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Abstra
t

The study of this paper is devoted to the analysis of multilevel approximation

s
hemes, in the 
ontext of multiresolution analysis. We have parti
ular interest in

expansions where the 
oeÆ
ients are obtained in terms of dis
rete 
onvolutions of

fun
tion point values with some spe
i�
 wheights. In the �rst part we analyze aspe
ts,

su
h as, algorithm of 
onstru
tion, their a

ura
y and multilevel implementation for

three 
ases: interpolation, quasi-interpolation and dis
rete proje
tion.

The se
ond part is dedi
ated to hybrid formulations for the dis
retization of nonlin-

ear di�erential operators. The idea is to 
ombine two di�erent approximation s
hemes:

one approximation s
heme is used for fun
tions or linear terms; another one, de�ned

in terms of fun
tion point values, is used for nonlinear operations. Taking the bilinear

adve
tion operator as a model, we establish the 
onsisten
y of the dis
retizations in

terms of the order of the trun
ation error.

1 Introdu
tion

The purpose of the present paper is two fold. Firstly, in Se
tion 2, we shall analyze various

approximation s
hemes in the 
ontext of biorthogonal multiresolution analysis. Besides

the usual biorthogonal proje
tions, we are also interested in approximations that 
an be

obtained from the information of fun
tion point values. For instan
e, this is the 
ase of

interpolation, quasi-interpolation and dis
rete proje
tion operators. Various aspe
ts shall

be analyzed, su
h as the algorithms for the 
onstru
tion of the proposed s
hemes, their

order of a

ura
y and numeri
al aspe
ts for multilevel implementation. To �x ideas, we

shall adopt the spline biorthogonal multiresolution analyzes as model framework.

In Se
tion 3, whi
h is the se
ond part of the present paper, the approximation s
hemes

presented in the �rst part shall be used for the dis
retization of di�erential operators.

Spe
ially, we are interested in hybrid formulations whi
h are suitable for the dis
retization

of nonlinear operators. As in the traditional pseudo-spe
tral s
hemes, the idea is to 
om-

bine di�erent approximation s
hemes. There is one approximation s
heme whi
h is used

for fun
tions or linear operations (e.g. derivative), and there is another one, using point

values, for the performan
e of the nonlinear operations (e.g. multipli
ation).
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Before properly entering into the two main parts of this paper, let us �rst give an

overview of their 
ontents. The formalism of the presentation aims to a uni�ed framework

for the analysis of the di�erent approximation s
hemes, of the �rst part, as well as of their

appli
ations in the dis
retization of di�erential operators, in the se
ond part.

The de�nition of an approximation s
heme P

j

u requires two basi
 ingredients: the

approximating spa
e V

j

and the approximation strategy. Given an approximating spa
e,

several approximation strategies may be used, produ
ing di�erent approximation s
hemes.

In our exposition, we shall adopt the formalism suggested by A. Harten [13℄ in whi
h an

approximation strategy may represented by dual appli
ations fD

j

;R

j

g su
h that P

j

=

R

j

D

j

. D

j

is a dis
retization operator whi
h assigns dis
rete values D

j

u = u

j

to a fun
tion

u. Usually, the dis
rete values u

j

give lo
al information of u asso
iated with a 
ertain grid

X

j

. They 
an be point values or lo
al weighted averages. Thus, typi
ally, D

j

is a linear

mapping D

j

: V ! E

j

, where V is a fun
tional spa
e and E

j

is a dis
rete ve
tor spa
e.

Conversely, there is a re
onstru
tion operator R

j

: E

j

! V

j

whi
h produ
es a fun
tion in

V

j

from the knowledge of dis
rete values u

j

2 E

j

. Typi
ally, re
onstru
tion operators are

de�ned in terms of an expansion

R

j

(x;u

j

) =

X

k

u

j

(k)�

j;k

(x); [re
j℄ (1)

where the basi
 fun
tions �

j;k

(x) form a Riesz basis for V

j

.

A multiresolution analysis is a sequen
e of embedded approximating spa
es V

j

� V

j+1

.

In su
h 
ontext, �

j;k

(x) 2 V

j

are s
aling fun
tions that provide re
onstru
tion operators (1)

in a single s
ale level. The index j 
orresponds to the dyadi
 s
ale 2

�j

and k indi
ates spa
e

lo
alization k2

�j

2 X

j

. For the appli
ations presented in this work, we shall 
onsider shift

invariant spa
es V

j

where �

j;k

(x) = �(2

j

x � k); k 2 Z; are obtained by translations and

dilations of a single basi
 fun
tion �(x). Given the re
onstru
tion operator (1), we shall

adopt di�erent dis
retization operators D

j

to produ
e di�erent approximation s
hemes

fD

j

;R

j

g on V

j

. For instan
e, dis
retizations

(D

j

u)(k) = 2

j

Z

R

u(x)�

�

j;k

(x)dx;

de�ned by lo
al averages using dual s
aling fun
tions �

�

j;k

(x) = �

�

(2

j

x � k), produ
e

biorthogonal proje
tions P

j

= R

j

D

j

. Other s
hemes of interest, su
h as interpolation,

quasi-interpolation or dis
rete proje
tions, may be given in the form I

j

= R

j

D

j




, where

D

j




are de�ned in terms of dis
rete 
onvolutions of point values with some spe
i�
 weights.

For instan
e, for some 0 � � < 1 we shall 
onsider dis
retization operators of the form

(D

j




u)(k) =

X

n2Z


(n)u((k � n+ �)2

�j

)

for interpolation and quasi-interpolation, and of the form

(D

j




u)(k) =

X

n2Z


(n)u((n+ 2k)2

�j�1

)

for dis
rete proje
tions.

A fundamental aspe
t of a multiresolution analysis is the possibility of multilevel de-


ompositions in terms of dire
t sums

V

j

= V

J

�W

J

� � � � �W

j�1

;
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where J is a 
oarse level and W

l


ontains details between 
onse
utive levels l and l+1. In

asso
iation to su
h multilevel de
ompositions there are wavelet fun
tions f 

l;k

(x)g, whi
h

form Riesz bases for the intermediate spa
es W

l

. Therefore, in a multiresolution analysis

framework, approximation s
hemes may be de�ned in terms of multilevel dis
retizations

D

j

MR

u = u

j

MR

= fu

J

;d

j

; � � � ;d

j�1

g

and multilevel re
onstru
tions

R

j

MR

(x;u

j

MR

) = R

J

(x;u

J

) +

j�1

X

`=J

X

k

d

`

(k) 

`;k

(x):

For instan
e, for the biorthogonal proje
tion, the multilevel dis
retization is de�ned by

lo
al averages using dual wavelets  

�

`;k

(x) su
h that

d

`

(k) = (G

`

u)(k) = 2

`

Z

R

u(x) 

�

`;k

(x)dx

whi
h are known as wavelet 
oeÆ
ients. If the dis
rete values u

`+1

= D

`+1

u are given, then

the wavelet 
oeÆ
ients 
an be obtained by Mallat's analysis algorithm whi
h is expressed

by 
onvolution with a high pass �lter g

�

followed by de
imation

(G

`

u)(k) =

X

k

g

�

(m� 2k)(D

`+1

u)(m) [g
℄ (2)

We are also interested in multilevel approximation s
hemes in terms of other type of mul-

tilevel dis
retization operators. Instead of d

`

(k); we shall use modi�ed wavelet 
oeÆ
ients

�

d

`

(k) whi
h are produ
ed by a modi�ed analysis algorithm. It is based on a dis
retization

operator G

`




obtained by repla
ing D

`+1

in formula (2) by another dis
retization operator

D

`+1




asso
iated to some other approximation s
heme. Pre
isely,

�

d

j�m

(k) = G

j�m




(v)(k); (3)

where v is obtained by removing from u all 
ontributions 
orresponding to previously


omputed modi�ed wavelet 
oeÆ
ients

�

d

j�n

; n = 1; � � � ;m � 1. Su
h modi�ed analysis

algorithm was suggested by Fr�ohli
h and S
hneider [9℄ for the interpolation 
ase and

explored by Ware [15℄ for the dis
rete proje
tion. As emphasized in these papers, the

purpose of using the modi�ed fun
tion v instead of simply u in formula (2) is to improve

the a

ura
y in the aliasing error d

`

�

�

d

`

. A 
ru
ial ingredient in the formulation of

su
h modi�ed analysis algorithm is the 
onservation property, whi
h is satis�ed both by

interpolation and dis
rete proje
tion operators. In the 
ase of quasi-interpolation, whi
h

is not 
onservative, we shall des
ribe the degradation in the aliasing error in 
oarse s
ales.

In numeri
al solution of partial di�erential equations (PDE), the analyti
al problem is

repla
ed by a dis
rete model. In the appli
ations of the present paper, spe
ial attention

shall be given to the nonlinear adve
tion operator L(u; v) = uv

x

. Using the approximation

s
hemes de�ned in the �rst part, we shall 
onsider dis
retizations of the form

L

j

(u

j

;v

j

) = D

j




[L(R

j

(x;u

j

);R

j

(x;v

j

)℄:

An hybrid formulation o

urs if the dis
retization operator D

j




used after the appli
ation

of L is di�erent from the operator D

j

used in the dis
retization of the fun
tions u

j

= D

j

u

and v

j

= D

j

v. For instan
e, this is the 
ase in pseudo-spe
tral dis
retizations of nonlinear

3



di�erential operators in whi
h D

j

is the Fourier transform and D

j




is its dis
rete version,

whi
h is de�ned in terms of point values. Pseudo-wavelets s
hemes have also been adopted

in appli
ations to PDE [2, 3, 9, 14℄, where the dis
retization of the nonlinear terms are

usually evaluated in the physi
al spa
e by means of fun
tionals D

j




de�ned in terms of

point values.

