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ABSTRACT. We deal with the quasilinear Schrödinger equation

−div(|∇u|p−2∇u) + (λa(x) + 1)|u|p−2u = |u|q−2u, u ∈ W 1,p(RN ),

where2 ≤ p < N , λ > 0 andp < q < p? = Np/(N − p). The potentiala ≥ 0 has a potential well

and is invariant under an orthogonal involution ofRN . We apply variational methods to obtain, forλ

large, existence of solutions which change sign exactly once . We study the concentration behavior

of these solutions asλ → ∞. By takingq closep? we also relate the number of solutions which

change sign exactly once with the equivariant topology of the set where the potentiala vanishes.

1. INTRODUCTION AND STATEMENT OF RESULTS

The goal of this article is to study the number of solutions of the quasilinear Schrödinger equa-

tion

(Sλ,q)

{ −∆pu + (λa(x) + 1)|u|p−2u = |u|q−2u in RN ,

u ∈ W 1,p(RN),

where∆pu = div(|∇u|p−2∇u) is thep-Laplacian operator and2 ≤ p < N . We will impose some

symmetry properties and look for nodal solutions of(Sλ,q). The parametersλ andq are such that

λ > 0 andp < q < p?, wherep? = Np/(N − p) is the critical Sobolev exponent. For the potential

a we assume that

(A1) a ∈ C(RN ,R) is nonnegative,Ω = int a−1(0) is a nonempty set with smooth boundary

andΩ = a−1(0),

(A2) there existsM0 > 0 such that

L ({x ∈ RN : a(x) ≤ M0}
)

< ∞,

whereL denotes the Lebesgue measure inRN .

The above hypotheses were introduced by Bartsch & Wang in [3], where they considered the

problem(Sλ,q) for the particular casep = 2. They showed that, for large values ofλ, the problem
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(Sλ,q) has a positive least energy solution. Moreover, asλ → ∞, these solutions concentrate at a

positive solution of the Dirichlet problem

(Dq) −∆pu + |u|p−2u = |u|q−2u, u ∈ W 1,p
0 (Ω).

Recalling that Benci & Cerami [4] showed that, forp = 2, q close to2? andΩ bounded, the

problem(Dq) has at least cat(Ω) positive solutions, Bartsch & Wang proved in [3] that the same

holds for the problem(Sλ,q), where cat(Ω) stands the Ljusternik-Schnirelmann category of the set

Ω.

Recently, using ideas from [6] and assuming thatΩ has some symmetry, the author showed [11]

that there is also an effect of the domain topology in the number of solutionsu of (Dq) which

change sign exactly once; that is, the setΩ \ u−1(0) has exactly two connected components,u

is positive in one of them and negative in the other. It is natural to ask if the same holds for the

problem(Sλ,q). The aim of this work is to give an affirmative answer to this question.

More specifically, we deal with the problem

(Sτ
λ,q)





−∆pu + (λa(x) + 1)|u|p−2u = |u|q−2u in RN ,

u(τx) = −u(x) for all x ∈ RN ,

u ∈ W 1,p(RN),

whereλ > 0, 2 ≤ p < N , p < q < p? andτ : RN → RN is an orthogonal linear function such

thatτ 6= Id andτ 2 = Id, with Id being the identity ofRN . The potentiala satisfies(A1), (A2) and

(A3) a(τx) = a(x) for all x ∈ RN .

Our first result concerns the existence of solutions for(Sτ
λ,q) and can be stated as

Theorem 1.1. Suppose(A1)-(A3) hold. Then there existsΛ0 = Λ0(q) > 0 such that, for every

λ ≥ Λ0, the problem(Sτ
λ,q) has at least one pair of solutions which change sign exactly once.

The proof of the above result relies in minimizing the associated functional

Iλ,q(u) =
1

p

∫

RN

(|∇u|p + (λa(x) + 1)|u|p) dx− 1

q

∫

RN

|u|q dx

in some appropriated manifold ofX =
{
u ∈ W 1,p(RN) :

∫
RN a(x)|u|p < ∞}

, and relating the

number of nodal regions of a critical pointu0 with its energyIλ,q(u0). Similarly to [3], theτ -

version of(Dq) acts as a limit problem for(Sτ
λ,q). Thus, the following concentration result holds.

Theorem 1.2. Let λn → ∞ asn → ∞ and (un) be a sequence of solutions of(Sτ
λn,q) such that

Iλn,q(un) is bounded. Then, up to a subsequence,un → u strongly inW 1,p(RN) with u being a
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solution of the Dirichlet problem

(Dτ
q )





−∆pu + |u|p−2u = |u|q−2u in Ω,

u = 0 on∂Ω,

u(τx) = −u(x) for all x ∈ Ω,

which change sign exactly once.

By taking advantage of the symmetry and the arguments contained in [11] we can obtain, forq

close top? andλ large enough, the following multiplicity result.

Theorem 1.3. Suppose(A1)-(A3) hold andΩ is bounded. Then there existsq̃ ∈ (p, p?) with the

property that, for eachq ∈ (q̃, p?), there is a numberΛ(q) > 0 such that, for everyλ ≥ Λ(q), the

problem(Sτ
λ,q) has at leastτ -catΩ(Ω \ Ωτ ) pairs of solutions which change sign exactly once.

Here,Ωτ = {x ∈ Ω : τx = x} andτ -cat is theτ -equivariant Ljusternik-Schnirelmann category

(see Section 4). There are several situations where the equivariant category turns out to be larger

than the nonequivariant one. The classical example is the case of the unit sphereSN−1 ⊂ RN with

τ = −Id. In this case cat(SN−1) = 2, whereasτ -cat(SN−1) = N . Consequently, as an application

of Theorem 1.3 we have

Corollary 1.4. Suppose(A1) and(A2) hold,Ω is bounded and symmetric with respect to the origin

and0 6∈ Ω. Assume further that the potentiala is even and there is an odd mapϕ : SN−1 → Ω.

