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Abstract

The study of this paper is devoted to the analysis of multilevel approximation
schemes, in the context of multiresolution analysis. We have particular interest in
expansions where the coefficients are obtained in terms of discrete convolutions of
function point values with some specific wheights. In the first part we analyze aspects,
such as, algorithm of construction, their accuracy and multilevel implementation for
three cases: interpolation, quasi-interpolation and discrete projection.

The second part is dedicated to hybrid formulations for the discretization of nonlin-
ear differential operators. The idea is to combine two different approximation schemes:
one approximation scheme is used for functions or linear terms; another one, defined
in terms of function point values, is used for nonlinear operations. Taking the bilinear
advection operator as a model, we establish the consistency of the discretizations in
terms of the order of the truncation error.

1 Introduction

The purpose of the present paper is two fold. Firstly, in Section 2, we shall analyze various
approximation schemes in the context of biorthogonal multiresolution analysis. Besides
the usual biorthogonal projections, we are also interested in approximations that can be
obtained from the information of function point values. For instance, this is the case of
interpolation, quasi-interpolation and discrete projection operators. Various aspects shall
be analyzed, such as the algorithms for the construction of the proposed schemes, their
order of accuracy and numerical aspects for multilevel implementation. To fix ideas, we
shall adopt the spline biorthogonal multiresolution analyzes as model framework.

In Section 3, which is the second part of the present paper, the approximation schemes
presented in the first part shall be used for the discretization of differential operators.
Specially, we are interested in hybrid formulations which are suitable for the discretization
of nonlinear operators. As in the traditional pseudo-spectral schemes, the idea is to com-
bine different approximation schemes. There is one approximation scheme which is used
for functions or linear operations (e.g. derivative), and there is another one, using point
values, for the performance of the nonlinear operations (e.g. multiplication).
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Before properly entering into the two main parts of this paper, let us first give an
overview of their contents. The formalism of the presentation aims to a unified framework
for the analysis of the different approximation schemes, of the first part, as well as of their
applications in the discretization of differential operators, in the second part.

The definition of an approximation scheme P’u requires two basic ingredients: the
approximating space V; and the approximation strategy. Given an approximating space,
several approximation strategies may be used, producing different approximation schemes.
In our exposition, we shall adopt the formalism suggested by A. Harten [13] in which an
approximation strategy may represented by dual applications {D?, R/} such that P/ =
RIDI. DI is a discretization operator which assigns discrete values D/u = u’ to a function
U. Usually, the discrete values u/ give local information of u associated with a certain grid
XJ. They can be point values or local weighted averages. Thus, typically, D7 is a linear
mapping DJ : V — EJ, where V is a functional space and E7 is a discrete vector space.
Conversely, there is a reconstruction operator R/ : EJ — Vj which produces a function in
Vj from the knowledge of discrete values w/ € EJ. Typically, reconstruction operators are
defined in terms of an expansion

:E, u] Z 'U/] (,25]7 [recj] (].)

where the basic functions ¢; ; () form a Riesz basis for V}.

A multiresolution analysis is a sequence of embedded approximating spaces V; C Vjy1.
In such context, ¢; ;(x) € V; are scaling functions that provide reconstruction operators (1)
in a single scale level. The index j corresponds to the dyadic scale 277 and k indicates space
localization k277 € X7. For the applications presented in this work, we shall consider shift
invariant spaces V; where ¢;(z) = ¢(2/z — k), k € Z, are obtained by translations and
dilations of a single basic function ¢(z). Given the reconstruction operator (1), we shall
adopt different discretization operators D7 to produce different approximation schemes
{D’,R7} on VJ. For instance, discretizations

(D) (k) = 2 /R u(a) ()

defined by local averages using dual scaling functions ¢;‘k(x) = ¢*(2’z — k), produce

biorthogonal projections P/ = RIDJ. Other schemes of interest, such as interpolation,
quasi-interpolation or discrete projections, may be given in the form T7 = RIDL, where
D! are defined in terms of discrete convolutions of point values with some specific weights.
For instance, for some 0 < a < 1 we shall consider discretization operators of the form

k)= y(n)u((k —n+a)277)
nez
for interpolation and quasi-interpolation, and of the form
= 3 a()u((n + 2k)279)
nez

for discrete projections.
A fundamental aspect of a multiresolution analysis is the possibility of multilevel de-
compositions in terms of direct sums

