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Abstrat

In this paper we onsider appliations of loal inuene (Cook, 1986) to

evaluate small perturbations in the model or data set in several measuring

devies, assuming Grubbs's model. Di�erent perturbation shemes are inves-

tigated and an appliation is onsidered to two real data sets.
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1 Introdution

The main objet of this paper is the study of loal inuene and diagnosti in the

Grubbs's measurement model used to assess the relative quality of several measuring

devies (or instruments) when measuring the same unknown quantity x in a om-

mon group of individuals or experimental units. Comparing measuring devies whih

varies in priing, fastness and other features, suh as eÆieny, has been of growing

interest in many engineering and sienti� appliations. Grubbs (1948, 1973, 1983)

proposed a model for n items, eah measured on p instruments. Outliers and de-

tetion of inuent observations is an important step in the analysis of a data set.

There are several ways of evaluating the inuene of perturbations in the data set

and in the model given the parameter estimates. Important reviews an be found in

the books by Cook and Weisberg (1982) and Chatterjee and Hadi (1988) and in the

paper by Cook (1986). On the other hand, there are just a few works in the litera-

ture for diagnosti and inuene of observations in models with measurement errors.
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Kelly (1984) onsidered a diagnosti proedure in the strutural linear model based

on the inuene funtion. Tanaka et al. (1991) also onsider the inuene funtion

introdued by Hampel for evaluating the inuene of observations in the analysis of

ovariane strutures. Zhao and Lee (1998) de�ne leverage of one observation and

Cook's distane in a simultaneous equation model. Rather than eliminating ases,

the approah proposed by Cook (1986) is a general method for evaluating, under the

maximum likelihood estimators, the inuene of small perturbations in the model

or data set. Additional results on loal inuene and appliations in linear regres-

sion and mixed models an be found in Bekman et al. (1987), Lawrane (1988),

Thomas and Cook (1990), Tsai and Wu (1992), Paula (1993), Galea et al. (1997)

and Lesa�re and Verbeke (1998). Zhao and Lee (1998) and Kwan and Fung (1998)

apply the loal inuene approah for fator analysis and simultaneous equations.

Reently, Galea et al. (2002) apply the loal inuene method in funtional and

strutural omparative alibration models. Thus, the main objet of this paper is to

apply the approah of loal inuene to the Grubbs's measurement models. Several

perturbation shemes are onsidered suh as ase perturbation and response pertur-

bation. In Setion 2 the Grubbs's mesurement model is onsidered and in Setion 3

the main onepts of loal inuene are revised. In Setion 4 model urvatures are

onsidered for di�erent perturbation shemes and in Setion 5 an illustration of the

methodology is presented for a real data set.

2 The Grubbs's Model

Suppose that we have at our disposal p � 2 instruments for measuring a harater-

isti of interest x in a group of n experimental units. Let x

i

the true (unknown)

value in unit i and y

ij

the measured value obtained with instrument j in unit i,

i = 1; : : : ; n and j = 1; : : : ; p. A model typially onsidered in the literature see,

Grubbs (1973, 1983), for suh situation is given, in matrix notation, by

Y

i

= a+ 1

p

x

i

+ �

i

(2.1)

= a+KU

i

;

where a=(0;�

>

)

>

=(0; �

2

; : : : ; �

p

)

>

is p�1 vetor,K = (1

p

; I

p

) is a p�(p+1) matrix,

Y

i

= (y

i1

; : : : ; y

ip

)

>

and �

i

= (�

i1

; : : : ; �

ip

)

>

are p� 1 random vetors U

i

= (x

i

; �

>

i

)

>

is of dimension (p+ 1)� 1, 1

p

is a p� 1 vetor of ones and I

p

denotes the identity
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matrix of dimension p, i = 1; : : : n. As in Bedrik (2001), to eliminate reduny we

set that �

1

= 0. Finally, it is onsidered that the random vetors U

1

; : : : ;U

n

are

independent and identially distributed N

p+1

(�;	), where

� =

�

�

x

0

�

and 	 =

�

�

x

0

0 D(�)

�

(2.2)

with D(�) = diag(�

1

; : : : ; �

p

) and � = (�

1

; : : : ; �

p

)

