap <1,a4 >1,¢, > 0and g > 0. Parameters v, V¢, Amin, €, and 3
are problem dependent and may be chosen according with some measure of problem
data. Reasonable values for the remaining parameters might be vy = 0.01, v, = 0.1,
n = 0.5, ag = 0.5 and agq = 2.0. The constant  should not be confused with the
parameter 7 defined in (2.9).

If ay, is feasible, then the condition P°% < rep(xy) is never satisfied, since P22
is always greater or equal to zero. Besides, the condition Aiift <ysPF ; is also never
satisfied when zy, is feasible and f(zy, + s.) < P(Fi, p(zk + sc)). Therefore, all of the
points in F}, are infeasible, although Fj may contain a feasible point. This result is
very important for two reasons. First, it prevents the optimal solution of problem 1.1
to be refused by the algorithm. Moreover, it assures the algorithm is well defined, as

stated in the next section.
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4. The algorithm is well defined. An iteration of algorithm 3.1 ends only
when a new point x + s is below the piecewise linear function P(Fy, p(xy + s)),
besides satisfying some other conditions stated at steps 1.7 or 1.9.1. While such a
point is not found, the trust region radius is reduced and the iteration is repeated. It is
not obvious that an acceptable point will be obtained, as we may generate a sequence
of points that are always rejected by the algorithm. In this section, we prove that the
algorithm is well defined, i.e. a new iterate xyy1 can always be obtained unless the
algorithm stops by finding a p-stationary but infeasible point or a feasible but not
regular point.

In the following lemma, we consider the case where zy, is infeasible.

LemMMA 4.1. If xy is not p-stationary, then after a finite number of repetitions
of steps 1.1 to 1.9, a new iterate x4y is obtained by the algorithm.

Proof. At each iteration k, if f(zy + s.) < P(Fk,¢(zr + sc)) and one of the
conditions P:f; < kp(xg) or Avea(Tr,se,05") > Vg Prea(Hp, Tk, sc, 05 7) is satisfied,
then z + s, is accepted and we move to iteration k& + 1. Otherwise, Ay is reduced
and after some unfruitful steps, A, < A,esr and p(z) > ehAi, SO a restoration is
called.

Suppose that a ¢-stationary but infeasible point is never reached (otherwise the
algorithm fails). As the restoration generates a sequence of steps {s;} converging to
feasibility, and since F does not include feasible points (because xy, is infeasible and
no feasible point is included in Fy), there must exist an iterate zy, + s, that satisfies
o(xp + s;) < min{@,, e, Az}, so we can proceed to the next iteration. 0

Now, in order to prove that the algorithm is also well defined when zy, is feasible,
we need to make the following assumptions.

Al. f(z) and C;(x) are twice-continuously differentiable functions of x.
A2. The sequence of Hessian approximations {H}} is bounded.

As a consequence of Al and A2, the difference between the actual and the pre-
dicted reduction of the merit function is proportional to A%, so the step is accepted
for a sufficiently small trust region radius, as stated in the following lemma.

LEMMA 4.2. Suppose that A1 and A2 hold and that xy is feasible and regular for
problem 1.1 but the KKT conditions do not hold. Then, after a finite number of trust
region reductions, the algorithm finds a new point xy, + s. that satisfies f(xzp + s.) <
P(fk; @(xlc + Sc)) and Ared(mka Sc, ezup) Z 'y‘qPred(Hk; Tk, Sc, 02147)

Proof. Since xj, is feasible, s, = 0. Supposing that zj is regular and non-
stationary, there must exist a vector d; # 0 satisfying

I <zp+dy <u, A(zp)d; =0, and di Vf(zy) <0.
Let us define, for all A > 0,
p(A) = t(A)dy,
where
t(A) =max{t > 0| [z, zr +td;] CQ, and ||td]|c < A}

Clearly, z + dy € Q, so we have that |[t(A)di]|cc = A whenever A < ||d¢]|co-
Define, in this case,

1 1
¢=—2d{ V(wx)/lldilloc = —5di VQ(0)/ldi|oo > 0.
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Since Q(s7°°) < Q(p(A)), by elementary properties of one-dimensional quadratics,
there exists Ay € (0, ||d¢||oo] such that, for all A € (0,A,),

1df'vQ(0)

——4———A =CcA.
2 [|dtlloo

1
Q0) = Q(s{*) 2 —5di VQ(O)H(A) = -
Moreover, since z, is feasible and As,, = 0, we have that M (z,0) = M (xg, s.) =

0, so

Pz, s) =0, and

red

P (Hi, wp, 50(A)) = Q(0) — Qse(A)) > 0.9[Q(0) — Q(s{*)] > 0.9¢A.