For the s
hemes under study, we shall analyze the trun
ation error

TE(u; v) = D

j

L(u; v)�L

j

(u

j

;v

j

)

by giving a pre
ise des
ription of the intera
tion between di�erent Fourier modes. We shall

prove that for the Petrov-Galerkin formulation, in whi
h D

j




= D

j

, the super
onvergen
e

o

urs, i.e., the order of a

ura
y M for the trun
ation error is higher than the maximum

approximation order N allowed by the approximating spa
es. For the three hybrid for-

mulations ( using interpolation, quasi-interpolation and dis
rete proje
tion), the order of

the trun
ation error is N � 1. However, for some spe
i�
 
ases (e.g. splines of even order)

it gets N , with an extra gain in the 
onsisten
y order. These results have been partially

reported in [1℄.

2 First Part: Approximation S
hemes

[partone℄

2.1 Biorthogonal Framework

[mra℄ For the de�nition of a multiresolution analysis V

j

� L

2

(R), the main ingredient is

a s
ale relation

�(x) = 2

X

k2Z

h(k)�(2x � k) [
1e1℄ (4)

whi
h impli
itly de�nes the basi
 s
aling fun
tion �. In the Fourier spa
e, the s
ale relation

is expressed by

b

�(�) = H(�=2)

b

�(�=2); [
1e2℄ (5)

where

H(�) =

X

k2Z

h(k)e

�ik�

[
1e3℄ (6)

is a low-pass �lter. Two multiresolution analysis V

j

and V

�

j

are said to be biorthogonal

provided that the biorthogonal relation holds

Z

R

�

�

(x)�(x� k)dx = Æ

k

:

Approximations of fun
tions u are found in V

j

by means of the biorthogonal proje
tion

operator P

j

= R

j

D

j

, where

R

j

(x;u

j

) =

X

k2Z

u

j

(k)�

j;k

(x); [proje
tion℄ (7)

and

D

j

u(k) := 2

j

Z

R

u(x)�

�

j;k

(x)dx: [
jk℄ (8)
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It 
an also be represented in a multilevel setting P

j

= R

j

MR

D

j

MR

. The multilevel re
on-

stru
tion has the form

R

j

MR

(x;u

j

MR

) =

X

k2�

J

u

J

(k)�

J;k

(x) +

j�1

X

l=J

X

k2�

l

d

l

(k) 

l;k

(x)

= P

J

u(x) +

j�1

X

l=J

Q

l

u(x): [e20℄ (9)

The mother wavelets are obtained by the s
ale relations

 (x) = 2

X

k2Z

g(k)�(2x � k) and  

�

(x) = 2

X

k2Z

g

�

(k)�

�

(2x� k);

where g(k) = (�1)

k+1

h

�

(1�k) and g

�

(k) = (�1)

k+1

h(1�k) are high-pass �lter 
oeÆ
ients,

and the following biorthogonal relations hold

Z

R

 

�

(x) (x� k)dx = Æ

k

; [
1e9℄ (10)

Z

R

�

�

(x) (x � k)dx =

Z

R

 

�

(x)�(x � k)dx = 0: [
1e10℄ (11)

The multilevel dis
retization are obtained by the fun
tionals

D

j

MR

= fD

J

;G

J

; � � � G

j�1

g

su
h that

G

l

u(k) = d

l

(k) = 2

l

Z

R

 

�

l;k

(x)u(x)dx: [w
of℄ (12)

The transformation relating the information at the �nest level u

j

and its multilevel repre-

sentation u

j

MR

= fu

J

;d

j

; � � � ;d

j�1

g is known as Analysis Algorithm and it is de�ned by

the re
ursive appli
ation of the formulas

u

j�1

(k) = 2

X

s2Z

h

�

(s� 2k)u

j

(s); [mallat1℄ (13)

d

j�1

(k) = 2

X

s2Z

g

�

(s� 2k)u

j

(s): [mallat2℄ (14)

On the other hand, the Synthesis Algorithm re
overs the �nest level information by mul-

tilevel representation

u

j

(k) =

X

s2Z

h(h� 2s)u

j�1

(s) +

X

s2Z

g(k � 2s)d

j�1

(s): (15)

� A

ura
y

It is well known that the best order of a

ura
y in shift-invariant approximating spa
es

is 
hara
terized by the Strang-Fix 
ondition. A fun
tion �(x) satis�es the Strang-Fix


ondition of order p if

b

�(0) 6= 0 and

b

�(�) have zeros of order p+1 at � = 2k�; k 2 Z n f0g.

In su
h 
ase, all the polynomials up to degree p 
an be lo
ally reprodu
ed by linear


ombinations of the basi
 fun
tions �

j;k

(x). If � and �

�

are integrable s
aling fun
tions of

5




ompa
t support, and � satis�es the Strang-Fix 
ondition of order p, then the biorthogonal

proje
tion P

j

f in V

j

satis�es the error estimation [3℄

kf �P

j

fk

H

s

. 2

�j(p+1�s)

jjf jj

H

p+1
; [
1eq333℄ (16)

for 0 � s � minfr; p + 1g, where r is degree of regularity of �, so that � 2 H

r

(R). The

following estimations also hold

jd

l

(k)j . 2

�l(p+1)

kuk

H

p+1

(Supp 

�

l;k

)

; [
1e18℄ (17)

kQ

j

fk

H

s

. 2

�j(p+1�s)

jjf jj

H

p+1
; [
1eq334℄ (18)

where Supp 

�

l;k

represent the support of fun
tion  

�

l;k

.

2.1.1 Spline Biorthogonal Family

[se
b℄ We have parti
ular interest in the family of biorthogonal multiresolution analysis

introdu
ed by Cohen, Daube
hies and Feauveau [4℄. Let N

�

and N be positive integers

of same parity, i.e., N

�

+N =M is an even integer. The fun
tion �

�

= �

N

�

is 
hosen as

B-spline of order N

�

. For even N

�

= 2l

�

the 
orresponding s
aling �lter is

H

�

(�) =

�


os

�

2

�

N

�

:

If N = 2l, then s
aling fun
tions �(x) = �

N

�

;N

(x) may be found with s
aling �lters

H(�) =

�


os

�

2

�

N

l+l

�

�1

X

k=0

�

l + l

�

� 1 + k

k

��

sin

�

2

�

2k

:

Similarly, for the odd N

�

= 2l

�

+ 1, and N = 2l + 1, the 
orresponding �lters are

H

�

(�) = e

�i�=2

�


os

�

2

�

N

�

and

H(�) = e

�i�=2

�


os

�

2

�

N

l+l

�

X

k=0

�

l + l

�

+ k

k

��

sin

�

2

�

2k

:

In this 
ase, all fun
tions have 
ompa
t support. The fun
tion �

�

is a C

N

�

�2

pie
ewise

polynomials of degree N

�

� 1, and � has in
reasing regularity with in
reasing N . The

fun
tions, �

�

and �, are symmetri
 fun
tions 
entered at x = 0, for even N

�

and N , and


entered at x =

1

2

, for odd N

�

and N . They satisfy Strang-Fix 
onditions of order N

�

� 1

and N � 1, respe
tively.

In the extreme 
ase N

�

= 0, �

�

(x) = Æ(x) is the Dira
 distribution and �

M

(x) = �

0;M


orresponds to the interpolation s
aling fun
tions de�ned by Delauries and Dubu
 [8℄. It


an be shown that

�

M

(x) =

Z

R

�

N

�

(y)�

N;N

�

(y + x)dy;

independently of the 
hoi
es of N;N

�

su
h that M = N +N

�

[12℄.
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2.2 Other Approximation S
hemes

[sea℄ Following Harten's formalism [13℄, we shall present a 
lass of approximation s
hemes

in the spline biorthogonal framework. Di�erent s
hemes shall be distinguished by di�erent

form in whi
h the dis
retization operators are de�ned. Hen
e, in the one-level setting, we

shall always assume that the re
onstru
tion operator has the form

R

j

(x;u

j

) =

X

k2Z

u

j

(k)�(2

j

x� k):

We say that the approximation s
heme fD

j

;R

j

g is 
onservative if R

j

is a right-inverse

operator of D

j

, i.e., D

j

R

j

(�;u

j

) = u

j

; 8u

j

2 E

j

. This means that

(D

j

�(2

j

� �k))(s) = Æ

k�s

:

The biorthogonal proje
tion is an example of a 
onservative approximation s
heme. For

this 
ase, the 
onservation property is equivalent to the biorthogonal relation.

Now we turn our attention to dis
retization operators de�ned in terms of dis
rete


onvolutions of point values with some spe
i�
 weights. We 
onsider three 
ases: interpo-

lation, quasi-interpolation and dis
rete proje
tion.

