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Abstract

In this paper we prove existence of weak solution with the reproductivity

in time property, for a penalized PDE’s system related to a nematic liquid

crystal model.

This problem is relatively explicit when time-independent Dirichlet bound-

ary conditions are imposed for the orientation of crystal molecules. For the

time-dependent case, the verification of a maximum principle for weak repro-

ductive solutions is fundamental in the argument.

Finally, the relation between reproductive and periodic in time solutions

and their dependence respect to the regularity will be pointed out, being

completely different the 2D and 3D cases.
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41080 Sevilla, Spain. E-mails: blanca@us.es, guillen@us.es
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1 Introduction

In this work, a nematic liquid crystal model in a simplified Ericksen-Leslie version
is considered; see for instance in [7] a more completed formulation of the problem.

This model can be seen as a variant of the Navier-Stokes problem(respect to
the unknowns velocity-pressure (u, p)) coupled with a convection-diffusion system
for a new variable d, a unit vectorial function modelling the orientation of the
crystal molecules. On the other hand, it is usual to consider an approximation
by Ginzburg-Landau penalization ([1]) for the constraint |d| = 1 (|d| = |d(t, x)|
denotes the point-wise euclidean norm).

This penalized model (in which the constraint |d| = 1 is relaxed by |d| ≤ 1) was
introduced by Lin in [5] and studied (from a mathematical point of view) by Lin
and Liu in [6, 7] and by Coutand and Shkoller in [2]. The main difficulties of the
model coming from the strongly nonlinear coupling between the orientation vector
d and the velocity-pressure (u, p) and from the constraint |d| ≤ 1, jointly with the
well known difficulties for the Navier-Stokes problem (a nonlinear parabollic system
with the free divergence constraint related to the pressure).

In all previous works, initial conditions and time-independent Dirichlet bound-
ary conditions for d are considered. Now, we are interested in time reproductive
solutions. In particular, we will see that this study is completely different for time-
independent or time-dependent boundary conditions for d.

We assume a (newtonian) fluid confined in an open bounded domain Ω ⊂ IRN

(N = 2 or 3) with regular boundary ∂Ω. In the penalized model the constraint
|d| = 1 is partially conserved to |d| ≤ 1 as consequence of the maximum principle
for the Ginzburg-Landau equation considering the penalization function

f(d) = ε−2(|d|2 − 1)d

where ε > 0 is the penalization parameter. There exists a potential function

F (d) =
1

4ε2
(|d|2 − 1)2

such that f(d) = ∇d(F (d)) for each d ∈ IRN . Then, we consider the following PDE
system in (0, T ) × Ω:





∂tu + (u · ∇)u − ν∆u + ∇p = −λ∇ · (∇d ⊙∇d), ∇ · u = 0,

∂td + (u · ∇)d = γ(∆d − f(d)), |d| ≤ 1,
(1)

The constants ν, λ and γ are positives, representing respectively, the fluid viscosity,
an elasticity constant and a time relaxation. Here, the following tensorial notation
is used:

(∇d ⊙∇d)ij =
N∑

k=1

∂xi
dk∂xj

dk, ∀ i, j = 1, . . . , N.
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The problem (1) is completed with the (Dirichlet) boundary conditions

u(x, t) = 0, d(x, t) = h(x, t) on ∂Ω × (0, T ) (2)

(assuming as novelty a time-depending boundary data for d given by h : ∂Ω ×
(0, T ) 7→ IRN , in [6, 7] only a time-independent boundary data is considered) and
the reproductivity conditions:

u(x, 0) = u(x, T ), d(x, 0) = d(x, T ) in Ω (3)

These reproductive conditions jointly with the constraint |d| ≤ 1 are the main
difficulties of the problem (1)-(3), while the time-dependent boundary conditions
d = h(x, t) produces some additional difficulties. In particular, an adequate lifting
of this condition must be done.

It is important to remark that reproductive solution with the following boundary
data independent of time d(x, t)|∂Ω×(0,T ) = d0(x) has the trivial stationary (static)
solution:

u ≡ 0,

d solution of the elliptic problem: − ∆d + f(d) = 0 in Ω, d|∂Ω = d0,

p such that ∇p = −λ∇ · (∇d ⊙∇d).

Therefore, in this work will be fundamental assume time-dependent boundary data
for d.

The concept of reproductive solution in the Navier-Stokes context, appears for
the first time in [4], see also [8].