Vi=VioW, - &W;_,



where J is a coarse level and W, contains details between consecutive levels [ and [+ 1. In
association to such multilevel decompositions there are wavelet functions {¢; ()}, which
form Riesz bases for the intermediate spaces W;. Therefore, in a multiresolution analysis
framework, approximation schemes may be defined in terms of multilevel discretizations

J S N G A | j—1
Dypu=uyp ={u,d’,.--,d" "}

and multilevel reconstructions

R%/[R(:v;ugv[R) (z,u’ —i—ZZdZ Vb (x

{(=J k

For instance, for the biorthogonal projection, the multilevel discretization is defined by
local averages using dual wavelets ¢} , () such that

2'(F) = (")) =2 [ (o) (o)ds
R
which are known as wavelet coefficients. If the discrete values u‘*t! = D1y are given, then
the wavelet coefficients can be obtained by Mallat’s analysis algorithm which is expressed
by convolution with a high pass filter g* followed by decimation

Z g*(m —2k) (D) (m) 1se (2)

We are also interested in multilevel approximation schemes in terms of other type of mul-
tilevel discretization operators. Instead of d’(k), we shall use modified wavelet coefficients
czg(k) which are produced by a modified analysis algorithm. It is based on a discretization
operator G¢ obtained by replacing D! in formula (2) by another discretization operator
Dg“ associated to some other approximation scheme. Precisely,

&M (k) = GL (0) (k), (3)

where v is obtained by removing from u all contributions corresponding to previously
computed modified wavelet coefficients d’~",n = 1,---,m — 1. Such modified analysis
algorithm was suggested by Frohlich and Schneider [9] for the interpolation case and
explored by Ware [15] for the discrete projection. As emphasized in these papers, the
purpose of using the modified function v instead of simply u in formula (2) is to improve
the accuracy in the aliasing error df — df. A crucial ingredient in the formulation of
such modified analysis algorithm is the conservation property, which is satisfied both by
interpolation and discrete projection operators. In the case of quasi-interpolation, which
is not conservative, we shall describe the degradation in the aliasing error in coarse scales.

In numerical solution of partial differential equations (PDE), the analytical problem is
replaced by a discrete model. In the applications of the present paper, special attention
shall be given to the nonlinear advection operator £(u,v) = uv,. Using the approximation
schemes defined in the first part, we shall consider discretizations of the form

£ (W, v7) = DIL(RI (a5 w)), R a3 V7).

An hybrid formulation occurs if the discretization operator Dg used after the application
of L is different from the operator D’ used in the discretization of the functions u/ = Du
and vJ = DJv. For instance, this is the case in pseudo-spectral discretizations of nonlinear



differential operators in which D7 is the Fourier transform and D! is its discrete version,
which is defined in terms of point values. Pseudo-wavelets schemes have also been adopted
in applications to PDE [2, 3, 9, 14], where the discretization of the nonlinear terms are
usually evaluated in the physical space by means of functionals D} defined in terms of
point values.

For the schemes under study, we shall analyze the truncation error

TE(u,v) = D L(u,v) — L (v, V')

by giving a precise description of the interaction between different Fourier modes. We shall
prove that for the Petrov-Galerkin formulation, in which D{ = D7, the superconvergence
occurs, i.e., the order of accuracy M for the truncation error is higher than the maximum
approximation order N allowed by the approximating spaces. For the three hybrid for-
mulations ( using interpolation, quasi-interpolation and discrete projection), the order of
the truncation error is N — 1. However, for some specific cases (e.g. splines of even order)
it gets N, with an extra gain in the consistency order. These results have been partially
reported in [1].

