MULTIPLE MINIMAL NODAL SOLUTIONS FOR A QUASILINEAR SCHR  ODINGER
EQUATION WITH SYMMETRIC POTENTIAL

MARCELO F. FURTADO

ABSTRACT. We deal with the quasilinear S@idinger equation
—div(|VulP~2Vu) + (Aa(z) + D)|ulP~2u = |u|?%u, u € WHP(RY),

where2 < p < N, A > 0andp < ¢ < p* = Np/(N — p). The potentiak > 0 has a potential well

and is invariant under an orthogonal involution®o¥ . We apply variational methods to obtain, for

large, existence of solutions which change sign exactly once . We study the concentration behavior
of these solutions a8 — co. By takinggq closep* we also relate the number of solutions which
change sign exactly once with the equivariant topology of the set where the potevdizihes.

1. INTRODUCTION AND STATEMENT OF RESULTS

The goal of this article is to study the number of solutions of the quasilineab&iciger equa-
tion

—Apu+ (Na(z) + V|ufP~?u = u|??u  inRY,
(Sz\,q)

u € WHP(RY),

whereA,u = div(|VulP~2Vu) is thep-Laplacian operator an?l< p < N. We will impose some
symmetry properties and look for nodal solutiong 6f ;). The parameters andg are such that

A > 0andp < ¢ < p*, wherep* = Np/(N — p) is the critical Sobolev exponent. For the potential
a we assume that

(A)) a € C(RY,R) is nonnegative§) = inta~1(0) is a nonempty set with smooth boundary
andQ = a(0),
(As) there existsV/, > 0 such that

L ({z e RY :a(z) < My}) < oo,

whereL denotes the Lebesgue measur&ih.

The above hypotheses were introduced by Bartsch & Wang in [3], where they considered the
problem(sS, ,) for the particular casg = 2. They showed that, for large valuesxfthe problem
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(Si4) has a positive least energy solution. Moreover)as oo, these solutions concentrate at a
positive solution of the Dirichlet problem

(D,) —Ayju A+ [uP7u = |ulT %, u € WyP(Q).

Recalling that Benci & Cerami [4] showed that, fpr= 2, ¢ close to2* and ) bounded, the
problem(D,) has at least cé) positive solutions, Bartsch & Wang proved in [3] that the same
holds for the probleniS, ,), where caf(?) stands the Ljusternik-Schnirelmann category of the set
Q.

Recently, using ideas from [6] and assuming thdtas some symmetry, the author showed [11]
that there is also an effect of the domain topology in the number of solutiafs(D,) which
change sign exactly once; that is, the et «~1(0) has exactly two connected components,

Is positive in one of them and negative in the other. It is natural to ask if the same holds for the
problem(S, ,). The aim of this work is to give an affirmative answer to this question.

More specifically, we deal with the problem

—Aju+ (Aa(z) + D)|ulP?u = [u|7%u  inRY,
(S%,) u(tz) = —u(x) forall z € RV,
u € WHP(RYN),
wherel > 0,2 < p < N,p < ¢ < p*andr : RY — R is an orthogonal linear function such
thatr # Id and72 = Id, with Id being the identity oR”". The potentiak satisfies4,), (4,) and
(A3) a(rz) = a(z) for all z € RV,
Our first result concerns the existence of solutiong &]r,) and can be stated as

Theorem 1.1. Suppos€ A, )-(Asz) hold. Then there exist&y = Ay(¢) > 0 such that, for every
A > Ay, the problen(S7 ) has at least one pair of solutions which change sign exactly once.

The proof of the above result relies in minimizing the associated functional

1 1
Ba(w = [ (VP + (ae) + Dl o~ 2 [ juftds
D JrnN q JrN
in some appropriated manifold of = {u € W'*(RY) : [y a(z)[u[’ < oo}, and relating the
number of nodal regions of a critical poing with its energyl, ,(u). Similarly to [3], ther-
version of(D,) acts as a limit problem fafS7 ). Thus, the following concentration result holds.

Theorem 1.2.Let )\, — oo asn — oo and (u,) be a sequence of solutions @f] ) such that
I, o(u,,) is bounded. Then, up to a subsequenge— u strongly inW?(R") with u being a
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solution of the Dirichlet problem
—Apu+ JulP72u = |u|t?u  inQ,
(D7) u=70 on o ),
u(rz) = —u(x) forall z € Q,

which change sign exactly once.

By taking advantage of the symmetry and the arguments contained in [11] we can obtain, for
close top* and\ large enough, the following multiplicity result.

Theorem 1.3. Supposé A;)-(A3) hold and2 is bounded. Then there exists= (p, p*) with the
property that, for eacly € (g, p*), there is a numben(q) > 0 such that, for everyx > A(q), the
problem(S7 ) has at leastr-cal, (€2 \ 27) pairs of solutions which change sign exactly once.

