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Abstract

In this paper we consider applications of local influence (Cook, 1986) to
evaluate small perturbations in the model or data set in several measuring
devices, assuming Grubbs’s model. Different perturbation schemes are inves-
tigated and an application is considered to two real data sets.
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1 Introduction

The main object of this paper is the study of local influence and diagnostic in the
Grubbs’s measurement model used to assess the relative quality of several measuring
devices (or instruments) when measuring the same unknown quantity z in a com-
mon group of individuals or experimental units. Comparing measuring devices which
varies in pricing, fastness and other features, such as efficiency, has been of growing
interest in many engineering and scientific applications. Grubbs (1948, 1973, 1983)
proposed a model for n items, each measured on p instruments. Outliers and de-
tection of influent observations is an important step in the analysis of a data set.
There are several ways of evaluating the influence of perturbations in the data set
and in the model given the parameter estimates. Important reviews can be found in
the books by Cook and Weisberg (1982) and Chatterjee and Hadi (1988) and in the
paper by Cook (1986). On the other hand, there are just a few works in the litera-

ture for diagnostic and influence of observations in models with measurement errors.



Kelly (1984) considered a diagnostic procedure in the structural linear model based
on the influence function. Tanaka et al. (1991) also consider the influence function
introduced by Hampel for evaluating the influence of observations in the analysis of
covariance structures. Zhao and Lee (1998) define leverage of one observation and
Cook’s distance in a simultaneous equation model. Rather than eliminating cases,
the approach proposed by Cook (1986) is a general method for evaluating, under the
maximum likelihood estimators, the influence of small perturbations in the model
or data set. Additional results on local influence and applications in linear regres-
sion and mixed models can be found in Beckman et al. (1987), Lawrance (1988),
Thomas and Cook (1990), Tsai and Wu (1992), Paula (1993), Galea et al. (1997)
and Lesaffre and Verbeke (1998). Zhao and Lee (1998) and Kwan and Fung (1998)
apply the local influence approach for factor analysis and simultaneous equations.
Recently, Galea et al. (2002) apply the local influence method in functional and
structural comparative calibration models. Thus, the main object of this paper is to
apply the approach of local influence to the Grubbs’s measurement models. Several
perturbation schemes are considered such as case perturbation and response pertur-
bation. In Section 2 the Grubbs’s mesurement model is considered and in Section 3
the main concepts of local influence are revised. In Section 4 model curvatures are
considered for different perturbation schemes and in Section 5 an illustration of the

methodology is presented for a real data set.

2 The Grubbs’s Model

Suppose that we have at our disposal p > 2 instruments for measuring a character-
istic of interest x in a group of n experimental units. Let z; the true (unknown)
value in unit 7 and y;; the measured value obtained with instrument j in unit 7,
t=1,...,nand j = 1,...,p. A model typically considered in the literature see,

Grubbs (1973, 1983), for such situation is given, in matrix notation, by

Y, =a+ 1p117i + €; (21)

=a+ KUZ,
where a=(0, ") "=(0, ay, ..., a,) " is px1 vector, K = (1,,1,) isa px (p+1) matrix,
Y= (Yi1,---,¥ip) and € = (€;1,...,€;p) " are p x 1 random vectors U; = (z;,€] )"

is of dimension (p+ 1) x 1, 1, is a p x 1 vector of ones and I, denotes the identity
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matrix of dimension p, i = 1,...n. As in Bedrick (2001), to eliminate reduncy we
set that a; = 0. Finally, it is considered that the random vectors Uy,..., U, are

independent and identically distributed N, (n, ¥), where

() et ) e

with D(¢) = diag(¢1,...,¢,) and ¢ = (¢1,...,6,)". Thus, Yi,...,Y, are inde-
pendent and identically distributed with according to the N,(p, ), where

p=a+1u,= [1,(9) and X = ¢x1p1;— + D(¢) = 2(0)7 (23)

with @ = (jtz, @, ¢, @' )T. The log-likelihood function is given by
(8) = 3 1(0). (2.4
i=1

where [;(0) = (—p/2)log(27) — %log|2| - %||Ti||2, with ||Ty||? = (Yi—p) T2 (Y —
p),i=1,..,n.