>

. Thus, Y

1

; : : : ;Y

n

are inde-

pendent and identially distributed with aording to the N

p

(�;�), where

� = a+ 1�

x

= �(�) and � = �

x

1

p

1

>

p

+D(�) = �(�); (2.3)

with � = (�

x

;�

>

; �

x

;�

>

)

>

. The log-likelihood funtion is given by

`(�) =

n

X

i=1

l

i

(�); (2.4)

where l

i

(�) = (�p=2)log(2�)�

1

2

logj�j�

1

2

kT

i

k

2

; with kT

i

k

2

= (Y

i

��)

>

�

�1

(Y

i

�

�), i = 1; :::; n.

Inferene for suh model is onsidered in Grubbs (1948, 1973, 1983), Christensen

and Blakwood (1993) and reently by Bedrik (2001). Thus, the main objet of this

paper is to onsider the approah of loal inuene in the Grubbs's measurement

model given in (2.1). To obtain the maximum likelihood estimators we used the

EM-algorithm.

3 Loal Inuene

Let l(�) denote the log-likelihood funtion from the postulated model ( here � =

(�

x

;�

>

; �

x

;�

>

)

>

and let ! be a q�1 vetor of perturbation restrited to some open

subset of R

q

. The perturbations are made in the likelihood funtion suh that it takes

form l(�j!). Denoting the vetor of no perturbation by !

0

, we assume l(�j!

0

) =

l(�). To asses the inuene of the perturbations on the maximum likelihood estimate

of �, one may onsider the likelihood displaement

LD(!) = 2[l(

b

�)� l(

b

�

!

)℄;

where

b

�

!

(

b

�) denotes the maximum likelihood estimator under the model l(�j!)(l(�)).

The idea of loal inuene (Cook, 1986) is onerned in haraterizing the behavior
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of LD(!) at !

0

. The proedure onsists in seleting a unit diretion d, jjdjj = 1,

and then to onsider the plot of LD(!

0

+ ad) against a with a 2 R. This plot is

alled lifted line. Notie that sine LD(!

0

) = 0; LD(!

0

+ad) has a loal minimum

at a = 0. Eah lifted line an be haraterized by onsidering the normal urvature

C

d

(�) around a = 0. The suggestion is to onsider the diretion d

max

orresponding

to the largest urvature C

dmax

(�). The index plot of d

max

may reveal those obser-

vations that under small perturbations exert notable inuene on LD(!). Cook

(1986) showed that the normal urvature at the diretion d takes the form

C

d

(�) = 2jd

>

�

>

L

�1

�dj; (3.1)

where �L is the observed Fisher information matrix for the postulated model (! =

!

0

) and � is the p� q matrix with elements

�

ij

=

�

2

l(�j!)

��

i

�!

j

;

evaluated at � =

b

� and ! = !

0

; i = 1; :::; p and j = 1; :::; q. Therefore, the max-

imization of (3.1) is equivalent to �nding the largest absolute eigenvalue C

dmax

of

the matrix B =�

>

L

�1

� and, d

max

is the orresponding eigenvetor. In some situ-

ations, it may be of interest to assess the inuene on a subset �

1

of � = (�

>

1

; �

>

2

)

>

.

For example, one may have interest on �

1

= � or �

1

= �. In suh situations, the

urvature at the diretion d is given by

C

d

(�

1

) = 2jd

>

�

>

(L

�1

�B

22

)�dj; (3.2)

where,

B

22

=

 

0 0

0 L

�1

22

!

;

and L

22

is obtained from the partition of L aording to the partition of �. The

eigenvetor d

max

orresponds to the largest absolute eigenvalue of the matrix B =

�

>

(L

�1

�B

22

)�.