Ouce xy, is feasible, (¢(xg), f(xk)) is the first pair in Fi. Thus, there exists

Ay € (0,A;] such that, for A < A,, we need to consider only the portion of P(Fy,¢)
defined on the interval [0, ¢,]. This linear function may be rewritten so the condition

flxr +s¢) <P(Fr,p(wr + sc))

is equivalent to

(41) Ared(mk, SC(A); 91) Z anred(Hk; Tk, SC(A); 91);
where,
(4.2) Prea(Hp, w1, 5¢(A),01) = 01 P22 (Hy, g, 5.(A)) > 0.9¢Afy,

Ared(@r, 50(8),01) = O1[f (zi) — f(ar + 5:(A))] + (L= 01) (@ + 5¢(D))

and #; > 0 is given by (2.3).
Now, by A1, A2 and the definition of P,.q, we have

(43) Ared(mk; 8679) = Pred(Hk7 Sk, 8670) +El||SC||2'

So, using (4.2) and (4.3) we deduce that

(4.4) ‘ATL@A) _ 1‘ < al

Pred(A) - 0.90@1 '
Thus, for A < min{(1 — 1,)0.9¢6; /1, Ay} = A3, the inequality (4.1) necessarily
takes place.

Now, using the fact that ;Y = 1 for ) feasible and replacing #; by 1 in (4.4),
we can conclude that, for

(4.5) A < min{(1 —7,)0.9¢/c1, Az} = Ay,

the condition Ayeq(zr,sc(A),0,") > Vg Prea(Hr, Tk, 5.(A),0;"") is also satisfied and
the step is accepted. O
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5. The algorithm converges to a feasible point. As mentioned in the last
section, our algorithm can stop if a (p-stationary but infeasible point is found. More-
over, the restoration procedure can also fail to obtain a more feasible point. Naturally,
this unexpected behavior of the algorithm makes somewhat pretentious the title of
this section.

Formally, what we will prove in this section is that, supposing that a y-stationary
but infeasible point is never reached and that the restoration always succeeds, an
infinite sequence of iterates converges to feasibility.

In the proofs of the lemmas presented here, we will suppose that Al and the
following assumption are satisfied.

A3. The sequence of iterates {zy} lies within a closed and bounded domain {g.

As mentioned in [5, p.730], assumptions Al and A3 together ensure that, for all

k:

Fr < o) < f™ and 0 < p(zy) < ™

for some constants f™", f™ma% and ™ > (. Our analysis will be based on the fact
that the rectangle [0, ™% x [f™", f™e2] is covered by a finite number of rectangles
with area greater than a small constant. Therefore, each time we expand the forbidden
region (see fig (2.1)) by adding to it a small rectangle, we drive the iterates towards
feasibility.

Let us start investigating what happens to p(x) when an infinite sequence of
iterates is added to F'.

LEMMA 5.1. Suppose that A1 and A3 hold and that {k;} is any infinite subse-
quence at which the iterate xy,; is added to F'. Then

lim ¢(zg,) =0.

1— 00

Proof. Let us suppose, for the purpose of obtaining a contradiction, that there
exists an infinite subsequence {k;} C {k;} for which

(5.1) e(xr;) > €

where € > 0.

