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Abstrat

The study of this paper is devoted to the analysis of multilevel approximation

shemes, in the ontext of multiresolution analysis. We have partiular interest in

expansions where the oeÆients are obtained in terms of disrete onvolutions of

funtion point values with some spei� wheights. In the �rst part we analyze aspets,

suh as, algorithm of onstrution, their auray and multilevel implementation for

three ases: interpolation, quasi-interpolation and disrete projetion.

The seond part is dediated to hybrid formulations for the disretization of nonlin-

ear di�erential operators. The idea is to ombine two di�erent approximation shemes:

one approximation sheme is used for funtions or linear terms; another one, de�ned

in terms of funtion point values, is used for nonlinear operations. Taking the bilinear

advetion operator as a model, we establish the onsisteny of the disretizations in

terms of the order of the trunation error.

1 Introdution

The purpose of the present paper is two fold. Firstly, in Setion 2, we shall analyze various

approximation shemes in the ontext of biorthogonal multiresolution analysis. Besides

the usual biorthogonal projetions, we are also interested in approximations that an be

obtained from the information of funtion point values. For instane, this is the ase of

interpolation, quasi-interpolation and disrete projetion operators. Various aspets shall

be analyzed, suh as the algorithms for the onstrution of the proposed shemes, their

order of auray and numerial aspets for multilevel implementation. To �x ideas, we

shall adopt the spline biorthogonal multiresolution analyzes as model framework.

In Setion 3, whih is the seond part of the present paper, the approximation shemes

presented in the �rst part shall be used for the disretization of di�erential operators.

Speially, we are interested in hybrid formulations whih are suitable for the disretization

of nonlinear operators. As in the traditional pseudo-spetral shemes, the idea is to om-

bine di�erent approximation shemes. There is one approximation sheme whih is used

for funtions or linear operations (e.g. derivative), and there is another one, using point

values, for the performane of the nonlinear operations (e.g. multipliation).

�

The work of this author was partially supported by CAPES-Brasil

y

The work of this author was partially supported by CNPq-Brasil

1



Before properly entering into the two main parts of this paper, let us �rst give an

overview of their ontents. The formalism of the presentation aims to a uni�ed framework

for the analysis of the di�erent approximation shemes, of the �rst part, as well as of their

appliations in the disretization of di�erential operators, in the seond part.

The de�nition of an approximation sheme P

j

u requires two basi ingredients: the

approximating spae V

j

and the approximation strategy. Given an approximating spae,

several approximation strategies may be used, produing di�erent approximation shemes.

In our exposition, we shall adopt the formalism suggested by A. Harten [13℄ in whih an

approximation strategy may represented by dual appliations fD

j

;R

j

g suh that P

j

=

R

j

D

j

. D

j

is a disretization operator whih assigns disrete values D

j

u = u

j

to a funtion

u. Usually, the disrete values u

j

give loal information of u assoiated with a ertain grid

X

j

. They an be point values or loal weighted averages. Thus, typially, D

j

is a linear

mapping D

j

: V ! E

j

, where V is a funtional spae and E

j

is a disrete vetor spae.

Conversely, there is a reonstrution operator R

j

: E

j

! V

j

whih produes a funtion in

V

j

from the knowledge of disrete values u

j

2 E

j

. Typially, reonstrution operators are

de�ned in terms of an expansion

R

j

(x;u

j

) =

X

k

u

j

(k)�

j;k

(x); [rej℄ (1)

where the basi funtions �

j;k

(x) form a Riesz basis for V

j

.

A multiresolution analysis is a sequene of embedded approximating spaes V

j

� V

j+1

.

In suh ontext, �

j;k

(x) 2 V

j

are saling funtions that provide reonstrution operators (1)

in a single sale level. The index j orresponds to the dyadi sale 2

�j

and k indiates spae

loalization k2

�j

2 X

j

. For the appliations presented in this work, we shall onsider shift

invariant spaes V

j

where �

j;k

(x) = �(2

j

x � k); k 2 Z; are obtained by translations and

dilations of a single basi funtion �(x). Given the reonstrution operator (1), we shall

adopt di�erent disretization operators D

j

to produe di�erent approximation shemes

fD

j

;R

j

g on V

j

. For instane, disretizations

(D

j

u)(k) = 2

j

Z

R

u(x)�

�

j;k

(x)dx;

de�ned by loal averages using dual saling funtions �

�

j;k

(x) = �

�

(2

j

x � k), produe

biorthogonal projetions P

j

= R

j

D

j

. Other shemes of interest, suh as interpolation,

quasi-interpolation or disrete projetions, may be given in the form I

j

= R

j

D

j



, where

D

j



are de�ned in terms of disrete onvolutions of point values with some spei� weights.

For instane, for some 0 � � < 1 we shall onsider disretization operators of the form

(D

j



u)(k) =

X

n2Z

(n)u((k � n+ �)2

�j

)

for interpolation and quasi-interpolation, and of the form

(D

j



u)(k) =

X

n2Z

(n)u((n+ 2k)2

�j�1

)

for disrete projetions.

A fundamental aspet of a multiresolution analysis is the possibility of multilevel de-

ompositions in terms of diret sums

V

j

= V

J

�W

J

� � � � �W

j�1

;
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where J is a oarse level and W

l

ontains details between onseutive levels l and l+1. In

assoiation to suh multilevel deompositions there are wavelet funtions f 

l;k

(x)g, whih

form Riesz bases for the intermediate spaes W

l

. Therefore, in a multiresolution analysis

framework, approximation shemes may be de�ned in terms of multilevel disretizations

D

j

MR

u = u

j

MR

= fu

J

;d

j

; � � � ;d

j�1

g

and multilevel reonstrutions

R

j

MR

(x;u

j

MR

) = R

J

(x;u

J

) +

j�1

X

`=J

X

k

d

`

(k) 

`;k

(x):

For instane, for the biorthogonal projetion, the multilevel disretization is de�ned by

loal averages using dual wavelets  

�

`;k

(x) suh that

d

`

(k) = (G

`

u)(k) = 2

`

Z

R

u(x) 

�

`;k

(x)dx

whih are known as wavelet oeÆients. If the disrete values u

`+1

= D

`+1

u are given, then

the wavelet oeÆients an be obtained by Mallat's analysis algorithm whih is expressed

by onvolution with a high pass �lter g

�

followed by deimation

(G

`

u)(k) =

X

k

g

�

(m� 2k)(D

`+1

u)(m) [g℄ (2)

We are also interested in multilevel approximation shemes in terms of other type of mul-

tilevel disretization operators. Instead of d

`

(k); we shall use modi�ed wavelet oeÆients

�

d

`

(k) whih are produed by a modi�ed analysis algorithm. It is based on a disretization

operator G

`



obtained by replaing D

`+1

in formula (2) by another disretization operator

D

`+1



assoiated to some other approximation sheme. Preisely,

�

d

j�m

(k) = G

j�m



(v)(k); (3)

where v is obtained by removing from u all ontributions orresponding to previously

omputed modi�ed wavelet oeÆients

�

d

j�n

; n = 1; � � � ;m � 1. Suh modi�ed analysis

algorithm was suggested by Fr�ohlih and Shneider [9℄ for the interpolation ase and

explored by Ware [15℄ for the disrete projetion. As emphasized in these papers, the

purpose of using the modi�ed funtion v instead of simply u in formula (2) is to improve

the auray in the aliasing error d

`

�

�

d

`

. A ruial ingredient in the formulation of

suh modi�ed analysis algorithm is the onservation property, whih is satis�ed both by

interpolation and disrete projetion operators. In the ase of quasi-interpolation, whih

is not onservative, we shall desribe the degradation in the aliasing error in oarse sales.

In numerial solution of partial di�erential equations (PDE), the analytial problem is

replaed by a disrete model. In the appliations of the present paper, speial attention

shall be given to the nonlinear advetion operator L(u; v) = uv

x

. Using the approximation

shemes de�ned in the �rst part, we shall onsider disretizations of the form

L

j

(u

j

;v

j

) = D

j



[L(R

j

(x;u

j

);R

j

(x;v

j

)℄:

An hybrid formulation ours if the disretization operator D

j



used after the appliation

of L is di�erent from the operator D

j

used in the disretization of the funtions u

j

= D

j

u

and v

j

= D

j

v. For instane, this is the ase in pseudo-spetral disretizations of nonlinear
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di�erential operators in whih D

j

is the Fourier transform and D

j



is its disrete version,

whih is de�ned in terms of point values. Pseudo-wavelets shemes have also been adopted

in appliations to PDE [2, 3, 9, 14℄, where the disretization of the nonlinear terms are

usually evaluated in the physial spae by means of funtionals D

j



de�ned in terms of

point values.

For the shemes under study, we shall analyze the trunation error

TE(u; v) = D

j

L(u; v)�L

j

(u

j

;v

j

)

by giving a preise desription of the interation between di�erent Fourier modes. We shall

prove that for the Petrov-Galerkin formulation, in whih D

j



= D

j

, the superonvergene

ours, i.e., the order of auray M for the trunation error is higher than the maximum

approximation order N allowed by the approximating spaes. For the three hybrid for-

mulations ( using interpolation, quasi-interpolation and disrete projetion), the order of

the trunation error is N � 1. However, for some spei� ases (e.g. splines of even order)

it gets N , with an extra gain in the onsisteny order. These results have been partially

reported in [1℄.