Inference for such model is considered in Grubbs (1948, 1973, 1983), Christensen
and Blackwood (1993) and recently by Bedrick (2001). Thus, the main object of this
paper is to consider the approach of local influence in the Grubbs’s measurement
model given in (2.1). To obtain the maximum likelihood estimators we used the
EM-algorithm.

3 Local Influence

Let [(0) denote the log-likelihood function from the postulated model ( here 8 =
(1 @™, dg, @) and let w be a g x 1 vector of perturbation restricted to some open
subset of R?. The perturbations are made in the likelihood function such that it takes
form [(@|w). Denoting the vector of no perturbation by wy, we assume [(0|wy) =
1(@). To asses the influence of the perturbations on the maximum likelihood estimate

of @, one may consider the likelihood displacement
LD(w) = 2[1(8) — 1(6.,)

where 8,,() denotes the maximum likelihood estimator under the model [(6|w)(1(8)).

The idea of local influence (Cook, 1986) is concerned in characterizing the behavior
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of LD(w) at wp. The procedure consists in selecting a unit direction d, ||d|| = 1,
and then to consider the plot of LD(wy + ad) against a with a € R. This plot is
called lifted line. Notice that since LD(wg) = 0, LD(wy+ad) has a local minimum
at a = 0. Each lifted line can be characterized by considering the normal curvature
C4(0) around a = 0. The suggestion is to consider the direction dp,ax corresponding
to the largest curvature Cynax(0). The index plot of d,.x may reveal those obser-
vations that under small perturbations exert notable influence on LD(w). Cook
(1986) showed that the normal curvature at the direction d takes the form

Cq(0) =2/d"ATL7'Ad|, (3.1)

where —L is the observed Fisher information matrix for the postulated model (w =
wyp) and A is the p x ¢ matrix with elements

821(6|w)
T 000,

evaluated at @ = 0 and w = wo,t = 1,....,pand j = 1,...,q. Therefore, the max-
imization of (3.1) is equivalent to finding the largest absolute eigenvalue Ciyyayx of
the matrix B = ATL™'A and, dp,y is the corresponding eigenvector. In some situ-
ations, it may be of interest to assess the influence on a subset 8, of @ = (8] ,6,)".
For example, one may have interest on 6y = a or 8, = ¢. In such situations, the

curvature at the direction d is given by

Cy(6)) =2|d"AT(L ! — By)Ad, (3.2)

0O O
By = 4 )
0 L,

and Ly, is obtained from the partition of L according to the partition of 8. The

where,

eigenvector dp., corresponds to the largest absolute eigenvalue of the matrix B =
AT(L ' - By)A.

Other important direction, according to Escobar and Meeker (1992) (see also Ver-
beke and Molenberghs, 2000) is d = e;,, which corresponds to the i-th position,
where there is a one. In that case, the normal curvature, called the total local influ-
ence of individual 4, is given by C; = 2|e] Be;,| = 2|b;;|, where b;; is the ith element

diagonal of B, i = 1,...,n. Verbeke and Molenberghs (2000) propose consider the
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q
1—th observation influential if C; is larger than the cutoff value 2 Z C;/q. We use
i=1
dn.x and C; as diagnostics for local influence.

4 Curvature derivation

In this section we derive the observed information matrix and the A matrix for

different schemes of perturbations.

4.1 The observed information matrix

From (2.4) following that the matrix of second derivatives with respect to 6 is given
by:

021(6) Lu 0
I— o 4.1
BOBOT ‘0:0 < LQQ ) ( )

where 8 is the estimator of maximum likelihood of O0=(pis, ", ¢p, 0" ) =(6],0])7,

where 8, = (jtz,a")" and 0y = (¢,,¢")". The elements of this matrix are given

in the appendix A.