The goal of this paper is to obtain existence of (global in time) weak solution
of problem (1)–(3). We start defining a variational formulation, testing the maxi-
mum principle for d and the energy inequality. Afterwards, we introduce a Galerkin
discretization of the problem, proving existence and uniqueness of approximate so-
lution associated to arbitrary initial conditions. Then, a Leray-Schauder argument
(by means of fixed point process about initial and final in time values of the solu-
tions) allows us to obtain a reproductive Galerkin solution, which converges towards
a continuous reproductive solution. Finally, some comments on the relation between
reproductive and periodic solutions and their dependence with the regularity will
be pointed out, being completely different the 2D and 3D cases.

In our opinion, an interesting open problem related with this work, is the asymp-
totic behaviour of reproductive solutions of (1)–(3) when ε → 0. In the case of initial-
boundary problem, existence of weak solution of the limit problem is obtained in
[3].
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2 Variational Formulation

For simplicity, we denote L2 and H1 instead of L2(Ω)N and H1(Ω)N , L∞(H1) instead
of L∞(0, T ; H1(Ω)N), etc. Also, the scalar product in L2 will be denoted by (·, ·),
and 〈·, ·〉 will denote some duality products.

Let us consider the following function spaces:

H = {u ∈ L2 : ∇ · u = 0 in Ω,u · n = 0 on ∂Ω}

V = {u ∈ H1
0 : ∇ · u = 0 in Ω}

Without less of generality, we fix the constants ν = λ = γ = 1.
Obviously, the following compatibility conditions will be imposed in this work

for the boundary data function h:

|h| ≤ 1 on ∂Ω × (0, T ) and h(0) = h(T ) on ∂Ω.

2.1 The variational problem for (u,d)

Definición 1 We say that (u,d) is a weak reproductive solution of (1)–(3) if

u ∈ L2(V ) ∩ L∞(H)

d ∈ L∞(H1), ∆d ∈ L2(L2), d|∂Ω×(0,T ) = h

verifying

〈∂tu, v〉 + ((u · ∇)u, v) + (∇u,∇v) + (∇d
t∆d, v) = 0 ∀ v ∈ V ∩ L∞,

〈∂td, e〉 + ((u · ∇)d, e) + (f(d), e) − (∆d, e) = 0 ∀ e ∈ L3,

u(0) = u(T ), d(0) = d(T ) in Ω.

⊔⊓

In order to arrive at the previous variational formulation, the following equalities
have been used:

∇ · (∇d ⊙∇d) = ∇

(
|∇d|2

2

)
+ ∇dt∆d

and (
∇

(
|∇d|2

2

)
,v

)
= 0 ∀v ∈ V.

Notice that the reproductivity conditions u(0) = u(T ) and d(0) = d(T ) have sense,
because u and d are (at least weakly) continuous functions from [0, T ] onto some
Banach spaces.
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2.2 Weak Maximum Principle for d

An essential characteristic of the problem for d (given u) is the following weak
maximum principle:

Lemma 2.1 Assume |h(x, t)| ≤ 1 a.e. on ∂Ω×(0, T ). Then, given u ∈ L2(0, T ; V )∩
L∞(0, T ; H), any weak solution for the d-problem, i.e. d ∈ L2(0, T ; H1)∩L∞(0, T ; L2)
such that

〈∂td, e〉 + ((u · ∇)d, e) + (f(d), e) + (∇d,∇e) = 0, ∀ e ∈ H1
0 , (4)

d|∂Ω×(0,T ) = h and d(0) = d(T ), (5)

verifies |d(x, t)| ≤ 1 a.e. in Ω × (0, T ).

⊔⊓
Proof.

Let us define the functions:

ϕ(x, t) = (|d(x, t)|2 − 1)+ and ψ = ϕd,

where z+ = max(z, 0) for each z ∈ IR. Hypothesis |h| ≤ 1 implies ϕ = 0 on
∂Ω × (0, T ). Taking ψ as test function in the variational formulation for d:

1

2

∫

Ω
∂t(|d|

2)ϕ +
∫

Ω
(u · ∇)|d|2ϕ +

∫

Ω
∇d : ∇(ϕd) +

∫

Ω
ϕ f(d) · d = 0 (6)

If we define Ω+ = {x ∈ Ω : |d(t)| > 1}, then ϕ = 0 in Ω \ Ω+. Consequently, the
first three terms of (6) can be written as follows:

1

2

∫

Ω
∂t(|d|

2)ϕ =
1

2

∫

Ω+

∂t(|d|
2 − 1)ϕ =

1

4

d

dt
‖ϕ‖2

L2(Ω),

∫

Ω
(u · ∇)|d|2ϕ =

∫

Ω
(u · ∇)(|d|2 − 1)ϕ =

∫

Ω+

(u · ∇ϕ)ϕ = 0,

∫

Ω
∇d : ∇(ϕd) =

1

2

∫

Ω
∇(|d|2) · ∇ϕ +

∫

Ω
|∇d|2ϕ

≥
1

2

∫

Ω+

∇(|d|2 − 1)∇ϕ =
1

2
‖∇ϕ‖2

L2(Ω).