Other important diretion, aording to Esobar and Meeker (1992) (see also Ver-

beke and Molenberghs, 2000) is d = e

in

, whih orresponds to the i-th position,

where there is a one. In that ase, the normal urvature, alled the total loal inu-

ene of individual i, is given by C

i

= 2je

>

in

Be

in

j = 2jb

ii

j, where b

ii

is the ith element

diagonal of B, i = 1; :::; n. Verbeke and Molenberghs (2000) propose onsider the
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i�th observation inuential if C

i

is larger than the uto� value 2

q

X

i=1

C

i

=q. We use

d

max

and C

i

as diagnostis for loal inuene.

4 Curvature derivation

In this setion we derive the observed information matrix and the � matrix for

di�erent shemes of perturbations.

4.1 The observed information matrix

From (2.4) following that the matrix of seond derivatives with respet to � is given

by:

L =

�

2

l(�)

����

>

�

�

�

�=

b

�

=

 

L

11

0

L

22

!

(4.1)

where

b

� is the estimator of maximum likelihood of �=(�

x

;�

>

; �

x

;�

>

)

>

=(�

>

1

; �

>

2

)

>

,

where �

1

= (�

x

;�

>

)

>

and �

2

= (�

x

;�

>

)

>

. The elements of this matrix are given

in the appendix A.

4.2 Perturbation of Cases

We onsider the model (2.1) and weights vetor ! = (!

1

; : : : ; !

n

)

>

. The log-

likelihood funtion for perturbed model is given by

`(�=!) =

n

X

i=1

!

i

`

i

(�); (4.2)

where `

i

(�); i = 1; : : : ; n ; as de�ned in (2.5), with � = (�

x

;�

>

; �

x

;�>)

>

. Note that

here !

0

= 1

n

.

The delta matrix is given by

� = (�

1

; : : : ;�

n

); (4.3)
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where �

i

=

�`

i

(�)

��

, i = 1; : : : ; n, with elements

�l

i

(�)

�

= �

1

2

[

�logj�j

�

+

�kT

i

k

2

�

℄;  = �

x

;�; �

x

;�: (4.4)

The omponents

�logj�j

�

and

�kT

i

k

2

�

are presented in Appendix B.

Note that, by (4.1), the normal urvature at the diretion d takes the form

C

d

(�) = C

d

(�

x

;�

0

) + C

d

(�

x

;�

0

): (4.5)

See Verbeke and Molenberghs (2000).

4.3 Response Perturbation

We onsidering here, of following perturbation shemes in the response variable

Y

!

i

= Y

i

+ S

y

!

i

; i = 1; : : : ; n; (4.6)

where S

y

= (s

1

; : : : ; s

p

)

>

is a vetor p� 1, with s

j

, sale fator orresponding to the

j-th instrument, j = 1; : : : ; p: In this ase !

o

= (0; : : : ; 0)

>

n�1

.

The log-likelihood funtion for the perturbed model `(�=!) is given by

`(�=!) =

n

X

i=1

`

i

(�=!

i

); (4.7)

where

`

i

(�=!

i

) = (�p=2)log(2�)�

1

2

logj�j �

1

2

kT

!

i

k

2

;

and kT

!

i

k

2

= (Y

!

i

��)

>

�

�1

(Y

!

i

��) with �, � as in (2.3) and ! = (!

1

; : : : ; !

n

)

>

.

Then the i� th olumn of the � matrix, �

i

, have elements given by,

�

�

x

i

= 1

>

p

�

�1

S

y

, �

�i

= I

(p)

�

�1

S

y

, �

�

x

i

=



�2

�

x

(Y

!

i

� �)

>

MS

y

and

�

�i

= D(Y

!

i

� �)D

�2

(�)S

y

+ 

�2

�

x

D

�2

(�)1

p

(Y

!

i

� �)

>

MS

y

� 

�1

�

x

D

�2

(�)(Y

!

i

� �)1

>

p

D

�1

(�)S

y

� 

�1

�

x

(Y

!

i

� �)

>

D

�1

(�)1

p

D

�2

(�)S

y

,

for i = 1; : : : ; n ; where  = 1 + �

x

1

p

>

D

�1

(�)1

p

, M = �

x

D

�1

(�)1

p

1

p

>

D

�1

(�)
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and the � matrix is evaluated in ! = !