4.2 Perturbation of Cases

We consider the model (2.1) and weights vector w = (wy,...,w,)". The log-

likelihood function for perturbed model is given by

18/w) = > i) (4.2

where £;(0), i = 1,...,n, as defined in (2.5), with @ = (u,, @, ¢, dT)T. Note that
here wy = 1,,.

The delta matrix is given by

A=(An... A, (4.3)



0¢(6)

where A; = 20 1 =1,...,n, with elements
0l;(6) _ 1.dlog|x| O|Ti* _ _

dlogls| AT,

oy oy
Note that, by (4.1), the normal curvature at the direction d takes the form

The components are presented in Appendix B.

Cd(e) - Cd(,ux; a,) + Cd(¢xa ¢I)
See Verbeke and Molenberghs (2000).

4.3 Response Perturbation

(4.4)

(4.5)

We considering here, of following perturbation schemes in the response variable

Ywi:Yi+Sywi, izl,...,n, (46)
where S, = (sq,..., sp) | is a vector p x 1, with s;, scale factor corresponding to the
j-th instrument, j = 1,..., p. In this case w, = (0,...,0) ;.

The log-likelihood function for the perturbed model ¢(0/w) is given by
0(B/w) =Y 1:(0/w;), (4.7)
i=1
where
1 1
(:(8/wi) = (=p/2)log(2m) = Slog|=| — 2| Tu|I”,
and || T,,||> = (Yo, —p) "2 (Y, —p) with 2, g asin (2.3) and w = (wy, ..., w,)"

Then the ¢ — th column of the A matrix, A;, have elements given by,

Aui=1)57'S, Ay =TT 'S, Ay, = 5 (Yo, — p)TMS, and
Ay =D(Yu, — p)D*(9)S, + ¢ 7?9, D*(¢)1,(Yo, — p)TMS,

— ¢ 9D (@) (Yo, — 1)1, D} (9)S,

— ¢ '¢:(Yo — #) 'D7H(4)1,D7*(9)S,,

for i = 1,...,n, where ¢ = 1 + ¢,1, D' (¢)1p, M = ¢,D "' (¢)1,1, D' ()



and the A matrix is evaluated in w = wy = (0,...,0)" and 0= (e, a', ax, @)T

An other form of the response perturbation is to consider

sz:Yz—l—D(Sy)wz, ZZI,,’H,, (48)
where D(S,) = Diag(si,...,s,) is a diagonal matrix of order p and w; a p x 1 per-
turbations vector. In this case w, = (0,...,0),,1-

4.4 Perturbation of the multiplicative bias

In this section we consider the follow model perturbed:

where @ = (0,a”)" and b = (1,w")", i = 1,...,n. Under normality Y; ~
N,(p,; Es), where p, = a + b, and 3, = ¢,bb" + D(¢). Note that this model
corresponding to the Comparative Calibration Model proposed by Barnett (1969).
See also Bolfarine and Galea (1995). The log-likelihood function for the perturbed

model is given by

0(0/w) = Ze (8/w), (4.10)

where (;(8/w) = (—p/2)log(2m) —1log| ||| Ty, ||, with [| T, [|> = (Yi—pn,) T2, (Yi—
w,,). The A matrix is given by

1;(0/w)
A=
Z 898wT ’

01,8 /w)

here the el ts of
where the elements of — 7 =

are given in the appendix B.



5 Applications

In this section we presents two applications of the methodology discussed below.

5.1 The Grubbs Data Set

As an first illustration consider some data studied by Grubbs (1948). The data are
the time of burning for fuses on projectiles as recorded by three different observers.
This data set also where analysed by Jaech (1985). For this data set we analysis the
local influence based in the perturbation of cases with interest in @. The results are
show in the Figure 1. The observations point as more influential are 4 and 17. The
Figure 1(c) show the scatter plot of C;(fi,, &) versus C;(¢., ¢). Their respective cut-
off values, indicated in the figure by the dashed line, are 23" | C;(u,, &) /n = 0.421
and 2" | Ci(¢s, @)/n = 0.614. Note that the observations 2, 4, 15 and 17 are
highly influential for both part of the parameter and the observation 9 is influential

only for the estimation of (¢, ¢@).