Taking into account that f(d) · d > 0 as |d| > 1 (i.e. in Ω+) in the last term of (6),
we arrive at the differential inequality:

d

dt
‖ϕ‖2

L2 + 2‖∇ϕ‖2
L2 ≤ 0.
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Integrating in [0, T ] one has

‖ϕ(T )‖2
L2 + 2

∫ T

0
‖∇ϕ‖2

L2 ≤ ‖ϕ(0)‖2
L2

Since ϕ(T ) = ϕ(0), the previous inequality implies ∇ϕ = 0 a.e. in Ω × (0, T ).
Therefore ϕ(·, t) ≡ constant in Ω. But, since ϕ(·, t) = 0 on ∂Ω, we conclude ϕ(x, t) =
0 a.e. in (x, t) ∈ Ω × (0, T ), i.e. |d(x, t)| ≤ 1 a.e. in Ω × (0, T ). ⊔⊓

Although in formulation of problem (1)–(3), the constraint |d| ≤ 1 has been
explicitly included, the previous Lemma say us that it is not necessary because this
constraint can be obtained a posteriori.

In the sequel, we can consider the penalized function f as a bounded function.
Indeed, from maximum principle one has |d| ≤ 1 (recall that |h| ≤ 1). Therefore,
using the auxiliary function

f̃(d) =





1

ε2
(|d|2 − 1)d if |d| ≤ 1

0 if |d| > 1

one can consider the problem (1) with f̃ instead of f. Indeed, if (u, p,d) is a solution
of (1) with f̃, in particular |d| ≤ 1 (because the maximum principle is also verified,
since f̃(d) ·d > 0 as |d| > 1), then (u, p,d) is also a solution of (1) with f. It is easy
to verify the inverse implication.

Notice that, |̃f(d)| ≤ 1/ε2 for each d ∈ IRN .

2.3 Variational Formulacion in u and d̂

Since a time-dependent boundary data h(x, t) on ∂Ω × (0, T ) has been considered,
an adequate lifting is necessary. Assuming h ∈ H1(0, T ; H1/2(∂Ω)N), if we define
d̃(t) as the weak solution of





−∆d̃ = 0 in Ω

d̃|∂Ω = h(t) on ∂Ω

then d̃ ∈ H1(0, T ; H1(Ω)N) (notice that only weak regularity of Laplace-Dirichlet
problems are used, therefore it is suffices regularity Lipschitz for the domain Ω).
Moreover, since h(0) = h(T ) on ∂Ω, then d̃(0) = d̃(T ) in Ω.

Therefore, if we define d̂(t) = d(t) − d̃(t), then d̂(t) ∈ H1
0 (Ω)N , ∆d̂ = ∆d in

Ω × (0, T ) and d(0) = d(T ) if and only if d̂(0) = d̂(T ).
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Definición 2 We say that (u,d) is a weak reproductive solution of (1)–(3) if d =
d̂ + d̃ with d̃ previously defined and for (u, d̂) such that

u ∈ L2(V ) ∩ L∞(H),

d̂ ∈ L∞(H1
0 ), ∆d̂ ∈ L2(L2),

verifying

〈∂tu, v〉 + ((u · ∇)u, v) + (∇u,∇v) + (∇d
t∆d̂, v) = 0 ∀ v ∈ V ∩ L∞,

〈∂td̂, e〉 + ((u · ∇)d, e) + (f(d), e) − (∆d̂, e) = −(∂td̃, e) ∀ e ∈ L3,

u(0) = u(T ), d̂(0) = d̂(T ) in Ω.

⊔⊓

2.4 Energy Inequality

Taking v = u and e = −∆d̂ as test functions in previous formulation, one has




(∂tu,u) + ((u · ∇)u,u) + (∇u,∇u) + (∇dt∆d̂,u) = 0

−(∂td̂, ∆d̂) − ((u · ∇)d, ∆d̂) − (f(d), ∆d̂) − (∆d̂, ∆d̂) = (∂td̃, ∆d̂).