At iteration kj;, the (¢, f)-pair associate with wy; is included in F' at position
m, which means that ¢, < @5 (= ) < Ppgs ad fruos > fiy(Z ) > frnrt.
Thus, as long as the pair (gokj,fkj) remains in F, no other (¢, f)-pair is accepted
within the rectangle

Notice that, by (2.4) and (2.5), the area of this rectangle is

(me _¢m)(fm - fm) > (<pm _¢m)2 > [(1 - ’Yf)gokj]2 > (]- - 7f)262'

Assume now that (¢, fr;) is excluded from F by another pair (¢, , fx,), included
in F at an iteration k; > kj;. This case is illustrated in Fig. 5.1. Notice that (¢y,, fx,)
cannot fall in regions I and V since, in this case, (¢y,, fi;) Will not be excluded from
F. Tt can be easily verified that the worst case occurs when (¢y, , fx,) lies on 1 () or

la(p).
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Suppose (@, , fr,) lies on £2(¢), as depicted in Fig. 5.1. In this case, the rectangle
rm will be entirely above {5, the line that connects (By,, fr,) t0 (Bpp1, frny1)- Since
/5 will be included in the new piecewise linear function (), no point within r,, can
ever be reached by a new iterate.

The same idea can be applied in the case (py,, fi,) lies on £1(p). Therefore, once
(¢k,+ fr;) is included in F', rp, will always be above P(F). Since the area of this
rectangle is at least (1 — yy)%e? and the set Ay is completely covered by at most
Surf(A49)/[(1 — v£)?€?] of such rectangles, it is impossible for an infinite subsequence
of {k;} to satisty (5.1), and the conclusion follows. O

A
/ (@15 Srot)
SO 4
SO Bt .
fz \\\\\\ S~ ((pm’.fm)
@ f) =N Im \\\ 0,
((pm’f;ll)\\\ \\ ((\Dm+]9fr'n+1)
111 T
N IV~ A\Y4
Zl\\\ \\\ ((pm+l’.ﬁn+l)
¢

Fic. 5.1. Adding a new iterate that excludes (‘ij s Jfi;) from F.

Finally, we are going to consider the case where no point is added to Fj, for k
sufficiently large.

LEMMA 5.2. Suppose that assumptions A1 and A3 hold. Suppose also that, for
all k > ko, xi is never included in Fy,. Then,

(5.2) lim p(x) = 0.
k—ro0

Proof. Since zy, is not included in F}, no restorations are made and both condi-
tions stated at step 1.8.2 of algorithm 3.1 are never satisfied for k > kg. Therefore,
we have

(5.3) F(@r) = f(@rer) > e Pty > vpep(ar) > 0,

for all £k > kg, which means that the objective function always decrease between
infeasible iterations. Since Al and A3 imply f™" < f(z) < f™* we must have

(5.4) lim f(zx) — f(@r41) = 0.

k—o0

Then, (5.2) follows from (5.3) and (5.4). O

6. The algorithm finds a critical point. Finally, we are able to prove the
convergence of the algorithm to a stationary point for (1.1). In order to do that, we
will need to make one aditional assumption on the choice of the normal step s,,.
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A4. The choice of s, at step 1.3.3 of algorithm 3.1 is such that
llsn 2k, Ap)ll < Knl|C(k)]|2-

In the following lemma, derived from lemma 6.1 of [9], we show that in the
neighborhood of a feasible, regular and non-stationary point, the directional derivative
of the quadratic model (2.2) along d; is bounded away from zero.

LEMMA 6.1. Suppose that A2 and A4 hold and that {zy,} is an infinite subse-
quence that converges to the feasible and reqular point x* € 0, which is not stationary
for (1.1). Then, there exists ki,c¢1 > 0 such that

(6.1) —VQsu (@, A) dy(H,2,A) > ¢

for all x € {xy, | k > k1}. Moreover, ||di(H,z,A)|| is bounded and bounded away
from O for all v € {xy, | k> k1}.
Proof. For all z € {z, }, we have that

di(H,x,A) = Po (=7 VQ(sn(x,A))) = Po(=y[Hsn(z,A) + V[ (2)]).

By the contractive property of the orthogonal projections,

1Pe(=vi[Hsn(z,8) + VI (@)]) = Po (=% V[ (@))ll2 < vellHl|2llsn (2, A)||2-
So, by A2 and A4, we have that
(6.2) |de(H, 2, A) = Po(=7%V f(2))l]2 < nl|C(2)]]
and, by the continuity of V f(z) and the fact that {«y,} converges, we deduce that
(6.3) [IVf (k)" Po(=7V flzn,)) = V[ (@n) T de(Hiy s 2, Ak)ll2 < 7210 (@, ).