Then there exists̃q ∈ (p, p?) with the preperty that, for eachq ∈ (q̃, p?), there is a numberΛ(q) > 0

such that, for everyλ ≥ Λ(q), the problem
{ −∆pu + (λa(x) + 1)|u|p−2u = |u|q−2u in RN ,

u ∈ W 1,p(RN),

has at leastN pairs of odd solutions which change sign exactly once.

We point out that, for a fixedq ∈ (p, p?) (or q ∈ (q̃, p?) in Theorem 1.3), the energy of the

solutions obtained in Theorem 1.1 (or Theorem 1.3) is bounded independently ofλ. Thus, the

concentration result of Theorem 1.2 holds for such solutions.

It is worthwhile to mention that the above results seem to be new even in the casep = 2. In [8]

Clapp & Ding considered the problem

−∆u + λa(x)u = µu + |u|2?−2u in RN , u(τx) = −u(x) ∀ x ∈ RN

and proved, for positive and small values ofµ, results concerning the existence and concentration

of solutions inW 1,2(RN) as µ → 0. By taking µ ∼ 0 they also showed a relation between

the number of solutions of the above problem and the topology ofΩ. The results we obtain in

this paper complement those of [8] since we consider subcritical powers and we deal with the
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quasilinear case. The nonlinearity of thep-Laplacian, which makes the calculations more difficult,

is compensated here by the homogeneity of the problem. We also would like to mention the work

[2] where the quasilinear critical case is studied for positive solutions. Finally, in order to overcome

the lack of compactness of the embeddingW 1,p(RN) ↪→ Lq(RN), we use ideas introduced in [3]

for the semilinear casep = 2.

The paper is organized as follows. In Section 2 we define the abstract framework and prove

Theorems 1.1 and 1.2. Section 3 is devoted to some technical results related to the limit problem

(Dq). In Section 4, after recalling some basic facts about equivariant Ljusternik-Schnirelmann

theory, we present the proof of Theorem 1.3.

2. PROOF OFTHEOREMS1.1 AND 1.2

For s ≥ 1 we denote by|u|s theLs(RN)-norm of a functionu. For simplicity, we write
∫
D u to

indicate
∫
D u(x)dx. Let X be the space

X =

{
u ∈ W 1,p(RN) :

∫

RN

a(x)|u|p < ∞
}

,

endowed with the norm

‖u‖p
1 =

∫

RN

(|∇u|p + (a(x) + 1)|u|p) ,

which is clearly equivalent to each of the norms

‖u‖p
λ =

∫

RN

(|∇u|p + (λa(x) + 1)|u|p) ,

for λ > 0. Conditions(A1), (A2) and Sobolev Theorem imply that the embeddingX ↪→ Ls(RN)

is continuous for allp ≤ s ≤ p?. Moreover, ifp ≤ s < p?, thenX is compactly embedded in

Ls
loc(RN). As stated in the introduction we will look for critical points ofIλ,q : X → R defined by

Iλ,q(u) =
1

p

∫

RN

(|∇u|p + (λa(x) + 1)|u|p)− 1

q

∫

RN

|u|q.

We recall thatIλ,q satisfies the Palais-Smale condition at levelc ∈ R, (PS)c for short, if any

sequence(un) ⊂ X such thatIλ,q(un) → c andI ′λ,q(un) → 0 possesses a convergent subsequence.

In order to verify the Palais-Smale condition forIλ,q we follow [3], where the authors deal with

the casep = 2 and consider nonlinearities more general than|u|q−2u.

Lemma 2.1([3, Lemmas 2.2, 2.3 and 2.4]). Let (un) ⊂ X be a(PS)c sequence forIλ,q. Then

(i) (un) is bounded inX,

(ii) lim
n→∞

‖un‖p
λ = lim

n→∞
|un|qq = cpq/(q − p),

(iii) if c 6= 0, thenc ≥ c0 > 0, wherec0 is independent ofλ.
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Lemma 2.2([3, Lemma 2.5]). LetC0 be fixed. Then, for any givenε > 0, there existΛε > 0 and

Rε > 0 such that, if(un) is a (PS)c sequence forIλ,q with c ≤ C0 andλ ≥ Λε, we have

lim sup
n→∞

∫

RN\BRε (0)

|un|q ≤ ε,

whereBRε(0) = {x ∈ RN : |x| < Rε}.
The next two results will overcome the lack of Hilbertian structure.

Lemma 2.3 ([1, Lemma 3]). Let K ≥ 1, s ≥ 2 andA(y) = |y|s−2y, for y ∈ RK . Consider a

sequence of vector functionsηn : RN → RK such that(ηn) ⊂ (Ls(RN))K andηn(x) → 0 for a.e.

x ∈ RN . Then, if|ηn|(Ls(RN ))K is bounded, we have

lim
n→∞

∫

RN

|A(ηn) + A(w)− A(ηn + w)|s/(s−1) = 0,

for eachw ∈ (Ls(RN))K fixed.

Lemma 2.4. Let λ ≥ 0 be fixed and let(un) be a(PS)c sequence forIλ,q. Then, up to a subse-

quence,un ⇀ u weakly inX with u being a weak solution of(Sλ,q). Moreover,vn = un − u is a

(PS)c′ sequence forIλ,q with c′ = c− Iλ,q(u).

Proof. Lemma 2.1(i) implies that(un) is bounded inX and therefore, up to a subsequence,

un ⇀ u weakly inX,

un → u in Ls
loc(RN) for all p ≤ s < p?,

un(x) → u(x) for a.e.x ∈ RN .