� Interpolation S
heme

For some 0 � � < 1 
onsider the dis
retization operator

(D

j




u)(k) =

X

n2Z


(n)u((k � n+ �)2

�j

): [
2e26℄ (19)

The 
oeÆ
ients 
 = 


�

are obtained in su
h a way that the operator

I

j

u(x) =

X

k2Z

(D

j




u)(k)�(2

j

x� k) [
2e101℄ (20)

interpolates u at the nodes x

j

k

= (k + �)2

�j

. Therefore, it is ne
essary that

(D

j




�(2

j

� �l))(k) = Æ

k�l

, what shows that the interpolation s
heme is 
onservative. The

interpolation 
onstraint is equivalent to the following relation

e
(�)

e

�

�

(�) � 1: [
2e24℄ (21)

where

e

�

�

(�) =

X

m2Z

�(m+ �)e

�im�

; e
(�) =

X

m2Z


(m)e

�im�

: [
2e91℄ (22)

It is possible to �nd 
oeÆ
ients 
(k) su
h that relation (21) is satis�ed provided that the

following interpolation 
ondition holds

e

�

�

(�) 6= 0; 8�: [
i2℄ (23)

It is well known that the B-splines fun
tions �

N�

(x) satisfy the interpolation 
ondition

with � = 0 for even N

�

, and � = 1=2 for odd N

�

. Numeri
al experiments suggest that

equivalent results are valid for the dual fun
tions �(x) = �

N;N

�

(x). For example, Figure

1 shows the fun
tion

e

�

�

(�) 
orresponding N

�

= 1 and N = 3. Note that, for � = 0,

e

�

0

(�) =

e

�

0

(��) = 0 a fa
t that 
ontradi
ts the interpolation 
ondition. On the other

7



|

−π
|

π

−1

(a)

|

−π
|

π

−1

(b)

Figure 1: (a)-

e

�

0

e (b)-

e

�

1=2

for N

�

= 1 and N = 3

[
2f1℄

|−π |π

−1

(a)

|
−π

|
π

−1

(b)

Figure 2:

e

�

0

for (a)- N

�

= 2; N = 4 and (b)- N

�

= 2; N = 6

[
2f4℄

hand,

e

�

1=2

(�) 6= 0 for �� � � � �. The same type of behavior is veri�ed for other s
aling

fun
tions with odd N . For even N , Figure 2 shows the graph of

e

�

0

(�) for N

�

= 2 and

N = 4; 6. In both 
ases, we have

e

�

0

(�) 6= 0 for �� � � � �.

Assuming that the interpolation 
ondition is veri�ed, the 
oeÆ
ients 
(k) 
an be ob-

tained in terms of the Fourier's 
oeÆ
ients of the fun
tion 1=

e

�

�

(�). However, ex
epting

the 
ase N

�

= 0, where �

N;N

�

is an interpolation fun
tion of 
ompa
t support, the in-

terpolation 
onstraint 
an only be a
hieved with in�nitely many 
oeÆ
ients 
(k) 6= 0.

Therefore, the implementation of D

j




in physi
al spa
e requires trun
ated �lter 
oeÆ
ients

[9℄ and the s
heme be
omes non-
onservative. Examples of some interpolating 
oeÆ
ients

are presented in Table 1.

� Quasi-Interpolation S
heme

The interpolation 
onstraint may be repla
ed by a less restri
tive 
ondition to obtain

a s
heme that requests only a �nite number of non zero 
oeÆ
ients. In this 
ase, the

dis
retization operator has the same form (19), as in the interpolation 
ase. However

the 
oeÆ
ients 
(k), are 
hosen in su
h a way that the operator I

j

= R

j

D

j

is a quasi-

interpolation of order n. That is, I

j

q(x) = q(x) for every polynomial q(x) of degree up to

n. The quasi-interpolation 
ondition may be translated into a relation between dis
rete

moments of 
 and the moments of the fun
tion �.

8



Table 1: Interpolation 
oeÆ
ients for j
(k)j � 10

�6

and k � 0

[
2t1℄

(N

�

; N) k

0 1 2 3 4 5 6 7 8 9

(1,3)

1181

1339

24

379

�

1

288

�

1

1204

�

1

35183

1

180840

(1,5)

491

569

227

2872

�

7

648

�

1

6887

1

2246

1

81644

�

1

114680

(2,4)

718

1165

172

911

37

2060

�

9

974

�

7

1441

�

1

1004

1

23306

1

10133

1

30947

1

284026

(2,6)

427

613

151

895

�

11

1164

�

7

761

1

1596

1

1028

1

9261

�

1

19095

�

1

80053

1

347092

The k-moments of a fun
tion, � are de�ned by

M

k

�

=

Z

R

x

k

�(x)dx:

The s
aling fun
tions are normalized in su
h a way thatM

0

�

=M

0

�

�

= 1. Using the s
ale

relation, the moments 
an be 
al
ulated re
ursively

M

0

�

= 1

M

k

�

=

1

2

k

� 1

k

X

l=1

�

k

l

�

�

l

H

M

k�l

�

; k = 1; 2; : : : : [mo1℄ (24)

where �

l

H

are the dis
rete moments of �lter H de�ned by

�

l

H

=

X

s2Z

s

i

h(s): [moH℄ (25)

Lemma 2.1 Let p be the order of Strang-Fix 
ondition of the fun
tion �(x), and suppose

that 0 � n � p. The operator I

j

u(x) is a quasi-interpolation operator of order n, if and

only if the following moment relations are satis�ed

m

X

l=0

�

m

l

�

�

l




M

m�l

�

= �

m

; 0 � m � n; [
2e4℄ (26)

where

�

l




=

X

k2Z

k

l


(k); [
2e5℄ (27)

[
2l9℄

Proof: By de�nition of quasi-interpolation operator, the 
oeÆ
ients 
(k) must to be

so that, for 0 � m � n,

x

m

=

X

k2Z

X

n2Z


(n)(k � n+ �)

m

�(x� k)

=

X

s2Z

(s+ �)

m

X

n2Z


(n)�(x� s� n)

9



=

X

s2Z

(s+ �)

m

�(x� s)

=

X

s2Z

f

�

(s;x); [
2e54℄ (28)

where �(x) =

P

n2Z


(n)�(x�n) and f

�

(y;x) = (y+�)

m

�(x�y). The Fourier transform

of � satis�es

b

�(�) = e
(�)

b

�(�), from whi
h we 
on
lude that �(x) also satis�es the Strang-

Fix 
ondition with order p. Considering that

b

f

�

(�;x) =

Z

R

e

�i�y

(y + �)

m

�(x� y)dy

= e

�ix�

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

Z

R

e

i�y

(y)

s

�(y)dy

= e

�ix�

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

(�i)

s

d

s

b

�

d�

s

(��);

then

b

f

�

(2�k;x) = 0 for k 2 Z n f0g. For k = 0 we have

b

f

�

(0;x) =

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

(�i)

s

d

s

b

�

d�

s

(0)

=

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

M

s

�

:

Applying the Poisson summation formula and the equation (28), the momentsM

s

�

satisfy

the relations

x

m

=

b

f

�

(0;x) =

m

X

s=0

�

m

s

�

(x+ �)

m�s

(�1)

s

M

s

�

:

This is only possible if

M

m

�

= �

m

;

and the statement of the Lemma follows by 
onsidering � = 0 in the expression

d

m

b

�

d�

m

(�) =

m

X

s=0

�

m

s

�

d

s

e


d�

s

(�)

d

m�s

b

�

d�

m�s

(�):

Next, we shall des
ribe another useful relation 
hara
terizing a quasi-interpolation

s
heme.

Lemma 2.2 Let �(x) be a fun
tion that satis�es the Strang-Fix 
ondition with order

p. Suppose that 
(k) are the 
oeÆ
ients of a quasi-interpolation s
heme I

j

u(x) of order

n � p. Then the following relation holds

e
(�)

e

�

�

(�) = 1 +O(�)

n+1

; [quasi℄ (29)

where e
(�) and

e

�

�

(�) are given by (22). [
2l2℄

10



Proof: From the de�nition of the fun
tions e
(�) and

e

�

�

(�) it follows that

e
(�)

e

�

�

(�) = e
(�)

X

k2Z

�(k + �)e

�i�k

= e
(�)

X

k2Z

b

�(� + 2k�)e

i�(�+2k�)

=

X

k2Z

e
(� + 2k�)

b

�(� + 2k�)e

i�(�+2k�)

=

X

k2Z

b

�(� + 2k�)e

i�(�+2k�)

=

b

�(�)e

i��

+

X

k 6=0

b

�(� + 2k�)e

i�(�+2k�)

= f(�) +

X

k 6=0

f(� + 2k�)

where we use the fa
t that e
(�) is a 2�-periodi
 fun
tion and f(�) = e

i��

b

�(�). We note

that

b

�(�) = e
(�)

b

�(�), from whi
h we 
on
lude that � satis�es the Strang-Fix 
ondition

with same order of �. Therefore f(0) = 1 and f(�) has zeros of order p + 1 at � = 2k�,

k 2 Z n f0g. For 1 � n � p

d

n

f

d�

n

(0) =

n

X

s=0

�

n

s

�

(i�)

n�s

d

s

b

�

d�

s

(0)

=

m

X

s=0

�

n

s

�

(�1)

s

�

n�s

M

s

�

= �

n

n

X

s=0

�

n

s

�

(�1)

s

= 0

and the result of Lemma holds

Sin
e the Strang-Fix 
ondition determines the degree of the polynomials that 
an be

represented in V

j

, then the order of a quasi-interpolation s
heme is bounded by the order

of the Strang-Fix 
ondition of �(x). Therefore, the largest order of quasi-interpolation

s
heme in terms of �(x) = �

N;N

�

(x), is N � 1 (Lemma 2.1). The 
oeÆ
ients 
(k), 
an be

obtained by solving the linear systems (26) and (27). For that, it is ne
essary to know the

moments of the fun
tion �(x), whi
h 
an be 
al
ulated by the re
ursive pro
edure (24).

Knowing the momentsM

m

�

; 0 � m � N�1, the moments �

l





an be determined by solving

the linear system (26), whi
h is upper triangular, with 1�s on the main diagonal. Therefore,

the 
oeÆ
ients 
(k) should be obtained by relations (27), whi
h are of Vandermonde type.