The Figure 2 show the index plot of |dmax| and C; for the response perturbation
and Likelihood Displacement. Note that this graphic can be used for identify influ-
ential observations, y;;, between experimental unit. The observations point as more
influential are 12 and 17. Moreover, from Likelihood Displacement, figure 2(c), the

observations 4 and 17 are globaly influential.

The Table 1 present the maximum likelihood estimate for @ and its standard er-
rors, if it is not considered the most influential observations, according the global/local

influence method. Note that the standard errors are very affected.

5.2 Barnett Data Set

In this section we analyze one real data set given in Barnett (1969). Two instruments
used for measuring the vital capacity of the human lung and operated by skilled and
unskilled operators were compared on a common group of 72 patients. Figures 3a
and 3b present graphics of local influence for the perturbation of case weights. The
cutoff used for C; equals 23" | C;/n = 0.55 and has been indicated in the figure



by the dashed line. Patients 4, 25 and 67 are found to have a C; value larger than
0.55 and are therefore considered to be relatively influential for the estimation of
the complete parameter vector 6. Similar results are observed in the index plots
of |dimae| and Cj, Figure 4, with interest in a and ¢ respectively. Figures 5 and 6
present graphics of local influence for the perturbation of multiplicative bias. We can
observed that the assumption of equals bias is not plausible in this case. This suggest
modify the model incorporating the possibility of bias different of one. In effect the
maximum log-likelihood for the Grubbs’s model is —2074.1 and for the Barnett’s
model the maximum log-likelihood is —2064.5, corresponding to likelihood ratio
statistic of 19.2. This indicates that the Barnett’s model fits the data significantly
better than the Grubbs’s model. Thus is, this perturbation scheme serves as a guide
in building a revised model.

Next we compare local influence and case deletion diagnostics. Following Zhao
and Lee (1998), Cook’s distance can be defined by

D= (85— 0)"(— L)(B —8)/(2p+1), (5.1)

it =1,...,n, where 5(1) denotes the parameter estimates without case . Figures 3c
and 3d gives the index plot of D; and Likelihood Displacement, LD, = 2(1(5) —
l(a(i))), i = 1,...,n for the Grubbs’s model. Once again cases 4, 25 and 67 are
prominent.

The Table 2 present the maximum likelihood estimate for @ and it standard
error, if it is not considered the three most influential observations, according the

global /local influence method.



Appendix A: The Observed Information Matrix

In this appendix we present the elements of the observed information matrix.
From (2.4), it follows that
0L(6) _ 1 0log[=)|  O|IT"
oy 2' O~ oy
with v = g, o, ¢, ¢, © = 1,...,n. After some algebraic manipulations it follows
that

], (A1)

dlog|X| dlog|X| ,c—1  OloglX| . 1 4
7:0, = U, —_— = y :I—C x.D D 1,
112
e,
o
12
aHaTZ” = 23 W,
a
12 -2
112
a”;‘;“ — D(WID 2A$)W, — ¢ 26, W MW,D 2(¢)1, + 2¢ 6, AD ()W,

where ¢ = 14 ¢,1" D™ ($)1, a; = WD ' (¢)1, and W; =Y, — a — by,.