Here,Q)™ = {x € Q : 7a = 2} andr-cat is ther-equivariant Ljusternik-Schnirelmann category
(see Section 4). There are several situations where the equivariant category turns out to be larger
than the nonequivariant one. The classical example is the case of the unit$phére RY with
7 = —Id. In this case c46" ') = 2, whereag-cafS"¥ 1) = N. Consequently, as an application
of Theorem 1.3 we have

Corollary 1.4. SupposéA, ) and(As) hold, 2 is bounded and symmetric with respect to the origin
and0 ¢ Q. Assume further that the potentialis even and there is an odd map: SV~ — Q.
Then there exist € (p, p*) with the preperty that, for eache (¢, p*), there is a numbeh(q) > 0
such that, for every > A(q), the problem

—Ayu+ (Ma(z) + D|ulP~?u = [u|?%u  inRY,
u € WHP(RY),

has at leastV pairs of odd solutions which change sign exactly once.

We point out that, for a fixed € (p,p*) (or ¢ € (¢,p*) in Theorem 1.3), the energy of the
solutions obtained in Theorem 1.1 (or Theorem 1.3) is bounded independently ™ius, the
concentration result of Theorem 1.2 holds for such solutions.

It is worthwhile to mention that the above results seem to be new even in the eageln [8]
Clapp & Ding considered the problem

—Au+ da(z)u = pu + |u)* 2w inRY, u(rz) = —u(z) Vo € RY

and proved, for positive and small values;gfresults concerning the existence and concentration
of solutions inW3(RY) aspy — 0. By takingu ~ 0 they also showed a relation between
the number of solutions of the above problem and the topolody.oThe results we obtain in

this paper complement those of [8] since we consider subcritical powers and we deal with the
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guasilinear case. The nonlinearity of thdaplacian, which makes the calculations more difficult,

is compensated here by the homogeneity of the problem. We also would like to mention the work
[2] where the quasilinear critical case is studied for positive solutions. Finally, in order to overcome
the lack of compactness of the embeddifig? (RY) — L?(RY), we use ideas introduced in [3]

for the semilinear case = 2.

The paper is organized as follows. In Section 2 we define the abstract framework and prove
Theorems 1.1 and 1.2. Section 3 is devoted to some technical results related to the limit problem
(D,). In Section 4, after recalling some basic facts about equivariant Ljusternik-Schnirelmann
theory, we present the proof of Theorem 1.3.

2. PROOF OFTHEOREMS1.1AND 1.2

Fors > 1 we denote byul|, the L*(R")-norm of a function:. For simplicity, we write[ u to
indicate [, u(x)dz. Let X be the space

X = {u c WHP(RY) . / a(x)|ul? < oo},
RN
endowed with the norm
[Jully = /RN (IVul? + (a(z) + 1)[ul?),

which is clearly equivalent to each of the norms
Jully = [ (9uP + (aa) + Dlul?).

for A > 0. Conditions(4,), (42) and Sobolev Theorem imply that the embeddiig— L*(R")
is continuous for alp < s < p*. Moreover, ifp < s < p*, thenX is compactly embedded in

L; (RY). As stated in the introduction we will look for critical points bf, : X — R defined by
1

D) = [ (19uP + (o) + D) = - [l

We recall that/, , satisfies the Palais-Smale condition at levet R, (PS). for short, if any
sequenceu,) C X such thatly ,(u,) — candl} (u,) — 0 possesses a convergent subsequence.
In order to verify the Palais-Smale condition fbr, we follow [3], where the authors deal with
the case = 2 and consider nonlinearities more general thgfr2u.

Lemma 2.1([3, Lemmas 2.2, 2.3 and 2.4])et(u,,) C X be a(PS). sequence fof, ,. Then
() (uy,) is bounded inX,
(i) i fJup [ = lim fun[§ = cpa/(q = p),

(i) if ¢ #£ 0, thenc > ¢y > 0, wherec, is independent ok.



MULTIPLE NODAL SOLUTIONS FOR A SCHRODINGER EQUATION 5

Lemma 2.2([3, Lemma 2.5]) LetCy, be fixed. Then, for any given> 0, there exist\. > 0 and
R. > 0 such that, if(u,) is a (PS). sequence fof, , with ¢ < Cy and A > A., we have

limsup/ lu,|? < e,
n—oo  JRN\Bpg_(0)
whereBg_(0) = {x € RY : |z| < R.}.
The next two results will overcome the lack of Hilbertian structure.

