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Abstra
t

In this paper we 
onsider appli
ations of lo
al in
uen
e (Cook, 1986) to

evaluate small perturbations in the model or data set in several measuring

devi
es, assuming Grubbs's model. Di�erent perturbation s
hemes are inves-

tigated and an appli
ation is 
onsidered to two real data sets.
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1 Introdu
tion

The main obje
t of this paper is the study of lo
al in
uen
e and diagnosti
 in the

Grubbs's measurement model used to assess the relative quality of several measuring

devi
es (or instruments) when measuring the same unknown quantity x in a 
om-

mon group of individuals or experimental units. Comparing measuring devi
es whi
h

varies in pri
ing, fastness and other features, su
h as eÆ
ien
y, has been of growing

interest in many engineering and s
ienti�
 appli
ations. Grubbs (1948, 1973, 1983)

proposed a model for n items, ea
h measured on p instruments. Outliers and de-

te
tion of in
uent observations is an important step in the analysis of a data set.

There are several ways of evaluating the in
uen
e of perturbations in the data set

and in the model given the parameter estimates. Important reviews 
an be found in

the books by Cook and Weisberg (1982) and Chatterjee and Hadi (1988) and in the

paper by Cook (1986). On the other hand, there are just a few works in the litera-

ture for diagnosti
 and in
uen
e of observations in models with measurement errors.
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Kelly (1984) 
onsidered a diagnosti
 pro
edure in the stru
tural linear model based

on the in
uen
e fun
tion. Tanaka et al. (1991) also 
onsider the in
uen
e fun
tion

introdu
ed by Hampel for evaluating the in
uen
e of observations in the analysis of


ovarian
e stru
tures. Zhao and Lee (1998) de�ne leverage of one observation and

Cook's distan
e in a simultaneous equation model. Rather than eliminating 
ases,

the approa
h proposed by Cook (1986) is a general method for evaluating, under the

maximum likelihood estimators, the in
uen
e of small perturbations in the model

or data set. Additional results on lo
al in
uen
e and appli
ations in linear regres-

sion and mixed models 
an be found in Be
kman et al. (1987), Lawran
e (1988),

Thomas and Cook (1990), Tsai and Wu (1992), Paula (1993), Galea et al. (1997)

and Lesa�re and Verbeke (1998). Zhao and Lee (1998) and Kwan and Fung (1998)

apply the lo
al in
uen
e approa
h for fa
tor analysis and simultaneous equations.

Re
ently, Galea et al. (2002) apply the lo
al in
uen
e method in fun
tional and

stru
tural 
omparative 
alibration models. Thus, the main obje
t of this paper is to

apply the approa
h of lo
al in
uen
e to the Grubbs's measurement models. Several

perturbation s
hemes are 
onsidered su
h as 
ase perturbation and response pertur-

bation. In Se
tion 2 the Grubbs's mesurement model is 
onsidered and in Se
tion 3

the main 
on
epts of lo
al in
uen
e are revised. In Se
tion 4 model 
urvatures are


onsidered for di�erent perturbation s
hemes and in Se
tion 5 an illustration of the

methodology is presented for a real data set.

2 The Grubbs's Model

Suppose that we have at our disposal p � 2 instruments for measuring a 
hara
ter-

isti
 of interest x in a group of n experimental units. Let x

i

the true (unknown)

value in unit i and y

ij

the measured value obtained with instrument j in unit i,

i = 1; : : : ; n and j = 1; : : : ; p. A model typi
ally 
onsidered in the literature see,

Grubbs (1973, 1983), for su
h situation is given, in matrix notation, by

Y

i

= a+ 1

p

x

i

+ �

i

(2.1)

= a+KU

i

;

where a=(0;�

>

)

>

=(0; �

2

; : : : ; �

p

)

>

is p�1 ve
tor,K = (1

p

; I

p

) is a p�(p+1) matrix,

Y

i

= (y

i1

; : : : ; y

ip

)

>

and �

i

= (�

i1

; : : : ; �

ip

)

>

are p� 1 random ve
tors U

i

= (x

i

; �

>

i

)