0

= (0; : : : ; 0)

>

and

b

� = (b�

x

;
b
�

>

;

b

�

x

;

b

�)

>

.

An other form of the response perturbation is to onsider

Y

!

i

= Y

i

+D(S

y

)!

i

; i = 1; : : : ; n; (4.8)

where D(S

y

) = Diag(s

1

; : : : ; s

p

) is a diagonal matrix of order p and !

i

a p� 1 per-

turbations vetor. In this ase !

o

= (0; : : : ; 0)

>

np�1

.

4.4 Perturbation of the multipliative bias

In this setion we onsider the follow model perturbed:

Y

i

= a+ bx

i

+ �

i

(4.9)

where a = (0;�

>

)

>

and b = (1;!

>

)

>

, i = 1; : : : ; n. Under normality Y

i

�

N

p

(�

!

;�

!

), where �

!

= a + b�

x

and �

!

= �

x

bb

>

+D(�). Note that this model

orresponding to the Comparative Calibration Model proposed by Barnett (1969).

See also Bolfarine and Galea (1995). The log-likelihood funtion for the perturbed

model is given by

`(�=!) =

n

X

i=1

`

i

(�=!); (4.10)

where `

i

(�=!) = (�p=2)log(2�)�

1

2

logj�

!

j�

1

2

kT

!

i

k

2

, with kT

!

i

k

2

= (Y

i

��

!

)

>

�

�1

!

(Y

i

�

�

!

). The � matrix is given by

� =

n

X

i=1

�

2

l

i

(�=!)

���!

>

;

where the elements of

�

2

l

i

(�=!)

���!

>

are given in the appendix B.
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5 Appliations

In this setion we presents two appliations of the methodology disussed below.

5.1 The Grubbs Data Set

As an �rst illustration onsider some data studied by Grubbs (1948). The data are

the time of burning for fuses on projetiles as reorded by three di�erent observers.

This data set also where analysed by Jaeh (1985). For this data set we analysis the

loal inuene based in the perturbation of ases with interest in �. The results are

show in the Figure 1. The observations point as more inuential are 4 and 17. The

Figure 1() show the satter plot of C

i

(�

x

;�) versus C

i

(�

x

;�). Their respetive ut-

o� values, indiated in the �gure by the dashed line, are 2

P

n

i=1

C

i

(�

x

;�)=n = 0:421

and 2

P

n

i=1

C

i

(�

x

;�)=n = 0:614. Note that the observations 2; 4; 15 and 17 are

highly inuential for both part of the parameter and the observation 9 is inuential

only for the estimation of (�

x

;�).

The Figure 2 show the index plot of jdmaxj and C

i

for the response perturbation

and Likelihood Displaement. Note that this graphi an be used for identify inu-

ential observations, y

ij

, between experimental unit. The observations point as more

inuential are 12 and 17. Moreover, from Likelihood Displaement, �gure 2(), the

observations 4 and 17 are globaly inuential.

The Table 1 present the maximum likelihood estimate for � and its standard er-

rors, if it is not onsidered the most inuential observations, aording the global/loal

inuene method. Note that the standard errors are very a�eted.