Notice that Pp(—v:V f(z,;)) is the solution of
minimize || — vV f(zg,) — 2|5

subject to A(xg;)z =0
l<zp, +sp+2z< u
Now, define Py« (—vV f(z*)) as the solution of
minimize || — vV f(z*) - z|3
(6.4) subject to A(x*)z =0
[<z*+z<u.
Since z* is regular but is not a stationary point for (1.1), it follows that z = 0 is

not a solution for (6.4). So, Pp=(—7V f(z*)) # 0. Moreover, since z = 0 is feasible
for (6.4), we have that

| =%V f(z*) = Por (=0 V@) < | =%V f(z)]]3,

which implies that V f(z*)? Py« (—v:V f(2*)) < 0.

Using the fact that P,(—7V f(z)) is a continuous function of z and s,, for all
regular = (see [9]), we can define G2, €3,¢ > 0 and k2 € IN such that, for all z € {y,
k > k»}, we have

(6.5) e <|Pe(=n V@)l <o and Vf(2)' Po(=%Vf(2) <~
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Now, from (6.2), (6.3) and (6.5), the continuity of C(x) and the feasibility of z*,
there exists k3 > k2 such that, whenever « € {xy, | k > ks},

5 < ldi(H,, A)|| < 26 and Vf(2) di(H,z,A) < 2.

Therefore, ||d;(H, z, A)|| is bounded and bounded away from zero for all z € {zy,
k> Fs).

Finally, since d; € N(A(z)), assumptions A2 and A4 hold, and ||d;|| is bounded,
we have that, for all « € {xy, | k£ > ks},

VQ(sa)"dy = V(@) dy +df Hs, < =5 + 3]0,

where v3 > 0. Then, (6.1) follows defining ¢; = ¢4/4 and choosing k; > k3 such that
IC@) ] < 2/ (41s). O

Using Lemma 6.1, we prove in the next lemma that, in the neighborhood of a
feasible, regular and non-stationary point, the decrease of the quadratic model (2.2)
is proportional to the trust region radius A.

LEMMA 6.2. Suppose that A2 and A4 hold and that {xy,} is an infinite subse-
quence that converges to the feasible and regular point ©* € Q, which is not stationary
for (1.1). Then, there exists c2,k2 > 0 and Ag € (0, Apin) such that

Q(z, sp(z,A)) — Q(z,5.)) > comin{A, Ay}

for all x € {zk, | k > ka}.

Proof. See Lemma 6.2 of [9]. O

Now, we are able to present a crucial lemma, derived from Lemma 6.3 of [9], that
relates Pfg’; to the trust region radius in the neighborhood of a feasible point. Besides,
we also show that, in this case, P°%% is sufficiently large so 6°“” = 1.

LEMMA 6.3. Suppose that A1, A2 and Aj hold and that {zy;} is an infinite
subsequence that converges to the feasible and regular point z* € Q, which is not
stationary for (1.1). Then, there exists €,c3,ks > 0 and Ay € (0,A,,in) such that,
for k; > ks, if

(66) @(mki) < 6A27

we have that

(67) P:f;(mki ) Sc) = Q(mki ) 0) - Q(mki ) Sc) Z C3 min{A; A1}
and
(6.8) o = 1.

Proof. By Lemma 6.2, assumptions Al and A4 and the convergence of {zy, }, we
have that

Q(0) = Q(se) > Q(sn) = Qlse) = Q(0) = Q(sn)| = comin{A, Ay} — 74[|C(a)]]

for all @ € {xy, | k > kz2}, where c2, k2 and A; are defined as in Lemma 6.2 and
v4 > 0. Therefore, (6.7) follows if we choose ¢35 < ¢y and k3 > ko such that € <
a?(cy — ¢3)?/(292), where @ = min{1, A; /A}.
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Now, from assumption A4, we have that
M(0) — M(sc) = M(0) = M(spn) < 5||C ()],
S0
Prei(zp;, Sc,1) — 0.5[M (x,;,0) — M (zg,, s:)] > camin{A, A1} —v5]|C(zk;)]|-

Again, (6.8) follows if we choose € < a?c3/(2+2). O

We next examine what happens if A is bounded away from zero and an infinite
subsequence of points is added to F'.

