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Abstract

In this paper we compute the minimal number of non-degenerate singularities that can be
realized on some manifold with non-empty boundary in terms only of abstract homological
boundary information. We specify the index and the types (connecting or disconnecting) of
the singularities realizing the minimum. The Euler characteristics of manifolds realizing the
minimum are obtained and the associated Lyapunov graphs of Morse type are described and
shown to have the lowest topological complexity.

Introduction

In this paper we introduce a notion of minimal flows on compact manifolds. A flow on a compact
manifold M with total number of singularities h is minimal if there exists no other flow realizable
on M with fewer singularities than h. In [Rei] techniques are developed to continue a gradient flow
to one with the minimal number of critical points. However, the approach is quite distinct from
ours and our results are of a different nature.

Let M be any compact manifold of dimension n such that ∂M = ∂M+ ∪ ∂M−, with ∂M+

and ∂M− non-empty1 where ∂M+(∂M−) is the disjoint union of e+(e−) components of ∂M , and
denote it by ∂M± =

⋃e±

i=1 M±
i . Also, consider the sum of the Betti numbers, βj(M±

i ), of these

components, i.e. B±
j =

∑e±

i=1 βj(M±
i ) where j = 1, . . . , bn−1

2 c.
We now consider that we have abstract information without reference to a specific manifold,

i.e., positive integers e+, e− and integers corresponding to the differences (of Betti numbers)
B+

j −B−
j . A minimum number of singularities hmin can be determined depending only on e+, e−

and the differences B+
j −B−

j where j = 1, . . . , bn−1
2 c. This minimum number of singularities hmin

has a topological-dynamical meaning. Given any compact manifold M with e+ + e− boundary
components, e± components M±

i , i = 1, . . . , e± labelled with {βj(M±
i ); j = 1, . . . , bn−1

2 c}, there
exists no Morse flow realizable on M entering through the (M+

i )’s and exiting through the (M−
i )’s

with fewer singularities than hmin. Hence, in this sense, a flow realizing hmin is a minimal flow
on some compact manifold M respecting the given homological restrictions on the entering and
exiting boundaries for the flow. Of course, there may be many such compact manifolds realizing
this minimal flow. On the other hand, there are many compact manifolds with the same boundary
specification given above which possess minimal flows with total number of singularities greater
than hmin.

∗Supported by FAPESP under grant 02/08400-3.
†Partially supported by FAPESP under grant 00/05385-8, 02/102462 and CNPq under grant 300072.
‡Supported by CNPq-Cooperação Brasil-França under grant 69.0140/03-7.
1we will make no further mention of this fact and will assume it throughout the article
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The simple example in Figure 1, on compact 2-manifolds illustrates this point, i.e., given one en-
tering boundary component and two exiting boundary components, (in this case these components
must be circles) hmin = 1 hence h1 = 1. However, there are other minimal flows on other compact
2-manifold with the same homological boundary specification which possess a greater number of
singularities than hmin. Of course, in dimension two, the number of boundary components, e++e−

and the genus g completely determines hmin, i.e., the number of singularities of index one, h1, by
the formula 2 − 2g − (e+ + e−) = h1. If we define topological complexity in terms of the genus,
note that hmin is realized on the manifold of lowest complexity. However, in higher dimensions we
can also measure topological complexity in terms of the presence of dual pairs and hence a similar
phenomenon is observed.

Figure 1: Minimal flows and topological complexity

Theorem 1 asserts that a minimum number of singularities hmin can be determined depending
only on e+, e− and the differences (of Betti numbers) B+

j −B−
j . Moreover, the set

H = {(h1, . . . , hn−1) :
n−1∑

i=1

hi = hmin : Poincaré-Hopf inequalities are satisfied}

is completely determined.
One can also determine the set

Hcd(h1, . . . , hn−1) = {(hc
1, h

d
1, . . . , h

c
n−1, h

d
n−1) : the hcd − system is satisfied}.

We also prove that given (h1, . . . , hn−1) ∈ H, the set Hcd(h1, . . . , hn−1) is a singleton.
Moreover, for each element in Hcd(h1, . . . , hn), a family FL(h) of Lyapunov semi-graphs of

Morse type L(h) is determined.
With the previous notation we can state the theorem:

Theorem 1. Given positive integers e+ and e− and integers B+
j −B−

j ,

1. there exists a number hmin which is the lower bound on the number of singularities of any
Morse flow realizable on any compact manifold with e+ entering boundaries and e− exiting
boundaries with Betti numbers satisfying the given differences B+

j −B−
j .

2. the set H is completely determined and each element in H determines a set Hcd(h1, . . . , hn)
which is a singleton.

3. the range of the Euler characteristics, χmin(M, ∂M) of the compact manifolds M realizing
the minimal flows is obtained.
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4. given Hcd(h1, . . . , hn) the corresponding family of Lyapunov semi-graphs of Morse type is
completely determined; all graphs are explicitly described and possess lowest topological com-
plexity.

Section 1 contains background information. In Section 2 we prove item 1, which follows from
Propositions 2.1.1, 2.2.1 and 2.3.1, and item 2 which follows from Propositions 2.1.2, 2.2.2, 2.3.2,
2.1.5, 2.2.5 and 2.3.5. In Section 3 we prove item 3, which follows from Propositions 3.1.2, and
item 4, which follows from Subsection 3.2.

1 Background

In this section we will introduce basic definitions and results obtained in [BMRez].
In order to bookkeep dynamical and topological information of a given flow on a given manifold,

Franks introduced in [F] Lyapunov graphs. Here we make use of abstract Lyapunov graphs.
An abstract Lyapunov graph (semi-graph)2 is an oriented graph with no oriented cycles such

that each vertex v is labelled with a list of non-negative integers {h0(v) = k0, . . . , hn(v) = kn}.
Also, the labels on each edge {β0 = 1, β1, . . . , βn−2, βn−1 = 1} must be a collection of non-negative
integers satisfying Poincaré duality and if n− 1 is even then βn−1

2
is even.