Theses equations present in�nite solutions depending on the range of indi
es k for whi
h


(k) are nonzero. Considering the support jkj � b(N � 1)=2
, where b�
 represents the

integer part of the number, the 
oeÆ
ients 
(k) are symmetri
 around k = 0 and they

are uniquely determined. Table 2 shows the 
oeÆ
ient 
(k) 6= 0; k � 0 for the families

(N

�

; N) = (1; 3); (1; 5); (2; 4); (2; 6); (3; 5); (3; 7)

� Dis
rete Proje
tion S
heme

In opposition to biorthogonal proje
tion and interpolation operator, quasi-interpolation

s
hemes are not usually 
onservative. The 
onservation property is an important fa
t in

multis
ale representations, as shall be des
ribed in Se
tion 2.3.

11



Table 2: Quasi-Interpolation 
oeÆ
ients for 
(k) 6= 0

[
2t5℄ (N

�

; N) k

0 1 2 3

(1,3)

11

12

1

24

(1,5)

863

960

77

1440

�17

5760

(2,4)

5

6

1

12

(2,6)

97

120

1

10

�1

240

(3,5)

233

320

67

480

�7

1920

(3,7)

173863

241920

47309

322560

�209

32256

457

967680

The 
on
ept of dis
rete proje
tion was introdu
ed byWare [15℄ with the idea of having a


onservative quasi-interpolation s
heme, where the dis
retization is performed with �nitely

many non-zero 
oeÆ
ients. In this 
ase, oversampling is needed

(D

j




u)(k) =

X

n2Z


(n)u((n+ 2k)2

�j�1

):

The 
oeÆ
ients 
(k) are obtained so that the operator I

j

u(x) = R

j

(x;D

j




u) is a proje
tion,

whi
h means that the dis
retization operator must satisfy

(D

j




�(2

j

� �l))(k) = Æ

l�k

; [
e2202℄ (30)

produ
ing a 
onservative s
heme.

Lemma 2.3 The �lter 
oeÆ
ients 
(k) for a dis
rete proje
tion are 
hara
terized by the

relation

1 = e


e

(�)

e

�

0

(�) + e


o

(�)

e

�

1=2

(�); [bezout℄ (31)

where

e


e

(�) =

X

k2Z


(2k)e

�ik�

and e


o

(�) =

X

k2Z


(2k + 1)e

�ik�

: [
2e41℄ (32)

Proof: Formula (30) 
an be expressed as

1 =

X

k2Z

e

�ik�

X

n2Z


(n)�(n=2 + k)

=

X

n2Z


(2n)

X

k2Z

e

�ik�

�(n+ k) +

X

n2Z


(2n+ 1)

X

k2Z

e

�ik�

�(n+ 1=2 + k)

= e


e

(�)

e

�

0

(�) + e


o

(�)

e

�

1=2

(�);

whi
h proves the Lemma.

12



Note that the role of the relation (31) for the dis
rete proje
tion is similar to role of

the relations (21) and (29) for interpolation and quasi-interpolation 
ases.

Bezout�s Theorem [7℄ guarantees the existen
e of a solution for equation (31), with

�nitely many nonzero 
oeÆ
ients, if the symbols

e

�

0

(�) and

e

�

1=2

(�) do not have 
ommon

zeros. This property is known to be valid for the B-splines fun
tions [6℄. We have tested

this property for some dual s
aling fun
tions �(x) = �

N;N

�

(x), and the results show that

e

�

0

(�) and

e

�

1=2

(�) do not have 
ommon zeros. However, we 
ould not �gure out yet whether

this remains true or not in all the 
ases. Figure 3 displays zeros of

e

�

0

and

e

�

1=2

(�) for the


ases (N

�

; N) = (1; 3); (2; 4); (3; 3); (2; 6).

−1 1−0.5 0.5
| |

−i

i

−0.5

0.5

−−

−−

−1 1−0.5 0.5
| |

−i

i

−0.5

0.5

−−

−−

N

�

= 1 e N = 3 N

�

= 2 e N = 4

−1 1−0.5 0.5
| |

−i

i

−0.5

0.5

−−

−−

−1 1−0.5 0.5
| |

−i

i

−0.5

0.5

−−

−−

N

�

= 3 e N = 3 N

�

= 2 e N = 6

Figure 3: Zeros of �

0

(�) and �

1=2

(?).

[
2f7℄

As well as for the quasi-interpolation operator, the system (30), whi
h de�nes the


oeÆ
ients for the dis
rete proje
tion, 
an have in�nitely many solutions, depending on the

range of indi
es k for whi
h 
(k) 6= 0. However, �xing this range domain in 2 jSupp(�)j�3

and 
onsidering that the 
oeÆ
ients are symmetri
 around k = 0, the system (30) has a

unique solution. Table 3 shows the 
oeÆ
ients 
(k) obtained for some 
ases.

13



Table 3: Dis
rete Proje
tion 
oeÆ
ients 
(k) 6= 0

(N

�

; N) k

0 1 2 3 4 5 6 7

(1,3)

7

9

55

576

1

72

1

576

(1,5)

1151

1624

107

792

142

12067

�

19

25832

�

27

63649

�

4

54441

�

7

934226

18

107334566

(2,4)

535

1346

2605

10013

231

4475

�

94

16799

�

33

7450

�

9

17374

5

205914

[
2t6℄

2.2.1 Dis
retization and Global Approximation Errors

[se
23℄ In the approximation s
hemes fD

j




;R

j

g 
orresponding to interpolation, quasi-

interpolation and dis
rete operator, the dis
retization operators D

j




are an alternative form

of the biorthogonal one. The next statement gives an estimation of the dis
retization error

E

j

u = D

j

u�D

j




u.

Theorem 2.4 [erdis℄ Let � and �

�

be integrable s
aling fun
tions with 
ompa
t support,

and suppose that � satis�es the Strang-Fix 
ondition with order p. If D

j




is the dis-


retization operator asso
iated to interpolation, quasi-interpolation of order p or dis
rete

proje
tion, then, for u 2 H

n+1

; n � p, the dis
retization error satis�es the estimation

j(D

j




u)(s)� (D

j

u)(s)j . 2

�j(n+1)

kuk

H

n+1
; 8s 2 Z: [dis
rer℄ (33)

Proof: In all the 
ases, the error E

j

q = D

j

q�D

j




q is 
an
elled for polynomials q 2 P

n

; n � p.

For the interpolation and quasi-interpolation 
ase we have

jE

j

u(s)j = jE

j

(u� q)(s)j

�

�

�

�

�

2

j

Z

R

(u� q)(x)�

�

(2

j

x� s)dx

�

�

�

�

+

�

�

�

�

�

X

k2Z


(k)(u � q)((s� k + �)2

�j

)

�

�

�

�

�

. max

x2


j;s

ju� qj;

where 


j;s

= Supp(�

�

(2

j

x � s)) [ f

S

k

I

j;k

; 
(s � k) 6= 0g, with I

j;k

= [2

�j

k; 2

�j

(k + 1)).

The error estimation (33) is obtained by Whitney�s Theorem [3℄, whi
h establishes that

inf

q2P

n

max

x2


j;s

ju� qj . 2

�j(n+1)

kuk

H

n+1

(


j;s

)

:

For the dis
rete proje
tion 
ase, the proof is similar.

The global error approximation of biorthogonal proje
tion, P

j

= R

j

D

j

, satis�es the

estimation (16). The approximation s
hemes 
onsidered in the present paper are in
luded

in a broader 
lass of s
hemes treated in [10, 11℄. Global error estimates 
an be obtained,

provided some basi
 hypothesis are veri�ed, as stated in the following Lemma.

Lemma 2.5 [gamma℄ Let �(x) be a s
aling fun
tion of 
ompa
t support satisfying a

Strang-Fix 
ondition of order p. In asso
iation with the operators of interpolation or

14



quasi-interpolation of order p, de�ne the fun
tion e�(�) = e
(�)e

�i��

. Similarly, in the 
ase

of dis
rete proje
tion, let e�(�) = e
(�=2). Then the assymptoti
 relation is veri�ed

e�(�)

b

�

�

(�) = 1 +O(�)

p+1

:

Proof: For interpolation 
ase we 
onsider the equation (21) and we have

1 = e
(�)

e

�

�

(�)

= e
(�)

X

k2Z

�(k + �)e

�ik�

= e
(�)

X

k2Z

b

�(� + 2k�)e

�i�(�+2k�)

= e
(�)

b

�(�)e

�i��

+ e
(�)

X

k 6=0

b

�(� + 2k�)e

�i�(�+2k�)

:

Being the order of the Strang-Fix 
ondition of � equal to p, it follows that

b

�(�)e
(�)e

�i��

= 1 +O(�

p+1

):

For the quasi-interpolation 
ase, instead of (21), we 
onsider equation (29), with n = p,

and the proof pro
eeds analogously as in the interpolation 
ase.

For the dis
rete proje
tion, we take equation (31), whi
h implies that

1 = e


e

(�)

X

k2Z

�(k)e

�i�k

+ e


o

(�)

X

k2Z

�(k + 1=2)e

�i�k

= e


e

(�)

X

k2Z

b

�(� + 2k�) + e


o

(�)

X

k2Z

b

�(� + 2k�)e

i=2(�+2k�)

=

X

k2Z

b

�(� + 2k�)

�

e


e

(�) + e


o

(�)e

i(�=2+k�)

�

=

X

k2Z

b

�(� + 2k�)

 

X

s2Z


(2s)e

is�

+ e

ik�

X

s2Z


(2s+ 1)e

i(2s+1)�

2

!

=

X

k2Z

b

�(� + 2k�)

 

X

s2Z


(2s)e

i2s(�=2+k�)

+

X

s2Z


(2s+ 1)e

i(2s+1)(�=2+k�)

!

=

X

k2Z

b

�(� + 2k�)e
(�=2 + k�):

From the Strang-Fix 
ondition of �, we have

e
(�=2)

b

�(�) = 1 +O(�

p+1

): [eqdp3℄ (34)

Having in mind the statement of Lemma 2.5, the appli
ation of the results in [10, 11℄

implies the following global error estimates.