Adding up, taking into account that

((u · ∇)u,u) = 0 and (∇dt∆d̂,u) − ((u · ∇)d, ∆d̂) = 0,

one arrives (at least formally) at the following energy equality:

1

2

d

dt

(
‖u‖2

L2 + ‖∇d̂‖2
L2

)
+ ‖∇u‖2

L2 + ‖∆d̂‖2
L2 = (f(d), ∆d̂) + (∂td̃, ∆d̂). (7)

Consequently, one has the energy inequality:

d

dt

(
‖u‖2

L2 + ‖∇d̂‖2
L2

)
+ 2‖∇u‖2

L2 + ‖∆d̂‖2
L2 ≤ 2

(
‖f(d)‖2

L2 + ‖∂td̃‖
2
L2

)
, (8)

where the right hand side is bounded in L1(0, T ) using that ∂td̃ ∈ L2(L2).

3 The Main Result

Theorem 3.1 Let T > 0 and Ω ⊂ IRN (N = 2 or 3) an open bounded domain
with lipschitz boundary. Assume h ∈ H1(0, T ; H1/2(∂Ω)) such that |h(t, x)| ≤ 1 a.e.
(t, x) ∈ (0, T ) × ∂Ω and h(0) = h(T ) in Ω. Then there exists a weak reproductive
solution (u, p,d) of problem (1)–(3) ⊔⊓
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Remark. Hypothesis of regularity for boundary data h can be relaxed by

h ∈ L∞(0, T ; H1/2(∂Ω)) with ht ∈ L2(0, T ; L2(∂Ω)).

Indeed, this regularity implies the following regularity for the lifting function

d̃ ∈ L∞(0, T ; H1(Ω)) with d̃t ∈ L2(0, T ; L2(Ω)),

which will be sufficient in the sequel. Notice that regularity for time derivative can
be proved using the “transposition solution” of the Laplace-Dirichlet problem with
boundary data equal to ht (due to ht has not a trace sense). By the contrary, further
regularity for the domain Ω is necessary (which implies H2-regularity for the adjoint
problem), in order to well define the transposition solution.

⊔⊓

In the proof of this theorem, the Galerkin method will be used. Firstly, we con-
sider the initial-boundary problem associated to arbitrary initial data. Afterwards,
the key is to find certain initial data that are “reproduced” at final time.

3.1 The Approximate Initial-Boundary Problem

Let {φi}n ≥ 1 and {ϕi}n ≥ 1 “special” basis of V and H1
0 (Ω), respectively, formed

by eigenfunctions of the Stokes problem

(∇φi,∇v) = λi(φi,v) ∀v ∈ V, φi ∈ V, con ‖φi‖L2 = 1, λi ր +∞

and of the Poisson problem

(∇ϕi,∇w) = µi(ϕi, w) ∀w ∈ H1
0 , ϕi ∈ H1, con ‖ϕi‖L2 = 1, µi ր +∞

Let V m and Wm be the finite-dimensional subspaces spanned by {φ1, φ2, . . . , φn}
and {ϕ1, ϕ2, . . . , ϕn} respectively.

Given u0 ∈ H and d0 ∈ H1 (verifying the compatibility condition h0|∂Ω = h(0)),
for each m ≥ 1, we seek an approximate solution (um,dm), with dm = d̂m + d̃, such
that:

um : [0, T ] 7→ V m, um(t) =
m∑

j=1

ξi,m(t)φi,

d̂m : [0, T ] 7→ Wm, d̂m(t) =
m∑

j=1

ζi,m(t)ϕi,
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verifying the following variational formulation a.e. in t:





(∂tum(t),vm) + ((um(t) · ∇)um(t),vm) + (∇um(t),∇vm)

+(∇dt
m(t)∆d̂m(t),vm) = 0 ∀vm ∈ V m

(∂td̂m(t), em) + ((um(t) · ∇)dm(t), em) + (f(dm(t)), em)

+(∇d̂m(t),∇em) = −(∂td̃(t), em) ∀ em ∈ Wm

um(0) = u0m = Pm(u0), dm(0) = d0m = Qm(d0),

(9)

Here, Pm denotes the orthogonal projection operator of H onto V m, Pm : H 7→ V m

and Qm the orthogonal projection operator of L2 onto Wm, Qm : L2 7→ Wm. In
particular, u0m → u0 and d0m → d0 as m → 0.

Re-writing (9) as a first order ordinary differential system (in normal form)
associated to the unknowns (ξi,m(t), ζi,m(t)), one has the existence of a maximal
solution (defined in some interval [0, τm) ⊂ [0, T ]) of the related Cauchy problem.
Moreover, from a priori estimates (independent on m) which will be obtained below,
in particular one has that τm = T . Finally, using regularity of the chosen spectral
basis, uniqueness of approximate solution will be proved in section 3.3.