An abstract Lyapunov graph (semi-graph) of Morse type will be defined subsequently, but
roughly speaking, it is an abstract Lyapunov graph with all vertices labelled with non-degenerate
singularities of index j , i. e., {hj(v) = 1}.

Let N− be an (n−1)-dimensional closed manifold, H an n-handle and N+ = ∂((N−×[0, 1])∪H).
The following definition distinguishes the effect on the Betti numbers of N+ and N− once the
handle H has been attached to N− × [0, 1].

A handle containing a singularity of index ` or respectively, the corresponding vertex on L is
called `-disconnecting, in short `-d, if this handle has the algebraic effect of increasing the `-th
Betti number of N+ or respectively, the corresponding β` label on the incoming edge. A handle
containing a singularity of index ` or the corresponding vertex on L is called (` − 1)-connecting,
in short (`− 1)-c, if this handle has the algebraic effect of decreasing the (`− 1)-th Betti number
of N+ or respectively, the corresponding β`−1 label on the incoming edge. A handle containing
a singularity of index ` or the corresponding vertex on L is called β-invariant, in short β-i, if all
Betti numbers are kept constant (see Figure 2). Details can be found in [CrRez].

An abstract Lyapunov graph of Morse type L is an abstract Lyapunov graph that satisfies the
following:

1. every vertex is labelled with hj = 1 for some j = 0, . . . , n.

2. the number of incoming edges, e+, and the number of outgoing edges, e−, of a vertex must
satisfy:

(a) if hj = 1 for j 6= 0, 1, n− 1, n then e+ = 1 and e− = 1;

(b) if h1 = 1 then e+ = 1 and 0 < e− ≤ 2; if hn−1 = 1 then e− = 1 and 0 < e+ ≤ 2;

(c) if h0 = 1 then e− = 0 and e+ = 1; if hn = 1 then e+ = 0 and e− = 1.

3. every vertex labelled with h` = 1 must be of type `-d or (`− 1)-c. Furthermore if n = 2i = 0
mod 4 and hi = 1 then v may be labelled with β-i.

2Given a finite set V we define a directed semi-graph G′ = (V ′, E′) as a pair of sets V ′ = V ∪{∞}, E′ ⊂ V ′×V ′.
As usual, we call the elements of V ′ vertices and since we regard the elements of E′ as ordered pairs, these are
called directed edges. Furthermore the edges of the form (∞, v) and (v,∞) are called semi-edges (or dangling edges
as in [Rez]). Note that whenever G′ does not contain semi-edges, G′ is a graph in the usual sense. The graphical
representation of the graph will have the semi-edges cut short.
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β`−1(N+) = β − 1

β`−1(N−) = β

h` = 1h` = 1

β-i(`− 1)-c`-d

h` = 1

β`(N+) = β + 1

β`(N−) = β

u uu

?

?

?

?

?

?

Figure 2: The three possible algebraic effects.

In [BMRez] we prove a continuation result for abstract Lyapunov semi-graphs to abstract
Lyapunov semi-graphs of Morse type. This was done by presenting an algorithm which not only
constructs the continuation but also provides the number of possible continuations. The main
theorem in that paper asserts that every abstract Lyapunov semi-graph that satisfies the Poincaré-
Hopf inequalities at each vertex can be continued to an abstract Lyapunov semi-graph of Morse
type. The Poincaré-Hopf inequalities are deduced from an analysis of long exact sequences of index
pairs. See [Co] for more details on Conley index theory.

Consider N+ the entering set and N− the exiting set for the flow defined on N , where (N, N−)
is an index pair for an isolated invariant set Λ. The Poincaré-Hopf inequalities were obtained
in [BMRez] by analyzes of the long exact sequences for the pairs (N,N−) and (N,N+). The
Poincaré-Hopf inequalities3 are the collection of the inequalities below, where rank Hj(N, N−) =
hj , rank Hj(N, N+) = hn−j , rank H0(N−) = e−, rank H0(N+) = e+, rank H0(N) = 1 and
rank (Hj(N±)) = B±

j .









hj ≥ −(B+
j−1 −B−

j−1) + (B+
j−2 −B−

j−2) +− . . .± (B+
2 −B−

2 )± (B+
1 −B−

1 )
−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2) +− . . .
±(hn−1 − h1)± [(hn − h0) + (e+ − e−)]

hn−j ≥ − [−(B+
j−1 −B−

j−1) + (B+
j−2 −B−

j−2) +− . . .± (B+
2 −B−

2 )± (B+
1 −B−

1 )
−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2) +− . . .
±(hn−1 − h1)± [(hn − h0) + (e+ − e−)]]

...{
h2 ≥ −(B+

1 −B−
1 )− (hn−1 − h1) + (hn − h0) + (e+ − e−)

hn−2 ≥ − [−(B+
1 −B−

1 )− (hn−1 − h1) + (hn − h0) + (e+ − e−)
]

{
h1 ≥ h0 − 1 + e−

hn−1 ≥ hn − 1 + e+

(1)

3In the setting of Morse flows, the hj ’s are the numbers of non-degenerate singularities of Morse index j.
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Moreover, the equality

B+ − B− = e− − e+ +
2i+1∑

j=0

(−1)jhj (2)

where

B+ =
(−1)i

2
B+

i ±B+
i−1 ± . . .−B+

1

B− =
(−1)i

2
B−

i ±B−
i−1 ± . . .−B−

1

must hold in the odd case, and

hi −
i−1∑

j=1

(−1)j+1(B+
j −B−

j )−
i−1∑

j=0

(−1)j(h2i−j − hj) + (e− − e+) be even, for 2i = 2 mod 4 (3)

in the even case 2i = 2 mod 4.
Also in [BMRez] was shown that the Poincaré-Hopf inequalities are equivalent to the linear

system below, which we refer to as the hcd − system.




e− − 1− hc
1 = 0

{hj = hc
j + hd

j + βi, j = 1, . . . , n− 1, βi = 0 if n 6= 0 mod 4
e+ − 1− hd

n−1 = 0
{−(B+

k −B−
k ) + hd

k − hc
k+1 − hc

n−k + hd
n−k+1 = 0 k = 1, . . . , bn−2

2 c
(4)

If n = 2i+1 we have an additional equation of the linear system above is −(B+
i −B−i )

2 +hd
i−hc

i+1 =
0.