2 First Part: Approximation Shemes

[partone℄

2.1 Biorthogonal Framework

[mra℄ For the de�nition of a multiresolution analysis V

j

� L

2

(R), the main ingredient is

a sale relation

�(x) = 2

X

k2Z

h(k)�(2x � k) [1e1℄ (4)

whih impliitly de�nes the basi saling funtion �. In the Fourier spae, the sale relation

is expressed by

b

�(�) = H(�=2)

b

�(�=2); [1e2℄ (5)

where

H(�) =

X

k2Z

h(k)e

�ik�

[1e3℄ (6)

is a low-pass �lter. Two multiresolution analysis V

j

and V

�

j

are said to be biorthogonal

provided that the biorthogonal relation holds

Z

R

�

�

(x)�(x� k)dx = Æ

k

:

Approximations of funtions u are found in V

j

by means of the biorthogonal projetion

operator P

j

= R

j

D

j

, where

R

j

(x;u

j

) =

X

k2Z

u

j

(k)�

j;k

(x); [projetion℄ (7)

and

D

j

u(k) := 2

j

Z

R

u(x)�

�

j;k

(x)dx: [jk℄ (8)
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It an also be represented in a multilevel setting P

j

= R

j

MR

D

j

MR

. The multilevel reon-

strution has the form

R

j

MR

(x;u

j

MR

) =

X

k2�

J

u

J

(k)�

J;k

(x) +

j�1

X

l=J

X

k2�

l

d

l

(k) 

l;k

(x)

= P

J

u(x) +

j�1

X

l=J

Q

l

u(x): [e20℄ (9)

The mother wavelets are obtained by the sale relations

 (x) = 2

X

k2Z

g(k)�(2x � k) and  

�

(x) = 2

X

k2Z

g

�

(k)�

�

(2x� k);

where g(k) = (�1)

k+1

h

�

(1�k) and g

�

(k) = (�1)

k+1

h(1�k) are high-pass �lter oeÆients,

and the following biorthogonal relations hold

Z

R

 

�

(x) (x� k)dx = Æ

k

; [1e9℄ (10)

Z

R

�

�

(x) (x � k)dx =

Z

R

 

�

(x)�(x � k)dx = 0: [1e10℄ (11)

The multilevel disretization are obtained by the funtionals

D

j

MR

= fD

J

;G

J

; � � � G

j�1

g

suh that

G

l

u(k) = d

l

(k) = 2

l

Z

R

 

�

l;k

(x)u(x)dx: [wof℄ (12)

The transformation relating the information at the �nest level u

j

and its multilevel repre-

sentation u

j

MR

= fu

J

;d

j

; � � � ;d

j�1

g is known as Analysis Algorithm and it is de�ned by

the reursive appliation of the formulas

u

j�1

(k) = 2

X

s2Z

h

�

(s� 2k)u

j

(s); [mallat1℄ (13)

d

j�1

(k) = 2

X

s2Z

g

�

(s� 2k)u

j

(s): [mallat2℄ (14)

On the other hand, the Synthesis Algorithm reovers the �nest level information by mul-

tilevel representation

u

j

(k) =

X

s2Z

h(h� 2s)u

j�1

(s) +

X

s2Z

g(k � 2s)d

j�1

(s): (15)

� Auray

It is well known that the best order of auray in shift-invariant approximating spaes

is haraterized by the Strang-Fix ondition. A funtion �(x) satis�es the Strang-Fix

ondition of order p if

b

�(0) 6= 0 and

b

�(�) have zeros of order p+1 at � = 2k�; k 2 Z n f0g.

In suh ase, all the polynomials up to degree p an be loally reprodued by linear

ombinations of the basi funtions �

j;k

(x). If � and �

�

are integrable saling funtions of

5



ompat support, and � satis�es the Strang-Fix ondition of order p, then the biorthogonal

projetion P

j

f in V

j

satis�es the error estimation [3℄

kf �P

j

fk

H

s

. 2

�j(p+1�s)

jjf jj

H

p+1
; [1eq333℄ (16)

for 0 � s � minfr; p + 1g, where r is degree of regularity of �, so that � 2 H

r

(R). The

following estimations also hold

jd

l

(k)j . 2

�l(p+1)

kuk

H

p+1

(Supp 

�

l;k

)

; [1e18℄ (17)

kQ

j

fk

H

s

. 2

�j(p+1�s)

jjf jj

H

p+1
; [1eq334℄ (18)

where Supp 

�

l;k

represent the support of funtion  

�

l;k

.

2.1.1 Spline Biorthogonal Family

[seb℄ We have partiular interest in the family of biorthogonal multiresolution analysis

introdued by Cohen, Daubehies and Feauveau [4℄. Let N

�

and N be positive integers

of same parity, i.e., N

�

+N =M is an even integer. The funtion �

�

= �

N

�

is hosen as

B-spline of order N

�

. For even N

�

= 2l

�

the orresponding saling �lter is

H

�

(�) =

�

os

�

2

�

N

�

:

If N = 2l, then saling funtions �(x) = �

N

�

;N

(x) may be found with saling �lters

H(�) =

�

os

�

2

�

N

l+l

�

�1

X

k=0

�

l + l

�

� 1 + k

k

��

sin

�

2

�

2k

:

Similarly, for the odd N

�

= 2l

�

+ 1, and N = 2l + 1, the orresponding �lters are

H

�

(�) = e

�i�=2

�

os

�

2

�

N

�

and

H(�) = e

�i�=2

�

os

�

2

�

N

l+l

�

X

k=0

�

l + l

�

+ k

k

��

sin

�

2

�

2k

:

In this ase, all funtions have ompat support. The funtion �

�

is a C

N

�

�2

pieewise

polynomials of degree N

�

� 1, and � has inreasing regularity with inreasing N . The

funtions, �

�

and �, are symmetri funtions entered at x = 0, for even N

�

and N , and

entered at x =

1

2

, for odd N

�

and N . They satisfy Strang-Fix onditions of order N

�

� 1

and N � 1, respetively.

In the extreme ase N

�

= 0, �

�

(x) = Æ(x) is the Dira distribution and �

M

(x) = �

0;M

orresponds to the interpolation saling funtions de�ned by Delauries and Dubu [8℄. It

an be shown that

�

M

(x) =

Z

R

�

N

�

(y)�

N;N

�

(y + x)dy;

independently of the hoies of N;N

�

suh that M = N +N

�

[12℄.
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2.2 Other Approximation Shemes

[sea℄ Following Harten's formalism [13℄, we shall present a lass of approximation shemes

in the spline biorthogonal framework. Di�erent shemes shall be distinguished by di�erent

form in whih the disretization operators are de�ned. Hene, in the one-level setting, we

shall always assume that the reonstrution operator has the form

R

j

(x;u

j

) =

X

k2Z

u

j

(k)�(2

j

x� k):

We say that the approximation sheme fD

j

;R

j

g is onservative if R

j

is a right-inverse

operator of D

j

, i.e., D

j

R

j

(�;u

j

) = u

j

; 8u

j

2 E

j

. This means that

(D

j

�(2

j

� �k))(s) = Æ

k�s

:

The biorthogonal projetion is an example of a onservative approximation sheme. For

this ase, the onservation property is equivalent to the biorthogonal relation.

Now we turn our attention to disretization operators de�ned in terms of disrete

onvolutions of point values with some spei� weights. We onsider three ases: interpo-

lation, quasi-interpolation and disrete projetion.

� Interpolation Sheme

For some 0 � � < 1 onsider the disretization operator

(D

j



u)(k) =

X

n2Z

(n)u((k � n+ �)2

�j

): [2e26℄ (19)

The oeÆients  = 

�

are obtained in suh a way that the operator

I

j

u(x) =

X

k2Z

(D

j



u)(k)�(2

j

x� k) [2e101℄ (20)

interpolates u at the nodes x

j

k

= (k + �)2

�j

. Therefore, it is neessary that

(D

j



�(2

j

� �l))(k) = Æ

k�l

, what shows that the interpolation sheme is onservative. The

interpolation onstraint is equivalent to the following relation

e(�)

e

�

�

(�) � 1: [2e24℄ (21)

where

e

�

�

(�) =

X

m2Z

�(m+ �)e

�im�

; e(�) =

X

m2Z

(m)e

�im�

: [2e91℄ (22)

It is possible to �nd oeÆients (k) suh that relation (21) is satis�ed provided that the

following interpolation ondition holds

e

�

�

(�) 6= 0; 8�: [i2℄ (23)

It is well known that the B-splines funtions �

N�

(x) satisfy the interpolation ondition

with � = 0 for even N

�

, and � = 1=2 for odd N

�

. Numerial experiments suggest that

equivalent results are valid for the dual funtions �(x) = �

N;N

�

(x). For example, Figure

1 shows the funtion

e

�

�

(�) orresponding N

�

= 1 and N = 3. Note that, for � = 0,

e

�

0

(�) =

e

�

0

(��) = 0 a fat that ontradits the interpolation ondition. On the other

7



|

−π
|

π

−1

(a)

|

−π
|

π

−1

(b)

Figure 1: (a)-

e

�

0

e (b)-

e

�

1=2

for N

�

= 1 and N = 3

[2f1℄

|−π |π

−1

(a)

|
−π

|
π

−1

(b)

Figure 2:

e

�

0

for (a)- N

�

= 2; N = 4 and (b)- N

�

= 2; N = 6

[2f4℄

hand,

e

�

1=2

(�) 6= 0 for �� � � � �. The same type of behavior is veri�ed for other saling

funtions with odd N . For even N , Figure 2 shows the graph of

e

�

0

(�) for N

�

= 2 and

N = 4; 6. In both ases, we have

e

�

0

(�) 6= 0 for �� � � � �.