From (A.1) it follows that the per element observed information matrix is given

by
0%1;(0) )
I, =1,0/Y;) = — ,
(6/Y) < oyoT T
where
#6_ 1[o*logls| 0|, A2
ovorT 2| OyOTT oyoTT '

with 7 = p,, o, ¢, . After some algebraic manipulations we have that

9”log|B| 0% log|Z|

ayjzaﬁyT — Y 72M17a7¢m¢: WZO’ 7:a’¢m’¢
9% log|Z| 1 (c—1\* 0%log3| 24 T2

o=l - (- — = _ =—c*1.D
06:00, 42 ( c ) Sy
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O8] - 02() 4 200 D) — 620D (IMD (9,

00"
0%||Ti]|? -
T, = 2= L
82||Ti||2 I =17/
D0 = 21,51,
PITa|> e ? T
= 2— C — 1 1 D Wz ,
Otz O o ( 1, D7(9)
2 112
2%
0% Ti]|? ST
Do 2= 1,
PITy|> _ e
ads, o MW
0%||T4]|? 1 -1 L T—2
— c‘ld)xlT o)W, D’2(¢)],
00,00, asx .
82||Ti||2 —3xx7 T Tr—2 —2xx7 T —1 Tr—2
58T —2¢ "W/ MW,;1.D7?(¢) + 2¢ *W; D™ (¢)1,W;D*(9) ,
82||Ti||2 2 -3 -3 T -1 -1
W:2D (Wi)D () — 2¢ "¢, W; MW,;D " (¢)MD ()

+2¢,¢*D 7 (p)W; W] MD ' (¢) + 2¢ 26, W, MW,D ()
+2¢72¢, D (9)MW, WD ?(¢p) — 2¢'$,D *(p) W, WD *(9h)
—4c”'¢,1, D7 (¢)W;D(W,;)D*(9) .
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Appendix B: The Delta Matrix for Perturbation of the
Multiplicative Bias

The A matrix is given by

0%1;(0 /w)
A=
Z 000wT ’
2],

where the elements of the matrix %, are given by

0%1;(0)w 1.0%log|Z| 0| T |I?

( |T) = [ g| T| || lﬂ ]7 7 - ILLIJ a7 ¢I7 ¢7

Oyow 2" 0yow Oyow
with

*log|Z|

a‘yawT - 07 7_M$7a7

0*log|X| —2, T -1

= D

a¢x8w‘r 2¢c 7w (w)a

*log|Z| _ - 1 Tp-1

o = 20D (@)Du(ew) — o 10, Db)be D (3]
|| T |

= —2c Aia
Ot Ow " ¢
|| ;
8¢H6J|T = 2 ai(w)A;,
|| T4|”

oot = 26[D7 (W) —2¢ 16, D7 ($)ww D ()]
20_1¢xD71('l,b)w(Yi2 - Oé)TDil(w)

TIT _ 5p2(g)gw) DY — @ — giw)w) + ¢ 6, D(B)(Y; — a — by (w)) A,

0Ppow "

where

i) = ( D(Fa—m ok ) S ( F0 )

) Al - (Y’L? - Q- QQZ(LU)CU)TD_l(’(,b), af’t(w) = (Y’L —a— b,U/I)zTD_l(¢)b7 Q’L(w) =
fe + ¢ gpa;(w) and Yio = (Yios oo Yip) |-
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Figure 1: Index plots for (a) |dmaz|, (b) C; and (¢) Ci(ps, o) versus Ci(¢ps, ¢) for pertur-

bation of cases
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Figure 2: Index plot of (a) |dmaz|, (b) C; for perturbation
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Figure 3: Index plots for (a) |dmae| (b) C; for perturbation of cases for 6 (c) Likeli-

hood Displacement LD; (d) Cook’s distance D;.
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Figure 5: Index plots of (a) dpe. and (b) C; for perturbation of the multiplicative
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Figure 6: Index plots of (a) dpe, and (b) C; for perturbation of the multiplicative
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Table 1: Maximum likelihood estimative and its asymptotic standard error when some