Theorem 2.6 Let �(x) be a s
aling fun
tion of 
ompa
t support satisfying a Strang-Fix


ondition of order p. If I

j

u(x) is an operator of interpolation, quasi-interpolation of order

p or dis
rete proje
tion asso
iated to �, then the following approximation error estimate

holds

ku� I

j

uk

H

s

� C2

�j(N�s)

jjujj

H

N

;

for 0 � s � minfN; rg, where r is the regularity degree su
h that � 2 H

r

.
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2.3 Multilevel Approximation S
hemes

[anaME℄

As des
ribed in Se
tion 2.1, the biorthogonal proje
tion P

j

may be expressed in two

ways. There is the one-level representation P

j

= R

j

D

j

, where the dis
retization and

re
onstru
tion operators are expressed in terms of s
aling fun
tions, and there is the

multilevel representation P

j

= R

j

ME

D

j

ME

; , where the dis
retization operator D

j

ME

and

re
onstru
tion operator R

j

ME

are expressed in terms of multilevel wavelet bases.

In Se
tion 2.2, other types of one-level approximation s
hemes I

j

= R

j

D

j




have been


onsidered for dis
retizations D

j




de�ned in terms of dis
rete 
onvolutions with fun
tion

point values. In the multilevel 
ontext, there is also interest in 
onsidering approximation

s
hemes fD

j


;ME

;R

j

ME

g where the dis
retization operators

D

j


;ME

= fD

J




;G

J




; : : : ;G

j�1




g

are also fun
tionals de�ned by dis
rete 
onvolutions. In this sense, one idea 
ould be to

de�ne G

l




u by the substitution of u

l+1

= D

l+1

u in formula (12) by some of the alternative

dis
retizations D

l+1




u. That is,

(G

l




u)(k) =

X

m2Z

g

�

(m� 2k)(D

l+1




u)(m): [gdis℄ (35)

If fD

j




;R

j

g is a 
onservative s
heme then, it holds

(G

l




�(2

l

� �m))(k) = 0; (G

l




 (2

l

� �m))(k) = Æ

m�k

; [
2e6℄ (36)

whi
h means that the s
heme fD

j


;ME

;R

j

ME

g is also 
onservative. In this sense, let G

l




u be

the dis
retization de�ned by (35), where D

l+1




u is asso
iated with interpolation or dis
rete

proje
tion operator, whi
h are 
onservative s
hemes. If

u(x) =

X

k2Z

u

J

(k)�(2

J

x� k) +

X

l�J

X

k2Z

d

l

(k) (2

l

x� k);

then, by the 
onservation property (36), it follows that

(G

�




u)(s) = d

�

(s) +

X

l��+1

X

k2Z

d

l

(k)(G

�




 (2

l

� �k))(s): [
2e3℄ (37)

This equation shows that the aliasing error G

�

u � G

�




u 
an be expanded in terms of


ontributions from superior levels l � �+ 1.

By Lemma 2.4 it follows that

j(G

�




u)(s)� (G

�

u)(s)j . 2

�(�+1)(p+1)

jjujj

H

p+1
; [
2e47℄ (38)

whi
h is not reasonable for less re�ned s
ale levels.

2.3.1 An Alternative Multilevel Dis
retization

Having in mind the degradation of the aliasing error (38) at 
oarse s
ale levels, we shall

des
ribe a pro
edure to improve this estimate. It was suggested by Fr�ohli
h and S
hneider

[9℄ for interpolation 
ase and explored by Ware [15℄ for the dis
rete proje
tion.
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De�ne

v(x) = u(x)�

X

k2Z

d

�

(k) (2

�

x� k);

and let

(G

�




v)(s) = d

�

(s) +

X

l��+2

X

k2Z

d

l

(k)(G

�




 (2

l

� �k))(s):

If

�

d

�

= G

�




v is used as an approximation for d

�

= G

�

u, then the error

�

d

�

�d

�

only depends

on the wavelet 
oeÆ
ients of u on levels l � �+ 2, one order higher than in formula (37).

Consequently, the a

ura
y order for the estimation (38) is improved. This argument


an be applied to obtain approximations of d

�

in unre�ned levels, whi
h are more pre
ise

than the ones given by G

�




u. Pre
isely, if

�

d

j�1

= G

j�1




u, then, for m = 2; 3; : : :, de�ne

�

d

j�m

(s) = (G

j�m




v)(s), where v(x) is the modi�ed fun
tion

v(x) = u(x)�

m�1

X

n=1

X

k2Z

�

d

j�n

(k) (2

j�n

x� k):

Therefore, we obtain the multilevel dis
retization

�

D

j


;ME

u = �u

j

ME

= f�u

J

;

�

d

J

; : : :

�

d

j�1

g;

whi
h is the result of the Modi�ed Analysis Algorithm 2.1.

Algorithm 2.1 Modi�ed Analysis

[alg1℄

Require: u(x); x 2 X

j

for l = j � 1 : (�1) : J do

�

d

l

 G

l




(u)

u(x) u(x)�

X

k2Z

�

d

l

(k) (2

l

x� k); x 2 X

l

end for

�u

J

 D

J




(u)

Ensure: �u

j

ME

= f�u

J

;

�

d

J

; : : :

�

d

j�1

g

The inverse transform is obtained by the Modi�ed Synthesis Algorithm 2.2. As the

fun
tionals D

l




and G

l




are de�ned in terms of a �nite number of non zero 
oeÆ
ients, in

both algorithms, the total number of operations is of the order

P

j

l=J

#X

l

.

In Ware [15℄ an estimation for the aliasing error is given in the 
ase of the dis
rete

proje
tion. The proof 
an be easily extended to 
onsider the 
ase interpolation.

Theorem 2.7 [alternativo℄ Let D

j




be the dis
retization asso
iated with the interpolation

or to the dis
rete proje
tion. If �u

j

ME

= f�u

J

;

�

d

J

; : : :

�

d

j�1

g is the multiresolution analysis

of u generated by the 
orresponding to Algorithm 2.1. If u 2 H

p+1

, and � > 0, then we

have

jju

j

ME

� �u

j

ME

jj

1

. 2

�j(p+1��)

jjujj

H

p+1
;

where p is the Strang-Fix 
ondition order of fun
tion �.
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Algorithm 2.2 Modi�ed Synthesis

[sintese℄

Require: �u

j

ME

= f�u

J

;

�

d

J

; : : :

�

d

j�1

g

u(x) 

X

k2Z

�u

J

(k)�(2

J

x� k); x 2 X

J

for l = J : 1 : j � 1, do

u(x) u(x) +

X

k2Z

�

d

l

(k) (2

l

x� k); x 2 X

l

u(x) 

X

k2Z

�u

l

(k)�(2

l

x� k) +

X

k2Z

�

d

l

(k) (2

l

x� k); x 2 X

l+1

=X

l

�u

l+1

 D

l+1




u

end for

Ensure: u(x), x 2 X

j

.

2.3.2 The Importan
e of the Conservation Property

[s
on℄ The 
onservation property allows us to obtain the expression (37) for the aliasing

error whi
h is fundamental for a good performan
e of algorithm 2.1. If the s
heme is

not 
onservative, the relation (36) is not valid and an equation similar to (37) 
annot be

obtained. This is the 
ase of the non 
onservative quasi-interpolation operators.

In order to verify these fa
ts, we shall apply the modi�ed Analysis Algorithm 2.1


orresponding to the quasi-interpolation s
heme to the Fourier modes. Let u(x) = e

�i�x

.

Thus

(D

j�m




u)(s) = e

�i2

m

zs

e
(2

m

z);

(G

j�m




u)(s) = e

�i2

m

zs

S

1

(2

m�1

z);

where z = 2

�j

�, S

1

(z) = G

�

(z)e
(z) with G

�

(z) =

P

n2Z

g

�

(n)e

�inz

.

The fun
tion u is modi�ed on ea
h iteration m and the 
oeÆ
ients

�

d

j�m

(s) are applied

to this new fun
tion to get

�

d

j�m

(s) = (G

j�m




u)(s)�

m�1

X

n=1

X

k2Z

�

d

j�n

(k)(G

j�m




 (2

j�n

� �k))(s): [
2e29℄ (39)

In general, for �+ 1 � � we have

G

�




( (2

�

� �k))(s) =

X

l2Z

g

�

(l � 2s)

X

n2Z


(n) (2

����1

(l � n+ �)� k): [
2e30℄ (40)

Considering m = 1 in (39) it follows that

�

d

j�1

(s) = G

j�1




(u)(s) = e

�i2zs

S

1

(z):

Through the results obtained in (39) and (40), for m = 2 it holds

�

d

j�2

(s) = G

j�2




(u)(s)�

X

k2Z

�

d

j�1

(k)(G

j�2




 (2

j�1

� �k))(s)

= e

�i4zs

S

1

(2z)

h

1� S

1

(z)

e

 (2z)

i

= e

�i4sk

S

2

(z);
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where e

e

 (z) =

P

k2Z

e

�isz

 (k). Applying this pro
edure for m = 3; 4; : : : ; we obtain

�

d

j�m

(s) = e

�i2

m

zs

S

m

(z);

where S

m

(z) are 
al
ulate by intera
tive formula

S

m

(z) = S

1

(2

m�1

z)

(

1�

"

m�1

X

n=1

S

n

(z)

e

 (2

n

z)

#)

; with S

1

= G

�

(z)e
(z):

For 
omparison, 
onsider also the 
ase of dis
rete proje
tion. Now, the iterative formula

is given by

S

m

(z) = S

1

(2

m�1

z)

(

1�

"

m�2

X

n=1

S

n

(z)

e

 (2

n

z)

#)

� S

m�1

(z)T (2

m�1

z); m > 2; [eq1℄ (41)

where

S

1

(z) = G

�

(z)e
(z=2);

S

2

(z) = S

1

(2z) � S

1

(z)T (2z);

T (z) =

e

G

�

(z)

h

e


e

(z)

e

 (z) + e


o

(z)

e

 

1=2

(z)

i

:

The exa
t wavelet 
oeÆ
ients are d

j�m

(k) = e

�i2

j�m

kz

b

 

�

(2

m

z). Therefore, the aliasing

error, in both 
ases, satis�es

e

m

(k) = j

�

d

j�m

(k)� d

j�m

(k)j

= je

�i2

m

zk

j jG

�

(2

m

z)

b

�

�

(2

m

z)� S

m

(z)j

� 
(m)z

2N

:

Numeri
al results show that the term 
(m) maintains a growth of the type 


DP

(m) =

2

Nm

, for the dis
rete proje
tion 
ase, and 


QI

(m) = 2

2Nm

, for quasi-interpolation 
ase.