Assuming that the interpolation ondition is veri�ed, the oeÆients (k) an be ob-

tained in terms of the Fourier's oeÆients of the funtion 1=

e

�

�

(�). However, exepting

the ase N

�

= 0, where �

N;N

�

is an interpolation funtion of ompat support, the in-

terpolation onstraint an only be ahieved with in�nitely many oeÆients (k) 6= 0.

Therefore, the implementation of D

j



in physial spae requires trunated �lter oeÆients

[9℄ and the sheme beomes non-onservative. Examples of some interpolating oeÆients

are presented in Table 1.

� Quasi-Interpolation Sheme

The interpolation onstraint may be replaed by a less restritive ondition to obtain

a sheme that requests only a �nite number of non zero oeÆients. In this ase, the

disretization operator has the same form (19), as in the interpolation ase. However

the oeÆients (k), are hosen in suh a way that the operator I

j

= R

j

D

j

is a quasi-

interpolation of order n. That is, I

j

q(x) = q(x) for every polynomial q(x) of degree up to

n. The quasi-interpolation ondition may be translated into a relation between disrete

moments of  and the moments of the funtion �.

8



Table 1: Interpolation oeÆients for j(k)j � 10

�6

and k � 0

[2t1℄

(N

�

; N) k

0 1 2 3 4 5 6 7 8 9

(1,3)

1181

1339

24

379

�

1

288

�

1

1204

�

1

35183

1

180840

(1,5)

491

569

227

2872

�

7

648

�

1

6887

1

2246

1

81644

�

1

114680

(2,4)

718

1165

172

911

37

2060

�

9

974

�

7

1441

�

1

1004

1

23306

1

10133

1

30947

1

284026

(2,6)

427

613

151

895

�

11

1164

�

7

761

1

1596

1

1028

1

9261

�

1

19095

�

1

80053

1

347092

The k-moments of a funtion, � are de�ned by

M

k

�

=

Z

R

x

k

�(x)dx:

The saling funtions are normalized in suh a way thatM

0

�

=M

0

�

�

= 1. Using the sale

relation, the moments an be alulated reursively

M

0

�

= 1

M

k

�

=

1

2

k

� 1

k

X

l=1

�

k

l

�

�

l

H

M

k�l

�

; k = 1; 2; : : : : [mo1℄ (24)

where �

l

H

are the disrete moments of �lter H de�ned by

�

l

H

=

X

s2Z

s

i

h(s): [moH℄ (25)

Lemma 2.1 Let p be the order of Strang-Fix ondition of the funtion �(x), and suppose

that 0 � n � p. The operator I

j

u(x) is a quasi-interpolation operator of order n, if and

only if the following moment relations are satis�ed

m

X

l=0

�

m

l

�

�

l



M

m�l

�

= �

m

; 0 � m � n; [2e4℄ (26)

where

�

l



=

X

k2Z

k

l

(k); [2e5℄ (27)

[2l9℄

Proof: By de�nition of quasi-interpolation operator, the oeÆients (k) must to be

so that, for 0 � m � n,

x

m

=

X

k2Z

X

n2Z

(n)(k � n+ �)

m

�(x� k)

=

X

s2Z

(s+ �)

m

X

n2Z

(n)�(x� s� n)

9



=

X

s2Z

(s+ �)

m

�(x� s)

=

X

s2Z

f

�

(s;x); [2e54℄ (28)

where �(x) =

P

n2Z

(n)�(x�n) and f

�

(y;x) = (y+�)

m

�(x�y). The Fourier transform

of � satis�es

b

�(�) = e(�)

b

�(�), from whih we onlude that �(x) also satis�es the Strang-

Fix ondition with order p. Considering that

b

f

�

(�;x) =

Z

R

e

�i�y

(y + �)

m

�(x� y)dy

= e

�ix�

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

Z

R

e

i�y

(y)

s

�(y)dy

= e

�ix�

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

(�i)

s

d

s

b

�

d�

s

(��);

then

b

f

�

(2�k;x) = 0 for k 2 Z n f0g. For k = 0 we have

b

f

�

(0;x) =

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

(�i)

s

d

s

b

�

d�

s

(0)

=

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

M

s

�

:

Applying the Poisson summation formula and the equation (28), the momentsM

s

�

satisfy

the relations

x

m

=

b

f

�

(0;x) =

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

M

s

�

:

This is only possible if

M

m

�

= �

m

;

and the statement of the Lemma follows by onsidering � = 0 in the expression

d

m

b

�

d�

m

(�) =

m

X

s=0

�

m

s

�

d

s

e

d�

s

(�)

d

m�s

b

�

d�

m�s

(�):

Next, we shall desribe another useful relation haraterizing a quasi-interpolation

sheme.

Lemma 2.2 Let �(x) be a funtion that satis�es the Strang-Fix ondition with order

p. Suppose that (k) are the oeÆients of a quasi-interpolation sheme I

j

u(x) of order

n � p. Then the following relation holds

e(�)

e

�

�

(�) = 1 +O(�)

n+1

; [quasi℄ (29)

where e(�) and

e

�

�

(�) are given by (22). [2l2℄

10



Proof: From the de�nition of the funtions e(�) and

e

�

�

(�) it follows that

e(�)

e

�

�

(�) = e(�)

X

k2Z

�(k + �)e

�i�k

= e(�)

X

k2Z

b

�(� + 2k�)e

i�(�+2k�)

=

X

k2Z

e(� + 2k�)

b

�(� + 2k�)e

i�(�+2k�)

=

X

k2Z

b

�(� + 2k�)e

i�(�+2k�)

=

b

�(�)e

i��

+

X

k 6=0

b

�(� + 2k�)e

i�(�+2k�)

= f(�) +

X

k 6=0

f(� + 2k�)

where we use the fat that e(�) is a 2�-periodi funtion and f(�) = e

i��

b

�(�). We note

that

b

�(�) = e(�)

b

�(�), from whih we onlude that � satis�es the Strang-Fix ondition

with same order of �. Therefore f(0) = 1 and f(�) has zeros of order p + 1 at � = 2k�,

k 2 Z n f0g. For 1 � n � p

d

n

f

d�

n

(0) =

n

X

s=0

�

n

s

�

(i�)

n�s

d

s

b

�

d�

s

(0)

=

m

X

s=0

�

n

s

�

(�1)

s

�

n�s

M

s

�

= �

n

n

X

s=0

�

n

s

�

(�1)

s

= 0

and the result of Lemma holds

Sine the Strang-Fix ondition determines the degree of the polynomials that an be

represented in V

j

, then the order of a quasi-interpolation sheme is bounded by the order

of the Strang-Fix ondition of �(x). Therefore, the largest order of quasi-interpolation

sheme in terms of �(x) = �

N;N

�

(x), is N � 1 (Lemma 2.1). The oeÆients (k), an be

obtained by solving the linear systems (26) and (27). For that, it is neessary to know the

moments of the funtion �(x), whih an be alulated by the reursive proedure (24).

Knowing the momentsM

m

�

; 0 � m � N�1, the moments �

l



an be determined by solving

the linear system (26), whih is upper triangular, with 1�s on the main diagonal. Therefore,

the oeÆients (k) should be obtained by relations (27), whih are of Vandermonde type.

Theses equations present in�nite solutions depending on the range of indies k for whih

(k) are nonzero. Considering the support jkj � b(N � 1)=2, where b� represents the

integer part of the number, the oeÆients (k) are symmetri around k = 0 and they

are uniquely determined. Table 2 shows the oeÆient (k) 6= 0; k � 0 for the families

(N

�

; N) = (1; 3); (1; 5); (2; 4); (2; 6); (3; 5); (3; 7)

� Disrete Projetion Sheme

In opposition to biorthogonal projetion and interpolation operator, quasi-interpolation

shemes are not usually onservative. The onservation property is an important fat in

multisale representations, as shall be desribed in Setion 2.3.