(2.1)

We claim that we may suppose that

∇un(x) → ∇u(x) for a.e.x ∈ RN ,

|∇un|p−2∂un

∂xi

⇀ |∇u|p−2 ∂u

∂xi

weakly in(Lp(RN))′, 1 ≤ i ≤ N,
(2.2)

where(Lp(RN))′ stands the dual space ofLp(RN). In order to verify the claim we definePn :

RN → R by

Pn(x) =
(|∇un(x)|p−2∇un(x)− |∇u(x)|p−2∇u(x)

) · ∇(un(x)− u(x)).

Let K ⊂ RN be a fixed compact set. Givenε > 0 we setKε = {x ∈ RN : dist(x,K) ≤ ε} and

choose a cut-off functionψ ∈ C∞(RN) such that0 ≤ ψ ≤ 1, ψ ≡ 1 in K andψ ≡ 0 in RN \Kε.

Using the definition ofPn and that the functionh : RN → R, h(x) = |x|p is strictly convex, we

have

0 ≤
∫

K

Pn ≤
∫

RN

Pnψ =

∫

RN

|∇un|pψ −
∫

RN

|∇un|p−2 (∇un · ∇u) ψ

+

∫

Kε

|∇u|p−2 (∇u · ∇ (u− un)) ψ.

(2.3)
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Since(ψun) is bounded inX andI ′λ,q(un) → 0 we have

lim
n→∞

〈I ′λ,q(un), ψun〉 = lim
n→∞

〈I ′λ,q(un), ψu〉 = 0.

The above expression, (2.3),ψ ≡ 0 in RN \Kε and (2.1) give

0 ≤
∫

K

Pn ≤ C1 + C2 + C3 − C4 + o(1), (2.4)

asn →∞, with

C1 :=

∫

Kε

|∇un|p−2 (∇un · ∇ψ) (u− un) ,

C2 :=

∫

Kε

λa(x)ψ
(|un|p−2unu− |un|p

)
,

C3 :=

∫

Kε

ψ
(|un|p−2unu− |un|p

)
and C4 :=

∫

Kε

ψ
(|un|q−2unu− |un|q

)
.

Since(un) is bounded inX andun → u in Lp(Kε), we have that

|C1| ≤ |∇ψ|∞
∫

Kε

|∇un|p−1|un − u| ≤ |∇ψ|∞‖un‖p−1
1 |un − u|p,Kε = o(1),

asn →∞. Next we observe that, up to a subsequence,∫

Kε

|un|p →
∫

Kε

|u|p, asn →∞. (2.5)

Moreover, sinceun(x) → u(x) for a.e. x ∈ Kε and(|un|p−2un) is bounded inLp/(p−1)(Kε), we

have that|un|p−2un ⇀ |u|p−2u weakly inLp/(p−1)(Kε). Thus,∫

Kε

|un|p−2unu →
∫

Kε

|u|p, asn →∞.

The above expression, (2.5) and the boundedness ofa(x)ψ in Kε imply thatlimn→∞ C2 = 0. In

the same way we can show thatlimn→∞ C3 = limn→∞ C4 = 0. Therefore, we can rewrite (2.4) as

0 ≤
∫

K

(|∇un|p−2∇un − |∇u|p−2∇u
) · ∇(un − u) → 0, asn →∞.

Considering that(|a|p−2a− |b|p−2b) · (a− b) ≥ Cp|a− b|p, for everya, b ∈ RN (see [15, pg. 210]),

we get

lim
n→∞

∫

K

|∇un −∇u|p = 0,

i.e.,∇un → ∇u strongly in(Lp(K))N . SinceK is arbitrary and(un) is bounded inX, we may

suppose that (2.2) holds.

By using (2.2) and (2.1) we conclude thatI ′λ,q(u) = 0. The boundedness of(un), the pointwise

convergences and the Brezis & Lieb’s lemma [5] imply

Iλ,q(vn) = Iλ,q(un)− Iλ,q(u) + o(1),

asn →∞. Thuslimn→∞ Iλ,q(vn) = c− Iλ,q(u).
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In order to verify thatI ′λ,q(vn) → 0 we note that, for anyφ ∈ X, we have
〈
I ′λ,q(vn), φ

〉
=

〈
I ′λ,q(un), φ

〉− 〈
I ′λ,q(u), φ

〉
+ C5 + C6 − C7, (2.6)

where

C5 :=

∫

RN

(|∇vn|p−2∇vn + |∇u|p−2∇u− |∇un|p−2∇un

) · ∇φ

C6 :=

∫

RN

(λa(x) + 1)
(|vn|p−2vn + |u|p−2u− |un|p−2un

)
φ

and

C7 :=

∫

RN

(|vn|q−2vn + |u|q−2u− |un|q−2un

)
φ.

Using Hölder’s inequality and Lemma 2.3 withηn = ∇vn andw = ∇u, we get

|C5| ≤
(∫

RN

∣∣|∇vn|p−2∇vn + |∇u|p−2∇u− |∇un|p−2∇un

∣∣ p
p−1

) p−1
p

|φ|p

≤ o(1) ‖φ‖λ ,

asn →∞. In the same way we can see that the above estimate holds also forC6 andC7. Therefore,

sinceI ′λ,q(un) → 0 andI ′λ,q(u) = 0, we obtain from (2.6) that
∣∣〈I ′λ,q(vn), φ

〉∣∣ ≤ o(1) ‖φ‖λ , asn →∞,

for all φ ∈ X. This implies thatI ′λ,q(vn) → 0 and concludes the proof of the lemma. ¤

We are now ready to state the compactness condition we will need.

Proposition 2.5. For anyC0 > 0 given, there existsΛ0 = Λ0(q) > 0 such thatIλ,q satisfies(PS)c
for all c ≤ C0 andλ ≥ Λ0.