2 Minimal flow and its singularities

In this section we deal with minimality: we compute the number of singularities of minimal flows,
their indices and their types. Although the technical guiding line is the same, we need to distinguish
three situations according to the parity of the dimension of the underlying manifold(s) to develop
details.

2.1 Odd dimension n = 2i + 1

2.1.1 Computation of hmin

Notation For j = 1 . . . n we denote by PHj the right hand side expressions in the Poincaré-Hopf
inequalities (1), and by OPHj their optimal value, i.e. OPHj = max{0, PHj}. Hence, the general
solution h ∈ Nn+1

0 of the Poincaré-Hopf inequalities (1) has coordinates of the form




h0 = α0

hn = αn

h1 = α0 − 1 + e− + α1

hn−1 = αn − 1 + e+ + αn−1

hj = OPHj + αj

(5)

where αj ∈ N0 for all j = 0 . . . n.
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Proposition 2.1.1. In dimension n = 2i + 1, given positive integers e+ and e− and integers
B+

j − B−
j , j = 1, . . . , i, the minimal number of singularities needed in order to have continuation

is

hmin = min
{h∈N

n+1
0

satisfying (1) and (2)}

n∑

j=0

hj = e+ + e− − 2 +
i∑

j=2

| B+
j−1 −B−

j−1 | + | B+
i −B−

i

2
|

Proof Continuation is possible if and only if the Poincaré-Hopf inequalities (1) and (2) hold. For
j = 2 . . . i we have

PHj = −(B+
j−1 −B−

j−1)− PHj−1 − (OPHn−(j−1) −OPHj−1)− (αn−(j−1) − αj−1)

OPHn−(j−1) −OPHj−1 = −PHj−1

(if OPHj−1 = PHj−1 then OPHn−(j−1) = 0, else if OPHj−1 = 0 then OPHn−(j−1) = −PHj−1).
Hence,

PHj = −(B+
j−1 −B−

j−1)− (αn−(j−1) − αj−1) ∀j = 2 . . . i (6)

Let us first consider equation (2).

(B+ − B−) = −α1 + αn−1 +
n−2∑

j=2

(−1)j(OPHj + αj)

i∑

j=2

(−1)j−1(B+
j−1 −B−

j−1) +
(−1)i(B+

i −B−
i )

2
=

n−1∑

j=1

(−1)jαj +
n−2∑

j=2

(−1)jOPHj

For j = 2 . . . i either OPHj = PHj and OPHn−j = 0, or OPHj = 0 and OPHn−j = PHn−j =
−PHj . In any case we have

(−1)jOPHj + (−1)n−jOPHn−j = (−1)j+1
[
(B+

j−1 −B−
j−1) + (αn−(j−1) − αj−1)

]

and equation (2) becomes

(−1)i(B+
i −B−

i )
2

= (−1)iαi + (−1)i+1αi+1

We are now ready to minimize the sum of the coordinates of the general solution h ∈ Nn+1
0 of the

Poincaré-Hopf inequalities (1).
∑n

j=0 hj =
∑n

j=0(OPHj + αj) =
= α0 + αn + e+ + e− − 2 +

∑i
j=2 | PHj | +

∑n
j=0 αj =

= α0 + αn + e+ + e− − 2 +
∑i

j=2 | −(B+
j−1 −B−

j−1)− (αn−(j−1) − αj−1) | +
∑n

j=0 αj ≥
≥ e+ + e− − 2 +

∑i
j=2(| B+

j−1 −B−
j−1 | − | αn−(j−1) − αj−1 |) +

∑n
j=0 αj ≥

≥ e+ + e− − 2 +
∑i

j=2(| B+
j−1 −B−

j−1 | − | αn−(j−1) | − | αj−1 |) +
∑n−1

j=1 αj =
= e+ + e− − 2 +

∑i
j=2 | B+

j−1 −B−
j−1 | +αi + αi+1 ≥

≥ e+ + e− − 2 +
∑i

j=2 | B+
j−1 −B−

j−1 | + | B+
i −B−i

2 |
To show that the lower bound is taken, let αj = αn−j = 0 for j = 0 . . . i − 1. If B+

i ≥ B−
i then

choose αi = B+
i −B−i

2 and αi+1 = 0, else choose αi = 0 and αi+1 = B+
i −B−i

2 . 4

The meaning of the formula computing hmin is that there is a straightforward way of making
all the differences B+

j − B−
j vanish. The presence of each singularity is justified by the fact that

either it will make one of the B+
j −B−

j smaller or it will decrease the edges contributions: we can
say there is no waste of singularities.
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2.1.2 Distribution of the hmin singularities according to the index

Convention From now on h0 = hn = 0.

Once hmin is known, we want to describe the set

H = {(h1, . . . , hn−1) :
n−1∑

i=1

hi = hmin : Poincaré-Hopf inequalities are satisfied}.

This is done in Proposition 2.1.2.
Notation We shall denote by ve ∈ Nn−1

0 the following vector, associated with the edges contribu-
tion to the number of singularities:

ve = ( e− − 1, 0, . . . , 0, e+ − 1 )

Let us first consider the singularities altering the first Betti number and denote by V1 the set of
vectors

V1 = {v1(k1)}|B
+
1 −B−1 |

k1=0

where v1(k1) is defined as below:
{

v1(k1) = ( k1, 0, 0, . . . , 0, | B+
1 −B−

1 | −k1, 0 ) if B+
1 ≥ B−

1

v1(k1) = ( 0, k1, 0, . . . , 0, 0, | B+
1 −B−

1 | −k1 ) otherwise

In general, as for the singularities altering the j-th Betti number, let us denote by Vj the set of
vectors

Vj =
{
vj(kj)