11



Table 2: Quasi-Interpolation oeÆients for (k) 6= 0

[2t5℄ (N

�

; N) k

0 1 2 3

(1,3)

11

12

1

24

(1,5)

863

960

77

1440

�17

5760

(2,4)

5

6

1

12

(2,6)

97

120

1

10

�1

240

(3,5)

233

320

67

480

�7

1920

(3,7)

173863

241920

47309

322560

�209

32256

457

967680

The onept of disrete projetion was introdued byWare [15℄ with the idea of having a

onservative quasi-interpolation sheme, where the disretization is performed with �nitely

many non-zero oeÆients. In this ase, oversampling is needed

(D

j



u)(k) =

X

n2Z

(n)u((n+ 2k)2

�j�1

):

The oeÆients (k) are obtained so that the operator I

j

u(x) = R

j

(x;D

j



u) is a projetion,

whih means that the disretization operator must satisfy

(D

j



�(2

j

� �l))(k) = Æ

l�k

; [e2202℄ (30)

produing a onservative sheme.

Lemma 2.3 The �lter oeÆients (k) for a disrete projetion are haraterized by the

relation

1 = e

e

(�)

e

�

0

(�) + e

o

(�)

e

�

1=2

(�); [bezout℄ (31)

where

e

e

(�) =

X

k2Z

(2k)e

�ik�

and e

o

(�) =

X

k2Z

(2k + 1)e

�ik�

: [2e41℄ (32)

Proof: Formula (30) an be expressed as

1 =

X

k2Z

e

�ik�

X

n2Z

(n)�(n=2 + k)

=

X

n2Z

(2n)

X

k2Z

e

�ik�

�(n+ k) +

X

n2Z

(2n+ 1)

X

k2Z

e

�ik�

�(n+ 1=2 + k)

= e

e

(�)

e

�

0

(�) + e

o

(�)

e

�

1=2

(�);

whih proves the Lemma.

12



Note that the role of the relation (31) for the disrete projetion is similar to role of

the relations (21) and (29) for interpolation and quasi-interpolation ases.

Bezout�s Theorem [7℄ guarantees the existene of a solution for equation (31), with

�nitely many nonzero oeÆients, if the symbols

e

�

0

(�) and

e

�

1=2

(�) do not have ommon

zeros. This property is known to be valid for the B-splines funtions [6℄. We have tested

this property for some dual saling funtions �(x) = �

N;N

�

(x), and the results show that

e

�

0

(�) and

e

�

1=2

(�) do not have ommon zeros. However, we ould not �gure out yet whether

this remains true or not in all the ases. Figure 3 displays zeros of

e

�

0

and

e

�

1=2

(�) for the

ases (N

�

; N) = (1; 3); (2; 4); (3; 3); (2; 6).

−1 1−0.5 0.5
| |

−i

i

−0.5

0.5

−−

−−

−1 1−0.5 0.5
| |

−i

i

−0.5

0.5

−−

−−

N

�

= 1 e N = 3 N

�

= 2 e N = 4

−1 1−0.5 0.5
| |

−i

i

−0.5

0.5

−−

−−

−1 1−0.5 0.5
| |

−i

i

−0.5

0.5

−−

−−

N

�

= 3 e N = 3 N

�

= 2 e N = 6

Figure 3: Zeros of �

0

(�) and �

1=2

(?).

[2f7℄

As well as for the quasi-interpolation operator, the system (30), whih de�nes the

oeÆients for the disrete projetion, an have in�nitely many solutions, depending on the

range of indies k for whih (k) 6= 0. However, �xing this range domain in 2 jSupp(�)j�3

and onsidering that the oeÆients are symmetri around k = 0, the system (30) has a

unique solution. Table 3 shows the oeÆients (k) obtained for some ases.
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Table 3: Disrete Projetion oeÆients (k) 6= 0

(N

�

; N) k

0 1 2 3 4 5 6 7

(1,3)

7

9

55

576

1

72

1

576

(1,5)

1151

1624

107

792

142

12067

�

19

25832

�

27

63649

�

4

54441

�

7

934226

18

107334566

(2,4)

535

1346

2605

10013

231

4475

�

94

16799

�

33

7450

�

9

17374

5

205914

[2t6℄

2.2.1 Disretization and Global Approximation Errors

[se23℄ In the approximation shemes fD

j



;R

j

g orresponding to interpolation, quasi-

interpolation and disrete operator, the disretization operators D

j



are an alternative form

of the biorthogonal one. The next statement gives an estimation of the disretization error

E

j

u = D

j

u�D

j



u.

Theorem 2.4 [erdis℄ Let � and �

�

be integrable saling funtions with ompat support,

and suppose that � satis�es the Strang-Fix ondition with order p. If D

j



is the dis-

retization operator assoiated to interpolation, quasi-interpolation of order p or disrete

projetion, then, for u 2 H

n+1

; n � p, the disretization error satis�es the estimation

j(D

j



u)(s)� (D

j

u)(s)j . 2

�j(n+1)

kuk

H

n+1
; 8s 2 Z: [disrer℄ (33)

Proof: In all the ases, the error E

j

q = D

j

q�D

j



q is anelled for polynomials q 2 P

n

; n � p.

For the interpolation and quasi-interpolation ase we have

jE

j

u(s)j = jE

j

(u� q)(s)j

�

�

�

�

�

2

j

Z

R

(u� q)(x)�

�

(2

j

x� s)dx

�

�

�

�

+

�

�

�

�

�

X

k2Z

(k)(u � q)((s� k + �)2

�j

)

�

�

�

�

�

. max

x2


j;s

ju� qj;

where 


j;s

= Supp(�

�

(2

j

x � s)) [ f

S

k

I

j;k

; (s � k) 6= 0g, with I

j;k

= [2

�j

k; 2

�j

(k + 1)).

The error estimation (33) is obtained by Whitney�s Theorem [3℄, whih establishes that

inf

q2P

n

max

x2


j;s

ju� qj . 2

�j(n+1)

kuk

H

n+1

(


j;s

)

:

For the disrete projetion ase, the proof is similar.

The global error approximation of biorthogonal projetion, P

j

= R

j

D

j

, satis�es the

estimation (16). The approximation shemes onsidered in the present paper are inluded

in a broader lass of shemes treated in [10, 11℄. Global error estimates an be obtained,

provided some basi hypothesis are veri�ed, as stated in the following Lemma.

Lemma 2.5 [gamma℄ Let �(x) be a saling funtion of ompat support satisfying a

Strang-Fix ondition of order p. In assoiation with the operators of interpolation or

14



quasi-interpolation of order p, de�ne the funtion e�(�) = e(�)e

�i��

. Similarly, in the ase

of disrete projetion, let e�(�) = e(�=2). Then the assymptoti relation is veri�ed

e�(�)

b

�

�

(�) = 1 +O(�)

p+1

:

Proof: For interpolation ase we onsider the equation (21) and we have

1 = e(�)

e

�

�

(�)

= e(�)

X

k2Z

�(k + �)e

�ik�

= e(�)

X

k2Z

b

�(� + 2k�)e

�i�(�+2k�)

= e(�)

b

�(�)e

�i��

+ e(�)

X

k 6=0

b

�(� + 2k�)e

�i�(�+2k�)

:

Being the order of the Strang-Fix ondition of � equal to p, it follows that

b

�(�)e(�)e

�i��

= 1 +O(�

p+1

):

For the quasi-interpolation ase, instead of (21), we onsider equation (29), with n = p,

and the proof proeeds analogously as in the interpolation ase.

For the disrete projetion, we take equation (31), whih implies that

1 = e

e

(�)

X

k2Z

�(k)e

�i�k

+ e

o

(�)

X

k2Z

�(k + 1=2)e

�i�k

= e

e

(�)

X

k2Z

b

�(� + 2k�) + e

o

(�)

X

k2Z

b

�(� + 2k�)e

i=2(�+2k�)

=

X

k2Z

b

�(� + 2k�)

�

e

e

(�) + e

o

(�)e

i(�=2+k�)

�

=

X

k2Z

b

�(� + 2k�)

 

X

s2Z

(2s)e

is�

+ e

ik�

X

s2Z

(2s+ 1)e

i(2s+1)�

2

!

=

X

k2Z

b

�(� + 2k�)

 

X

s2Z

(2s)e

i2s(�=2+k�)

+

X

s2Z

(2s+ 1)e

i(2s+1)(�=2+k�)

!

=

X

k2Z

b

�(� + 2k�)e(�=2 + k�):

From the Strang-Fix ondition of �, we have

e(�=2)

b

�(�) = 1 +O(�

p+1

): [eqdp3℄ (34)

Having in mind the statement of Lemma 2.5, the appliation of the results in [10, 11℄

implies the following global error estimates.

Theorem 2.6 Let �(x) be a saling funtion of ompat support satisfying a Strang-Fix

ondition of order p. If I

j

u(x) is an operator of interpolation, quasi-interpolation of order

p or disrete projetion assoiated to �, then the following approximation error estimate

holds

ku� I

j

uk

H

s

� C2

�j(N�s)

jjujj

H

N

;

for 0 � s � minfN; rg, where r is the regularity degree suh that � 2 H

r

.
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2.3 Multilevel Approximation Shemes

[anaME℄

As desribed in Setion 2.1, the biorthogonal projetion P

j

may be expressed in two

ways. There is the one-level representation P

j

= R

j

D

j

, where the disretization and

reonstrution operators are expressed in terms of saling funtions, and there is the

multilevel representation P

j

= R

j

ME

D

j

ME

; , where the disretization operator D

j

ME

and

reonstrution operator R

j

ME

are expressed in terms of multilevel wavelet bases.