Proof. The proof is similar to that of [3, Proposition 2.1] and will be presented here by the sake

of completeness. Letc0 be given by Lemma 2.1(iii) and fixε > 0 such that2ε < c0pq/(q − p).

For anyC0 > 0 we takeΛε andRε given by Lemma 2.2 and we will prove that the proposition

holds forΛ0 = Λε. Let (un) be a (PS)c sequence ofIλ,q with c ≤ C0 andλ ≥ Λ0. By Lemma 2.4

we may suppose thatun ⇀ u weakly inX andvn = un − u is a (PS)c′ sequence forIλ,q, whith

c′ = c − Iλ,q(u). We claim thatc′ = 0 and therefore Lemma 2.1(ii) implies thatlim
n→∞

‖vn‖p
λ =

c′pq/(p− q) = 0, i.e.,un → u strongly inX.

In order to verifity thatc′ = 0 we suppose, by contradiction, thatc′ > 0. In view of Lemma

2.1(iii) we havec′ ≥ c0 > 0. Sincevn → 0 in Lq
loc(RN) we can use Lemma 2.1(ii) and Lemma 2.2

to conclude that

c0
pq

q − p
≤ c′

pq

q − p
= lim

n→∞
|vn|qq

≤ lim
n→∞

∫

BRε

|vn|q + lim sup
n→∞

∫

RN\BRε (0)

|vn|q ≤ c0

2

pq

q − p
.
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This is a contradiction and the proposition is proved. ¤

We are now ready to take advantage of the symmetry and present our variational framework.

We start by noting thatτ induces an involution onX, which we also denote byτ , in the following

way: for eachu ∈ X we defineτu ∈ X by

(τu)(x) = −u(τx). (2.7)

We denote byXτ = {u ∈ X : τu = u} the subspace ofτ -invariant functions ofX and consider

the Nehary manifold

Vλ,q = {u ∈ X \ {0} : 〈I ′λ,q(u), u〉 = 0} = {u ∈ X \ {0} : ‖u‖p
λ = |u|pp}.

Since we are looking forτ -invariant solutions we define theτ -invariant Nehari manifold by

setting

Vτ
λ,q = {u ∈ Vλ,q : τu = u} = Vλ,q ∩Xτ .

The critical points we will obtain are related with the following minimizing problems

cλ,q = inf
u∈Vλ,q

Iλ,q(u) and cτ
λ,q = inf

u∈Vτ
λ,q

Iλ,q(u).

Now we fix some notation in order to deal with the limit problem. Given a domainD ⊂ RN we

consider the spaceW 1,p
0 (D) endowed with the norm

‖u‖p
D =

∫

D
|∇u|p + |u|p.

For anyp < q ≤ p?, we defineEq,D : W 1,p
0 (D) → R by setting

Eq,D(u) =
1

p

∫

D
(|∇u|p + |u|p)− 1

q

∫

D
|u|q

and the associated Nehary manifolds

Nq,D = {u ∈ W 1,p
0 (D) \ {0} : 〈E ′

q,D(u), u〉 = 0} and N τ
q,D = Nq,D ∩Xτ .

We also define the numbers

mq,D = inf
u∈Nq,D

Eq,D(u) and mτ
q,D = inf

u∈N τ
q,D

Eq,D(u). (2.8)

Before presenting the proof of Theorem 1.1 we note that, ifu is a solution of(Sτ
λ,q), then it is

necessarily of classC1. We say thatu changes signn times if the set{x ∈ RN : u(x) 6= 0}
hasn + 1 connected components. Obviously, ifu is a nontrivial solution of problem(Sτ

λ,q), then

it changes sign an odd number of times. The relation between the number of nodal regions of a

solution and its energy is given by the result below.

Proposition 2.6. If u is a solution of problem(Sτ
λ,q) which changes sign2k−1 times, thenIλ,q(u) ≥

kcτ
λ,q.
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Proof. The set{x ∈ RN : u(x) > 0} hask connected componentsA1, . . . , Ak. Let ui(x) = u(x)

if x ∈ Ai ∪ τAi andui(x) = 0, otherwise. Sinceu is a critical point ofIλ,q, an easy calculation

show that0 = 〈I ′λ,q(u), ui〉 = ‖ui‖p
λ − |ui|qq. Thus,ui ∈ Vτ

λ,q for all i = 1, . . . , k, and

Iλ,q(u) = Iλ,q(u1) + · · ·+ Iλ,q(uk) ≥ kcτ
λ,q,

as desired. ¤

Proof of Theorem 1.1:Let q ∈ (p, p?) be fixed andΛ0 = Λ0(q) be given by Proposition 2.5 with

C0 = mτ
q,Ω. Let λ ≥ Λ0 and(un) ⊂ Vτ

λ,q be a minimizing sequence forcτ
λ,q. SinceN τ

q,Ω ⊂ Vτ
λ,q we

have thatcτ
λ,q ≤ mτ

q,Ω. Moreover, by the Ekeland Variational Principle [10] (see also [18, Theorem

8.5]), we may suppose that(un) is a Palais-Smale sequence and therefore the infimum is achieved

by someu ∈ Vτ
λ,q. The definition ofXτ and the Proposition 2.6 show thatu changes sign exactly

once. In order to finish the proof we note that, by the Lagrange multiplier rule, there exitsθ ∈ R
such that

〈I ′λ,q(u)− θJ ′λ,q(u), φ〉 = 0, ∀ φ ∈ Xτ ,

whereJq(u) = ‖u‖p
λ − |u|qq. Takingφ = u ∈ Vτ

λ,q, we get

0 = 〈I ′λ,q(u), u〉 − θ〈J ′q(u), u〉 = θ(q − p)‖u‖p
λ.