Figure 4 shows this result for the family (2; 4) and (2; 6). In both 
ases, the lines marked

with Æ and + 
orrespond to the degradation fa
tor for the aliasing error asso
iated to the

simple algorithm

�

d

j�m




= G

j�m




u for quasi-interpolation and dis
rete proje
tion, respe
-

tively, whi
h are quite similar in both 
ases. On the other hand, the lines marked with

� and � 
orrespond to their modi�ed versions. As expe
ted, it is noti
eable the de
rease

in the degradation fa
tor for the modi�ed 
onservative dis
rete proje
tion 
ase. We also

note that in the quasi-interpolation 
ase, not only the modi�ed algorithm is not able to

improve the aliasing error but it even gets worst.

3 Se
ond Part: Dis
retization of Di�erential Operators

[parttwo℄ This se
tion is dedi
ated to dis
retizations L

j

for the operator L(u; v) = uv

x

.

Using the 
on
epts of dis
retization and re
onstru
tion operators, a general formulation

is des
ribed for several strategies. This methodology was proposed by Cullen and Morton

[5℄ in order to generalize the 
on
ept of trun
ation error used in di�erent s
hemes. Pre-


isely, for a di�erential operator L(u; v) we shall 
onsider a general form of dis
retization

L

j

(u

j

;v

j

) given by

L(u; v) � L

j

(u

j

;v

j

) = D

j




�

L(R

j

(x;u

j

);R

j

(x;v

j

)

�

; [
2e8℄ (42)
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Figure 4: Degradation Fa
tor for the Aliasing Error

[�g3℄

where u

j

= D

j

u and v

j

= D

j

v. If D

j




= D

j

we have a Petrov-Galerkin s
heme, whi
h

usually does not give an eÆ
ient strategy for the evaluation of nonlinear terms. Instead,

hybrid formulations use two di�erent dis
retizations (D

j




6= D

j

). The operator D

j

is

used in dis
retization of u and v and the operator D

j




is used after di�erentiation and

multipli
ation. For the 
onsisten
e analysis, we shall 
onsider the trun
ation error given

by

TE(u; v) = D

j

L(u; v) �L

j

(u

j

;v

j

): [
2e10℄ (43)

The purpose of this analysis is to establish the 
onsisten
y of the dis
retization L

j

in

terms the trun
ation error order. We shall fo
us on nonlinear intera
tions of Fourier

modes u(x) = e

�i�x

and v(x) = e

�i�x

, where �; � 2 R. To �x ideas, in what follows,

the exposition shall be restri
ted to approximation s
hemes in the 
ontext of biorthogonal

multiresolution analyses de�ned by splines �

�

= �

N

and their duals � = �

N;N

�

. However,

the same analysis 
an be performed for other similar 
ontexts.

3.1 Petrov-Galerkin Formulation

Given the dis
rete values u

j

and v

j

, the 
al
ulation of L

j

(u

j

;v

j

) is given by

L

j

(u

j

;v

j

)(s) =

X

m2Z

X

n2Z

u

j

(m)v

j

(n)

Z

R

�

�

(y)�(y + s�m)

d�

dy

(y + s� n)dy

=

X

m2Z

X

n2Z

u

j

(m)v

j

(n)�(s�m; s� n); [
2e19℄ (44)
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where

�(m;n) = �

N;N

�

(m;n) =

Z

R

�

�

(y)�(y +m)

d�

dy

(y + n)dy: [
2e17℄ (45)

The values of the 
oeÆ
ients �(m;n) depend on di�erent 
hoi
es of N andN

�

. Considering

the Fourier modes u(x) = e

�i�x

and v(x) = e

�i�x

it pro
eeds that

u

j

(m) = e

�i2

�j

�m

b

�

�

(2

�j

�) and v

j

(n) = e

�i2

�j

�n

b

�

�

(2

�j

�):

Therefore the dis
rete operator is given by

L

j

(u

j

; v

j

)(s) = e

�is(w+z)

b

�

�

(w)

b

�

�

(z)

e

�(w; z); [eq01℄ (46)

where w = 2

�j

�, z = 2

�j

� and

e

�(w; z) =

X

m2Z

X

n2Z

e

�imw

e

�inz

�(m;n):

On the other hand,

(D

j

L(u; v))(s) = �i�e

�is(w+z)




�

�

(w + z): [eq11℄ (47)

Substituting (47) and (46) in trun
ation error equation (43), we obtain

(TE) (s) = �i�e

�is(w+z)

�

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�(w; z)

�

= �i�e

�is(w+z)

�(w; z):

The order of the trun
ation error depends on the behavior of the symbol

�(w; z) =

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�(w; z): [eq09℄ (48)

As shall be proved in Theorem 3.2 of Se
tion 3.3,

�(w; z) �

M�1

X

m=0

O(w

m

z

M�m

): [est℄ (49)

In spite of the fa
t that the asymptoti
 order depends only onM , the asymptoti
 
onstants

also depend on the 
hoi
e of N and N

�

. We shall 
onsider some numeri
al eviden
es of

this fa
t. To 
al
ulate the 
oeÆ
ients �(m;n), some properties are required. By the s
ale

relation (45) we obtain that the 
oeÆ
ients �(m;n) satisfy the eigenve
tor problem

�(m;n) = 8

X

k2Z

X

l2Z

�(2m� k; 2n� l)�(n;m); [eq14℄ (50)

where �(k; l) depends on �lter 
oeÆ
ients of H and H

�

as following

�(k; l) =

X

s2Z

h

�

(s)h(s+ k)h(s+ l):

The statements of the next lemma are also useful for the 
al
ulations.

Lemma 3.1 The 
oeÆ
ients �(m;n), de�ned in (45), satisfy

(i) 8m;n 2 Z; �(�m;�n) = ��(m;n).
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(ii)

X

m2Z

X

n2Z

m�(m;n) = 0.

(iii)

X

m2Z

X

n2Z

n�(m;n) = �1.

[
2l1℄

The main ingredients for the proof are the symmetry of � and the fa
t that the set

f�(� � k); k 2 Zg is a partition of the unit, i.e.,

P

k2Z

�(x� k) = 1; 8x 2 R:

We report some numeri
al experiments that 
on�rm the estimation (49) and give the

asymptoti
 
onstants of symbol � for families (N

�

; N) = (1; 3); (1; 5). The values of �(p; q)

are obtained by solving the eigenvalue problem (50) for N = 3; 5. All the 
ases present

2-dimension eigenspa
es, but only one eigenve
tor satis�es the normalization 
riterion,

des
ribed in Lemma 3.1. In this way, we obtain the following results:

� N

�

= 1, N = 3

In this 
ase, �(n;m) 6= 0 for �2 � n � 2 and �2 � m � 2. Table 4 shows the values

of �(m;n) 6= 0 for m � 0. For m < 0 we observe that �(m;n) = ��(�m;�n).

Table 4: Values of �(m;n) for N

�

= 1 e N = 3

m n

-2 -1 0 1 2

0 �

11

180

28

45

1

1

90

�

31

270

7

30

�

1

6

1

27

2

1

4320

1

240

�

1

80

5

432

�

1

288

[
2t3℄

The �rst terms of �(w; z) is given by

�(w; z) �

1

30

z

4

+

1

30

z

3

w +

1

80

z

2

w

2

�

1

80

zw

3

:

This result 
an be 
ompared to one obtained by Cullen-Morton for Galerkin s
heme,

using the hat fun
tion. They obtained

�(w; z) �

1

180

z

4

+

1

90

z

3

w +

7

720

z

2

w

2

�

1

360

zw

3

:

Note that the 
onstants are smaller than for the Petrov-Galerkin s
heme of the same

order.

� N

�

= 1, N = 5

In this 
ase �(m;n) 6= 0 for �4 � m � 4 e �4 � n � 4. Table 5 shows the values of

�(m;n) 6= 0 for m � 0, and we obtain

�(w; z) �

4

511

z

6

+

4

511

z

5

w +

5

2016

z

4

w

2

�

5

2016

zw

5

:
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Table 5: Values of �(m;n) for N

�

= 1 e N = 5

[tab35℄

m n

-4 -3 -2 -1 0 1 2 3 4

0

20

89267

314

29267

�

395

3003

611

837

1 �

10

190967

�

40

13383

369

11429

�

768

4751

466

1715

�

2281

12630

265

5374

�

46

5879

�

8

39923

2

1

151618

11

37150

�

201

44792

245

9993

�

181

4285

40

1387

�

171

20428

76

54335

3

73456

3

8

212103

1

35896

�

17

20471

3

1721

�

45

31771

30

54131

�

19

170011

�

1

223264

4

1

678343

�

1

128891

1

74371

�

2

195791

1

265548

[
2t4℄

3.2 Hybrid S
hemes

[se
hi℄ In general, Galerkin or Petrov-Galerkin s
hemes are not eÆ
ient strategies for non-

linear operators. To over
ome this diÆ
ulty, pseudo-spe
tral s
hemes appear in numeri
al

analysis of nonlinear evolution equations, where the linear part is 
al
ulated in the Fourier

spa
e, and the nonlinear terms are evaluated in the physi
al domain. In wavelet analysis,

similar pseudo-wavelet methods have been adopted. [2, 3, 9, 14℄. In these formulations,

the evaluation of the nonlinear terms in physi
al domain uses fun
tionals de�ned in terms

of point values like, interpolation and quasi-interpolation. Our purpose is to give a 
om-

mon formulation for these s
hemes in order to have a uni�ed framework for the analysis

of the trun
ation error.