>

is of dimension (p+ 1)� 1, 1

p

is a p� 1 ve
tor of ones and I

p

denotes the identity
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matrix of dimension p, i = 1; : : : n. As in Bedri
k (2001), to eliminate redun
y we

set that �

1

= 0. Finally, it is 
onsidered that the random ve
tors U

1

; : : : ;U

n

are

independent and identi
ally distributed N

p+1

(�;	), where

� =

�

�

x

0

�

and 	 =

�

�

x

0

0 D(�)

�

(2.2)

with D(�) = diag(�

1

; : : : ; �

p

) and � = (�

1

; : : : ; �

p

)

>

. Thus, Y

1

; : : : ;Y

n

are inde-

pendent and identi
ally distributed with a

ording to the N

p

(�;�), where

� = a+ 1�

x

= �(�) and � = �

x

1

p

1

>

p

+D(�) = �(�); (2.3)

with � = (�

x

;�

>

; �

x

;�

>

)

>

. The log-likelihood fun
tion is given by

`(�) =

n

X

i=1

l

i

(�); (2.4)

where l

i

(�) = (�p=2)log(2�)�

1

2

logj�j�

1

2

kT

i

k

2

; with kT

i

k

2

= (Y

i

��)

>

�

�1

(Y

i

�

�), i = 1; :::; n.

Inferen
e for su
h model is 
onsidered in Grubbs (1948, 1973, 1983), Christensen

and Bla
kwood (1993) and re
ently by Bedri
k (2001). Thus, the main obje
t of this

paper is to 
onsider the approa
h of lo
al in
uen
e in the Grubbs's measurement

model given in (2.1). To obtain the maximum likelihood estimators we used the

EM-algorithm.

3 Lo
al In
uen
e

Let l(�) denote the log-likelihood fun
tion from the postulated model ( here � =

(�

x

;�

>

; �

x

;�

>

)

>

and let ! be a q�1 ve
tor of perturbation restri
ted to some open

subset of R

q

. The perturbations are made in the likelihood fun
tion su
h that it takes

form l(�j!). Denoting the ve
tor of no perturbation by !

0

, we assume l(�j!

0

) =

l(�). To asses the in
uen
e of the perturbations on the maximum likelihood estimate

of �, one may 
onsider the likelihood displa
ement

LD(!) = 2[l(

b

�)� l(

b

�

!

)℄;

where

b

�

!

(

b

�) denotes the maximum likelihood estimator under the model l(�j!)(l(�)).

The idea of lo
al in
uen
e (Cook, 1986) is 
on
erned in 
hara
terizing the behavior
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of LD(!) at !

0

. The pro
edure 
onsists in sele
ting a unit dire
tion d, jjdjj = 1,

and then to 
onsider the plot of LD(!

0

+ ad) against a with a 2 R. This plot is


alled lifted line. Noti
e that sin
e LD(!

0

) = 0; LD(!

0

+ad) has a lo
al minimum

at a = 0. Ea
h lifted line 
an be 
hara
terized by 
onsidering the normal 
urvature

C

d

(�) around a = 0. The suggestion is to 
onsider the dire
tion d

max


orresponding

to the largest 
urvature C

dmax

(�). The index plot of d

max

may reveal those obser-

vations that under small perturbations exert notable in
uen
e on LD(!). Cook

(1986) showed that the normal 
urvature at the dire
tion d takes the form

C

d

(�) = 2jd

>

�

>

L

�1

�dj; (3.1)

where �L is the observed Fisher information matrix for the postulated model (! =

!

0

) and � is the p� q matrix with elements

�

ij

=

�

2

l(�j!)

��

i

�!

j

;

evaluated at � =

b

� and ! = !

0

; i = 1; :::; p and j = 1; :::; q. Therefore, the max-

imization of (3.1) is equivalent to �nding the largest absolute eigenvalue C

dmax

of

the matrix B =�

>

L

�1

� and, d

max

is the 
orresponding eigenve
tor. In some situ-

ations, it may be of interest to assess the in
uen
e on a subset �

1

of � = (�

>

1

; �

>

2

)

>

.