In Setion 2.2, other types of one-level approximation shemes I

j

= R

j

D

j



have been

onsidered for disretizations D

j



de�ned in terms of disrete onvolutions with funtion

point values. In the multilevel ontext, there is also interest in onsidering approximation

shemes fD

j

;ME

;R

j

ME

g where the disretization operators

D

j

;ME

= fD

J



;G

J



; : : : ;G

j�1



g

are also funtionals de�ned by disrete onvolutions. In this sense, one idea ould be to

de�ne G

l



u by the substitution of u

l+1

= D

l+1

u in formula (12) by some of the alternative

disretizations D

l+1



u. That is,

(G

l



u)(k) =

X

m2Z

g

�

(m� 2k)(D

l+1



u)(m): [gdis℄ (35)

If fD

j



;R

j

g is a onservative sheme then, it holds

(G

l



�(2

l

� �m))(k) = 0; (G

l



 (2

l

� �m))(k) = Æ

m�k

; [2e6℄ (36)

whih means that the sheme fD

j

;ME

;R

j

ME

g is also onservative. In this sense, let G

l



u be

the disretization de�ned by (35), where D

l+1



u is assoiated with interpolation or disrete

projetion operator, whih are onservative shemes. If

u(x) =

X

k2Z

u

J

(k)�(2

J

x� k) +

X

l�J

X

k2Z

d

l

(k) (2

l

x� k);

then, by the onservation property (36), it follows that

(G

�



u)(s) = d

�

(s) +

X

l��+1

X

k2Z

d

l

(k)(G

�



 (2

l

� �k))(s): [2e3℄ (37)

This equation shows that the aliasing error G

�

u � G

�



u an be expanded in terms of

ontributions from superior levels l � �+ 1.

By Lemma 2.4 it follows that

j(G

�



u)(s)� (G

�

u)(s)j . 2

�(�+1)(p+1)

jjujj

H

p+1
; [2e47℄ (38)

whih is not reasonable for less re�ned sale levels.

2.3.1 An Alternative Multilevel Disretization

Having in mind the degradation of the aliasing error (38) at oarse sale levels, we shall

desribe a proedure to improve this estimate. It was suggested by Fr�ohlih and Shneider

[9℄ for interpolation ase and explored by Ware [15℄ for the disrete projetion.
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De�ne

v(x) = u(x)�

X

k2Z

d

�

(k) (2

�

x� k);

and let

(G

�



v)(s) = d

�

(s) +

X

l��+2

X

k2Z

d

l

(k)(G

�



 (2

l

� �k))(s):

If

�

d

�

= G

�



v is used as an approximation for d

�

= G

�

u, then the error

�

d

�

�d

�

only depends

on the wavelet oeÆients of u on levels l � �+ 2, one order higher than in formula (37).

Consequently, the auray order for the estimation (38) is improved. This argument

an be applied to obtain approximations of d

�

in unre�ned levels, whih are more preise

than the ones given by G

�



u. Preisely, if

�

d

j�1

= G

j�1



u, then, for m = 2; 3; : : :, de�ne

�

d

j�m

(s) = (G

j�m



v)(s), where v(x) is the modi�ed funtion

v(x) = u(x)�

m�1

X

n=1

X

k2Z

�

d

j�n

(k) (2

j�n

x� k):

Therefore, we obtain the multilevel disretization

�

D

j

;ME

u = �u

j

ME

= f�u

J

;

�

d

J

; : : :

�

d

j�1

g;

whih is the result of the Modi�ed Analysis Algorithm 2.1.

Algorithm 2.1 Modi�ed Analysis

[alg1℄

Require: u(x); x 2 X

j

for l = j � 1 : (�1) : J do

�

d

l

 G

l



(u)

u(x) u(x)�

X

k2Z

�

d

l

(k) (2

l

x� k); x 2 X

l

end for

�u

J

 D

J



(u)

Ensure: �u

j

ME

= f�u

J

;

�

d

J

; : : :

�

d

j�1

g

The inverse transform is obtained by the Modi�ed Synthesis Algorithm 2.2. As the

funtionals D

l



and G

l



are de�ned in terms of a �nite number of non zero oeÆients, in

both algorithms, the total number of operations is of the order

P

j

l=J

#X

l

.

In Ware [15℄ an estimation for the aliasing error is given in the ase of the disrete

projetion. The proof an be easily extended to onsider the ase interpolation.

Theorem 2.7 [alternativo℄ Let D

j



be the disretization assoiated with the interpolation

or to the disrete projetion. If �u

j

ME

= f�u

J

;

�

d

J

; : : :

�

d

j�1

g is the multiresolution analysis

of u generated by the orresponding to Algorithm 2.1. If u 2 H

p+1

, and � > 0, then we

have

jju

j

ME

� �u

j

ME

jj

1

. 2

�j(p+1��)

jjujj

H

p+1
;

where p is the Strang-Fix ondition order of funtion �.
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Algorithm 2.2 Modi�ed Synthesis

[sintese℄

Require: �u

j

ME

= f�u

J

;

�

d

J

; : : :

�

d

j�1

g

u(x) 

X

k2Z

�u

J

(k)�(2

J

x� k); x 2 X

J

for l = J : 1 : j � 1, do

u(x) u(x) +

X

k2Z

�

d

l

(k) (2

l

x� k); x 2 X

l

u(x) 

X

k2Z

�u

l

(k)�(2

l

x� k) +

X

k2Z

�

d

l

(k) (2

l

x� k); x 2 X

l+1

=X

l

�u

l+1

 D

l+1



u

end for

Ensure: u(x), x 2 X

j

.

2.3.2 The Importane of the Conservation Property

[son℄ The onservation property allows us to obtain the expression (37) for the aliasing

error whih is fundamental for a good performane of algorithm 2.1. If the sheme is

not onservative, the relation (36) is not valid and an equation similar to (37) annot be

obtained. This is the ase of the non onservative quasi-interpolation operators.

In order to verify these fats, we shall apply the modi�ed Analysis Algorithm 2.1

orresponding to the quasi-interpolation sheme to the Fourier modes. Let u(x) = e

�i�x

.

Thus

(D

j�m



u)(s) = e

�i2

m

zs

e(2

m

z);

(G

j�m



u)(s) = e

�i2

m

zs

S

1

(2

m�1

z);

where z = 2

�j

�, S

1

(z) = G

�

(z)e(z) with G

�

(z) =

P

n2Z

g

�

(n)e

�inz

.

The funtion u is modi�ed on eah iteration m and the oeÆients

�

d

j�m

(s) are applied

to this new funtion to get

�

d

j�m

(s) = (G

j�m



u)(s)�

m�1

X

n=1

X

k2Z

�

d

j�n

(k)(G

j�m



 (2

j�n

� �k))(s): [2e29℄ (39)

In general, for �+ 1 � � we have

G

�



( (2

�

� �k))(s) =

X

l2Z

g

�

(l � 2s)

X

n2Z

(n) (2

����1

(l � n+ �)� k): [2e30℄ (40)

Considering m = 1 in (39) it follows that

�

d

j�1

(s) = G

j�1



(u)(s) = e

�i2zs

S

1

(z):

Through the results obtained in (39) and (40), for m = 2 it holds

�

d

j�2

(s) = G

j�2



(u)(s)�

X

k2Z

�

d

j�1

(k)(G

j�2



 (2

j�1

� �k))(s)

= e

�i4zs

S

1

(2z)

h

1� S

1

(z)

e

 (2z)

i

= e

�i4sk

S

2

(z);
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where e

e

 (z) =

P

k2Z

e

�isz

 (k). Applying this proedure for m = 3; 4; : : : ; we obtain

�

d

j�m

(s) = e

�i2

m

zs

S

m

(z);

where S

m

(z) are alulate by interative formula

S

m

(z) = S

1

(2

m�1

z)

(

1�

"

m�1

X

n=1

S

n

(z)

e

 (2

n

z)

#)

; with S

1

= G

�

(z)e(z):

For omparison, onsider also the ase of disrete projetion. Now, the iterative formula

is given by

S

m

(z) = S

1

(2

m�1

z)

(

1�

"

m�2

X

n=1

S

n

(z)

e

 (2

n

z)

#)

� S

m�1

(z)T (2

m�1

z); m > 2; [eq1℄ (41)

where

S

1

(z) = G

�

(z)e(z=2);

S

2

(z) = S

1

(2z) � S

1

(z)T (2z);

T (z) =

e

G

�

(z)

h

e

e

(z)

e

 (z) + e

o

(z)

e

 

1=2

(z)

i

:

The exat wavelet oeÆients are d

j�m

(k) = e

�i2

j�m

kz

b

 

�

(2

m

z). Therefore, the aliasing

error, in both ases, satis�es

e

m

(k) = j

�

d

j�m

(k)� d

j�m

(k)j

= je

�i2

m

zk

j jG

�

(2

m

z)

b

�

�

(2

m

z)� S

m

(z)j

� (m)z

2N

:

Numerial results show that the term (m) maintains a growth of the type 

DP

(m) =

2

Nm

, for the disrete projetion ase, and 

QI

(m) = 2

2Nm

, for quasi-interpolation ase.