� Interpolation and quasi-interpolation s
hemes

In both 
ases, the dis
retization operator has the form

(D

j




u)(k) =

X

n2Z


(n)u((k � n+ �)2

�j

); (51)

for some 0 � � < 1. The dis
retization of L(u; v), de�ned in (42), is given by

L

j

(u

j

; v

j

)(s) = 2

j

X

k2Z


(k)

X

m2Z

X

n2Z

u

j

(m)v

j

(n)�(s� k + ��m)

d�

dx

(s� k + �� n): [
2e23℄

(52)

Applying the dis
retization operator on the Fourier modes u(x) = e

�i�x

and v(x) = e

�i�x

we have u

j

(m) = e

�iwm

b

�

�

(w) and v

j

(n) = e

�izn

b

�

�

(z), where w = 2

�j

� and z = 2

�j

�.

So, we have

L

j

(u

j

; v

j

)(s) = 2

j

b

�

�

(z)

b

�

�

(w)e

�is(z+w)

e
(z + w)

e

�

�

(w)

e

�

�

(z); (53)

where

e
(�) =

X

k2Z

e

�i�k


(k); (54)
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e

�

�

(�) =

X

m2Z

e

�i�m

�(m+ �); [
2e25℄ (55)

e

�

�

(�) =

X

n2Z

e

�i�n

d�

dx

(n+ �): [
2e27℄ (56)

Therefore, the trun
ation error has the following form

(TE) (s) = �i�e

�is(w+z)

�

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�

�

(w)

e

�

�

(z) e
(w + z)

�

: [
2e28℄

(57)

� Dis
rete proje
tion s
heme

In this 
ase, the dis
retization operator is given by

(D

j




u)(k) =

X

n2Z


(n)u((n+ 2k)2

�j�1

):

Applying to the Fourier modes u(x) = e

�i�x

and v(x) = e

�i�x

, we obtain

L

j

(u

j

; v

j

)(s) = 2

j

b

�

�

(z)

b

�

�

(w)e

�is(w+z)

h

e


e

(w + z)

e

�

0

(w)

e

�

0

(w) + e


o

(w + z)

e

�

1=2

(w)

e

�

1=2

(w)

i

= 2

j

b

�

�

(z)

b

�

�

(w)e

�is(w+z)

e

�(w; z); (58)

where, e


e

(�) and e


o

(�) are de�ned in (32) and

e

�(w; z) = e


e

(w + z)

e

�

0

(w)

e

�

0

(z) + e


o

(w + z)

e

�

1=2

e

�

1=2

(z):

The trun
ation error for the dis
rete proje
tion is given by

(TE) (s) = �i�e

�is(w+z)

�




�

�

(w + z)�

i

z




�

�

(w)




�

�

(z)

e

�(w; z)

�

: (59)

As shall be proved in Theorem 3.3, in all three hybrid formulations, the symbol �(w; z)

satis�es the asymptoti
 behavior

�(w; z) �

N

X

j=0

O(w)

j

O(z)

N�j

;

for even N , and

�(w; z) � O(z)

N�1

+

N+1

X

j=0

O(w)

j

O(z)

N+1�j

;

for odd N . In Table 6 numeri
al results are reported for the 
ases (N

�

; N) = (1; 5); (2; 4),

where we give the asymptoti
 
onstants of the symbol �.

3.3 Trun
ation Error Analysis

[ter℄

In all the 
onsidered formulations, the trun
ation errors for the Fourier's modes are

given by the general form
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Table 6: Asymptoti
 terms of �.

S
heme (1,5) (2,4)

I

23

180

z

4

691

3150

z

4

+

184

315

z

3

w +

92

105

z

2

w

2

+

184

315

zw

3

QI

23

180

z

4

83

1200

z

4

�

1

60

z

3

w �

1

40

z

2

w

2

�

1

60

zw

3

�

757

5040

w

4

DP �

46

315

z

4

83

7996

z

4

+

123

4450

z

3

w +

109

2629

z

2

w

2

+

123

4450

zw

3

[
2t7℄

(TE)(s) = �i�e

�is(w+z)

�(w; z);

where

�(w; z) =

�

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�(w; z)

�

in the Petrov-Galerkin formulation,

�(w; z) =

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�

�

(w)

e

�

�

(z) e
(w + z);

in the 
ase of interpolation and quasi-interpolation operator, and

�(w; z) =




�

�

(w + z)�

i

z




�

�

(w)




�

�

(z)

e

�(w; z)

in the 
ase of dis
rete proje
tion operator. Thus, the trun
ation error order depends on

the behaviour of the symbol �(w; z).

Theorem 3.2 Suppose that N � N

�

. For the Petrov-Galerkin formulation, the symbol

�(w; z), de�ned in (48), satis�es

�(w; z) �

M�1

X

m=0

O(w

m

z

M�m

):

[teo2℄

Proof: Applying the Poisson summation formula on

e

�(w; z) we have

e

�(w; z) = i

X

m;n2Z

(z + 2n�)

b

�(w + 2m�)

b

�(z + 2n�)

b

�

�

(w + z + 2(m+ n)�): [
2eq229℄ (60)

We 
onsider the representation

�(x) = '(x� �); �

�

(x) = '

�

(x� �); [eq59℄ (61)

where � = 0 for even N;N

�

and � = 1=2 for odd N;N

�

. The symmetri
 properties of � e

�

�

assure that ' and '

�

are symmetri
aly 
entered on zero and they satisfy the Strang-Fix
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ondition of the same order as � and �

�

. The Fourier transform b'(�) and b'

�

(�) are real

fun
tion that satisfy

b

�(�) = e

�i��

b'(�);

b

�

�

(�) = e

�i��

b'

�

(�):

Consequently,

e

�(w; z) = i

X

m;n2Z

(z + 2n�)b'(w + 2m�) b'(z + 2n�)b'

�

(w + z + 2(m+ n)�):

We split the summation above into four terms

e

�(w; z) =

(I)

z }| {

X

m=�n

[ ℄ +

(II)

z }| {

X

m=0

n 6=0

[ ℄ +

(III)

z }| {

X

m 6=0

n=0

[ ℄ +

(IV)

z }| {

X

m 6=0;n6=0

m6=�n

[ ℄ :

The main ingredients for the analysis of ea
h term are the Strang-Fix 
ondition of '

�

and

', the biorthogonal relation and symmetry of '

�

and '.

I-Term: In this 
ase, we have

(I) = �ib'

�

(w + z)

2

4

z b'(z) b'(w) +

X

m6=0

(z � 2m�)b'(z � 2m�) b'(w + 2m�)

3

5

:

For m � 1, let f

m

(w; z) = (z � 2m�)q

m

(w; z) + (z + 2m�)q

�m

(w; z), where q

m

(w; z) =

b'(w + 2m�) b'(z � 2m�), in su
h a way that

(I) = �ib'

�

(w + z)

2

4

z b'(z) b'(w) +

X

m�1

f

m

(w; z)

3

5

:

Taking into 
onsideration that

�

k

q

m

�w

l

�z

k�l

(0; 0) =

d

l

b'

dw

l

(2m�)

d

k�l

b'

dz

k�l

(�2m�);

and the Strang-Fix 
ondition of ', we 
on
lude that the partial derivative of the fun
tions

q

m

(w; z) are zero at (0; 0) for 0 � l � N �1 or 0 � k� l � N �1. Parti
ularly, it holds for

all partial derivative of order k � 2N � 1 or for all superior orders if l = k. Consequently,

it also pro
eeds that

�

k

f

m

�w

l

�z

k�l

(0; 0) = 0;

where 0 � k � 2N � 1 or l = k. Besides, f

m

(w; z) are anti-symmetri
 around the point

(0; 0), i.e., f

m

(�w;�z) = �f

m

(w; z). Therefore, all partial derivative of f

m

(w; z) with

even order are zero at (0; 0). Considering the above results, and the fa
t that

b'

�

(�)b'(�) = 1 +O(�

N

); [erb℄ (62)

we 
on
lude that

�i

z

b'

�

(w)b'

�

(z)(I) = �b'

�

(w + z) +

2N�1

X

m=0

O(w

m

z

2N�m

): [I℄ (63)
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II-Term: This term is given by

(II) = �ib'(w)

X

n 6=0

(z + 2�m)b'(z + 2�n) b'

�

(z + w + 2�n):

In this 
ase, we 
onsider q

m

(w; z) = b'(z + 2m�)b'

�

(z + w + 2m�) and f

m

(w; z) as in the

previous 
ase, obtaining that

(II) = �ib'(w)

X

m�1

f

m

(w; z):

Again, by Strang-Fix 
ondition of both '

�

and ' it follows that

�

k

q

m

�w

l

�z

k�l

(0; 0) =

k�l

X

m=0

�

k � l

m

�

d

m

b'

dz

m

(2m�)

�

k�m

b'

�

�w

l

�z

k�l�m

(2m�) = 0;

for k �M � 1 or superior order if l = k. By anti-symmetry of f

m

(w; z) and (62) it follows

that

�i

z

b'