}|B+
j −B−j |

kj=0
for j = 2 . . . i− 1

where vj(kj) is defined as below:





vj(kj) = ( 0, . . . , 0,

jz}|{
kj , 0, 0, . . . , 0,

n−j−1z }| {
| B+

j −B−
j | −kj , 0, 0, . . . , 0 ) if B+

j ≥ B−
j

vj(kj) = ( 0, . . . , 0, 0, kj|{z}
j+1

, 0, . . . , 0, 0, | B+
j −B−

j | −kj| {z }
n−j

, 0, . . . , 0 ) otherwise

Last, as for the singularities altering the middle dimension Betti number, let us define the vector
vi as 




vi = ( 0, . . . , 0,

iz }| {
| B+

i −B−
i |

2
, 0, 0, . . . , 0 ) if B+

i ≥ B−
i

vi = ( 0, . . . , 0, 0,
| B+

i −B−
i |

2| {z }
i+1

, 0, . . . , 0 ) otherwise

Proposition 2.1.2. In dimension n = 2i + 1, given positive integers e+ and e− and integers
B+

j −B−
j , j = 1, . . . , i, a vector h ∈ Nn−1

0 satisfies the Poincaré-Hopf inequalities (1) and (2) and
realizes hmin if and only if it can be written as

h = ve +
i−1∑

j=1

vj(kj) + vi where vj(kj) ∈ Vj ∀j = 1, . . . , i− 1

(Vj as in the previous notation)
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Proof The if part is a straightforward computation. As for the converse, recall that when a vector
h = (h1, . . . , hn−1) realizes hmin, each singularity hj must either reduce the contribution of the
edges or reduce the difference between a couple of Betti numbers (just look at the formula for
hmin). First, we must use e+ + e− − 2 singularities to get rid of the edges contribution: e− − 1 of
them must be of type hc

1 and the remaining e+−1 of type hd
n−1. If we disconsider the type of such

singularities, it is easy to recognize the role of ve. Next, for each j from 1 to i − 1, we must use
exactly | B+

j − B−
j | singularities to make the difference between the j-th Betti numbers vanish.

If B+
j ≥ B−

j , this can be done by singularities of type hd
j and/or hd

n−j−1; if B+
j ≤ B−

j , this can
be done by singularities of type hc

j+1 and/or hc
n−j . Again, if we disconsider the type, it is easy

to recognize the role of each vj . Last, we are left with |B+
i −B−i |

2 singularities associated with the
middle dimension Betti numbers. We have no choice: if B+

i ≥ B−
i , we must use singularities of

type hd
i , else of type hc

i+1. The presence of vi is hence explained. 4

Note that there is no restriction to the choice of the kj ’s in {0 . . . | B+
j −B−

j |}.

Corollary 2.1.3. The total number of vectors h realizing hmin is
∏i−1

j=1(|B+
j −B−

j |+ 1).

By reading the proof above, one realizes that knowing a decomposition of h is knowing a vector
of type of singularities realizing h, that is a vector of

Hcd(h1, . . . , hn) = {(hc
1, h

d
1, . . . , h

c
n−1, h

d
n−1) such that the hcd-system is satisfied}

In order to be more explicit, let us define a map

g : Nn−1
0 −→ N2n−2

0

ve −→ (hc
1 = e− − 1, hd

1 = 0, . . . , hc
n−1 = 0, hd

n−1 = e+ − 1, )

vj(kj) −→ (hc
1 = 0, . . . , hc

j = 0,

2jz }| {
hd

j = kj , h
c
j+1 = 0, . . . ,

2n−2j−2z }| {
hd

n−j−1 =| B+
j ≥ B−

j − kj |, . . . , hd
n−1 = 0)

if B+
j ≥ B−

j ∀j = 1, . . . , i− 1

(hc
1 = 0, . . . , hc

j = 0, hc
j+1 = kj| {z }

2j+1

, hd
j+1 = 0, . . . , hc

n−j =| B+
j ≥ B−

j − kj || {z }
2n−2j−1

, . . . , hd
n−1 = 0)

if B+
j ≤ B−

j ∀j = 1, . . . , i− 1

vi −→ (hc
1 = 0, . . . , hc

j = 0, . . . , hc
i = 0,

2iz }| {
hd

i =| B+
i ≥ B−

i |, hc
i+1 = 0, . . . , hd

n−1 = 0)
if B+

i ≥ B−
i

(hc
1 = 0, . . . , hc

j = 0, . . . , hd
i = 0,

2i+1z }| {
hc

i+1 =| B+
i ≥ B−

i |, hd
i+1 = 0, . . . , hd

n−1 = 0)
if B+

i ≤ B−
i

Corollary 2.1.4. Following the notation right above, if h = ve +
∑i−1

j=1 vj(kj) + vi then g(ve) +∑i−1
j=1 g(vj(kj)) + g(vi) belongs to Hcd(h).

2.1.3 Finding all the possible types of singularities

Now that we have the distributions of the hmin singularities according to the index, we can apply
to each one of them the algorithm of [BMRez], and find all the possible matching types. We find
that for each h in H, the set Hcd(h) is a singleton.
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Proposition 2.1.5. In dimension n = 2i+1, each vector h ∈ Nn−1
0 realizing hmin determines the

types of singularities uniquely.

Proof Let us recall that, according to [BMRez], for a given h the number of solutions is given
by the product

∏i−1
j=1 nj , where nj is given by

{
nj = min{hj+1 − β̂j , hn−(j+1)} −max{0,−β̂j}+ 1 if j is odd
nj = min{hn−(j+1) − β̂j , hj+1} −max{0,−β̂j}+ 1 if j is even

where

β̂j =
j∑

`=1

(−1)`(B+
` −B−

` )−
j+1∑

`=1

(−1)`(h` − hn−`)− (e− − e+).