Figure 4 shows this result for the family (2; 4) and (2; 6). In both ases, the lines marked

with Æ and + orrespond to the degradation fator for the aliasing error assoiated to the

simple algorithm

�

d

j�m



= G

j�m



u for quasi-interpolation and disrete projetion, respe-

tively, whih are quite similar in both ases. On the other hand, the lines marked with

� and � orrespond to their modi�ed versions. As expeted, it is notieable the derease

in the degradation fator for the modi�ed onservative disrete projetion ase. We also

note that in the quasi-interpolation ase, not only the modi�ed algorithm is not able to

improve the aliasing error but it even gets worst.

3 Seond Part: Disretization of Di�erential Operators

[parttwo℄ This setion is dediated to disretizations L

j

for the operator L(u; v) = uv

x

.

Using the onepts of disretization and reonstrution operators, a general formulation

is desribed for several strategies. This methodology was proposed by Cullen and Morton

[5℄ in order to generalize the onept of trunation error used in di�erent shemes. Pre-

isely, for a di�erential operator L(u; v) we shall onsider a general form of disretization

L

j

(u

j

;v

j

) given by

L(u; v) � L

j

(u

j

;v

j

) = D

j



�

L(R

j

(x;u

j

);R

j

(x;v

j

)

�

; [2e8℄ (42)

19



2 3 4 5

0

5

10

15

20

25

30
(N*,N) = (2,4)

m

lo
g 2(c

m
)

QI
QI mod.
DP
DP mod.

2 3 4 5

0

5

10

15

20

25

30

35

40

45
(N*,N) = (2,6)

m

lo
g 2(c

m
)

QI
QI mod.
DP
DP mod.

Figure 4: Degradation Fator for the Aliasing Error

[�g3℄

where u

j

= D

j

u and v

j

= D

j

v. If D

j



= D

j

we have a Petrov-Galerkin sheme, whih

usually does not give an eÆient strategy for the evaluation of nonlinear terms. Instead,

hybrid formulations use two di�erent disretizations (D

j



6= D

j

). The operator D

j

is

used in disretization of u and v and the operator D

j



is used after di�erentiation and

multipliation. For the onsistene analysis, we shall onsider the trunation error given

by

TE(u; v) = D

j

L(u; v) �L

j

(u

j

;v

j

): [2e10℄ (43)

The purpose of this analysis is to establish the onsisteny of the disretization L

j

in

terms the trunation error order. We shall fous on nonlinear interations of Fourier

modes u(x) = e

�i�x

and v(x) = e

�i�x

, where �; � 2 R. To �x ideas, in what follows,

the exposition shall be restrited to approximation shemes in the ontext of biorthogonal

multiresolution analyses de�ned by splines �

�

= �

N

and their duals � = �

N;N

�

. However,

the same analysis an be performed for other similar ontexts.

3.1 Petrov-Galerkin Formulation

Given the disrete values u

j

and v

j

, the alulation of L

j

(u

j

;v

j

) is given by

L

j

(u

j

;v

j

)(s) =

X

m2Z

X

n2Z

u

j

(m)v

j

(n)

Z

R

�

�

(y)�(y + s�m)

d�

dy

(y + s� n)dy

=

X

m2Z

X

n2Z

u

j

(m)v

j

(n)�(s�m; s� n); [2e19℄ (44)
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where

�(m;n) = �

N;N

�

(m;n) =

Z

R

�

�

(y)�(y +m)

d�

dy

(y + n)dy: [2e17℄ (45)

The values of the oeÆients �(m;n) depend on di�erent hoies of N andN

�

. Considering

the Fourier modes u(x) = e

�i�x

and v(x) = e

�i�x

it proeeds that

u

j

(m) = e

�i2

�j

�m

b

�

�

(2

�j

�) and v

j

(n) = e

�i2

�j

�n

b

�

�

(2

�j

�):

Therefore the disrete operator is given by

L

j

(u

j

; v

j

)(s) = e

�is(w+z)

b

�

�

(w)

b

�

�

(z)

e

�(w; z); [eq01℄ (46)

where w = 2

�j

�, z = 2

�j

� and

e

�(w; z) =

X

m2Z

X

n2Z

e

�imw

e

�inz

�(m;n):

On the other hand,

(D

j

L(u; v))(s) = �i�e

�is(w+z)



�

�

(w + z): [eq11℄ (47)

Substituting (47) and (46) in trunation error equation (43), we obtain

(TE) (s) = �i�e

�is(w+z)

�

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�(w; z)

�

= �i�e

�is(w+z)

�(w; z):

The order of the trunation error depends on the behavior of the symbol

�(w; z) =

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�(w; z): [eq09℄ (48)

As shall be proved in Theorem 3.2 of Setion 3.3,

�(w; z) �

M�1

X

m=0

O(w

m

z

M�m

): [est℄ (49)

In spite of the fat that the asymptoti order depends only onM , the asymptoti onstants

also depend on the hoie of N and N

�

. We shall onsider some numerial evidenes of

this fat. To alulate the oeÆients �(m;n), some properties are required. By the sale

relation (45) we obtain that the oeÆients �(m;n) satisfy the eigenvetor problem

�(m;n) = 8

X

k2Z

X

l2Z

�(2m� k; 2n� l)�(n;m); [eq14℄ (50)

where �(k; l) depends on �lter oeÆients of H and H

�

as following

�(k; l) =

X

s2Z

h

�

(s)h(s+ k)h(s+ l):

The statements of the next lemma are also useful for the alulations.

Lemma 3.1 The oeÆients �(m;n), de�ned in (45), satisfy

(i) 8m;n 2 Z; �(�m;�n) = ��(m;n).
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(ii)

X

m2Z

X

n2Z

m�(m;n) = 0.

(iii)

X

m2Z

X

n2Z

n�(m;n) = �1.

[2l1℄

The main ingredients for the proof are the symmetry of � and the fat that the set

f�(� � k); k 2 Zg is a partition of the unit, i.e.,

P

k2Z

�(x� k) = 1; 8x 2 R:

We report some numerial experiments that on�rm the estimation (49) and give the

asymptoti onstants of symbol � for families (N

�

; N) = (1; 3); (1; 5). The values of �(p; q)

are obtained by solving the eigenvalue problem (50) for N = 3; 5. All the ases present

2-dimension eigenspaes, but only one eigenvetor satis�es the normalization riterion,

desribed in Lemma 3.1. In this way, we obtain the following results:

� N

�

= 1, N = 3

In this ase, �(n;m) 6= 0 for �2 � n � 2 and �2 � m � 2. Table 4 shows the values

of �(m;n) 6= 0 for m � 0. For m < 0 we observe that �(m;n) = ��(�m;�n).

Table 4: Values of �(m;n) for N

�

= 1 e N = 3

m n

-2 -1 0 1 2

0 �

11

180

28

45

1

1

90

�

31

270

7

30

�

1

6

1

27

2

1

4320

1

240

�

1

80

5

432

�

1

288

[2t3℄

The �rst terms of �(w; z) is given by

�(w; z) �

1

30

z

4

+

1

30

z

3

w +

1

80

z

2

w

2

�

1

80

zw

3

:

This result an be ompared to one obtained by Cullen-Morton for Galerkin sheme,

using the hat funtion. They obtained

�(w; z) �

1

180

z

4

+

1

90

z

3

w +

7

720

z

2

w

2

�

1

360

zw

3

:

Note that the onstants are smaller than for the Petrov-Galerkin sheme of the same

order.

� N

�

= 1, N = 5

In this ase �(m;n) 6= 0 for �4 � m � 4 e �4 � n � 4. Table 5 shows the values of

�(m;n) 6= 0 for m � 0, and we obtain

�(w; z) �

4

511

z

6

+

4

511

z

5

w +

5

2016

z

4

w

2

�

5

2016

zw

5

:
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Table 5: Values of �(m;n) for N

�

= 1 e N = 5

[tab35℄

m n

-4 -3 -2 -1 0 1 2 3 4

0

20

89267

314

29267

�

395

3003

611

837

1 �

10

190967

�

40

13383

369

11429

�

768

4751

466

1715

�

2281

12630

265

5374

�

46

5879

�

8

39923

2

1

151618

11

37150

�

201

44792

245

9993

�

181

4285

40

1387

�

171

20428

76

54335

3

73456

3

8

212103

1

35896

�

17

20471

3

1721

�

45

31771

30

54131

�

19

170011

�

1

223264

4

1

678343

�

1

128891

1

74371

�

2

195791

1

265548

[2t4℄

3.2 Hybrid Shemes

[sehi℄ In general, Galerkin or Petrov-Galerkin shemes are not eÆient strategies for non-

linear operators. To overome this diÆulty, pseudo-spetral shemes appear in numerial

analysis of nonlinear evolution equations, where the linear part is alulated in the Fourier

spae, and the nonlinear terms are evaluated in the physial domain. In wavelet analysis,

similar pseudo-wavelet methods have been adopted. [2, 3, 9, 14℄. In these formulations,

the evaluation of the nonlinear terms in physial domain uses funtionals de�ned in terms

of point values like, interpolation and quasi-interpolation. Our purpose is to give a om-

mon formulation for these shemes in order to have a uni�ed framework for the analysis

of the trunation error.