Remark: Since a discretization in space has been done in definition of approxi-
mate solution, the maximum principle is not always verified, therefore the constraint
|dm| ≤ 1 is not true in general.

3.2 “A priori” estimates

Taking um(t) ∈ V m as test function in the u-system of (9) and −∆d̂m(t) ∈ Wm in
the d-system (latter is possible due to consider the special eigenfunction basis), and
following the argument that yields to energy inequality (Section 2.4), one has

d

dt

(
‖um‖

2
L2 + ‖∇d̂m‖

2
L2

)
+ 2‖∇um‖

2
L2 + ‖∆d̂m‖

2
L2 ≤ 2

(
‖f(dm)‖2

L2 + ‖∂td̃‖
2
L2

)
,

hence, using the initial estimates ‖um(0)‖2
L2 ≤ C and ‖∇d̂m(0)‖2

L2 ≤ C, Gronwall’s
lemma implies

(um) is uniformly bounded in L∞(H) ∩ L2(V )

and
(d̂m) is uniformly bounded in L∞(H1

0 ) ∩ L2(H2)

Therefore, since dm = d̂m + d̃ with d̃ ∈ L∞(H1) and ∆dm = ∆d̂m, one has

(dm) is uniformly bounded in L∞(H1)
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and
(∆dm) is uniformly bounded in L2(L2).

Using previous estimations in (9), one has the following estimations:

(∂tum) is uniformly bounded in L2((V ∩ L∞)′)

and
(∂td̂m) is uniformly bounded in L2(L3/2)

Using compactness results for time spaces with values in Banach spaces (see [9])
with the triplet V →֒ H →֒ (V ∩ L∞)′ and H2 ∩ H1

0 →֒ H1
0 →֒ L3/2, one has

(um) is relatively compact in L2(H)

and
(d̂m) is relatively compact in L2(H1

0 ).

Consequently, (dm) is relatively compact in L2(H1).
In fact, this compactness is sufficient in the pass to the limit in (9) in order to

control the nonlinear terms.

Remark. Notice that if h and Ω are regular enough, then d̃ ∈ L2(H2) and (dm) is
bounded in L2(H2).

3.3 Uniqueness of Approximate Solution

Without less of generality, in this section only the 3D case (N = 3) will be consid-
ered. Let (u1

m,d1
m) and (u2

m,d2
m), two solutions of (9), and we denote um = u1

m−u2
m

and dm = d1
m − d2

m (notice that dm = d̂m). Making the difference between (9) for
(u1

m,d1
m) and (u2

m,d2
m), considering um and −∆dm as test functions, and taking

into account that
(
(u1

m · ∇)u1
m − (u2

m · ∇)u2
m,um

)
=

(
(u1

m · ∇)um + (um · ∇)u2
m,um

)

=
(
(um · ∇)u2

m,um

)

(
∆d1

m · ∇d1
m − ∆d2

m · ∇d2
m,um

)
+

(
(u1

m · ∇)d1
m − (u2

m · ∇)d2
m,−∆dm

)

=
(
∆d1

m · ∇dm + ∆dm · ∇d2
m,um

)
+

(
(u1

m · ∇)dm + (um · ∇)d2
m,−∆dm

)

=
(
∆d1

m · ∇dm,um

)
+

(
(u1

m · ∇)dm,−∆dm

)
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the following equality holds

1

2

d

dt

(
‖um‖

2
L2 + ‖∇dm‖

2
L2

)
+ ‖∇um‖

2
L2 + ‖∆dm‖

2
L2

= −((um · ∇)u2
m,um) − ((∆d1

m · ∇)dm,um)

+((u1
m · ∇)dm, ∆dm) − (f(d1

m) − f(d2
m), ∆dm).