Computation gives nj = 1 for all j = 1, . . . , i− 1 and we are done:

for j odd we have

if B+
j ≥ B−

j then β̂j = −[(B+
j −B−

j )− kj ]

max{0,−β̂j} = (B+
j −B−

j )− kj

if B+
j+1 ≥ B−

j+1 then min{hj+1 − β̂j , hn−(j+1)} = hn−(j+1) = (B+
j −B−

j )− kj

else min{hj+1 − β̂j , hn−(j+1)} = hj+1 − β̂j = (B+
j −B−

1 )− kj

else β̂j = kj

max{0,−β̂j} = 0

if B+
j+1 ≥ B−

j+1 then min{hj+1 − β̂j , hn−(j+1)} = hn−(j+1) = 0

else min{hj+1 − β̂j , hn−(j+1)} = hj+1 − β̂j = 0

for j even we have

if B+
j ≥ B−

j then β̂j = (B+
j −B−

j )− kj

max{0,−β̂j} = 0

if B+
j+1 ≥ B−

j+1 then min{hn−(j+1) − β̂j , hj+1} = hn−(j+1) − β̂j = 0

else min{hn−(j+1) − β̂j , hj+1} = hj+1 = 0

else β̂j = −kj

max{0,−β̂j} = kj

if B+
j+1 ≥ B−

j+1 then min{hn−(j+1) − β̂j , hj+1} = hn−(j+1) − β̂j = kj

else min{hn−(j+1) − β̂j , hj+1} = hj+1 = kj 4
Now that we know that we have uniqueness, we do not need the algorithm of [BMRez] anymore
(in this special case):

Corollary 2.1.6. Let n = 2i + 1, h = ve +
∑i−1

j=1 vj(kj) + vi and g as in Corollary 2.1.4. Then
the unique element of Hcd(h) can be written as g(ve) +

∑i−1
j=1 g(vj(kj)) + g(vi).

2.1.4 Example in dimension 5

Consider the following homological boundary information in dimension 5:

{e+ = 2, e− = 3, B+
1 −B−

1 = −2, B+
2 −B−

2 = −2}
We have in this case hmin = 6. As for the distribution of the six singularities we have (Proposi-
tion 2.1.2)

ve = ( 2, 0 , 0, 1 )
v1 = ( 0, k1 , 0, 2− k1 ) k1 ∈ {0, 1, 2}
v2 = ( 0, 0 , 1, 2 )

hence, the set of vectors h = (h1, h2, h3, h4) satisfying the Poincaré-Hopf inequalities and realizing
hmin are

{(2, 0, 1, 3), (2, 1, 1, 2), (2, 2, 1, 1)}

9



Concerning their types of singularities, which are uniquely determined by h, we have

Hcd((2, 0, 1, 3)) = {(hc
1 = 2, hd

1 = 0, hc
2 = 0, hd

2 = 0, hc
3 = 1, hd

3 = 0, hc
4 = 2, hd

4 = 1)}
Hcd((2, 1, 1, 2)) = {(hc

1 = 2, hd
1 = 0, hc

2 = 1, hd
2 = 0, hc

3 = 1, hd
3 = 0, hc

4 = 1, hd
4 = 1)}

Hcd((2, 2, 1, 1)) = {(hc
1 = 2, hd

1 = 0, hc
2 = 2, hd

2 = 0, hc
3 = 1, hd

3 = 0, hc
4 = 0, hd

4 = 1)}

as we can obtain either from applying the algorithm of [BMRez] or, in a more direct way, from
Corollary 2.1.6.

2.2 Even dimension n = 0 mod 4

2.2.1 Computation of hmin

Proposition 2.2.1. In even dimension n, n = 0 mod 4, given positive integers e+ and e− and
integers B+

j − B−
j , j = 1, . . . , i − 1, the minimal number of singularities needed in order to have

continuation is

hmin = min
{h∈N

n+1
0

satisfying (1) }

n∑

j=0

hj = e+ + e− − 2 +
i−1∑

j=1

| B+
j −B−

j |

Proof Computation is slightly different from the one in the odd case. Here follow the details. We
use the same notation (5) established in Section 2 for the odd case. Also, let us recall equation (6)
in the proof of Proposition 2.1.1, which still holds in the even case, that is

PHj = −(B+
j−1 −B−

j−1)− (αn−(j−1) − αj−1) ∀j = 2 . . . i

Let us minimize the sum of the coordinates of the general solution h ∈ Nn+1
0 of the Poincaré-Hopf

inequalities (1).
∑n

j=0 hj =
∑n

j=0(OPHj + αj) =
= α0 + αn + e+ + e− − 2 +

∑i
j=2 | PHj | +

∑n
j=0 αj =

= α0 + αn + e+ + e− − 2 +
∑i

j=2 | −(B+
j−1 −B−

j−1)− (αn−(j−1) − αj−1) | +
∑n

j=0 αj ≥
≥ e+ + e− − 2 +

∑i
j=2(| B+

j−1 −B−
j−1 | − | αn−(j−1) − αj−1 |) +

∑n
j=0 αj ≥

≥ e+ + e− − 2 +
∑i

j=2(| B+
j−1 −B−

j−1 | − | αn−(j−1) | − | αj−1 |) +
∑n−1

j=1 αj ≥
≥ e+ + e− − 2 +

∑i
j=2 | B+

j−1 −B−
j−1 |

To show that the lower bound is taken, let αj = αn−j = 0 for j = 0 . . . i. 4

Again there is no waste of singularities in the sense that each singularity is necessary to make
the edges contributions and the Betti numbers vanish.

2.2.2 Distribution of the hmin singularities according to the index

Convention From now on h0 = hn = 0.

Notation We shall denote by ve ∈ Nn−1
0 the following vector, associated with the edges contribu-

tion to the number of singularities:

ve = ( e− − 1, 0, . . . , 0, e+ − 1 )

Let us first consider the singularities altering the first Betti number and denote by V1 the set of
vectors

V1 = {v1(k1)}|B
+
1 −B−1 |

k1=0

10



where v1(k1) is defined as below:
{

v1(k1) = ( k1, 0, 0, . . . , 0, | B+
1 −B−

1 | −k1, 0 ) if B+
1 ≥ B−

1

v1(k1) = ( 0, k1, 0, . . . , 0, 0, | B+
1 −B−

1 | −k1 ) otherwise

In general, as for the singularities altering the j-th Betti number, let us denote by Vj the set of
vectors

Vj =
{
vj(kj)