Lemma 2.3([1, Lemma 3]) Let K > 1, s > 2 and A(y) = |y|*~2y, fory € RE. Consider a
sequence of vector functions : RY — R such that(n,) C (L*(RY))X andn,(x) — 0 for a.e.
x € RN, Then, if{n,|1:&~))x is bounded, we have

lim |A(n) + A(w) — A(n, + w)|¥CY =0,

n—oo [pN
for eachw € (L*(RY))* fixed.

Lemma 2.4. Let A > 0 be fixed and letu,) be a(PS). sequence for, ,. Then, up to a subse-
quencey,, — u weakly inX with v being a weak solution afS, ,). Moreovery,, = u, —uis a
(PS), sequence fof, , with ¢/ = ¢ — I, ,(u).

Proof. Lemma 2.1(i) implies thatu,,) is bounded inX and therefore, up to a subsequence,
Uy — U weakly in X,
Up — U in L; (RY)forallp < s < p*, (2.1)
u,(z) — u(z) forae.xr e RV,

We claim that we may suppose that

Vu,(z) — Vu(x) fora.e.x € RY,

(2.2)
|Vunlp2% — \Vu|p‘2g—u weakly in(LP(RY))', 1 <i < N,
Xz X

where (LP(RY))" stands the dual space 6f(RY). In order to verify the claim we defing, :
RY — R by

Po(@) = (IVun (@) *Vua(2) — V(@) P Vu(@)) - V(un(z) — u(@)).
Let K C RY be a fixed compact set. Given> 0 we setK,. = {z € R" : dist(z, K) < ¢} and

choose a cut-off functiop € C>°(R") suchthat < <1, =1in K andy =0inR" \ K..
Using the definition of?, and that the function : RY — R, h(z) = |z|? is strictly convex, we

have
og/Png/ Py = / \vunw—/ (Vu,[P~2 (Vuy, - Vu) 1
K RN RN RN

(2.3)
+/ |VulP~2 (Vu -V (u—uy,)) .
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Since(yu,,) is bounded inX andl}  (u,) — 0 we have
Tim (1 (un), Gen) = lim (I} (), o) = 0.
The above expression, (2.3),= 0in RV \ K. and (2.1) give
OS/KPngClJrCz+C’3—C4+o(1), (2.4)

asn — oo, With
C = / |Vun]1”’2 (Vu, - V) (u — uy,),

Cy = / Aa(z) (\un‘p%unu — |un‘p) ’

Coim [0 (fual e unl?) and o= [ (= ).
K.

£

Since(u,,) is bounded inX andu,, — u in L?(K.), we have that
C < 190 [ (900 =l < 9l o = . = o0),
Ke

asn — oo. Next we observe that, up to a subsequence,

/ |un]p—>/ |ul?, asn — oo. (2.5)
K. K.

Moreover, sinceu,(z) — u(r) for a.e.z € K. and(|u,[’~2u,) is bounded inL?/*~Y(K_), we
have thatu,, [P~2u,, — |u|P~2u weakly in LP/*=1)(K_). Thus,
\un|p2unu—>/ |ul?, asn — oo.
K. K.
The above expression, (2.5) and the boundednes&eof in K. imply thatlim,, .., Cy = 0. In
the same way we can show that,, .., C5 = lim,,_,., C; = 0. Therefore, we can rewrite (2.4) as

0= / (|Vun]p_2Vun - |Vu\p_2Vu) - V(u, —u) — 0, asn — oo.
K

Considering that|a["2a — |b[P72b) - (a —b) > C,|a — b, for everya, b € RY (see [15, pg. 210]),
we get

n—oo

lim [ |Vu, — Vulf =0,
K

i.e., Vu,, — Vu strongly in(L?(K))". SinceK is arbitrary andu,,) is bounded inX, we may
suppose that (2.2) holds.

By using (2.2) and (2.1) we conclude thgt (u) = 0. The boundedness ¢f., ), the pointwise
convergences and the Brezis & Lieb’s lemma [5] imply

Dyg(0n) = Dyg(un) = Ing(u) + o(1),

asn — oo. Thuslim,, .. Iy 4(v,) = ¢ — I 4(u).
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In order to verify that/}  (v,) — 0 we note that, for any € X, we have

(I o(va), ) = (I} (un), ) — (I} ,(u),¢) + C5 + Cg — Cr, (2.6)
where
Cs = / (|VvalP~*Vo, + |[VulP>Vu — |Vu, [P *Vu,) - Vo
RN
Co = / (Aa(@) + 1) (|oalP"2on + |ulP 2w — [un [P "*uy) ¢
RN
and

Cr = / (|vn|q*2vn 4 ul??u — |un|q*2un) o.
RN
Using Holder’s inequality and Lemma 2.3 witf), = Vv,, andw = Vu, we get

p—1

5| < (/ \|wn\p2wn+ywp2W—1wn|”wn}f'fl) ’ 9],
RN

< o) ol
asn — oo. Inthe same way we can see that the above estimate holds alspdodC';. Therefore,
sincel}  (u,) — 0andl} (u) = 0, we obtain from (2.6) that

(1} 4(vn), ®)| < o(1) ||9]],, asn — oo,
forall ¢ € X. This implies that’} ,(v,) — 0 and concludes the proof of the lemma. O

We are now ready to state the compactness condition we will need.