For example, one may have interest on �

1

= � or �

1

= �. In su
h situations, the


urvature at the dire
tion d is given by

C

d

(�

1

) = 2jd

>

�

>

(L

�1

�B

22

)�dj; (3.2)

where,

B

22

=

 

0 0

0 L

�1

22

!

;

and L

22

is obtained from the partition of L a

ording to the partition of �. The

eigenve
tor d

max


orresponds to the largest absolute eigenvalue of the matrix B =

�

>

(L

�1

�B

22

)�.

Other important dire
tion, a

ording to Es
obar and Meeker (1992) (see also Ver-

beke and Molenberghs, 2000) is d = e

in

, whi
h 
orresponds to the i-th position,

where there is a one. In that 
ase, the normal 
urvature, 
alled the total lo
al in
u-

en
e of individual i, is given by C

i

= 2je

>

in

Be

in

j = 2jb

ii

j, where b

ii

is the ith element

diagonal of B, i = 1; :::; n. Verbeke and Molenberghs (2000) propose 
onsider the
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i�th observation in
uential if C

i

is larger than the 
uto� value 2

q

X

i=1

C

i

=q. We use

d

max

and C

i

as diagnosti
s for lo
al in
uen
e.

4 Curvature derivation

In this se
tion we derive the observed information matrix and the � matrix for

di�erent s
hemes of perturbations.

4.1 The observed information matrix

From (2.4) following that the matrix of se
ond derivatives with respe
t to � is given

by:

L =

�

2

l(�)

����

>

�

�

�

�=

b

�

=

 

L

11

0

L

22

!

(4.1)

where

b

� is the estimator of maximum likelihood of �=(�

x

;�

>

; �

x

;�

>

)

>

=(�

>

1

; �

>

2

)

>

,

where �

1

= (�

x

;�

>

)

>

and �

2

= (�

x

;�

>

)

>

. The elements of this matrix are given

in the appendix A.

4.2 Perturbation of Cases

We 
onsider the model (2.1) and weights ve
tor ! = (!

1

; : : : ; !

n

)

>

. The log-

likelihood fun
tion for perturbed model is given by

`(�=!) =

n

X

i=1

!

i

`

i

(�); (4.2)

where `

i

(�); i = 1; : : : ; n ; as de�ned in (2.5), with � = (�

x

;�

>

; �

x

;�>)

>

. Note that

here !

0

= 1

n

.

The delta matrix is given by

� = (�

1

; : : : ;�

n

); (4.3)
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where �

i

=

�`

i

(�)

��

, i = 1; : : : ; n, with elements

�l

i

(�)

�


= �

1

2

[

�logj�j

�


+

�kT

i

k

2

�


℄; 
 = �

x

;�; �

x

;�: (4.4)

The 
omponents

�logj�j

�


and

�kT

i

k

2

�


are presented in Appendix B.

Note that, by (4.1), the normal 
urvature at the dire
tion d takes the form

C

d

(�) = C

d

(�

x

;�

0

) + C

d

(�

x

;�

0

): (4.5)

See Verbeke and Molenberghs (2000).

4.3 Response Perturbation

We 
onsidering here, of following perturbation s
hemes in the response variable

Y

!

i

= Y

i

+ S

y

!

i

; i = 1; : : : ; n; (4.6)

where S

y

= (s

1

; : : : ; s

p

)

>

is a ve
tor p� 1, with s

j

, s
ale fa
tor 
orresponding to the

j-th instrument, j = 1; : : : ; p: In this 
ase !

o

= (0; : : : ; 0)

>

n�1

.

The log-likelihood fun
tion for the perturbed model `(�=!) is given by

`(�=!) =

n

X

i=1

`

i

(�=!

i

); (4.7)

where

`

i

(�=!

i

) = (�p=2)log(2�)�

1

2

logj�j �

1

2

kT

!

i

k

2

;

and kT

!

i

k

2

= (Y

!

i

��)

>

�

�1

(Y

!

i

��) with �, � as in (2.3) and ! = (!

1

; : : : ; !

n

)

>

.