� Interpolation and quasi-interpolation shemes

In both ases, the disretization operator has the form

(D

j



u)(k) =

X

n2Z

(n)u((k � n+ �)2

�j

); (51)

for some 0 � � < 1. The disretization of L(u; v), de�ned in (42), is given by

L

j

(u

j

; v

j

)(s) = 2

j

X

k2Z

(k)

X

m2Z

X

n2Z

u

j

(m)v

j

(n)�(s� k + ��m)

d�

dx

(s� k + �� n): [2e23℄

(52)

Applying the disretization operator on the Fourier modes u(x) = e

�i�x

and v(x) = e

�i�x

we have u

j

(m) = e

�iwm

b

�

�

(w) and v

j

(n) = e

�izn

b

�

�

(z), where w = 2

�j

� and z = 2

�j

�.

So, we have

L

j

(u

j

; v

j

)(s) = 2

j

b

�

�

(z)

b

�

�

(w)e

�is(z+w)

e(z + w)

e

�

�

(w)

e

�

�

(z); (53)

where

e(�) =

X

k2Z

e

�i�k

(k); (54)
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e

�

�

(�) =

X

m2Z

e

�i�m

�(m+ �); [2e25℄ (55)

e

�

�

(�) =

X

n2Z

e

�i�n

d�

dx

(n+ �): [2e27℄ (56)

Therefore, the trunation error has the following form

(TE) (s) = �i�e

�is(w+z)

�

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�

�

(w)

e

�

�

(z) e(w + z)

�

: [2e28℄

(57)

� Disrete projetion sheme

In this ase, the disretization operator is given by

(D

j



u)(k) =

X

n2Z

(n)u((n+ 2k)2

�j�1

):

Applying to the Fourier modes u(x) = e

�i�x

and v(x) = e

�i�x

, we obtain

L

j

(u

j

; v

j

)(s) = 2

j

b

�

�

(z)

b

�

�

(w)e

�is(w+z)

h

e

e

(w + z)

e

�

0

(w)

e

�

0

(w) + e

o

(w + z)

e

�

1=2

(w)

e

�

1=2

(w)

i

= 2

j

b

�

�

(z)

b

�

�

(w)e

�is(w+z)

e

�(w; z); (58)

where, e

e

(�) and e

o

(�) are de�ned in (32) and

e

�(w; z) = e

e

(w + z)

e

�

0

(w)

e

�

0

(z) + e

o

(w + z)

e

�

1=2

e

�

1=2

(z):

The trunation error for the disrete projetion is given by

(TE) (s) = �i�e

�is(w+z)

�



�

�

(w + z)�

i

z



�

�

(w)



�

�

(z)

e

�(w; z)

�

: (59)

As shall be proved in Theorem 3.3, in all three hybrid formulations, the symbol �(w; z)

satis�es the asymptoti behavior

�(w; z) �

N

X

j=0

O(w)

j

O(z)

N�j

;

for even N , and

�(w; z) � O(z)

N�1

+

N+1

X

j=0

O(w)

j

O(z)

N+1�j

;

for odd N . In Table 6 numerial results are reported for the ases (N

�

; N) = (1; 5); (2; 4),

where we give the asymptoti onstants of the symbol �.

3.3 Trunation Error Analysis

[ter℄

In all the onsidered formulations, the trunation errors for the Fourier's modes are

given by the general form
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Table 6: Asymptoti terms of �.

Sheme (1,5) (2,4)

I

23

180

z

4

691

3150

z

4

+

184

315

z

3

w +

92

105

z

2

w

2

+

184

315

zw

3

QI

23

180

z

4

83

1200

z

4

�

1

60

z

3

w �

1

40

z

2

w

2

�

1

60

zw

3

�

757

5040

w

4

DP �

46

315

z

4

83

7996

z

4

+

123

4450

z

3

w +

109

2629

z

2

w

2

+

123

4450

zw

3

[2t7℄

(TE)(s) = �i�e

�is(w+z)

�(w; z);

where

�(w; z) =

�

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�(w; z)

�

in the Petrov-Galerkin formulation,

�(w; z) =

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�

�

(w)

e

�

�

(z) e(w + z);

in the ase of interpolation and quasi-interpolation operator, and

�(w; z) =



�

�

(w + z)�

i

z



�

�

(w)



�

�

(z)

e

�(w; z)

in the ase of disrete projetion operator. Thus, the trunation error order depends on

the behaviour of the symbol �(w; z).

Theorem 3.2 Suppose that N � N

�

. For the Petrov-Galerkin formulation, the symbol

�(w; z), de�ned in (48), satis�es

�(w; z) �

M�1

X

m=0

O(w

m

z

M�m

):

[teo2℄

Proof: Applying the Poisson summation formula on

e

�(w; z) we have

e

�(w; z) = i

X

m;n2Z

(z + 2n�)

b

�(w + 2m�)

b

�(z + 2n�)

b

�

�

(w + z + 2(m+ n)�): [2eq229℄ (60)

We onsider the representation

�(x) = '(x� �); �

�

(x) = '

�

(x� �); [eq59℄ (61)

where � = 0 for even N;N

�

and � = 1=2 for odd N;N

�

. The symmetri properties of � e

�

�

assure that ' and '

�

are symmetrialy entered on zero and they satisfy the Strang-Fix
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ondition of the same order as � and �

�

. The Fourier transform b'(�) and b'

�

(�) are real

funtion that satisfy

b

�(�) = e

�i��

b'(�);

b

�

�

(�) = e

�i��

b'

�

(�):

Consequently,

e

�(w; z) = i

X

m;n2Z

(z + 2n�)b'(w + 2m�) b'(z + 2n�)b'

�

(w + z + 2(m+ n)�):

We split the summation above into four terms

e

�(w; z) =

(I)

z }| {

X

m=�n

[ ℄ +

(II)

z }| {

X

m=0

n 6=0

[ ℄ +

(III)

z }| {

X

m 6=0

n=0

[ ℄ +

(IV)

z }| {

X

m 6=0;n6=0

m6=�n

[ ℄ :

The main ingredients for the analysis of eah term are the Strang-Fix ondition of '

�

and

', the biorthogonal relation and symmetry of '

�

and '.

I-Term: In this ase, we have

(I) = �ib'

�

(w + z)

2

4

z b'(z) b'(w) +

X

m6=0

(z � 2m�)b'(z � 2m�) b'(w + 2m�)

3

5

:

For m � 1, let f

m

(w; z) = (z � 2m�)q

m

(w; z) + (z + 2m�)q

�m

(w; z), where q

m

(w; z) =

b'(w + 2m�) b'(z � 2m�), in suh a way that

(I) = �ib'

�

(w + z)

2

4

z b'(z) b'(w) +

X

m�1

f

m

(w; z)

3

5

:

Taking into onsideration that

�

k

q

m

�w

l

�z

k�l

(0; 0) =

d

l

b'

dw

l

(2m�)

d

k�l

b'

dz

k�l

(�2m�);

and the Strang-Fix ondition of ', we onlude that the partial derivative of the funtions

q

m

(w; z) are zero at (0; 0) for 0 � l � N �1 or 0 � k� l � N �1. Partiularly, it holds for

all partial derivative of order k � 2N � 1 or for all superior orders if l = k. Consequently,

it also proeeds that

�

k

f

m

�w

l

�z

k�l

(0; 0) = 0;

where 0 � k � 2N � 1 or l = k. Besides, f

m

(w; z) are anti-symmetri around the point

(0; 0), i.e., f

m

(�w;�z) = �f

m

(w; z). Therefore, all partial derivative of f

m

(w; z) with

even order are zero at (0; 0). Considering the above results, and the fat that

b'

�

(�)b'(�) = 1 +O(�

N

); [erb℄ (62)

we onlude that

�i

z

b'

�

(w)b'

�

(z)(I) = �b'

�

(w + z) +

2N�1

X

m=0

O(w

m

z

2N�m

): [I℄ (63)
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II-Term: This term is given by

(II) = �ib'(w)

X

n 6=0

(z + 2�m)b'(z + 2�n) b'

�

(z + w + 2�n):

In this ase, we onsider q

m

(w; z) = b'(z + 2m�)b'

�

(z + w + 2m�) and f

m

(w; z) as in the

previous ase, obtaining that

(II) = �ib'(w)

X

m�1

f

m

(w; z):

Again, by Strang-Fix ondition of both '

�

and ' it follows that

�

k

q

m

�w

l

�z

k�l

(0; 0) =

k�l

X

m=0

�

k � l

m

�

d

m

b'

dz

m

(2m�)

�

k�m

b'

�

�w

l

�z

k�l�m

(2m�) = 0;

for k �M � 1 or superior order if l = k. By anti-symmetry of f

m

(w; z) and (62) it follows

that

�i

z

b'