Proposition 2.5. For any C;, > 0 given, there existd, = A¢(¢) > 0 such that/, , satisfieqPS).
forall c < Cyand\ > A,.

Proof. The proof is similar to that of [3, Proposition 2.1] and will be presented here by the sake
of completeness. Let be given by Lemma 2.1(iii) and fix > 0 such thale < copq/(q — p).
For anyCy, > 0 we takeA, and R. given by Lemma 2.2 and we will prove that the proposition
holds forA, = A.. Let(u,) be a (PS)sequence of, , with ¢ < C; andA > Ay. By Lemma 2.4
we may suppose that, — « weakly in X andv,, = u, — u is a (PS) sequence for, ,, whith
d = c—I,,(u). We claim that’ = 0 and therefore Lemma 2.1(ii) implies thaailm lonlls =
dpq/(p—q) =0, i.e.,u, — u strongly inX. o

In order to verifity that’ = 0 we suppose, by contradiction, that> 0. In view of Lemma
2.1(iii) we havec’ > ¢, > 0. Sincev,, — 0in L} _(R") we can use Lemma 2.1(ii) and Lemma 2.2

to conclude that
pq

Co < d——= lim |v,[]
q—p q—p no>
c
< lim U |? —|—limsup/ lvn|? < D P
n—oo Br. N—00 RN\Bp_(0) 2 q—7p
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This is a contradiction and the proposition is proved. O

We are now ready to take advantage of the symmetry and present our variational framework.
We start by noting that induces an involution oX', which we also denote by, in the following
way: for eachu € X we defineru € X by

(tu)(x) = —u(rz). (2.7)

We denote byX™ = {u € X : 7u = u} the subspace af-invariant functions ofX" and consider
the Nehary manifold

Vrg = {u € X\{0}: (I, (), u) = 0} = {u € X\ {0} : [Jull} = [uf}}.
Since we are looking for-invariant solutions we define theinvariant Nehari manifold by
setting
Vig={ueWg:tu=ul =V\,NX".
The critical points we will obtain are related with the following minimizing problems

Chg = ué%fq [A,q(u) and Cﬂ,q = “é%gq IA,q(u)'

Now we fix some notation in order to deal with the limit problem. Given a dorfain R we
consider the spadd, ”(D) endowed with the norm

Jully = [ 1Vl + JuP
D
For anyp < ¢ < p*, we definel, p : W(}”’(D) — R by setting

1 1
Eyp(u) = —/ (IVul? + [ul?) ——/ |ul?
pPJp qJp

and the associated Nehary manifolds
Nop = {u € WyP(D)\ {0} : (E! p(u),u) = 0} and N p = Nyp N X"

We also define the numbers

Mgp = ué/{l/qu Eyp(u) and mgp, = ueijl\lfffp Eyp(u). (2.8)

Before presenting the proof of Theorem 1.1 we note that,iff a solution of(S} ), then it is
necessarily of clas€'. We say that, changes sigm times if the set{x € RY : u(z) # 0}
hasn + 1 connected components. Obviouslyyifs a nontrivial solution of probleniS7 ), then
it changes sign an odd number of times. The relation between the number of nodal regions of a
solution and its energy is given by the result below.

Proposition 2.6. If u is a solution of probleniST ) which changes sigek—1 times, ther, ,(u) >
kel -
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Proof. The set{z € RY : u(z) > 0} hask connected components,, . .., A. Letu;(x) = u(z)
if z € A; UTA,; andu,;(x) = 0, otherwise. Since is a critical point of/, ,, an easy calculation
show thatd = (I} ,(u), u;) = |lugl[} — |ug|?. Thus,u; € V{ foralli=1,... k, and

Dyg(u) = Dyg(ur) + -+ Iy g(ug) > kc;q,

as desired. O

Proof of Theorem 1.11etq € (p, p*) be fixed and\, = Ay(q) be given by Proposition 2.5 with
Co = mj o. LetA > Ay and(u,) C V5, be a minimizing sequence feof . SinceN/, C V] we
have that] , < m; . Moreover, by the Ekeland Variational Principle [10] (see also [18, Theorem
8.5]), we may suppose thét, ) is a Palais-Smale sequence and therefore the infimum is achieved
by someu € V5 . The definition ofX™ and the Proposition 2.6 show thathanges sign exactly
once. In order to finish the proof we note that, by the Lagrange multiplier rule, therg/exii®
such that
(1§ 4(u) = 05 ,(u),¢) =0, V€ X,
whereJ,(u) = [Jull} — |ull. Takingp = u € VY, we get
0= (I3 4 (), u) = 0(Jg(u), u) = 0(q — p)[ull3-
This impliesd = 0 and therefore
(Ig(u),0) =0, Vo e X