This impliesθ = 0 and therefore

〈I ′λ,q(u), φ〉 = 0, ∀ φ ∈ Xτ .

The above expression and the principle of symmetric criticality [14] (see also [13, Proposition 1])

imply thatu (and also−u) is a solution of(Sτ
λ,q) which changes sign exactly once. The theorem is

proved. ¤

Using the above ideas and making no assumption of symmetry we can extend the existence

result in [3] for the quasilinear case2 ≤ p < N and prove:

Theorem 2.7.Suppose(A1) and(A2) hold. Then there existsΛ0 = Λ0(q) > 0 such that, for every

λ ≥ Λ0, the problem(Sλ,q) has a positive least energy solution.

Proof. For anyq ∈ (p, p?) fixed we takeΛ0 = Λ0(q) given by by Proposition 2.5 withC0 = mq,Ω.

For λ ≥ Λ0, arguing as in the proof of Theorem 1.1, we conclude thatcλ,q is achieved by some

u ∈ Vλ,q which is a solution of(Sλ,q). By [3, Lemma 3.10]u does not change sign and therefore,

by the maximum principle, we may suppose thatu is positive. ¤

For the study of the concentration of solutions we need the following technical result.

Lemma 2.8. Let M > 0, λn ≥ 1 and (un) ⊂ X be such thatλn → ∞ and‖un‖λn ≤ M . Then

there exists a functionu ∈ W 1,p
0 (Ω) such that, up to a subsequence,un ⇀ u weakly inX and

un → u in Ls(RN), for anyp ≤ s < p?.
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Proof. Since‖un‖1 ≤ ‖un‖λn ≤ M , there existsu ∈ X such that, up to a subsequence,un ⇀ u

weakly inX. It is proved in [8, Lemma 4] (see also [2, Lemma 1]) that, in fact,u ∈ W 1,p
0 (Ω) and

un → u in Lp(RN). Let p < s < p? be fixed and chooseγ > 0 such that1/θ = γ/p + (1− γ)/p?.

By using the Ḧolder’s inequality and the continuous embeddingX ↪→ Lp?
(RN) we obtain

∫

RN

|un − u|θ ≤
(∫

RN

|un − u|p?

)(1−γ)θ/p? (∫

RN

|un − u|p
)γθ/p

≤ C‖un − u‖(1−γ)θ
1 |un − u|γθ

p ,

and thereforeun → u in Ls(RN). The lemma is proved. ¤

Proof of Theorem 1.2:Let (un) be a sequence of solutions of(Sτ
λn,q) such thatλn → ∞ and

pqIλn,q(un) = (q − p)‖un‖p
λn

is bounded. We will prove the theorem foru ∈ W 1,p
0 (Ω) given by

Lemma 2.8. SinceI ′λn,q(un) = 0 anda ≡ 0 in Ω, we can proceed as in the proof of (2.2) and

suppose that

∇un(x) → ∇u(x) for a.e.x ∈ Ω, (2.9)

|∇un|p−2∂un

∂xi

⇀ |∇u|p−2 ∂u

∂xi

weakly in(Lp(Ω))′, 1 ≤ i ≤ N, (2.10)

and ∫

Ω

(|∇un|p−2∇un · ∇φ + |un|p−2unφ) =

∫

Ω

|un|q−2unφ, ∀ φ ∈ W 1,p
0 (Ω).

In view of Lemma 2.8, (2.10) and Lemma 2.1(iii), we can take the limit in the above expression

and conclude thatu 6= 0 satisfies the first equation in(Dτ
q ). SinceXτ is a closed subspace ofX

we need only to show thatun → u strongly inW 1,p(RN).

By using (2.9),u ∈ W 1,p
0 (Ω) and Brezis & Liebs’s lemma we get

∫

RN

|∇(un − u)|p =

∫

RN\Ω
|∇un|p +

∫

Ω

|∇(un − u)|p

=

∫

RN\Ω
|∇un|p +

∫

Ω

|∇un|p −
∫

Ω

|∇u|p + o(1)

(2.11)

asn →∞. Moreover, usingu ∈ W 1,p
0 (Ω) once more, we obtain

∫

RN

a(x)|un − u|p =

∫

RN

a(x)|un|p.

This, (2.11), Lemma 2.8 and the fact thatun andu lie on the Nehari manifoldVτ
λn,q imply that

‖un − u‖p
λn

=

∫

RN

|∇(un)|p +

∫

RN

λna(x)|un|p −
∫

RN

|∇u|p + o(1)

=

∫

RN

|un|q −
∫

RN

|un|p −
∫

RN

|∇u|p + o(1)

=

∫

RN

|u|q −
∫

RN

|u|p −
∫

RN

|∇u|p + o(1) = o(1),
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asn →∞. Thus,‖un − u‖p
0 ≤ ‖un − u‖p

λn
→ 0, asn →∞ and the theorem is proved. ¤

The next result gives the asymptotic behavior of positive solutions of(Sλ,q). The proof is equal

to that of Theorem 1.2 and will be omitted.

Theorem 2.9. Let λn → ∞ asn → ∞ and (un) be a sequence of solutions of(Sλn,q) such that

Iλn,q(un) is bounded. Then, up to a subsequence,un → u strongly inW 1,p(RN) with u being a

positive solution of(Dq).

3. THE LIMIT PROBLEM (Dq)

In this section we present some technical results that are related with the limit problem(Dq). As

usual, we denote byS the best constant of the embeddingW 1,p
0 (Ω) ↪→ Lp?

(Ω) given by

S = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u|p + |u|p
|u|pp?,Ω

,

where|u|s,D stands theLs(D)-norm. It is well known thatS is independent ofΩ and is never

achieved in any proper subset ofRN . We start with the relation betweenmq,D defined in (2.8) and

S.