�

(w)b'

�

(z)(II) =

M�1

X

m=0

O(w

m

z

M�m

): [II℄ (64)

III-Term: In this ase, we have

(III) = �iz b'(z)

X

m6=0

b'(w + 2m�)b'

�

(z + w + 2m�):

Now, we onsider f

m

(w; z) = b'(w + 2m�)b'

�

(z + w + 2m�), so that

(III) = �iz b'(z)

X

m6=0

f

m

(w; z):

As in the previous ases, it proeeds that for k �M � 1

�

n

f

k

�w

l

�z

l

(0; 0) = 0:

Therefore

�i

z

b'

�

(w)b'

�

(z)(III) =

M�1

X

m=0

O(w

m

z

M�m

): [III℄ (65)

VI-Term: We have

(IV) = �i

X

m;n6=0

m6=�n

(z + 2n�)b'(z + 2n�) b'(w + 2m�) b'

�

(z +w + 2(n+m)�):

In this ase, we onsider f

m;n

(w; z) = (z + 2m�) q

m;n

(w; z) + (z � 2m�) q

�m;�n

(w; z),

where q

m;n

(w; z) = b'(w + 2n�)b'(z + 2m�)b'

�

(z + w + 2(m+ n)�), so that

(IV ) = �i

X

m;n>1

m6=n

f

m;n

(w; z):
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By the Strang-Fix ondition of ' and '

�

and anti-symmetri property of f

m;n

(w; z), it

follows that

�

k

f

m;n

�w

l

�z

k�l

(0; 0) = 0;

for 0 � k � N

�

+ 2N . Therefore

�i

z

b'

�

(w)b'

�

(z)(IV ) =

N

�

+2N�1

X

m=0

O(w

m

z

N

�

+2N�m

); [IV℄ (66)

whih is a higher order term than previous ones. Substituting the ontribution of terms

(63), (64), (65) e (66) into (48), we onlude the proof.

Theorem 3.3 In all three hybrid formulations orresponding to interpolation, quasi-

interpolation of order N � 1 and disrete projetion, the symbol � satis�es the asymptoti

behavior

(a) For even N

�(w; z) �

N

X

j=0

O(w)

j

O(z)

N�j

:

(b) For odd N

�(w; z) � O(z)

N�1

+

N+1

X

j=0

O(w)

j

O(z)

N+1�j

:

[2teo1℄

Proof: For the interpolation ase we have

�(w; z) =

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�

�

(w)

e

�

�

(z) e(w + z):

The interpolation ondition e(�)

e

�

�

(�) � 1 is satis�ed with � = 0, for even N , and � = 1=2,

for odd N . Therefore, we onsider the representation (61) and it proeeds that

�(w; z) =

e

�i�(w+z)

e

�

�

(w + z)

�



'

�

(w + z)

e

�

�

(w + z)�

i

z



'

�

(w)



'

�

(z)

e

�

�

(w)

e

�

�

(z)

�

;

where we have used the inerpolation ondition and the fat that

e

�

�

(w) is a funtion

bounded away from zero. The estimation of �(w; z) depends on the terms into brakets.

Again, the main ingredients for this analysis are: the Strang-Fix ondition of '

�

and

', the biorthogonal relation and symmetry of '

�

and '. The symbol �(w; z) an be

represented by

�(w; z) =

e

�i�(w+z)

e

�

�

(w + z)

�

eq(w + z)�

i

z

eq(w)

e

f(z)

�

: [eqq1℄ (67)

where eq(w) = b'

�

(w)

e

�

�

(w) and

e

f(z) = b'

�

(z)

e

�

�

(z). Applying Poisson summation formula,

it follows that

e

�

�

(w) =

X

k2Z

b

�(w + 2�k)e

i�(w+2k�)

=

X

k2Z

b'(w + 2�k):
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Therefore, we obtain

eq(w) = b'

�

(w)b'(w) + b'

�

(w)

X

k�1

q

k

(w);

where q

k

(w) = b'(w+ 2k�) + b'(w� 2�k). By the Strang-Fix ondition and symmetry of

', and realling (62), it follows that

d

n

q

k

dw

n

(0) = 0;

for 0 � n � N � 1 and all odd n. Therefore

eq(w) =

8

<

:

1 +O(w)

N

for even N ;

1 +O(w)

N+1

for odd N :

[eb2℄ (68)

Applying the same proedure to eq(w + z), we have

eq(w + z) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 +

N

X

m=0

O(w

m

z

N�m

); for even N;

1 +

N+1

X

m=0

O(w

m

z

N+1�m

); for odd N:

[eb3℄ (69)

Poisson summation formula applied to

e

�

�

(z) implies that

e

�

�

(z) = i

X

k2Z

(z + 2�k)

b

�(z + 2�k)e

i�(z+2�k)

= i

X

k2Z

(z + 2�k)b'(z + 2�k):

Therefore, we have

e

f(z) = z b'

�

(z)b'(z) + b'

�

(z)

X

k>0

f

k

(z);

where f

k

(z) = (z + 2�k)b'(z + 2�k) + (z � 2�k)b'(z � 2�k). By the Strang-Fix ondition

and symmetry of �, and realling (62), it follows that

d

n

f

k

dz

n

(0) = 0;

for 0 � n � N � 1 and all even n Consequently

�

i

z

e

f(z) =

8

<

:

�1 +O(z)

N+N

�

+O(z)

N

; for even N;

�1 +O(z)

N+N

�

+O(z)

N�1

; for odd N:

[eb1℄ (70)

Therefore, substituting (69), (68) e (70) into the symbol equation (67) we onlude the

statement of Theorem for the interpolation ase.

The quasi-interpolation di�ers from the interpolation ase for the fat that, instead of

the interpolation onstraint, it holds that e(�)

e

�

�

(�) = 1 + O(�

N

) (see Lemma 29 with

n = p = N � 1). Therefore, following the same steps of the proof for the interpolation,

the statement of Theorem also holds for the quasi-interpolation ase.

For the disrete projetion, we have

�(w; z) =



�

�

(w + z)�

i

z



�

�

(w)



�

�

(z)

e

�(w; z);
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where

e

�(w; z) = e

e

(w + z)

e

�

0

(w)

e

�

0

(z) + e

o

(w + z)

e

�

1=2

(w)

e

�

1=2

(z);

and the funtions e

e

and e

o

are de�ned by (32). Combining (34) with (62), it proeeds

that

�

b

�

�

(�)� e(�=2)

�

b

�(�) = O(�

N

): [re1℄ (71)

Therefore,

e(�=2) =

b

�

�

(�) +O(�

N

): [2eq255℄ (72)

The term

e

� an be expressed by

e

�(w; z) = e

e

(w + z)

e

�

0

(w)

e

�

0

(z) + e

o

(w + z)

e

�

1=2

(w)

e

�

1=2

(z)

=

X

n2Z

X

k2Z

(z + 2n�)

b

�(z + 2n�)

b

�(w + 2n�)e((w + z)=2 + (n+ k)�): [2eq251℄(73)

Note that if this expression e((w + z)=2 + (n+ k)�) is replaed by

b

�

�

(w + z + 2(n+ k)�)

we obtain the formula (60) assoiated to the symbol

e

�(w; z) of the Petrov-Galerkin formu-

lation. Therefore, having in mind the result in (72), the proof for the disret projetion

proeeds as in the ase of the Petrov-Galerkin formulation.

4 Conlusion

In the ontext of biorthogonal multirresolution analysis, we have onsidered di�erent ap-

proximation shemes fD

j



;R

j

g where, instead of the usual biorthogonal disretization,

alternative disretizations D

j



are used. Three ases have been analyzed: interpolation,

quasi-interpolation and disrete projetion. In all the ases, D

j



are funtionals de�ned

in terms of disrete onvolutions with funtion point values. We have also applied these

shemes in the de�nition of hybrid disretizations of the nonlinear advetion operator.

These hybrid shemes may present a disadvantage in relation to a Petrov-Galerkin sheme,

regarding the trunation error order. While Petrov-Galerkin sheme presents superon-

vergene order N +N

�

, where N � 1 is the order of thr Strang-Fix ondition of the trial

funtions and N

�

� 1 is the one of the test funtions, in the hybrid shemes the onsis-

teny order is N�1 (in some ases, due to symmetri properties, an improvement up to N

may be obtained. However, hybrid shemes may have the advantage of an easy numerial

implementation. On this aspet, some onsiderations are in order:

� Quasi-interpolation and disrete projetion an be de�ned with a �nite number of

non zero oeÆients. On the other hand, exepting some speial ases, interpolation

onstraint (21) an only be ahieved with in�nitely many nonzero oeÆients.

� For multilevel representations, a modi�ed analysis algorithm is reommended to

improve the preision of wavelet oeÆients in less re�ned levels. For this, it is

essential to have a onservative approximation sheme, whih is not the ase for

quasi-interpolation.

After these onsiderations, the disrete projetion sheme seems to be a better option for

appliations that involve the alulation of nonlinear terms in the multilevel ontext.
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