LEMMA 6.4. Suppose that A1, A2, A3 and A4 hold and that {x,} is an infinite
subsequence at which xy; is added to F. Suppose furthermore that the restoration
always terminates successfully and that Ay, > Ao, where Ay is a positive scalar.
Then there exists a limit point of this sequence that is a stationary point for (1.1).

Proof. From assumption A3, we know that there exists a convergent subsequence
{zy,}. Let us suppose that the limit point of this subsequence is not stationary for
(1.1).

From Lemma 5.1 we know that there exists k5 € IN such that, for k; > ks,

@(Ikz) < EhAg'

Thus, a restoration is never called for k; > ks. So, the hypotesis that zy, is added
to Fy, implies that one of the inequalities stated at step 1.8.2 of the algorithm must
be satisfied at iteration k;.

Suppose, for the purpose of obtaining a contradiction, that {zj,} converges to
a point that is not stationary for (1.1). So, from Lemma 5.1 and (6.7), there exists
ke > k5 such that ¢(zy,) < €Af and

PPz, ) s.) > csmin{A1, Ay},

red

for all k; > EG. _ _
Using Lemma 5.1 again, we can deduce that there exists k; > kg such that
o(xr,) < (c3/k) min{A;, Ay} and the condition PP < kp(z}) is never satisfied for

red

ki > kr.
Therefore, f(zx,) — f(zk; + 5:) < v7 PP must hold. To show that this is not
possible, let us write the inequality Aeq(Tr;,Sc, 05" ) > V¢ Prea(Tr; s Ses 921”7) as

i

00 F (f (k) = f(mr; +50)) + (L= 007 ) (p(@r,) — p(Th; +5¢)) >
,yggzzippol’t (mki ’ SC) + 79(1 - 02:’4’)Pf3b (mki ’ SC)-

red red

Using the hypothesis that f(zx,) — f(zk; +5¢) < 7P (xk,, 5.) and the fact that

P50 (4., s.) > 0, we have

red

glsg?pryfpopt(l'ki y8¢) + (1= 91:?1))(@(%) — (o +5¢)) > 7902?11])0“(%16“56)'

red red

Then, taking k4 > k3 (defined in Lemma 6.3), we deduce from (6.7) that, for
ki > k4,

(1 =03 ")(p(an,) — plar, +50)) > (v = 75)05, Pea min{ Ay, Ag}
But, since, v, > vy and lim;, ¢, = 0, we must have

lim 65 =0,
i—oo0 ¢
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which contradicts (6.8). Therefore, {zy, } must converge to a stationary point for
(1.1). O

Supposing again that A is bounded away from zero, we will now complete our
analysis investigating what happens when no iterates are added to F for k sufficiently
large.

LEMMA 6.5. Suppose that A1, A2, A8 and A/ hold, that xy, is always accepted but
FEy, remains unchanged for k > ks and that Ax > Az, for some positive Az. Suppose
also that the limit points of the infinite sequence {xz} are feasible and regular. Then
there ezists a limit point of {xy} that is a stationary point of (1.1).

Proof. Assumption A3 implies that there exists a convergent subsequence {z, }.
If the limit point of this subsequence is not stationary for (1.1), then from Lemma
6.3, we have

P:EP; Z C3 min{Ag, Al}

for all k; > max{ks, k3 }. Moreover, since zy, is always accepted and Fy, is not changed,
we deduce that

Fxr) = fan, +se) > 7 PO

Therefore, f(xr,) — f(@k, +sc) > vres min{A1, Az} for all k; sufficiently large, which
contradicts the compactness assumption A3. O

In the last part of this section, we will discuss the behavior of the algorithm when
A — 0. We will start showing that the predicted reduction of the quadratic model is
sufficiently large when A is small.

LEMMA 6.6. Suppose that A2 and A4 hold and that {xy,} is an infinite subse-
quence that converges to the feasible and regular point ©* € Q, which is not stationary
for (1.1). Suppose also that p,, satisfies (6.6) and that

(6.9) A < min{cs/(ke), A1} = As

for k; > kr, where c3, € and Ay are defined as in Lemma 6.3. Then P:f; > kp(Tk,).
Proof. Suppose, for the purpose of obtaining a contradiction, that P:f; < kp(zr)
for some k; > k7. Then, from (6.7), we have
csmin{A, A} < PP < kp(ay,) < keA?,

red

which is impossible because of (6.9). Thus P > k(x,) must hold. O

The purpose of the next four lemmas is to prove that there exists a sufficiently
small trust region radius so the step is always accepted and A is not reduced further
at step 1.7.1 of algorithm 3.1.