(10)

Bounding each term on the right hand side of (10):

|((um · ∇)um,u2
m)| ≤ ‖um‖L4 · ‖∇um‖L2 · ‖u2

m‖L4

≤ ‖um‖
1/4
L2 · ‖um‖

7/4
H1 · ‖u2

m‖L4

≤ ε̄‖um‖
2
H1 + Cε̄‖u

2
m‖

8
L4 · ‖um‖

2
L2 .

(11)

∣∣∣((∆d1
m · ∇)dm, um)

∣∣∣ ≤ ‖∆d1
m‖L3 · ‖∇dm‖L6 · ‖um‖L2

≤ C‖∆d1
m‖L3 · ‖∇dm‖H1 · ‖um‖L2

≤ ε̄‖∆dm‖
2
L2 + Cε̄‖∆d1

m‖
2
L3 · ‖um‖

2
L2 .

(12)

|((u1
m · ∇)dm, ∆dm)| ≤ ‖u1

m‖L4 · ‖∇dm‖L4 · ‖∆dm‖L2

≤ C‖u1
m‖L4 · ‖∆dm‖

7/4
L2 · ‖∇dm‖

1/4
L4

≤ ε̄‖∆dm‖
2
L2 + Cε̄‖u

1
m‖

8
L4 · ‖∇dm‖

2
L2 .

(13)

In order to bound (f(d1
m) − f(d2

m), ∆dm) we will use the following expression of f:

f(d1
m) − f(d2

m) =
1

ε2
(|d1

m|
2d1

m − |d2
m|

2d2
m − dm).

Adding and differentiating |d1
m|

2d2
m, we can write

f(d1
m) − f(d2

m) =
1

ε2
g(d1

m,d2
m)dm

being g(d1
m,d2

m) = |d1
m|

2 +(d1
m +d2

m)d2
m − 1, which verifies |g(d1

m,d2
m)| ≤ 4. There-

fore

|(f(d1
m) − f(d2

m), ∆dm)| ≤

∣∣∣∣∣

(
1

ε2
g(d1

m,d2
m)dm, ∆dm

)∣∣∣∣∣

≤
4

ε2
‖dm‖L2‖∆dm‖L2

≤
C(ε̄)

ε4
‖∇dm‖

2
L2 + ε̄‖∆dm‖

2
L2

(14)
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Accordingly (12)–(14), choosing ε̄ small enough, one has





d

dt

(
‖um‖

2
L2 + ‖∇dm‖

2
L2

)
≤ a(t)(‖um‖

2
L2 + ‖∇dm‖

2
L2)

‖um(0)‖2
L2 + ‖∇dm(0)‖2

L2 = 0.

with a(t) ∈ L1(0, T ) (using that ‖∆d1
m‖

2
L3 , ‖u2

m‖
8
L4 and ‖u1

m‖
8
L4 ∈ L1(0, T )). Apply-

ing Gronwall’s lemma, one has um = 0 and ∇dm = 0. Finally, since dm = 0 on ∂Ω,
then dm = 0. Therefore, uniqueness of approximate solution for the initial-boundary
problem is finished.

3.4 Existence of approximate reproductive solution.

From energy inequality (8) associated to approximate problem (9):

d

dt

(
‖um‖

2
L2 + ‖∇d̂m‖

2
L2

)
+ C

(
‖um‖

2
L2 + ‖∇d̂m‖

2
L2

)
≤ C⋆

(
‖f(dm)‖2

L2 + ‖∂td̃m‖
2
L2

)
.

Multiplying by eCt and integrating in [0, T ]:

eCT
(
‖um(T )‖2

L2 + ‖∇d̂m(T )‖2
L2

)
≤ ‖um(0)‖2

L2 + ‖∇d̂m(0)‖2
L2

+ C⋆
∫ T

0
eCt

(
‖f(dm)‖2

L2 + ‖∂td̃m‖
2
L2

)
.

(15)

Given (um
0 ,dm

0 ) ∈ V m × Wm, we define the map

Lm : [0, T ] 7→ IRm × IRm

t 7→ (ξ1m(t), ..., ξmm(t), ζ1m(t), ..., ζmm(t))

where (ξ1m(t), ..., ξmm(t)) and (ζ1m(t), ..., ζmm(t)) are coefficients of um(t) and d̂m(t)
respect to V m and Wm respectively, being (um(t), d̂m(t)) the (unique) approximate
solution corresponding to the initial data (um

0 ,dm
0 ).

Now, varying the initial data, we are going to define a new map Φm : IRm×IRm 7→
IRm × IRm as follows: given Lm

0 ∈ IRm × IRm, then Φm(Lm
0 ) = Lm(T ), where Lm(t)

is related to the solution of problem (9) with initial data Lm
0 (= Lm(0)).

By uniqueness of approximate solution of the initial-boundary problem, this map
is well-defined. Moreover, using regularity of the corresponding ordinary differential
system, this map is continuous.

In order to prove existence of fixed point of Φm, we will use Leray-Schauder
theorem. Consequently, we have to prove that for all λ ∈ [0, 1], solutions Lm

0 (λ) of

Lm
0 (λ) = λΦm(Lm

0 (λ))

11



are uniformly bounded (independent of λ). Since Lm
0 (0) = {0}, it is suffices to

analyse λ ∈ (0, 1] and the equation

1

λ
Lm

0 (λ) = Φm(Lm
0 (λ)).