}|B+
j −B−j |

kj=0
for j = 2 . . . i− 1

where vj(kj) is defined as below:




vj(kj) = ( 0, . . . , 0,

jz}|{
kj , 0, 0, . . . , 0,

n−j−1z }| {
| B+

j −B−
j | −kj , 0, 0, . . . , 0 ) if B+

j ≥ B−
j

vj(kj) = ( 0, . . . , 0, 0, kj|{z}
j+1

, 0, . . . , 0, 0, | B+
j −B−

j | −kj| {z }
n−j

, 0, . . . , 0 ) otherwise

Observe that, for j = i− 1, the vector vi−1(ki−1) has coordinates




vi−1(ki−1) = ( 0, . . . , 0,

i−1z}|{
ki−1,

iz }| {
| B+

i−1 −B−
i−1 | −ki−1, 0, 0, . . . , 0 ) if B+

i−1 ≥ B−
i−1

vi−1(ki−1) = ( 0, . . . , 0, 0, ki−1|{z}
i

, | B+
i−1 −B−

i−1 | −ki−1| {z }
i+1

, 0, . . . , 0 ) otherwise

Proposition 2.2.2. In even dimension n, n = 0 mod 4, given positive integers e+ and e− and
integers B+

j −B−
j , j = 1, . . . , i− 1, a vector h ∈ Nn−1

0 satisfies the Poincaré-Hopf inequalities (1)
and realizes the minimum if and only if it can be written as

h = ve +
i−1∑

j=1

vj(kj) where vj(kj) ∈ Vj ∀j = 1, . . . , i− 1

(Vj as in the previous notation)

Proof The same as in Proposition 2.1.2, without the difficulty of the middle dimension. 4

Note that there is no restriction to the choice of the kj ’s in {0 . . . | B+
j −B−

j |}, hence

Corollary 2.2.3. the total number of vectors h realizing hmin is
∏i−1

j=1(|B+
j −B−

j |+ 1).

Also in the even case, we can deduce that knowing a decomposition of h, we know a sequence
of type of singularities realizing h. In fact, as we did in the odd case, we can define a map g as
follows
g : Nn−1

0 −→ N2n−2
0

ve −→ (hc
1 = e− − 1, hd

1 = 0, . . . , hc
n−1 = 0, hd

n−1 = e+ − 1, )

vj(kj) −→ (hc
1 = 0, . . . , hc

j = 0,

2jz }| {
hd

j = kj , h
c
j+1 = 0, . . . ,

2n−2j−2z }| {
hd

n−j−1 =| B+
j ≥ B−

j − kj |, . . . , hd
n−1 = 0)

if B+
j ≥ B−

j ∀j = 1, . . . , i− 1

(hc
1 = 0, . . . , hc

j = 0, hc
j+1 = kj| {z }

2j+1

, hd
j+1 = 0, . . . , hc

n−j =| B+
j ≥ B−

j − kj || {z }
2n−2j−1

, . . . , hd
n−1 = 0)

if B+
j ≤ B−

j ∀j = 1, . . . , i− 1

Corollary 2.2.4. Following the notation right above, if h = ve +
∑i−1

j=1 vj(kj) then g(ve) +∑i−1
j=1 g(vj(kj)) belongs to Hcd(h).
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2.2.3 Finding all the possible types of singularities

As we did in the odd case, now that we have the distributions of the hmin singularities according
to the index, we can apply to each one of them the algorithm of [BMRez], and find all the possible
matching types.

Proposition 2.2.5. In even dimension n, n = 0 mod 4, each vector h ∈ Nn−1
0 realizing the

minimum determines the types of singularities uniquely.

Proof Let us recall that, according to [BMRez], for a given h the number of solutions is given
by the product

∏i−1
j=1 nj , where nj is given by





nj = min{hj+1 − β̂j , hn−(j+1)} −max{0,−β̂j}+ 1 if j is odd, j 6= i− 1

ni−1 = (hi−β̂i−1)
2 −max{0,−β̂i−1}+ 1 if j is odd, j = i− 1

nj = min{hn−(j+1) − β̂j , hj+1} −max{0,−β̂j}+ 1 if j is even

where {
β̂j =

∑j
`=1(−1)`(B+

` −B−
` )−∑j+1

`=1(−1)`(h` − hn−`)− (e− − e+)
β̂i−1 = −(B+

i−1 −B−
i−1) + β̂i−2 − hi+1 + hi−1

For all j = 1, . . . , i− 2, computation gives nj = 1 exactly in the same way as in Proposition 2.1.2.
As for ni−1, first remark that i− 2 is even, hence

if B+
i−2 ≥ B−

i−2 then β̂i−2 = (B+
i−2 −B−

i−2)− ki−2

else β̂i−2 = −ki−2

Further computation yields

if B+
i−1 ≥ B−

i−1 then β̂i−1 = −[(B+
i−1 −B−

i−1)− ki−1]

hi = −β̂i−1

(hi−β̂i−1)

2
= max{0,−β̂i−1} = (B+

i−1 −B−
i−1)− ki−1

else β̂i−1 = ki−1

hi = ki−1 = β̂i−1

(hi−β̂i−1)

2
= max{0,−β̂i−1} = 0

that is, ni−1 = 1, and we are done. 4

Corollary 2.2.6. Let n be even, n = 0 mod 4, h = ve +
∑i−1

j=1 vj(kj) and g as in Corollary 2.2.4.
Then the unique element of Hcd(h) can be written as g(ve) +

∑i−1
j=1 g(vj(kj)).

2.3 Even dimension n = 2 mod 4

2.3.1 Computation of hmin

Proposition 2.3.1. In even dimension n, n = 2 mod 4, given positive integers e+ and e− and
integers B+

j − B−
j , j = 1, . . . , i − 1, the minimal number of singularities needed in order to have

continuation is

hmin = min
{h∈N

n+1
0

satisfying (1) and (3)}

n∑

j=0

hj = e+ + e− − 2 +
i−1∑

j=1

| B+
j −B−

j |

12



Proof We use the same notation (5) established in Section 2 for the odd case. In exactly the same
way followed in the proof of Proposition 2.1.1 we get the same estimation

n∑

j=0

hj ≥ e+ + e− − 2 +
i∑

j=2

| B+
j−1 −B−

j−1 |

Up to now, we haven’t used condition (3) yet. To show that the lower bound is taken, let αj =
αn−j = 0 for j = 0 . . . i. To show that condition (3) holds for such a solution, just observe that
the parity of that expression is equivalent to the parity of

hi + (B+
i−1 −B−

i−1)− (αi+1 − αi−1)

(use notation (5) and the fact that i is odd). 4

Again there is no waste of singularities, each singularity being necessary in order to reduce the
differences of the Betti numbers and the edges contributions.