5.2 Barnett Data Set

In this setion we analyze one real data set given in Barnett (1969). Two instruments

used for measuring the vital apaity of the human lung and operated by skilled and

unskilled operators were ompared on a ommon group of 72 patients. Figures 3a

and 3b present graphis of loal inuene for the perturbation of ase weights. The

uto� used for C

i

equals 2

P

n

i=1

C

i

=n = 0:55 and has been indiated in the �gure
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by the dashed line. Patients 4, 25 and 67 are found to have a C

i

value larger than

0:55 and are therefore onsidered to be relatively inuential for the estimation of

the omplete parameter vetor �. Similar results are observed in the index plots

of jd

max

j and C

i

, Figure 4, with interest in � and � respetively. Figures 5 and 6

present graphis of loal inuene for the perturbation of multipliative bias. We an

observed that the assumption of equals bias is not plausible in this ase. This suggest

modify the model inorporating the possibility of bias di�erent of one. In e�et the

maximum log-likelihood for the Grubbs's model is �2074:1 and for the Barnett's

model the maximum log-likelihood is �2064:5, orresponding to likelihood ratio

statisti of 19.2. This indiates that the Barnett's model �ts the data signi�antly

better than the Grubbs's model. Thus is, this perturbation sheme serves as a guide

in building a revised model.

Next we ompare loal inuene and ase deletion diagnostis. Following Zhao

and Lee (1998), Cook's distane an be de�ned by

D

i

= (

b

�

(i)

�

b

�)

>

(� L)(

b

�

(i)

�

b

�)=(2p+ 1); (5.1)

i = 1; :::; n, where

b

�

(i)

denotes the parameter estimates without ase i. Figures 3

and 3d gives the index plot of D

i

and Likelihood Displaement, LD

i

= 2(l(

b

�) �

l(

b

�

(i)

)), i = 1; :::; n for the Grubbs's model. One again ases 4, 25 and 67 are

prominent.

The Table 2 present the maximum likelihood estimate for � and it standard

error, if it is not onsidered the three most inuential observations, aording the

global/loal inuene method.
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Appendix A: The Observed Information Matrix

In this appendix we present the elements of the observed information matrix.

From (2.4), it follows that

�l

i

(�)

�

= �

1

2

[

�logj�j

�

+

�kT

i

k

2

�

℄; (A.1)

with  = �

x

;�; �

x

;�, i = 1; :::; n. After some algebrai manipulations it follows

that

�logj�j

�

= 0;  = �; �

�logj�j

��

x

= 

�1

� 1

�

x

;

�logj�j

��

= (I

p

� 

�1

�

x

D

�1

(�))D

�1

(�)1

p

;

�kT

i

k

2

��

x

= �21

>

p

�

�1

W

i

;

�kT

i

k

2

��

= �2I

(p)

�

�1

W

i

;

�kT

i

k

2

��

x

= �



�2

�

x

W

>

i

MW

i

�kT

i

k

2

��

= �D(W

i

)D

�2

(�)W

i

� 

�2

�

x

W

>

i

MW

i

D

�2

(�)1

p

+ 2

�1

�

x

A

i

D

�2

(�)W

i

;

where  = 1 + �

x

1

>

D

�1

(�)1, a

i

=W

>

i

D

�1

(�)1

p

and W

i

= Y

i

� a� b�

x

.

From (A.1) it follows that the per element observed information matrix is given

by

I

i

= I

i

(�=Y

i

) = �

�

�

2

l

i

(�)

���

>

�

;

where

�

2

`

i

���

>

= �

1

2

�

�

2

logj�j

���

>

+

�

2

kT

i

k

2

���

>

�

: (A.2)

with � = �

x

;�; �

x

;�. After some algebrai manipulations we have that

�

2

logj�j

��

x

�

>

= 0;  = �

x

;�; �

x

;�;

�

2

logj�j

���

>

= 0;  = �; �

x

;�

�

2

logj�j

��

x

��

x

= �

1

�

2

x

�

� 1



�

2

,

�

2

logj�j

��

x

��

>

= �

�2

1

>

p

D

�2

(�) ,
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�

2

logj�j

����

>

= �D

�2

(�) + 2�

x



�1

D

�3

(�)� �

x



�2

D

�1

(�)MD

�1

(�),

�

2

kT

i

k

2

��

x

��

x

= 21

>

p
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Appendix B: The Delta Matrix for Perturbation of the