�

(w)b'

�

(z)(II) =

M�1

X

m=0

O(w

m

z

M�m

): [II℄ (64)

III-Term: In this 
ase, we have

(III) = �iz b'(z)

X

m6=0

b'(w + 2m�)b'

�

(z + w + 2m�):

Now, we 
onsider f

m

(w; z) = b'(w + 2m�)b'

�

(z + w + 2m�), so that

(III) = �iz b'(z)

X

m6=0

f

m

(w; z):

As in the previous 
ases, it pro
eeds that for k �M � 1

�

n

f

k

�w

l

�z

l

(0; 0) = 0:

Therefore

�i

z

b'

�

(w)b'

�

(z)(III) =

M�1

X

m=0

O(w

m

z

M�m

): [III℄ (65)

VI-Term: We have

(IV) = �i

X

m;n6=0

m6=�n

(z + 2n�)b'(z + 2n�) b'(w + 2m�) b'

�

(z +w + 2(n+m)�):

In this 
ase, we 
onsider f

m;n

(w; z) = (z + 2m�) q

m;n

(w; z) + (z � 2m�) q

�m;�n

(w; z),

where q

m;n

(w; z) = b'(w + 2n�)b'(z + 2m�)b'

�

(z + w + 2(m+ n)�), so that

(IV ) = �i

X

m;n>1

m6=n

f

m;n

(w; z):
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By the Strang-Fix 
ondition of ' and '

�

and anti-symmetri
 property of f

m;n

(w; z), it

follows that

�

k

f

m;n

�w

l

�z

k�l

(0; 0) = 0;

for 0 � k � N

�

+ 2N . Therefore

�i

z

b'

�

(w)b'

�

(z)(IV ) =

N

�

+2N�1

X

m=0

O(w

m

z

N

�

+2N�m

); [IV℄ (66)

whi
h is a higher order term than previous ones. Substituting the 
ontribution of terms

(63), (64), (65) e (66) into (48), we 
on
lude the proof.

Theorem 3.3 In all three hybrid formulations 
orresponding to interpolation, quasi-

interpolation of order N � 1 and dis
rete projetion, the symbol � satis�es the asymptoti


behavior

(a) For even N

�(w; z) �

N

X

j=0

O(w)

j

O(z)

N�j

:

(b) For odd N

�(w; z) � O(z)

N�1

+

N+1

X

j=0

O(w)

j

O(z)

N+1�j

:

[
2teo1℄

Proof: For the interpolation 
ase we have

�(w; z) =

b

�

�

(w + z)�

i

z

b

�

�

(w)

b

�

�

(z)

e

�

�

(w)

e

�

�

(z) e
(w + z):

The interpolation 
ondition e
(�)

e

�

�

(�) � 1 is satis�ed with � = 0, for even N , and � = 1=2,

for odd N . Therefore, we 
onsider the representation (61) and it pro
eeds that

�(w; z) =

e

�i�(w+z)

e

�

�

(w + z)

�




'

�

(w + z)

e

�

�

(w + z)�

i

z




'

�

(w)




'

�

(z)

e

�

�

(w)

e

�

�

(z)

�

;

where we have used the inerpolation 
ondition and the fa
t that

e

�

�

(w) is a fun
tion

bounded away from zero. The estimation of �(w; z) depends on the terms into bra
kets.

Again, the main ingredients for this analysis are: the Strang-Fix 
ondition of '

�

and

', the biorthogonal relation and symmetry of '

�

and '. The symbol �(w; z) 
an be

represented by

�(w; z) =

e

�i�(w+z)

e

�

�

(w + z)

�

eq(w + z)�

i

z

eq(w)

e

f(z)

�

: [eqq1℄ (67)

where eq(w) = b'

�

(w)

e

�

�

(w) and

e

f(z) = b'

�

(z)

e

�

�

(z). Applying Poisson summation formula,

it follows that

e

�

�

(w) =

X

k2Z

b

�(w + 2�k)e

i�(w+2k�)

=

X

k2Z

b'(w + 2�k):
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Therefore, we obtain

eq(w) = b'

�

(w)b'(w) + b'

�

(w)

X

k�1

q

k

(w);

where q

k

(w) = b'(w+ 2k�) + b'(w� 2�k). By the Strang-Fix 
ondition and symmetry of

', and re
alling (62), it follows that

d

n

q

k

dw

n

(0) = 0;

for 0 � n � N � 1 and all odd n. Therefore

eq(w) =

8

<

:

1 +O(w)

N

for even N ;

1 +O(w)

N+1

for odd N :

[eb2℄ (68)

Applying the same pro
edure to eq(w + z), we have

eq(w + z) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 +

N

X

m=0

O(w

m

z

N�m

); for even N;

1 +

N+1

X

m=0

O(w

m

z

N+1�m

); for odd N:

[eb3℄ (69)

Poisson summation formula applied to

e

�

�

(z) implies that

e

�

�

(z) = i

X

k2Z

(z + 2�k)

b

�(z + 2�k)e

i�(z+2�k)

= i

X

k2Z

(z + 2�k)b'(z + 2�k):

Therefore, we have

e

f(z) = z b'

�

(z)b'(z) + b'

�

(z)

X

k>0

f

k

(z);

where f

k

(z) = (z + 2�k)b'(z + 2�k) + (z � 2�k)b'(z � 2�k). By the Strang-Fix 
ondition

and symmetry of �, and re
alling (62), it follows that

d

n

f

k

dz

n

(0) = 0;

for 0 � n � N � 1 and all even n Consequently

�

i

z

e

f(z) =

8

<

:

�1 +O(z)

N+N

�

+O(z)

N

; for even N;

�1 +O(z)

N+N

�

+O(z)

N�1

; for odd N:

[eb1℄ (70)

Therefore, substituting (69), (68) e (70) into the symbol equation (67) we 
on
lude the

statement of Theorem for the interpolation 
ase.

The quasi-interpolation di�ers from the interpolation 
ase for the fa
t that, instead of

the interpolation 
onstraint, it holds that e
(�)

e

�

�

(�) = 1 + O(�

N

) (see Lemma 29 with

n = p = N � 1). Therefore, following the same steps of the proof for the interpolation,

the statement of Theorem also holds for the quasi-interpolation 
ase.

For the dis
rete proje
tion, we have

�(w; z) =




�

�

(w + z)�

i

z




�

�

(w)




�

�

(z)

e

�(w; z);
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where

e

�(w; z) = e


e

(w + z)

e

�

0

(w)

e

�

0

(z) + e


o

(w + z)

e

�

1=2

(w)

e

�

1=2

(z);

and the fun
tions e


e

and e


o

are de�ned by (32). Combining (34) with (62), it pro
eeds

that

�

b

�

�

(�)� e
(�=2)

�

b

�(�) = O(�

N

): [re1℄ (71)

Therefore,

e
(�=2) =

b

�

�

(�) +O(�

N

): [
2eq255℄ (72)

The term

e

� 
an be expressed by

e

�(w; z) = e


e

(w + z)

e

�

0

(w)

e

�

0

(z) + e


o

(w + z)

e

�

1=2

(w)

e

�

1=2

(z)

=

X

n2Z

X

k2Z

(z + 2n�)

b

�(z + 2n�)

b

�(w + 2n�)e
((w + z)=2 + (n+ k)�): [
2eq251℄(73)

Note that if this expression e
((w + z)=2 + (n+ k)�) is repla
ed by

b

�

�

(w + z + 2(n+ k)�)

we obtain the formula (60) asso
iated to the symbol

e

�(w; z) of the Petrov-Galerkin formu-

lation. Therefore, having in mind the result in (72), the proof for the dis
ret proje
tion

pro
eeds as in the 
ase of the Petrov-Galerkin formulation.

4 Con
lusion

In the 
ontext of biorthogonal multirresolution analysis, we have 
onsidered di�erent ap-

proximation s
hemes fD

j




;R

j

g where, instead of the usual biorthogonal dis
retization,

alternative dis
retizations D

j




are used. Three 
ases have been analyzed: interpolation,

quasi-interpolation and dis
rete proje
tion. In all the 
ases, D

j




are fun
tionals de�ned

in terms of dis
rete 
onvolutions with fun
tion point values. We have also applied these

s
hemes in the de�nition of hybrid dis
retizations of the nonlinear adve
tion operator.

These hybrid s
hemes may present a disadvantage in relation to a Petrov-Galerkin s
heme,

regarding the trun
ation error order. While Petrov-Galerkin s
heme presents super
on-

vergen
e order N +N

�

, where N � 1 is the order of thr Strang-Fix 
ondition of the trial

fun
tions and N

�

� 1 is the one of the test fun
tions, in the hybrid s
hemes the 
onsis-

ten
y order is N�1 (in some 
ases, due to symmetri
 properties, an improvement up to N

may be obtained. However, hybrid s
hemes may have the advantage of an easy numeri
al

implementation. On this aspe
t, some 
onsiderations are in order:

� Quasi-interpolation and dis
rete proje
tion 
an be de�ned with a �nite number of

non zero 
oeÆ
ients. On the other hand, ex
epting some spe
ial 
ases, interpolation


onstraint (21) 
an only be a
hieved with in�nitely many nonzero 
oeÆ
ients.

� For multilevel representations, a modi�ed analysis algorithm is re
ommended to

improve the pre
ision of wavelet 
oeÆ
ients in less re�ned levels. For this, it is

essential to have a 
onservative approximation s
heme, whi
h is not the 
ase for

quasi-interpolation.

After these 
onsiderations, the dis
rete proje
tion s
heme seems to be a better option for

appli
ations that involve the 
al
ulation of nonlinear terms in the multilevel 
ontext.
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