The above expression and the principle of symmetric criticality [14] (see also [13, Proposition 1])
imply thatu (and also-u) is a solution of(S7 ) which changes sign exactly once. The theorem is
proved. O

Using the above ideas and making no assumption of symmetry we can extend the existence
result in [3] for the quasilinear cage< p < N and prove:

Theorem 2.7.SupposéA;) and(A,) hold. Then there exists, = A¢(¢) > 0 such that, for every
A > Ay, the problem(S, ,) has a positive least energy solution.

Proof. For anyq € (p, p*) fixed we take\, = Ay(q) given by by Proposition 2.5 withy = m, q.
For A > Ay, arguing as in the proof of Theorem 1.1, we conclude thatis achieved by some
u € V), Which is a solution of S, ,). By [3, Lemma 3.10}: does not change sign and therefore,
by the maximum principle, we may suppose thas$ positive. O

For the study of the concentration of solutions we need the following technical result.
Lemma 2.8. Let M > 0, A\, > 1 and(u,) C X be such that, — oo and ||u,|,, < M. Then

there exists a function € W, ”(Q) such that, up to a subsequeneg, — u weakly inX and
u, — uin L*(RY), foranyp < s < p*.
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Proof. Since||u,|[1 < ||un]ln, < M, there exists: € X such that, up to a subsequenag,— u
weakly in X . Itis proved in [8, Lemma 4] (see also [2, Lemma 1)) that, in fact, 1, (Q2) and
u, — uin LP(RY). Letp < s < p* be fixed and choosg > 0 such thatl /0 = v/p + (1 —7) /p*.
By using the Hblder’s inequality and the continuous embedding— L?* (R") we obtain

. (1-)8/p* ~0/p
[ =l < (/ |un—urp) (/ \un—u|p)
RN RN RN

< Cllun =l — ufy?,
and thereforer,, — u in L*(RY). The lemma is proved. O
Proof of Theorem 1.2:Let (u,) be a sequence of solutions @§7 ) such that\, — oo and
pqlx, q(un) = (¢ — p)|lun|%, is bounded. We will prove the theorem forc W, (Q) given by

Lemma 2.8. Sincd}  (u,) = 0 andae = 0in 2, we can proceed as in the proof of (2.2) and
suppose that

Vu,(z) — Vu(z) fora.e.z € (), (2.9)
Tu, 20U gy 2 2t Klyin(LP(Q)), 1 <i< N 2.10
V| 5 [Vl 5y, Wea yin(LP(Q))', 1 <i <N, (2.10)

and
/ (V|2 - Vb + it [P 210) — / 26, ¥ 6 € WEP(Q).
Q Q

In view of Lemma 2.8, (2.10) and Lemma 2.1(iii), we can take the limit in the above expression
and conclude that # 0 satisfies the first equation {D7). SinceX" is a closed subspace af
we need only to show that, — u strongly inW»(R").

By using (2.9)u € W, (Q) and Brezis & Liebs’s lemma we get

[ ¥ = [l [ 9w
RN RN\Q Q
= / \Vun|p+/|Vun|p—/|Vu|p—|—0(1)
RN\Q Q Q

asn — oo. Moreover, using: € W, (£2) once more, we obtain

/RN a(z)|un — ul? = /RN () un]?.

This, (2.11), Lemma 2.8 and the fact thgtandu lie on the Nehari manifol@’y  imply that

=l = [ V@ [ el = [Vl o()
RN RN RN

- / ] — / P / Yl + o(1)
RN RN RN

= [t [ = [ 19 o) = o),
RN RN RN

(2.11)
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asn — oo. Thus,|ju, —ullg < [lu, —ul|5 — 0, asn — oo and the theorem is proved. O

The next result gives the asymptotic behavior of positive solutioris'of). The proof is equal
to that of Theorem 1.2 and will be omitted.

Theorem 2.9.Let \, — oo asn — oo and(u,) be a sequence of solutions @f,, ,) such that
I, ,(u,) is bounded. Then, up to a subsequenge;— u strongly inW1?(RY) with u being a
positive solution ofD,,).