Considering the norm ‖Lm(t)‖IRm×IRm =
(
‖um‖

2
L2 + ‖∇d̂m‖

2
L2

)1/2
in IRm × IRm, in-

equality (15) yields

eCT‖
1

λ
Lm

0 (λ)‖2
IRm×IRm ≤ ‖Lm

0 (λ)‖2
IRm×IRm + C(T ),

hence, since λ ∈ (0, 1], one has

‖Lm
0 (λ)‖2

IRm×IRm ≤
C(T )

eCT − 1

which is a bound independent of λ (and m).
In particular, for each approximate reproductive solution (um,dm), their corre-

sponding initial-end data is bounded in the L2×H1-norm, i.e ‖(um, d̂m)(0)‖L2×H1 ≤
C (independent of m). Therefore, the estimations obtained in Section 3.2 hold for
the approximate reproductive solutions. ⊔⊓

3.5 Pass to the limit in reproductive approximate solutions

The pass to the limit in variational formulation (9) can be done as in [6], using
estimations and compactness obtained in Section 3.2 (independents of m) in order
to control nonlinear terms. Consequently, here we will only write the pass to the
limit in reproductive conditions.

From estimations of (dm) in L∞(H1) and (∂tdm) in L2(L3/2) and using the
triplet of spaces H2 →֒ L2 →֒ L3/2, one has ([9]) that (dm) is relatively compact in
C([0, T ]; L2), hence dm(T ) → d(T ) and dm(0) → d(0) in L2(Ω). Since dm(T ) =
dm(0), then d(T ) = d(0) in L2(Ω). Moreover, it is easy to see that d ∈ Cw([0, T ]; H1)
(i.e. d is continuous from [0, T ] onto H1, respect to the weak topology in H1),
therefore d(T ) = d(0) in H1(Ω). The argument for u is similar.

Consequently, we have found a weak reproductive solution of problem (1).
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4 Relation between reproductive and periodic so-

lutions

4.1 Any unique reproductive solution is periodic.

In the 2D case, uniqueness of weak solution for the initial-boundary problem (asso-
ciated to u(0) and d(0)) can be showed.

Consequently, given a reproductive solution (u,d) associated to u(0) = u(T ) :=
u0 and d(0) = d(T ) := d0, then (u,d) is the (unique) solution of the initial-
boundary problem associated to the initial data (u0,d0), which is defined in all time
t ∈ (0,∞). Therefore, this solution is T-periodic, because for instance in (T, 2T )
must be equal to the reproductive solution such that u(T ) = u(2T ) = u0 and
d(T ) = d(2T ) = d0, etc.

4.2 Regularity of reproductive solutions

In the 2D case and under more regularity conditions on boundary data h and on the
domain Ω (and therefore on the lift function d̃), it will be possible to find regular
solution of problem (1)–(3). Consequently, taking into account previous subsection,
we will have existence (and uniqueness) of regular time periodic solution.

More concretely, assuming Ω regular enough, d̃ ∈ L∞(H3) ∩ L2(H4) such that
∂td̃ ∈ L∞(H1)∩L2(H2), ∂ttd̃ ∈ L2(L2) and initial data u0 ∈ H2 and d0 ∈ H3, then
the reproductive solution (u, p,d) verifies:

(u, p,d) ∈ L∞(H2 × H1 × H3) ∩ L2(H3 × H2 × H4),

(∂tu, ∂td) ∈ L∞(H × H1) ∩ L2(V × H2).

Indeed, if we derive respect to the time equations in the approximate problem (9)
and consider ∂tum and −∂t∆d̂m as test functions respectively, we have

1

2

d

dt

(
‖∂tum‖

2
L2 + ‖∇∂td̂m‖

2
L2

)
+ ‖∇∂tum‖

2
L2 + ‖∆∂td̂m‖

2
L2

= −((∂tum · ∇)um, ∂tum) − (∇∂tdm∆d̂m, ∂tum)

+((um · ∇)∂tdm, ∆∂td̂m) + (∂tf(dm), ∆∂tdm) + (∂ttd̃, ∆∂td̂m).

(16)

Here, the equality ∆∂tdm = ∆∂td̂m has been crucial, in order to vanish the terms:

−(∇dm∆∂td̂m, ∂tum) + ((∂tum · ∇)dm, ∆∂td̂m) = 0.