2.3.2 Distribution of the hmin singularities according to the index

Convention From now on h0 = hn = 0.

Notation We keep the same notation as in Subsection 2.2.2: the definitions of the vectors vj(kj) ∈
Vj corresponding to the action on the Betti numbers are the same.

Proposition 2.3.2. In even dimension n, n = 2 mod 4, given positive integers e+ and e− and
integers B+

j −B−
j , j = 1, . . . , i− 1, a vector h ∈ Nn−1

0 satisfies the Poincaré-Hopf inequalities (1)
and (3) and realizes the minimum if and only if it can be written as

h = ve +
i−1∑

j=1

vj(kj) where vj(kj) ∈ Vj ∀j = 1, . . . , i− 1

(Vj as in the previous notation)

Proof The same as in Proposition 2.1.2, except that also condition (3) must hold. This is a
straightforward check, the parity of the expression being that of

2(B+
i−1 −B−

i−1) if B+
i−1 ≥ B−

i−1

−2(| B+
i−1 −B−

i−1 | −ki−1) otherwise 4

There is no restriction to the choice of the kj ’s in {0 . . . | B+
j −B−

j |}.

Corollary 2.3.3. The total number of vectors h realizing hmin is
∏i−1

j=1(|B+
j −B−

j |+ 1).

As in the previous situations, knowing a decomposition of h is knowing the type of singularities
realizing h.

Corollary 2.3.4. For g as in Corollary 2.2.4, if h = ve +
∑i−1

j=1 vj(kj) then g(ve)+
∑i−1

j=1 g(vj(kj))
belongs to Hcd(h).

2.3.3 Finding all the possible types of singularities

As we did in the odd case, now that we have the distributions of the hmin singularities according
to the index, we can apply to each one of them the algorithm of [BMRez], and find all the possible
matching types.

13



Proposition 2.3.5. In even dimension n, n = 2 mod 4, each vector h ∈ Nn−1
0 realizing the

minimum determines the types of singularities uniquely.

Proof Let us recall that, according to [BMRez], for a given h the number of solutions is given
by the product

∏i−1
j=1 nj , where nj is given by

{
nj = min{hj+1 − β̂j , hn−(j+1)} −max{0,−β̂j}+ 1 if j is odd,
nj = min{hn−(j+1) − β̂j , hj+1} −max{0,−β̂j}+ 1 if j is even

where
β̂j =

∑j
`=1(−1)`(B+

` −B−
` )−∑j+1

`=1(−1)`(h` − hn−`)− (e− − e+)

Hence the proof is exactly the same as that of Proposition 2.1.2. 4

Corollary 2.3.6. Let n be even, n = 2 mod 4, h = ve +
∑i−1

j=1 vj(kj) and g as in Corollary 2.2.4.
Then the unique element of Hcd(h) can be written as g(ve) +

∑i−1
j=1 g(vj(kj)).

3 Topological aspects

In this section we will consider the realization of minimal flows on compact manifolds making use
of abstract Lyapunov semi-graphs. We also obtain the formulas of the Euler characteristic for these
minimal flows. In the odd case, χ(M,∂M) depends only on homological boundary information
i.e., e+, e− and the differences B+

j − B−
j and not on the singularities realizing hmin. In the even

case, although χ(M, ∂M) depends on hmin and hence on homological boundary information, it also
depends on the singularities realizing hmin.

3.1 Euler characteristic

It is well known that χ(M, ∂M) =
∑n

j=0(−1)jhj .
In general we prove the following formulas for the Euler characteristic of compact manifolds.

Proposition 3.1.1. Given (M, ∂M) abstractly in terms of positive integers e+, e− and integers
corresponding to the differences (of Betti numbers) B+

j −B−
j where j = 1, . . . , bn−1

2 c (n being the
dimension), we have:

1. if n = 2i + 1, then

χ(M, ∂M) =
i−1∑

j=1

(B+
j −B−

j ) +
B+

i −B−
i

2
+ (e+ − e−)

2. if n = 2 mod 4, then

χ(M, ∂M) =
i∑

j=1

(B+
j −B−

j ) + (e+ − e−) mod 2

Proof Consider the definition of χ(M,∂M) given above. Item 1 is just equality (2) holding in
the case of odd dimension. Item 2 is condition (3). 4

We now consider the realization of hmin as a minimal Morse flow on some compact manifold
M respecting the homological boundary information. The following proposition asserts that in
the odd case, χ(M, ∂M) neither depends on M nor on the choice of singularities that realize the
minimal flow and depends only on homological boundary information.

14



In the even case, it is still true that χ(M,∂M) depends on homological boundary information,
however it will depend on the minimal flow, i.e. on the choice of singularities realizing hmin. We
present the range of values taken by χ(M, ∂M) for all minimal flows on M realizing hmin. Our
formula not only generalizes in the minimal setting item 2 of Proposition 3.1.1 since it is true for
any even dimension but also is more precise.