3. THE LIMIT PROBLEM (D,)

In this section we present some technical results that are related with the limit pr@blgnAs
usual, we denote by the best constant of the embeddiig *(Q) — L?*(Q2) given by

Vul? + |ul?
S = inf fQ | ’p i
ueW,y P (2)\{0} ’u‘p*,Q

)

where|u|; p Stands thel.*(D)-norm. It is well known thatS is independent of) and is never
achieved in any proper subset®f . We start with the relation between, » defined in (2.8) and
S.

Lemma 3.1. For any bounded domai®® c R we have

1
. N
lim myp = mpyp = =95 /P,

q—p* N

Proof. The first equality is proved in [7, Proposition 5]. Le} be the unit sphere dﬂfol’p(D).
Sincey : u — u]u|;*{v/p defines a dipheomorphism betweep and,- p, we have

p

N N — . f P f HU’HD

mpep = Aot ey = N

N/p
p

RN TN,
wewdP@)\{o} \ [ulpp
and thereforen,. p = LSV/7. O

In what follows we denote by\(R”) the Banach space of finite Radon measures @&/er
equipped with the norm

] = sup ()]
$ECH(RN),|ploo <1

A sequencé;.,) € M(RY) is said to converge weakly to € M(RY) providedu,(¢) — (o)
for all ¢ € Cy(RY). By the Banach-Alaoglu theorem, every bounded sequémngec M (RY)
contains a weakly convergent subsequence.
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The next result is a version of [18, Lemma 1.40]. The proof is also inspired by [16, Lemma 2.1
and Remark 2.2].

Lemma 3.2. Let(q,) C R be such thap < ¢, < p* andq, T p*. Let(u,) C WH(RY) be such
that u,, — u weakly inW(RY), u,(z) — u(z) fora.e. z € RY, Vu,(z) — Vu(z) for a.e.
r € RV,

IV (up —u)|P = weakly inM(RY),

(3.1)
w,, — u|™ — v weakly inM(RY),
and define
[hoo = lim limsup/ |V, |P, Voo = lim limsup/ |, |7
R—oo n00 |z|>R R—oo 500 lz|>R
Then
PP < Sl (3.2)
lim sup [Vu,[py = [Vulp +[ ] + foo, (3.3)
and
lim sup |u, |2 = |u|g: +v| + Vs (3.4)

n—oo

Moreover, ifu = 0 and|v|?/?" = S~'|u|, then the measurgs and v are concentrated at single
points.

Proof. We first assume that = 0. For any giveryy € C>°(R") we denotek = supp¢ and use
Holder and Sobolev’s inequalities to get

1/gn »* —an 1/p
(/ ]gbun!qn> < STVPL(K) @’ (/ |V (pun,)|P + |d)un\p)
RN RN

Since|g|™ — |¢[P" in C=®(RY) andu,, — 0in LY
expression and use (3.1) to obtain

1/p* 1/p
( / |¢|p*du> < U ( / |¢>|de> Ve Co(RY),
RN RN

and (3.2) follows. Moreover, jiv|?/?" = S~Y x|, then it follows from [12, Lemma 1.2] thatand
1 are concentrated measures.

Considering now the general case, we write= u,, — u. SinceVu,(z) — Vu(z) for a.e.
r € RY, we can use Brezis & Lieb’s lemma to get

Van|? — po + |V, weakly in M(RY). (3.5)

(RY), we can take the limit in the above

Furthermore, using the boundedness$wgf) and Vitalli's theorem we can check that

lim ( / Sl — dlu, —u|%> _ / ol v ¢ € C2(RM)
n—oo RN RN
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and therefore
[ |7 — v+ |ulP”, weakly in M(RY).

Inequality (3.2) follows from the above expression, (3.5) and the corresponding inequality for
ForR > 1, letyr € C*(RY) be such thatygp = 0in Bg(0), ¥gp = 1in RY \ Bg,,(0) and
0 < ¢(x) < 1forallz € RY. Using (3.5) we obtain

n—oo n—o0

limsup/ \Vu,|Pde = limsup/ (Vr|Vu,|P + (1 — ¥g)|Vu,|P) dx
RN RN

_ / (1—¢R)du+/ (1 — )| VulPde

+ lim sup Yr|Vu,|Pdz.

n—oo ]RN
Taking R — oo and using the Lebesgue theorem we obtain (3.3). The proof of (3.4) is similar.
O
Considering given by(A;) we define, for any: > 0, the set
QF = {z ¢ RY . dist(z,Q) < r}. (3.6)

We also define the barycenter map: W, () \ {0} — R" by setting

B Jan [ul?z d

ﬁq(u) = —fRN |u|q dr

Hereafter we write onlyn,, to denotem, 5, (). Also for simplicity of notation, when we omit
the reference for the set im,p, NV, p and E, p, we are assuming thg? = Q. The following
result is a version of [4, Lemma 4.2].