Multipliative Bias

The � matrix is given by
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Figure 3: Index plots for (a) jd
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for perturbation of ases for � () Likeli-
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Figure 5: Index plots of (a) d

max

and (b) C

i

for perturbation of the multipliative

bias
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Table 1: Maximum likelihood estimative and its asymptoti standard error when some

observations are removed for Grubbs Data Set

b

� None #4 #12 #17 #4; 12 #4; 17 #12; 17 #4; 12; 17

9.7414 9.7425 9.7239 9.7207 9.7244 9.7211 9.7019 9.7015

b�

x

(0.0387) (0.0401) (0.0360) (0.0342) (0.0374) (0.0355) (0.0298) (0.0310)

0.0238 0.0218 0.0243 0.0246 0.0222 0.0226 0.0252 0.0231

b�

2

(0.0048) (0.0046) (0.0050) (0.0050) (0.0047) ( 0.0047) (0.0051) (0.0049)

0.0141 0.0150 0.0143 0.0139 0.0152 0.0148 0.0141 0.0150

b�

3

(0.0032) (0.0032) (0.0033) (0.0033) (0.0033) (0.0033) (0.0034) (0.0034)

0.0434 0.0449 0.0362 0.0326 0.0376 0.0338 0.0240 0.0249

b

�

x

(0.0114) (0.0120) (0.0097) (0.0087) (0.0102) (0.0092) (0.0065) (0.0069)

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

b

�

1

( 0.0001) (0.0001) (0.0001) ( 0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

0.0006 0.0005 0.0006 0.0006 0.0005 0.0005 0.0006 0.0005

b

�

2

(0.0002) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002

b

�

3

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Table 2: Maximum likelihood estimative and its asymptoti standard errors when some

observations are removed for Barnett Data Set

b

� None #4 #25 #67 #4; 25 #4; 67 #25,67 #4; 25; 67

0.0225 0.0225 0.0225 0.0224 0.0225 0.0224 0.0224 0.0224

b�

x

(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)

-0.0007 -0.0008 -0.0006 -0.0007 -0.0007 -0.0009 -0.0006 -0.0008

b�

2

(0.0003) (0.0003) (0.0003) ( 0.0003) (0.0002) (0.0003) (0.0003) ( 0.0002)

-0.0010 -0.0011 -0.0009 -0.0011 -0.0010 -0.0012 -0.0011 -0.0012

b�

3

( 0.0004) (0.0004) ( 0.0004) ( 0.0004) (0.0004) (0.0003) (0.0003) (0.0003)

-0.0014 -0.0015 -0.0013 -0.0016 -0.0014 -0.0016 -0.0015 -0.0015

b�

4

(0.0004) (0.0004) (0.0004) ( 0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

6.2906 6.2720 6.2783 6.2542 6.2600 6.2446 6.2556 6.2429

b

�

x

(1.0609) (1.0633) (1.0646) (1.0620) (1.0665) (1.0665) (1.0684) (1.0719)

0.4998 0.4170 0.4419 0.4805 0.3602 0.3982 0.4269 0.3439

b

�

1

(0.0993) (0.0851) ( 0.0891) (0.0963) (0.0745) (0.0823) (0.0869) (0.0723)

0.1413 0.1057 0.1090 0.1476 0.0716 0.1166 0.1179 0.0839

b

�

2

(0.0518) (0.0466) (0.0471) (0.0511) (0.0413) (0.0464) (0.0466) (0.0412)

0.4383 0.4807 0.4604 0.3928 0.5075 0.4265 0.4081 0.4477

b

�

3

(0.0898) (0.0949) (0.0920) (0.0827) (0.0974) (0.0867) (0.0839) (0.0885)

0.4633 0.5087 0.4989 0.4328 0.5522 0.4704 0.4610 0.5069

b

�

4

(0.0936) (0.0949) (0.0980) (0.0888) (0.1046) (0.0936) (0.0922) (0.0980)

19