Then the i� th 
olumn of the � matrix, �

i

, have elements given by,

�

�

x

i

= 1

>

p

�

�1

S

y

, �

�i

= I

(p)

�

�1

S

y

, �

�

x

i

=




�2

�

x

(Y

!

i

� �)

>

MS

y

and

�

�i

= D(Y

!

i

� �)D

�2

(�)S

y

+ 


�2

�

x

D

�2

(�)1

p

(Y

!

i

� �)

>

MS

y

� 


�1

�

x

D

�2

(�)(Y

!

i

� �)1

>

p

D

�1

(�)S

y

� 


�1

�

x

(Y

!

i

� �)

>

D

�1

(�)1

p

D

�2

(�)S

y

,

for i = 1; : : : ; n ; where 
 = 1 + �

x

1

p

>

D

�1

(�)1

p

, M = �

x

D

�1

(�)1

p

1

p

>

D

�1

(�)
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and the � matrix is evaluated in ! = !

0

= (0; : : : ; 0)

>

and

b

� = (b�

x

;
b
�

>

;

b

�

x

;

b

�)

>

.

An other form of the response perturbation is to 
onsider

Y

!

i

= Y

i

+D(S

y

)!

i

; i = 1; : : : ; n; (4.8)

where D(S

y

) = Diag(s

1

; : : : ; s

p

) is a diagonal matrix of order p and !

i

a p� 1 per-

turbations ve
tor. In this 
ase !

o

= (0; : : : ; 0)

>

np�1

.

4.4 Perturbation of the multipli
ative bias

In this se
tion we 
onsider the follow model perturbed:

Y

i

= a+ bx

i

+ �

i

(4.9)

where a = (0;�

>

)

>

and b = (1;!

>

)

>

, i = 1; : : : ; n. Under normality Y

i

�

N

p

(�

!

;�

!

), where �

!

= a + b�

x

and �

!

= �

x

bb

>

+D(�). Note that this model


orresponding to the Comparative Calibration Model proposed by Barnett (1969).

See also Bolfarine and Galea (1995). The log-likelihood fun
tion for the perturbed

model is given by

`(�=!) =

n

X

i=1

`

i

(�=!); (4.10)

where `

i

(�=!) = (�p=2)log(2�)�

1

2

logj�

!

j�

1

2

kT

!

i

k

2

, with kT

!

i

k

2

= (Y

i

��

!

)

>

�

�1

!

(Y

i

�

�

!

). The � matrix is given by

� =

n

X

i=1

�

2

l

i

(�=!)

���!

>

;

where the elements of

�

2

l

i

(�=!)

���!

>

are given in the appendix B.
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5 Appli
ations

In this se
tion we presents two appli
ations of the methodology dis
ussed below.

5.1 The Grubbs Data Set

As an �rst illustration 
onsider some data studied by Grubbs (1948). The data are

the time of burning for fuses on proje
tiles as re
orded by three di�erent observers.

This data set also where analysed by Jae
h (1985). For this data set we analysis the

lo
al in
uen
e based in the perturbation of 
ases with interest in �. The results are

show in the Figure 1. The observations point as more in
uential are 4 and 17. The

Figure 1(
) show the s
atter plot of C

i

(�

x

;�) versus C

i

(�

x

;�). Their respe
tive 
ut-

o� values, indi
ated in the �gure by the dashed line, are 2

P

n

i=1

C

i

(�

x

;�)=n = 0:421

and 2

P

n

i=1

C

i

(�

x

;�)=n = 0:614. Note that the observations 2; 4; 15 and 17 are

highly in
uential for both part of the parameter and the observation 9 is in
uential

only for the estimation of (�

x

;�).

The Figure 2 show the index plot of jdmaxj and C

i

for the response perturbation

and Likelihood Displa
ement. Note that this graphi
 
an be used for identify in
u-

ential observations, y

ij

, between experimental unit. The observations point as more

in
uential are 12 and 17. Moreover, from Likelihood Displa
ement, �gure 2(
), the

observations 4 and 17 are globaly in
uential.

The Table 1 present the maximum likelihood estimate for � and its standard er-

rors, if it is not 
onsidered the most in
uential observations, a

ording the global/lo
al

in
uen
e method. Note that the standard errors are very a�e
ted.