Moreover, since dm = d̂m + d̃ the following decomposition has been done:

−(∂ttdm, ∆∂td̂m) =
1

2

d

dt
‖∇∂td̂m‖

2
L2 − (∂ttd̃, ∆∂td̂m).
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In order to bound the right hand side of (16) we can follows [6] (although now some
new terms related to d̃ appear). For instance, the first and second terms of the right
hand-side of (16) are bounded (using Gagliardo-Niremberg’s inequality) by

‖∇um‖L2‖∂tum‖
2
L4 ≤ C‖∇um‖L2‖∂tum‖L2‖∇∂tum‖L2

≤ ε̄‖∇∂tum‖
2
L2 +

C

ε̄
‖∇um‖

2
L2‖∂tum‖

2
L2

and

‖∆d̂m‖L2‖∇∂tdm‖L4‖∂tum‖L4

≤ C‖∆d̂m‖L2‖∇∂tdm‖
1/2
L2 ‖∇∂tdm‖

1/2
H1 ‖∇∂tum‖

1/2
L2 ‖∂tum‖

1/2
L2

≤ ε̄
(
‖∇∂tum‖

2
L2 + ‖∇∂tdm‖

2
H1

)
+

C

ε̄
‖∆d̂m‖

2
L2

(
‖∇∂td̂m‖

2
L2 + ‖∇∂td̃‖

2
L2 + ‖∂tum‖

2
L2

)
,

hence ‖∇∂td̃‖
2
L2 ∈ L∞(0, T ) is necessary.

In order to bound third term of the right hand-side of (16), we have

‖um‖L4‖∇∂tdm‖L4‖∆∂td̂m‖L2

≤ ‖um‖
1/2
L2 ‖∇um‖

1/2
L2 ‖∇∂tdm‖

1/2
L2 ‖∇∂tdm‖

1/2
H1 ‖∆∂td̂m‖L2

≤ ε̄‖∆∂td̂m‖
2
L2 +

C

ε̄
‖∇um‖L2‖∇∂tdm‖L2‖∇∂tdm‖H1 ,

hence ‖∇∂td̃m‖L2 ∈ L∞(0, T ) and ‖∇∂td̃m‖H1 ∈ L2(0, T ) are necessary.
The fourth term can be bounded by

C‖∂tdm‖L2‖∆∂tdm‖L2 ≤ ε̄‖∆∂tdm‖
2
L2 +

C

ε̄
(‖∂td̂m‖

2
L2 + ‖∂td̃m‖

2
L2)

hence hypothesis ‖∂td̃m‖
2
L2 ∈ L1(0, T ) is necessary. Finally,

(∂ttd̃m, ∆∂tdm) ≤ ε̄‖∆∂tdm‖
2
L2 +

C

ε̄
‖∂ttd̃m‖

2
L2

hence ‖∂ttd̃m‖
2
L2 ∈ L1(0, T ) is necessary.

Considering all previous estimations, the Gronwall lemma and hypotheses of
regularity on initial data u0 ∈ H2 and d0 ∈ H3 (in particular (∂tum(0), ∂td̂m(0)) is
bounded in L2(0, T ) × H1(0, T )), we arrive at

∂tum is uniformly bounded in L∞(H) ∩ L2(V )

and
∂td̂m is uniformly bounded in L∞(H1

0 ) ∩ L2(H2)
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In particular

∂tdm is uniformly bounded in L∞(H1) ∩ L2(H2).

All these new estimates, implying the corresponding regularity on the limit functions
(∂tu, ∂td), which yields, using regularity for Stokes problem and for Poisson problem
verified for (u, p) and d respectively (passing the others terms to the second hand
side) jointly with a “bootstrap” technique, to the following regularity in space:

(u, p, d̂) ∈ L∞(H2 × H1 × H3) ∩ L2(H3 × H2 × H4).

Finally, since d̃ ∈ L∞(H3) ∩ L2(H4), we obtain the required regularity.

Remark. In the 3D case, it is not clear how regularity of reproductive solution can be
proved, because global in time regularity cannot be expected, excepting small initial
data or big viscosity ([6]). But, these latter results are not showed using previous
argument done for the 2D case (i.e. deriving system respect to t and taking ∂tu and
−∂t∆d as tests functions), which is possible for the Galerkin approximation. By
the contrary, in the argument used in [6] is important to consider the limit system
verified for d (doing for instance a semi-Galerkin approximation). Nevertheless,
it is not easy to find reproductive solution with a semi-Galerkin approximation.
Therefore, the problem of the regularity for reproductive solutions in 3D domains
remains open.
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