Proposition 3.1.2. Let (M,∂M) be abstractly given in terms of positive integers e+, e− and inte-
gers corresponding to the differences (of Betti numbers) B+

j −B−
j where j = 1, . . . , bn−1

2 c (n being
the dimension). Recall that H = {(h1, . . . , hn−1) :

∑n−1
i=1 hi = hmin : Poincaré-Hopf inequalities

are satisfied} and denote by χmin(M,∂M) the set of values of χ(M,∂M) taken over H. Then

1. if n = 2i + 1, χmin(M,∂M) is the singleton given by

χmin(M, ∂M) =





i−1∑

j=1

(B+
j −B−

j ) +
B+

i −B−
i

2
+ (e+ − e−)





2. if n is (any) even dimension, then

χmin(M, ∂M) = {hmin − 2p, p = 0, . . . , hmin}

Proof Item 1 is as in the proposition above or can be proved by direct computation (use
Proposition 2.1.2). Item 2 follows by direct computation. First of all, remark that, in general

| χ(M,∂M) |=|
n∑

j=0

(−1)jhj |≤
n∑

j=0

hj

and in the minimal case the bound is hmin. We show that the bound is taken by a particular vector
of H. Recall the decomposition of the vectors of H in the even case (Propositions 2.2.2 and 2.3.2)
and choose vj(kj) in the following way:

if j is odd then if B+
j ≥ B−

j then n− j − 1 is even

choose vj(kj = 0) (all the singularities are in hn−j−1)

else if B+
j ≤ B−

j then j + 1 is even

choose vj(kj =| B+
j −B−

j |) (all the singularities are in hj+1)

if j is even then if B+
j ≥ B−

j then choose vj(kj =| B+
j −B−

j |) (all the singularities are in hj)

else if B+
j ≤ B−

j then n− j is even

choose vj(kj = 0) (all the singularities are in hn−j).

With these choices, we have a minimal flow on M and the corresponding Euler characteristic is
χ(M, ∂M) = hmin. Each time we change the value of one of the kjs by one (hence considering
another minimal flow), we decrease the value of χ(M, ∂M) by 2 and we are done since we can do
it exactly hmin times. 4

3.2 Lyapunov Graphs of Morse Type

Given the abstract data e+, e− and the differences B+
j −B−

j we can associate a family F of directed
semi-graphs with one vertex with e+ incoming and e− outgoing edges. An element in this family
has its edges labelled with specific Betti numbers such that the differences are satisfied. Any choice
of labelling is admissible as long as it satisfies the differences.

Starting from the same abstract data, we have shown in this paper how to compute the minimal
number of singularities hmin (Propositions 2.1.1, 2.2.1 and 2.3.1). We have also determined the set
H of vectors realizing hmin (Propositions 2.1.2, 2.2.2 and 2.3.2). Hence we can label the vertex of
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any semi-graph of F with any h ∈ H thus obtaining an abstract Lyapunov semi-graph as defined
in Section 1.

We have also shown here that the set Hcd(h) of (hc
1, h

d
1, . . . , h

c
n−1, h

d
n−1) realizing h and the

abstract data is a singleton. Now, with these data we have an abstract Lyapunov semi-graph of
Morse type, L(h), which is unique up to permutation of the labels of the vertices. All this is
equivalent to saying that for each h we have a unique family FL(h) of abstract Lyapunov semi-
graphs of Morse type. Given h, each element of the family FL(h) is again determined by fixing the
labels of the edges (satisfying the differences B+

j −B−
j given a priori).

The process of obtaining all the possible abstract Lyapunov semi-graphs of Morse type from an
abstract Lyapunov semi-graph is called continuation and developed for the first time in [BMRez].
Uniqueness has been proved in this paper by using the results of [BMRez] on the number of
continuations of a given abstract Lyapunov semi-graph.

Last, as well as the vectors of H are linked by the fact of realizing hmin, the corresponding
families of Lyapunov semi-graphs of Morse type are linked by the fact that one can obtain one
semi-graph from the other by replacing the label of one vertex by the type of singularity having
the same algebraic effect on the Betti numbers, as shown in the example below.

Furthermore, following [CrRez], define a null pair of types of singularities as the pairs of
singularities having the opposite algebraic effect on the same Betti numbers and with consecutive
indices, i.e. hj of type j-d and hj+1 of type j-c. Define also a dual pair of types of singularities
as the pairs of singularities having the opposite algebraic effect on the same Betti numbers, with
complementary indices, i.e. hj of type j-d and hn−j of type (n− j − 1)-c. Formulas for hmin show
that there is no waste of singularities, hence the labels of the corresponding families of abstract
Lyapunov semi-graphs of Morse type contain neither null pairs nor dual pairs. In other words,
such abstract Lyapunov semi-graphs possess lowest topological complexity.

3.3 Example

Consider the same homological boundary information as in the example of Subsection 2.1.4.

{e+ = 2, e− = 3, B+
1 −B−

1 = −2, B+
2 −B−

2 = −2}

Then from Proposition 3.1.2 we have χmin(M, ∂M) = {−4}.
Now we fix the labels of the edges satisfying our initial data, for instance as in the example of

Figure 3: this directed semi-graph is an element of the family F .
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Figure 3: Labels respecting {e+ = 2, e− = 3, B+
1 −B−

1 = −2, B+
2 −B−

2 = −2}

Using results of the example of Subsection 2.1.4 applied to this specific directed semi-graph we
have three abstract Lyapunov semi-graphs, one for each h realizing hmin (Figure 3.3).
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Figure 4: The three abstract Lyapunov semi-graphs

Hence we have three abstract Lyapunov semi-graphs of Morse type (Figure 3.3), respectively
in FL(2,0,1,3), FL(2,1,1,2) and FL(2,2,1,1). Observe that we can obtain one abstract Lyapunov semi-
graph of Morse type from another one by replacing singularities of type 3-c with singularities
of type 1-c, both having the algebraic effect of decreasing β1. Furthermore, note that in these
Lyapunov linear semi-graphs for each j, βj is strictly decreasing or increasing as one walks on the
graph following the opposite orientation of the directed edges. We can easily see that this implies
that these Lyapunov linear semi-graphs possess neither dual pairs nor null pairs. Hence these
semi-graphs possess the lowest topological complexity.
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Figure 5: The three abstract Lyapunov semi-graphs of Morse type

It is worth mentioning once more that any odd-dimensional compact manifold M realizing
the Lyapunov semi-graphs of Morse type above has the same Euler characteristic as was shown
in Subsection 3.1. However, if we had even dimensional Lyapunov semi-graphs of Morse type,
each graph would determine an Euler characteristic which is the same for any compact manifold
realizing it. As in Subsection 3.1 the range of the Euler characteristics is determined in this case.
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