Lemma 3.1. For any bounded domainD ⊂ RN we have

lim
q→p?

mq,D = mp?,D =
1

N
SN/p.

Proof. The first equality is proved in [7, Proposition 5]. LetΣD be the unit sphere ofW 1,p
0 (D).

Sinceψ : u 7→ u|u|−N/p
p?,D defines a dipheomorphism betweenΣD andNp?,D, we have

Nmp?,D = inf
u∈Np?,D

‖u‖p
D = inf

u∈ΣD

‖u‖p
D

|u|Np?,D

= inf
u∈W 1,p

0 (D)\{0}

(
‖u‖p

D
|u|pp?,D

)N/p

= SN/p,

and thereforemp?,D = 1
N

SN/p. ¤

In what follows we denote byM(RN) the Banach space of finite Radon measures overRN

equipped with the norm

µ = sup
φ∈C0(RN ),|φ|∞≤1

|µ(φ)|.

A sequence(µn) ⊂ M(RN) is said to converge weakly toµ ∈ M(RN) providedµn(φ) → µ(φ)

for all φ ∈ C0(RN). By the Banach-Alaoglu theorem, every bounded sequence(µn) ⊂ M(RN)

contains a weakly convergent subsequence.
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The next result is a version of [18, Lemma 1.40]. The proof is also inspired by [16, Lemma 2.1

and Remark 2.2].

Lemma 3.2. Let (qn) ⊂ R be such thatp ≤ qn ≤ p? andqn ↑ p?. Let (un) ⊂ W 1,p(RN) be such

that un ⇀ u weakly inW 1,p(RN), un(x) → u(x) for a.e. x ∈ RN , ∇un(x) → ∇u(x) for a.e.

x ∈ RN ,
|∇(un − u)|p ⇀ µ weakly inM(RN),

|un − u|qn ⇀ ν weakly inM(RN),
(3.1)

and define

µ∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R

|∇un|p, ν∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R

|un|qn .

Then

ν p/p? ≤ S−1 µ , (3.2)

lim sup
n→∞

|∇un|pp = |∇u|pp + µ + µ∞, (3.3)

and

lim sup
n→∞

|un|qn
qn

= |u|p?

p? + ν + ν∞. (3.4)

Moreover, ifu = 0 and ν p/p?
= S−1 µ , then the measuresµ andν are concentrated at single

points.

Proof. We first assume thatu = 0. For any givenφ ∈ C∞
c (RN) we denoteK = suppφ and use

Holder and Sobolev’s inequalities to get
(∫

RN

|φun|qn

)1/qn

≤ S−1/pL(K)
p?−qn
qnp?

(∫

RN

|∇(φun)|p + |φun|p
)1/p

Since|φ|qn → |φ|p?
in C∞

c (RN) andun → 0 in Lp
loc(RN), we can take the limit in the above

expression and use (3.1) to obtain
(∫

RN

|φ|p?

dν

)1/p?

≤ S−1/p

(∫

RN

|φ|p dµ

)1/p

, ∀ φ ∈ C∞
c (RN),

and (3.2) follows. Moreover, ifν p/p?
= S−1 µ , then it follows from [12, Lemma 1.2] thatν and

µ are concentrated measures.

Considering now the general case, we writevn = un − u. Since∇un(x) → ∇u(x) for a.e.

x ∈ RN , we can use Brezis & Lieb’s lemma to get

|∇un|p ⇀ µ + |∇u|p, weakly inM(RN). (3.5)

Furthermore, using the boundedness of(un) and Vitalli’s theorem we can check that

lim
n→∞

(∫

RN

φ|un|qn − φ|un − u|qn

)
=

∫

RN

φ|u|p?

, ∀ φ ∈ C∞
c (RN)
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and therefore

|un|qn ⇀ ν + |u|p?

, weakly inM(RN).

Inequality (3.2) follows from the above expression, (3.5) and the corresponding inequality for(vn).

For R > 1, let ψR ∈ C∞(RN) be such thatψR ≡ 0 in BR(0), ψR ≡ 1 in RN \ BR+1(0) and

0 ≤ ψ(x) ≤ 1 for all x ∈ RN . Using (3.5) we obtain

lim sup
n→∞

∫

RN

|∇un|pdx = lim sup
n→∞

∫

RN

(ψR|∇un|p + (1− ψR)|∇un|p) dx

=

∫

RN

(1− ψR) dµ +

∫

RN

(1− ψR)|∇u|pdx

+ lim sup
n→∞

∫

RN

ψR|∇un|pdx.

TakingR → ∞ and using the Lebesgue theorem we obtain (3.3). The proof of (3.4) is similar.

¤

ConsideringΩ given by(A1) we define, for anyr > 0, the set

Ω+
r = {x ∈ RN : dist(x, Ω) < r}. (3.6)

We also define the barycenter mapβq : W 1,p
0 (Ω) \ {0} → RN by setting

βq(u) =

∫
RN |u|qx dx∫
RN |u|q dx

.

Hereafter we write onlymq,r to denotemq,Br(0). Also for simplicity of notation, when we omit

the reference for the set inmq,D, Nq,D andEq,D, we are assuming thatD = Ω. The following

result is a version of [4, Lemma 4.2].

Lemma 3.3. For anyr > 0 there existq0 = q0(r) ∈ (p, p?) such that, for allq ∈ [q0, p
?), we have

thatβq(u) ∈ Ω+
r wheneveru ∈ Nq andEq(u) ≤ mq,r.

Proof. Suppose, by contradiction, that the lemma is false. Then there existqn ↑ p?, (un) ∈ Nqn

with Eqn(un) ≤ mqn,r andβqn(un) 6∈ Ω+
r . Thus,

mqn ≤ Eqn(un) =

(
1

p
− 1

qn

)
‖un‖p

Ω ≤ mqn,r.