observations are removed for Grubbs Data Set

| 8 ] Nome | g4 | 12 [ #17 | #4012 | #4,17 | #12,17 | #4,12,17 |
9.7414 | 97425 | 9.7239 | 97207 | 9.7244 | 97211 | 9.7019 9.7015
fir | (0.0387) | (0.0401) | (0.0360) | (0.0342) | (0.0374) | (0.0355) | (0.0298) | (0.0310)
0.0238 | 0.0218 | 0.0243 | 0.0246 | 00222 | 00226 | 0.0252 0.0231
@ | (0.0048) | (0.0046) | (0.0050) | (0.0050) | (0.0047) | (0.0047) | (0.0051) | (0.0049)
0.0141 | 0.0150 | 0.0143 | 0.0139 | 0.0152 | 0.0148 | 0.0141 0.0150
&s | (0.0032) | (0.0032) | (0.0033) | (0.0033) | (0.0033) | (0.0033) | (0.0034) | (0.0034)
0.0434 | 0.0449 | 00362 | 0.0326 | 00376 | 0.0338 | 0.0240 0.0249
é- | (0.0114) | (0.0120) | (0.0097) | (0.0087) | (0.0102) | (0.0092) | (0.0065) | (0.0069)
0.0001 | 0.0001 | 0.001 | 0.0001 | 0.00L | 0.0001 | 0.0001 0.0001
é1 | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)
0.0006 | 0.0005 | 0.0006 | 0.0006 | 0.005 | 0.0005 | 0.0006 0.0005
é2 | (0.0002) | (0.0001) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002)
0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.002 | 0.0002 | 0.0003 0.0002
é3 | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001)

Table 2: Maximum likelihood estimative and its asymptotic standard errors when some

observations are removed for Barnett Data Set

| 8 | Nome | #4 | w25 | per | #4,25 | #a,67 | #2567 | #4,25,67 |
0.0225 | 0.0225 | 0.0225 | 0.0224 | 0.0225 | 0.0224 | 0.0224 | 0.0224
fiz | (0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010)
-0.0007 | -0.0008 | -0.0006 | -0.0007 | -0.0007 | -0.0009 | -0.0006 | -0.0008
& | (0.0003) | (0.0003) | (0.0003) | (0.0003) | (0.0002) | (0.0003) | (0.0003) | ( 0.0002)
0.0010 | -0.0011 | -0.0009 | -0.0011 | -0.0010 | -0.0012 | -0.0011 | -0.0012
&s | (0.0004) | (0.0004) | (0.0004) | ( 0.0004) | (0.0004) | (0.0003) | (0.0003) | (0.0003)
0.0014 | -0.0015 | -0.0013 | -0.0016 | -0.0014 | -0.0016 | -0.0015 | -0.0015
& | (0.0004) | (0.0004) | (0.0004) | (0.0004) | (0.0004) | (0.0004) | (0.0004) | (0.0004)
6.2006 | 6.2720 | 6.2783 | 6.2542 | 6.2600 | 6.2446 | 6.2556 | 6.2429
be | (1.0609) | (1.0633) | (1.0646) | (1.0620) | (1.0665) | (1.0665) | (1.0684) | (1.0719)
0.4998 | 0.4170 | 0.4419 | 0.4805 | 0.3602 | 0.3982 | 0.4269 | 0.3439
&1 | (0.0993) | (0.0851) | (0.0891) | (0.0963) | (0.0745) | (0.0823) | (0.0869) | (0.0723)
0.1413 | 0.1057 | 0.1090 | 0.1476 | 0.0716 | 0.1166 | 0.1179 | 0.0839
do | (0.0518) | (0.0466) | (0.0471) | (0.0511) | (0.0413) | (0.0464) | (0.0466) | (0.0412)
0.4383 | 04807 | 0.4604 | 0.3928 | 0.5075 | 0.4265 | 0.4081 0.4477
b3 | (0.0898) | (0.0949) | (0.0920) | (0.0827) | (0.0974) | (0.0867) | (0.0839) | (0.0885)
0.4633 | 0.5087 | 0.4989 | 0.4328 | 0.5522 | 0.4704 | 0.4610 | 0.5069
b1 | (0.0936) | (0.0949) | (0.0980) | (0.0888) | (0.1046) | (0.0936) | (0.0922) | (0.0980)
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