Lemma 3.3. For anyr > 0 there exisy, = qo(r) € (p, p*) such that, for ally € [¢o, p*), we have
that 3,(u) € Q; wheneven € N, andE,(u) < mg,.

Proof. Suppose, by contradiction, that the lemma is false. Then theregxisp*, (u,) € N,
with E,, (u,) < my, » andg,, (u,) € Q. Thus,

1 1
My, < By (1) = (5 - q—) lanll?, < 11

n

Taking the limit, using the definition o¥,,, and Lemma 3.1, we conclude that

lim |u, |I" o = lim [Ju,llg = SN/p, (3.7)

n—oo

By Holder’s inequality we have
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The above expression and (3.7) imply thiat inf |un|§:7Q > S$N/P. On other hand, recalling that

|un|§*,§2 < S |un|

7, we getlim sup |u,|% o < SV/?. Hence,

n—oo

hm |un|p q=SNP. (3.8)

This and (3.7) imply thatw,,) is a minimizing sequence fos. Thus, up to a subsequence,
Vu,(z) — Vu(z) for a.e. z € Q, whereu is the weak limit ofu, in W, (). We may also
suppose that (3.1) holds and — « in L?(£2). Lemma 3.2 and equations (3.7) and (3.8) provide

SV = Yullh 1t Y7 = Jul g +1v]

and
PP < STl Julb g < 57l

Note that, sincé) is bounded, the terms,, andv,, do not appear in the above expressions.
The inequality(a + b)" < a' + b' fora,b > 0 and0 < ¢ < 1, and the above expressions imply
that|v| and]u|§:7Q are equal either to 0 g&V/?. In fact, if this is not the case, we get

SN-p)/p  —

* p/p* .
Wlally,+1t) > (Julg) ™ +1v17

S~
p/p
(yu| o +|V|> — SN/,

which is absurd. Suppos{aﬁ*’Q — SN/P. Sinceu, — u weakly in W} *(Q), we have that
Jullfy < liminf [|u, 7, = S7. Hence

lully _ S

= gN-p/p o

|u Z*,Q

and we conclude thaf is attained by € T, ”(Q), which does not make sense. This shows that
u = 0 and therefor¢gry| = S™/P andv is concentrated at a single poipt Q. Hence,

fRN ||z dx N _
g) =B M T, g dv = Q,
which contradictss,, (u,) € €2,F. The lemma is proved. O

Finally, we present below the relation betwegn andm,,.

Lemma 3.4. For anyq € (p, p*) we havehm Crg = My-

A—00

Proof. SincelV,”(2) ¢ X we know that < c,, < m, for all A > 0. Suppose, by contradiction,
that the lemma is false. Then there exist a sequey)ce> oo such thatc,, , — ¢ < m,. By
Theorem 2.7¢,, , is achieved by large values af So Theorem 2.9 implies thatis achieved by
E, onN,. Hencec > m,. This contradiction proves the lemma. O
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4. PROOF OFTHEOREM 1.3

We recall some facts about equivariant theory. An involution on a topological spasea
continuous functiornry : X — X such that% is the identity map of{. A subsetA of X is called
Tx-invariant if 7y (A) = A. If X andY are topological spaces equipped with involutiersand
Ty respectively, then an equivariant map is a continuous fungtioX’ — Y such thatf o 7y =
Ty o f. Two equivariant mapg, f1 : X — Y are equivariantly homotopic if there is a homotopy
O : X x [0,1] — Y such tha©(z,0) = fo(z), O(z,1) = fi(x) andO(7x(x),t) = 7v(O(z,1)),
forallz € X,t € [0,1].

Definition 4.1. The equivariant category of an equivariant map X — Y, denoted byrx, 7v)-
cat f), is the smallest numbér of open invariant subset&’, . .., X} of X which coverX and
which have the property that, for each= 1, ..., k, there is a point; € Y and a homotop; :
X; x [0,1] — Y such tha®,(x,0) = x, ©;(z,1) € {y;, 7v(v;) } and©;(7x (), t) = 7v(O;(z, 1))
for everyz € X;, t € [0,1]. If no such covering exists we defifig;, v )-cat f) = co.

If Aisary-invariant subset ok and. : A — X is the inclusion map we write
Tx-Caty (A) = (7x, 7x)-caf:) andrx-cat X) = tx-caty(X).

In the literaturerx-cat X ) is usually calledZ,-cat X'). Here it is more convenient to specify the
involution in the notation.
The following properties can be verified.

Lemmad4.2.()If f: X — Y andh: Y — Z are equivariant maps then
(1x,7z)-catho f) < ry-calY),
(i) If fo, f1 : X — Y are equivariantly homotopic, thery, 7y )-cat( fo) = (7x, 7v)-cat f1).