Taking the limit, using the definition ofNqn and Lemma 3.1, we conclude that

lim
n→∞

|un|qn

qn,Ω = lim
n→∞

‖un‖p
Ω = SN/p. (3.7)

By Hölder’s inequality we have
∫

Ω

|un|qn ≤ L(Ω)(p?−qn)/p?

(∫

Ω

|un|p?

)qn/p?

.
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The above expression and (3.7) imply thatlim inf
n→∞

|un|p
?

p?,Ω ≥ SN/p. On other hand, recalling that

|un|pp?,Ω ≤ S−1‖un‖p
Ω, we getlim sup

n→∞
|un|p

?

p?,Ω ≤ SN/p. Hence,

lim
n→∞

|un|p
?

p?,Ω = SN/p. (3.8)

This and (3.7) imply that(un) is a minimizing sequence forS. Thus, up to a subsequence,

∇un(x) → ∇u(x) for a.e. x ∈ Ω, whereu is the weak limit ofun in W 1,p
0 (Ω). We may also

suppose that (3.1) holds andun → u in Lp(Ω). Lemma 3.2 and equations (3.7) and (3.8) provide

SN/p = ‖u‖p
Ω + µ , SN/p = |u|p?

p?,Ω + ν

and

ν p/p? ≤ S−1 µ , |u|pp?,Ω ≤ S−1‖u‖p
Ω.

Note that, sinceΩ is bounded, the termsµ∞ andν∞ do not appear in the above expressions.

The inequality(a + b)t < at + bt for a, b > 0 and0 < t < 1, and the above expressions imply

that ν and|u|p?

p?,Ω are equal either to 0 orSN/p. In fact, if this is not the case, we get

S(N−p)/p = S−1(‖u‖p
Ω + µ ) ≥

(
|u|p?

p?,Ω

)p/p?

+ ν p/p?

>
(
|u|p?

p?,Ω + ν
)p/p?

= S(N−p)/p,

which is absurd. Suppose|u|p?

p?,Ω = SN/p. Sinceun ⇀ u weakly in W 1,p
0 (Ω), we have that

‖u‖p
Ω ≤ lim inf

n→∞
‖un‖p

Ω = SN/p. Hence

‖u‖p
Ω

|u|pp?,Ω

≤ SN/p

S(N−p)/p
= S,

and we conclude thatS is attained byu ∈ W 1,p
0 (Ω), which does not make sense. This shows that

u = 0 and thereforeν = SN/p andν is concentrated at a single pointy ∈ Ω. Hence,

βqn(un) =

∫
RN |un|qnx dx∫
RN |un|qn dx

→ S−N/p

∫

Ω

x dν = y ∈ Ω,

which contradictsβqn(un) 6∈ Ω+
r . The lemma is proved. ¤

Finally, we present below the relation betweencλ,q andmq.

Lemma 3.4. For anyq ∈ (p, p?) we havelim
λ→∞

cλ,q = mq.

Proof. SinceW 1,p
0 (Ω) ⊂ X we know that0 ≤ cλ,q ≤ mq for all λ ≥ 0. Suppose, by contradiction,

that the lemma is false. Then there exist a sequenceλn → ∞ such thatcλn,q → c < mq. By

Theorem 2.7,cλn,q is achieved by large values ofn. So Theorem 2.9 implies thatc is achieved by

Eq onNq. Hence,c ≥ mq. This contradiction proves the lemma. ¤
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4. PROOF OFTHEOREM 1.3

We recall some facts about equivariant theory. An involution on a topological spaceX is a

continuous functionτX : X → X such thatτ 2
X is the identity map ofX. A subsetA of X is called

τX-invariant if τX(A) = A. If X andY are topological spaces equipped with involutionsτX and

τY respectively, then an equivariant map is a continuous functionf : X → Y such thatf ◦ τX =

τY ◦ f . Two equivariant mapsf0, f1 : X → Y are equivariantly homotopic if there is a homotopy

Θ : X × [0, 1] → Y such thatΘ(x, 0) = f0(x), Θ(x, 1) = f1(x) andΘ(τX(x), t) = τY (Θ(x, t)),

for all x ∈ X, t ∈ [0, 1].

Definition 4.1. The equivariant category of an equivariant mapf : X → Y , denoted by(τX , τY )-

cat(f), is the smallest numberk of open invariant subsetsX1, . . . , Xk of X which coverX and

which have the property that, for eachi = 1, . . . , k, there is a pointyi ∈ Y and a homotopyΘi :

Xi × [0, 1] → Y such thatΘi(x, 0) = x, Θi(x, 1) ∈ {yi, τY (yi)} andΘi(τX(x), t) = τY (Θi(x, t))

for everyx ∈ Xi, t ∈ [0, 1]. If no such covering exists we define(τX , τY )-cat(f) = ∞.

If A is aτX-invariant subset ofX andι : A ↪→ X is the inclusion map we write

τX-catX(A) = (τX , τX)-cat(ι) andτX-cat(X) = τX-catX(X).

In the literatureτX-cat(X) is usually calledZ2-cat(X). Here it is more convenient to specify the

involution in the notation.

The following properties can be verified.

Lemma 4.2. (i) If f : X → Y andh : Y → Z are equivariant maps then

(τX , τZ)-cat(h ◦ f) ≤ τY -cat(Y ),

(ii) If f0, f1 : X → Y are equivariantly homotopic, then(τX , τY )-cat(f0) = (τX , τY )-cat(f1).