5.2 Barnett Data Set

In this se
tion we analyze one real data set given in Barnett (1969). Two instruments

used for measuring the vital 
apa
ity of the human lung and operated by skilled and

unskilled operators were 
ompared on a 
ommon group of 72 patients. Figures 3a

and 3b present graphi
s of lo
al in
uen
e for the perturbation of 
ase weights. The


uto� used for C

i

equals 2

P

n

i=1

C

i

=n = 0:55 and has been indi
ated in the �gure

8



by the dashed line. Patients 4, 25 and 67 are found to have a C

i

value larger than

0:55 and are therefore 
onsidered to be relatively in
uential for the estimation of

the 
omplete parameter ve
tor �. Similar results are observed in the index plots

of jd

max

j and C

i

, Figure 4, with interest in � and � respe
tively. Figures 5 and 6

present graphi
s of lo
al in
uen
e for the perturbation of multipli
ative bias. We 
an

observed that the assumption of equals bias is not plausible in this 
ase. This suggest

modify the model in
orporating the possibility of bias di�erent of one. In e�e
t the

maximum log-likelihood for the Grubbs's model is �2074:1 and for the Barnett's

model the maximum log-likelihood is �2064:5, 
orresponding to likelihood ratio

statisti
 of 19.2. This indi
ates that the Barnett's model �ts the data signi�
antly

better than the Grubbs's model. Thus is, this perturbation s
heme serves as a guide

in building a revised model.

Next we 
ompare lo
al in
uen
e and 
ase deletion diagnosti
s. Following Zhao

and Lee (1998), Cook's distan
e 
an be de�ned by

D

i

= (

b

�

(i)

�

b

�)

>

(� L)(

b

�

(i)

�

b

�)=(2p+ 1); (5.1)

i = 1; :::; n, where

b

�

(i)

denotes the parameter estimates without 
ase i. Figures 3


and 3d gives the index plot of D

i

and Likelihood Displa
ement, LD

i

= 2(l(

b

�) �

l(

b

�

(i)

)), i = 1; :::; n for the Grubbs's model. On
e again 
ases 4, 25 and 67 are

prominent.

The Table 2 present the maximum likelihood estimate for � and it standard

error, if it is not 
onsidered the three most in
uential observations, a

ording the

global/lo
al in
uen
e method.
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Appendix A: The Observed Information Matrix

In this appendix we present the elements of the observed information matrix.

From (2.4), it follows that

�l

i

(�)

�


= �

1

2

[

�logj�j

�


+

�kT

i

k

2

�


℄; (A.1)

with 
 = �

x

;�; �

x

;�, i = 1; :::; n. After some algebrai
 manipulations it follows

that

�logj�j

�


= 0; 
 = �; �

�logj�j

��

x

= 


�1


� 1

�

x

;

�logj�j

��

= (I

p

� 


�1

�

x

D

�1

(�))D

�1

(�)1

p

;

�kT

i

k

2

��

x

= �21

>

p

�

�1

W

i

;

�kT

i

k

2

��

= �2I

(p)

�

�1

W

i

;

�kT

i

k

2

��

x

= �




�2

�

x

W

>

i

MW

i

�kT

i

k

2

��

= �D(W

i

)D

�2

(�)W

i

� 


�2

�

x

W

>

i

MW

i

D

�2

(�)1

p

+ 2


�1

�

x

A

i

D

�2

(�)W

i

;

where 
 = 1 + �

x

1

>

D

�1

(�)1, a

i

=W

>

i

D

�1

(�)1

p

and W

i

= Y

i

� a� b�

x

.

From (A.1) it follows that the per element observed information matrix is given

by

I

i

= I

i

(�=Y

i

) = �

�

�

2

l

i

(�)

�
��

>

�

;

where

�

2

`

i

�
��

>
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�

�
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�
��
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��

>
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: (A.2)

with � = �

x

;�; �

x

;�. After some algebrai
 manipulations we have that
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Appendix B: The Delta Matrix for Perturbation of the