The first lemma will be used to show the relation between the predicted reduction
of the infeasibility and A.

LEMMA 6.7. Suppose that assumption A1 holds and that xy, is not p-stationary.
Then, there exists Ag,cqy > 0 such that
(610) Pis;(l'k, SC) Z C4Ak,
zf Ak € (O;AG)

Proof. Since zy, is not p-stationary, we have that d,, # 0. Thus, we can define

t"(A) = max{t > 0| [zg, 2 + td,] € @ and [|td,|] < 0.8A}.
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Clearly, if A < 1.25||d,]|, then |[t™**(A)d,|| = 0.8A (since zj + d,, € Q). Now,
define
_leVQO(CEk)
2 ldnll

> 0.

By some elementary properties of one-dimensional quadratics, there exists Ag €
(0, ||dx||] such that

M(0) — M(E™(A)) > —%dgvm)tm”m) = clldy[[E™ (A) = 0.8¢A.

for all A € (0,A4). Therefore, for the normal step s, computed at step 1.3.3 of
algorithm 3.1, we have

M(0) — M(sy) > 0.72¢Ay.
But, since A(zg)s. = A(xy)s,, we deduce from (1.4) that

Pbe(mk, Se) > 0.72¢Ag

red

and the desired inequality follows. O
In order to prove that xj + s, will be accepted, we need to consider how P and
f are computed. Let us begin using the previous lemma to show that, for a small A,
P;, defined in (2.4), will depend on the predicted reduction of the infeasibility.
LEMMA 6.8. Suppose that A1 holds and that xy, is not p-stationary. Then there
exists A7 > 0 such that

%P,{t:;(mk, s¢) > vrp(Tr),

if o(xr) < enAs and Ay € (0,A7).
Proof. Lemma 6.7 ensures that

ka;ib(xk,sc) > k&;Ak > 0.
v vt
Defining A7 = min{ycca/(7rern), A}, where Ag is given in Lemma 6.7, we have
that

Z—;Pﬁ;(azk,sc) > enA7A > e, A% > p(ap),
for all A € (0,A7), so the desired result follows. O

Using Lemma 6.7 again, we can also show that f, defined in (2.5), will depend on
PP if De is sufficiently small.

LEMMA 6.9. Suppose that A1, A2 and Aj hold, that {xy,} is an infinite subse-
quence that converges to the feasible and reqular point x* € 0, which is not stationary

for (1.1), and that B, is given by (2.4). Then there exists Ag > 0 such that

VP (Hi,wr, 5¢) > (0(2k) — By),s

if (xr) < min{en, e}AF and Ay € (0,Ag), where € is defined as in Lemma 6.3.
Proof. From Lemma 6.3 we deduce that, if Ay € (0,A], then

v PP (Hy,, g, 5¢) > ypealy.

red
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Now, defining Ag = min{vyscs/ep, A1}, we have

v PP (Hy, wry sc) > eppAsA > e, A7 > (1) > (p(z) — By

red

and the desired conclusion follows. O

Lemma 6.6 assures that P is sufficiently large when A is small. Let us prove
now that the actual reduction of the merit function is sufficiently large so the second
condition used in step 1.7 of algorithm 3.1 to decrease the trust region radius is never
satisfied.

LEMMA 6.10. Suppose that Al and A4 hold and that 0 < 6;"", where 6}, is
defined by (2.7) and 6, is defined by (2.8). Then there exists Ay > 0 such that

Ared(mka Sc, 0zup) < ’ngTEd(Hk7 Tk, Se, ezup)

for all Ay € (0,Ay).
Proof. If 6, < 6,", then Preq(Hy,xk,sc) > (1/2)P7f68;. This inequality, together
with (6.10), gives that

C.
Pred(Hk:xk: Sc) > 54Ak7

for all Ay € (0,A¢), where ¢4 and Ag are defined in Lemma 6.7. But, from Al and
A4, we also have that

|AT6d(Ak) - Pred(Ak)| < C5Ai.
for some c¢; > 0. From the last two inequalities, we deduce that

|Ared(Ak) - Pred(Ak)| — ‘Ared(Ak)
Pred(Ak) Pred(Ak)

(6.11)

- 1‘ <Xy,
C4
Therefore, defining Ag = min{(1 — v4)ca/(2¢5), Ag}, we obtain the required result. O

In our last lemma, we will use the previous results to prove that, if &6 — 0, there
is no infinite subsequence that converges to a point that is not stationary for (1.1).