We denote by, : V' — V the antipodal involution,(uz) = —u on a vector spac¥®. A 7,-
invariant subset o/ is usually called a symmetric subset. Equivariant Ljusternik-Schnirelmann
category provides a lower bound for the number of péirs—u} of critical points of an even
functional. The following well known result (see [9, Theorem 1.1], [17, Theorem 5.7]) will be
used in the proof of Theorem 1.3.

Theorem4.3.Let] : M — R be an eveiw!-functional on a complete symmet€ig-!-submanifold
M of some Banach spadé. Assume thaf is bounded below and satisfi@BS). for all ¢ < d.
Then, denoting? = {u € M : I(u) < d}, I has at leastr,-cat /¢) antipodal pairs{u, —u} of
critical points with 7 (+u) < d.

Coming back to our problem we set, for any giver 0,

Q- ={z e Q:dist(z,00UQ") > r}.
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Throughout the rest of this sectien> 0 sufficiently small is fixed in such way that the inclusion
maps), — Q\ Q" andQ2 — QF are equivariant homotopy equivalences &jdis as defined in
(3.6). Without loss of generality we suppose tiaf0) C €.

Now we follow [3] and choosé& > 0 with Q C Bx(0) and set

1, if0<t<R,
£(t) = .
R/t, ift > R.
We also define, for € V, ,, a truncated barycenter map

3 _ fRN |ul?€(|z|)x dx
6(1(“) fRN |u|qu .

The following results will be useful in the proof of Theorem 1.3.

Lemma 4.4([3, Lemmas 3.7 and 3.8])There existg € (p, p*) with the property that, for each
q € [q,p"), there is a numbeA; = A,(q) such that, for every > A;, we have

(1) mg, < 2c¢xg4,

(ii) if u € Vygandly  (u) < mg, thenf, (u) € Q.

Lemma 4.5. For any bounded domaif® ¢ R" we havee, , < ¢j .

Proof. Givenu € VJ , we can use (2.7) to conclude that, u~ € V, 4, whereu™ = max{4u, 0}.
Thus

Ing(u) = Dyg(uh) + Ing(u™) = 205,

and the result follows. O

Proof of Theorem 1.3:Let g be given by Lemma 4.4 and fix € (g, p*). We will show that the
theorem holds fo\(¢) = max{Aq(q), A1(q)}, whereAy(q) is given by applying Proposition 2.5
with Cy = 2m,,, andA;(q) is given by Lemma 4.4.

For any\ > A(q) we can use Theorem 4.3 féx, : V], — R and obtainr,-cat(5 , N ]ii’;q”“)
pairs=+u; of critical points with 1y ,(+u;) < 2m,, < 4exy < 2, (by Lemmas 4.4(i) and 4.5).
The same argument employed in the proof of Theorem 1.1 showtihagre solutions of ST )
which change sign exactly once.

In order to finish the proof we need only to verify that

To-ca(V, N Iy7") > 7-cak(Q\ Q7). (4.1)

With this purpose we take a nonnegative radial functipg N, g, (o) such thatt, g o) (ve) = mg,
and definen, : Q- — Vi N If’;“’ by setting

ag(@) = vg(- — @) — vy(- — 7). (4.2)
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We claim thafx — x| > 2r for everyz € Q.. Indeed, if this is not the case, then= (z + 7x)/2
satisfie§z — z| < r andrz = 7, contradicting the definition d, . Sincev, is radial andr is an
isometry, we can use the last claim to verify thatis well defined.

We note that ifu € V}  thenu™ € V) , andl) ,(u) = 21y 4,(u™). Thus, Lemma 3.3 implies that
B,(u™) € Qf forallu € VigN 12’”‘” and therefore the diagram

Qp =LV, NI 25O, (4.3)
where,(u) = B,(u'), is well defined. A direct computation show thaf(rz) = —a,(z) and
v,(—u) = 77y,(u). Moreover, using (4.2) and the fact thatis radial, we get

Jpoy oy =)y dy [ 0 I0a@)I*(y + 2) dy
Vo(ag(2)) = =,

fBT(:p) [vg(y — )| dy fBT(O) ‘Uq y)|e dy

for anyxz € Q.. Now, recalling that was chosen so that the inclusion maps — Q \ Q™ and
Q — Q' are equivariant homotopy equivalences, the inequality (4.1) follows from (4.3) and the
properties given by Lemma 4.2. The theorem is proved. OJ

Proof of Corollay 1.4:Let : RY — RY be given byr(z) = —z. Itis proved in [6, Corollary 3]
that our assumptions imphy-cat2) > N. Since0 ¢ 2, Q7 = (). It suffices now to apply Theorem
1.3. [
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