Multipli
ative Bias

The � matrix is given by

� =

n

X

i=1

�

2

l

i

(�=!)
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>

;

where the elements of the matrix
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Figure 1: Index plots for (a) jd

max

j, (b) C

i

and (
) C

i

(�

x

;�) versus C

i

(�

x

;�) for pertur-

bation of 
ases
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Figure 2: Index plot of (a) jd
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for perturbation of the response (
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Figure 3: Index plots for (a) jd

max

j (b) C

i

for perturbation of 
ases for � (
) Likeli-

hood Displa
ement LD

i

(d) Cook's distan
e D

i
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Figure 5: Index plots of (a) d

max

and (b) C

i

for perturbation of the multipli
ative

bias
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for perturbation of the multipli
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Table 1: Maximum likelihood estimative and its asymptoti
 standard error when some

observations are removed for Grubbs Data Set

b

� None #4 #12 #17 #4; 12 #4; 17 #12; 17 #4; 12; 17

9.7414 9.7425 9.7239 9.7207 9.7244 9.7211 9.7019 9.7015

b�

x

(0.0387) (0.0401) (0.0360) (0.0342) (0.0374) (0.0355) (0.0298) (0.0310)

0.0238 0.0218 0.0243 0.0246 0.0222 0.0226 0.0252 0.0231

b�

2

(0.0048) (0.0046) (0.0050) (0.0050) (0.0047) ( 0.0047) (0.0051) (0.0049)

0.0141 0.0150 0.0143 0.0139 0.0152 0.0148 0.0141 0.0150

b�

3

(0.0032) (0.0032) (0.0033) (0.0033) (0.0033) (0.0033) (0.0034) (0.0034)

0.0434 0.0449 0.0362 0.0326 0.0376 0.0338 0.0240 0.0249

b

�

x

(0.0114) (0.0120) (0.0097) (0.0087) (0.0102) (0.0092) (0.0065) (0.0069)

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

b

�

1

( 0.0001) (0.0001) (0.0001) ( 0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

0.0006 0.0005 0.0006 0.0006 0.0005 0.0005 0.0006 0.0005

b

�

2

(0.0002) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002

b

�

3

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Table 2: Maximum likelihood estimative and its asymptoti
 standard errors when some

observations are removed for Barnett Data Set

b

� None #4 #25 #67 #4; 25 #4; 67 #25,67 #4; 25; 67

0.0225 0.0225 0.0225 0.0224 0.0225 0.0224 0.0224 0.0224

b�

x

(0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010)

-0.0007 -0.0008 -0.0006 -0.0007 -0.0007 -0.0009 -0.0006 -0.0008

b�

2

(0.0003) (0.0003) (0.0003) ( 0.0003) (0.0002) (0.0003) (0.0003) ( 0.0002)

-0.0010 -0.0011 -0.0009 -0.0011 -0.0010 -0.0012 -0.0011 -0.0012

b�

3

( 0.0004) (0.0004) ( 0.0004) ( 0.0004) (0.0004) (0.0003) (0.0003) (0.0003)

-0.0014 -0.0015 -0.0013 -0.0016 -0.0014 -0.0016 -0.0015 -0.0015

b�

4

(0.0004) (0.0004) (0.0004) ( 0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

6.2906 6.2720 6.2783 6.2542 6.2600 6.2446 6.2556 6.2429

b

�

x

(1.0609) (1.0633) (1.0646) (1.0620) (1.0665) (1.0665) (1.0684) (1.0719)

0.4998 0.4170 0.4419 0.4805 0.3602 0.3982 0.4269 0.3439

b

�

1

(0.0993) (0.0851) ( 0.0891) (0.0963) (0.0745) (0.0823) (0.0869) (0.0723)

0.1413 0.1057 0.1090 0.1476 0.0716 0.1166 0.1179 0.0839

b

�

2

(0.0518) (0.0466) (0.0471) (0.0511) (0.0413) (0.0464) (0.0466) (0.0412)

0.4383 0.4807 0.4604 0.3928 0.5075 0.4265 0.4081 0.4477

b

�

3

(0.0898) (0.0949) (0.0920) (0.0827) (0.0974) (0.0867) (0.0839) (0.0885)

0.4633 0.5087 0.4989 0.4328 0.5522 0.4704 0.4610 0.5069

b

�

4

(0.0936) (0.0949) (0.0980) (0.0888) (0.1046) (0.0936) (0.0922) (0.0980)
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