LEMMA 6.11. Suppose that A1, A2, A3 and A4 hold. Suppose also that the limit
points of the infinite sequence {xy} are feasible and regular and that lim_,o, Ay, = 0.
Then there exists a limit point of {x} that is a stationary point of (1.1).

Proof. Assumption A3 implies that there exists a convergent subsequence {z, }.
Let us suppose, for the purpose of obtaining a contradiction, that the limit point of
this subsequence is not stationary for (1.1).

Since lim;_, p(zr;) = 0 and, at the begining of iteration k, the trust region
radius satisfies Ag, > A,,ip, there must exist kg > ks (defined in Lemma (6.3)) such
that, for k; > kg, the condition p(xy,) < eA,i_ is satisfied, so (6.8) holds.

But, from (2.7) and (2.3), we have that 8, < 1, so Lemma 6.10 applies and (6.11)
also holds if Ay, < Ag.

Thus, supposing that k; > ks and A, < Ay, the point x, + s, would only be
rejected and, consequently, the trust region radius would only be reduced if f(zy, +
SC) > ,P(]:kugo(mki + SC))

Now, we need to consider separately two mutually exclusive situations. First, let
us suppose that xy, is feasible. In this case, Lemma 4.2 assures that, for A < Ay
(defined in (4.5)), the step is accepted and the trust region radius need not to be
reduced further.
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On the other hand, if xy, is not y-stationary, Lemmas 6.8 and 6.9 assure that for
Ag, <min{A7, Ag} = Ajp, the definition of 77 given in (2.9) holds, so 0 <7 < 1 and
flxr; +8c) > P(Fry,o(xr; + sc)) is equivalent to (2.6).

Now, following the same steps used in Lemma 6.10, we can use (6.11) one more
time to show that, when A, < min{(1 —7%)cs/(2¢5), As} = A11, where Ag is defined
in Lemma 6.7, inequality (2.6) is satisfied and Ay, is not reduced at step 1.7.1 of
Algorithm 3.1.

Therefore, Ay, > agmin{Ay, Ag, A1, A1y}, which contradicts the hypotesis that
limg 00 A = 0, so we conclude that the limit point of the subsequence {zy,} is a
stationary point of (1.1). O

Finally, let us state a theorem that puts together all of the results presented so
far.

THEOREM 6.12. Suppose that A1, A2, A8 and AJ hold and that {x\} is an
infinite sequence generated by algorithm 3.1. Then either the restoration converges
to a p-stationary but infeasible point of (1.1), or limy_, p(xr) = 0. Moreover, if
the restoration always succeeds and all of the limit points of {xy} are regular, there
exists a limit point * that is a stationary point for (1.1). In particular, if all of the
p-stationary points area feasible and regular, then there exists a subsequence of {zy}
that converges to a feasible, regular ans stationary point of (1.1).

Proof. This result is a direct consequence of Lemmas 5.1, 5.2, 6.4, 6.5 and 6.11. O

7. Conclusions. In this paper, we depict the general framework of an SQP algo-
rithm that uses a piecewise linear merit function to accept and reject steps. This ap-
proach combines ideas from both merit functions and the filter introduced by Fletcher
and Leiffer in [7].

The use of several penalty parameters defined automatically by the previous it-
erates avoids the premature reduction of 6 as well as the zigzagging that can occur
when a nonmonotone strategy is used to update this parameter. The new method is
also less tolerant than the filter method, since we do not accept points that marginally
reduce the infeasibility or the objective function.

As the next steps of this work, we intend to test the algorithm with some problems
from the CUTEr library and devise a strategy to circunvent the Maratos effect.
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