We denote byτa : V → V the antipodal involutionτa(u) = −u on a vector spaceV . A τa-

invariant subset ofV is usually called a symmetric subset. Equivariant Ljusternik-Schnirelmann

category provides a lower bound for the number of pairs{u,−u} of critical points of an even

functional. The following well known result (see [9, Theorem 1.1], [17, Theorem 5.7]) will be

used in the proof of Theorem 1.3.

Theorem 4.3.LetI : M → R be an evenC1-functional on a complete symmetricC1,1-submanifold

M of some Banach spaceV . Assume thatI is bounded below and satisfies(PS)c for all c ≤ d.

Then, denotingId = {u ∈ M : I(u) ≤ d}, I has at leastτa-cat(Id) antipodal pairs{u,−u} of

critical points withI(±u) ≤ d.

Coming back to our problem we set, for any givenr > 0,

Ω−
r = {x ∈ Ω : dist(x, ∂Ω ∪ Ωτ ) ≥ r}.
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Throughout the rest of this sectionr > 0 sufficiently small is fixed in such way that the inclusion

mapsΩ−
r ↪→ Ω \ Ωτ andΩ ↪→ Ω+

r are equivariant homotopy equivalences andΩ+
r is as defined in

(3.6). Without loss of generality we suppose thatBr(0) ⊂ Ω.

Now we follow [3] and chooseR > 0 with Ω ⊂ BR(0) and set

ξ(t) =

{
1, if 0 ≤ t ≤ R,

R/t, if t ≥ R.

We also define, foru ∈ Vλ,q, a truncated barycenter map

βq(u) =

∫
RN |u|qξ(|x|)x dx∫

RN |u|qdx
.

The following results will be useful in the proof of Theorem 1.3.

Lemma 4.4 ([3, Lemmas 3.7 and 3.8]). There exists̃q ∈ (p, p?) with the property that, for each

q ∈ [q̃, p?), there is a numberΛ1 = Λ1(q) such that, for everyλ ≥ Λ1, we have

(i) mq,r < 2cλ,q,

(ii) if u ∈ Vλ,q andIλ,q(u) ≤ mq,r thenβq(u) ∈ Ω+
r .

Lemma 4.5. For any bounded domainD ⊂ RN we have2cλ,q ≤ cτ
λ,q.

Proof. Givenu ∈ Vτ
λ,q we can use (2.7) to conclude thatu+, u− ∈ Vλ,q, whereu± = max{±u, 0}.

Thus

Iλ,q(u) = Iλ,q(u
+) + Iλ,q(u

−) ≥ 2cλ,q,

and the result follows. ¤

Proof of Theorem 1.3:Let q̃ be given by Lemma 4.4 and fixq ∈ (q̃, p?). We will show that the

theorem holds forΛ(q) = max{Λ0(q), Λ1(q)}, whereΛ0(q) is given by applying Proposition 2.5

with C0 = 2mq,r andΛ1(q) is given by Lemma 4.4.

For anyλ ≥ Λ(q) we can use Theorem 4.3 forIλ,q : Vτ
λ,q → R and obtainτa-cat(Vτ

λ,q ∩ I
2mq,r

λ,q )

pairs±ui of critical points withIλ,q(±ui) ≤ 2mq,r < 4cλ,q < 2cτ
λ,q (by Lemmas 4.4(i) and 4.5).

The same argument employed in the proof of Theorem 1.1 show that±ui are solutions of(Sτ
λ,q)

which change sign exactly once.

In order to finish the proof we need only to verify that

τa-cat(Vτ
λ,q ∩ I

2mq,r

λ,q ) ≥ τ -catΩ(Ω \ Ωτ ). (4.1)

With this purpose we take a nonnegative radial functionvq ∈ Nq,Br(0) such thatEq,Br(0)(vq) = mq,r

and defineαq : Ω−
r → Vτ

λ,q ∩ I
2mq,r

λ,q by setting

αq(x) = vq(· − x)− vq(· − τx). (4.2)
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We claim that|x− τx| ≥ 2r for everyx ∈ Ω−
r . Indeed, if this is not the case, thenx = (x+ τx)/2

satisfies|x− x| < r andτx = x, contradicting the definition ofΩ−
r . Sincevq is radial andτ is an

isometry, we can use the last claim to verify thatαq is well defined.

We note that ifu ∈ Vτ
λ,q thenu+ ∈ Vλ,q andIλ,q(u) = 2Iλ,q(u

+). Thus, Lemma 3.3 implies that

βq(u
+) ∈ Ω+

r for all u ∈ Vτ
λ,q ∩ I

2mq,r

λ,q and therefore the diagram

Ω−
r

αq−→ Vτ
λ,q ∩ I

2mq,r

λ,q

γq−→ Ω+
r , (4.3)

whereγq(u) = βq(u
+), is well defined. A direct computation show thatαq(τx) = −αq(x) and

γq(−u) = τγq(u). Moreover, using (4.2) and the fact thatvq is radial, we get

γq(αq(x)) =

∫
Br(x)

|vq(y − x)|qy dy∫
Br(x)

|vq(y − x)|q dy
=

∫
Br(0)

|vq(y)|q(y + x) dy∫
Br(0)

|vq(y)|q dy
= x,

for anyx ∈ Ω−
r . Now, recalling thatr was chosen so that the inclusion mapsΩ−

r ↪→ Ω \ Ωτ and

Ω ↪→ Ω+
r are equivariant homotopy equivalences, the inequality (4.1) follows from (4.3) and the

properties given by Lemma 4.2. The theorem is proved. ¤

Proof of Corollay 1.4:Let τ : RN → RN be given byτ(x) = −x. It is proved in [6, Corollary 3]

that our assumptions implyτ -cat(Ω) ≥ N . Since0 6∈ Ω, Ωτ = ∅. It suffices now to apply Theorem

1.3. ¤
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