2 First Part: Approximation Schemes

[partone]

2.1 Biorthogonal Framework

tmra] For the definition of a multiresolution analysis V; C L?(R), the main ingredient is
a scale relation

=2 h(k)$(2z — k) feren (4)

which implicitly defines the basic scaling function ¢. In the Fourier space, the scale relation
is expressed by

$(€) = H(E/2)P(£/2), feren (5)
= h(k)e ™ jeren) (6)

keZ

where

is a low-pass filter. Two multiresolution analysis Vj and V}* are said to be biorthogonal
provided that the biorthogonal relation holds

| ¢ @it - ko = 5.
R

Approximations of functions u are found in V; by means of the biorthogonal projection
operator P? = RIDI, where

.'L' uj Z 'U/] ¢] k\T , [projection] (7)
keZ
and
Diu(k) := Qj/ u(z) P (2)dr. (eik] (8)
R



It can also be represented in a multilevel setting P/ = Rf\/l RDg\/[ - The multilevel recon-
struction has the form

Riyplzswy ) = > uw! (k) pok(x +szl )1k (x

kel I=J keA,
-1

= PJu(;L') + Z Qlu(a}) [e20] (9)
=J

The mother wavelets are obtained by the scale relations

—2Zg ¢(2x — k) and ¢*(x —ZZg ¢ (2z — k),

keZ keZ
where g(k) = (—=1)¥*t'h*(1—k) and ¢g* (k) = (—1)**t1h(1—k) are high-pass filter coefficients,

and the following biorthogonal relations hold

/1/} — k)dz = 0, [c1e9] (10)

/ ¢*(z)(z — k)dx = / ¥ (x —k)dz = 0. [c1e10] (11)
R
The multilevel discretization are obtained by the functionals
Dy p=1{D7,67,---¢7 1}
such that

Glu(k) = d'(k) = 2 / P (@) u()de. pweor) (12)
R

The transformation relating the information at the finest level w’ and its multilevel repre-
sentation uj, , = {u’,d’,--- ,d771} is known as Analysis Algorithm and it is defined by

the recursive application of the formulas

w k) = 2 h*(s — 2k)u/(s), (maaey) (13)
SEZ

A7) = 2 g*(s — 2k)u!(s). tmanary (14)
SEZ

On the other hand, the Synthesis Algorithm recovers the finest level information by mul-
tilevel representation

=> h(h =257 (s) + > gk — 28)d’ " (s). (15)

SEZ SEZL

e Accuracy

It is well known that the best order of accuracy in shift-invariant approximating spaces
is characterized by the Strang-Fix condition. A function ¢(z) satisfies the Strang-Fix
condition of order p if ¢(0) # 0 and ¢(&) have zeros of order p+1 at & = 2k, k € Z\ {0}.
In such case, all the polynomials up to degree p can be locally reproduced by linear
combinations of the basic functions ¢; x(x). If ¢ and ¢* are integrable scaling functions of



compact support, and ¢ satisfies the Strang-Fix condition of order p, then the biorthogonal
projection P’ f in V; satisfies the error estimation [3]

17 = Pifllie S 27909 g, freason (16)

for 0 < s < min{r,p + 1}, where r is degree of regularity of ¢, so that ¢ € H"(R). The
following estimations also hold

|dl(k)| 27l(17+1

1Q7 £ e

5 )HUHHP'*'I(SuppTZJ;,k)? [clel8] (]‘7)
5 27j(p+175)||f||Hp+1, [cleq334] (18)

where suppt)] ;. represent the support of function ;.

2.1.1 Spline Biorthogonal Family

secb] We have particular interest in the family of biorthogonal multiresolution analysis
introduced by Cohen, Daubechies and Feauveau [4]. Let N* and N be positive integers
of same parity, i.e., N* + N = M is an even integer. The function ¢* = ¢y~ is chosen as
B-spline of order N*. For even N* = 2[* the corresponding scaling filter is

o= ()

If N = 2[, then scaling functions ¢(z) = ¢n+ n(z) may be found with scaling filters

N I+17-1 % 2k
H(é‘)z(cos%) Z (l+l ;1+k><sing> .

k=0

Similarly, for the odd N* = 2[* + 1, and N = 2] + 1, the corresponding filters are

. AN
H*(&) = e~ /2 (cos 5)

N I+l ¥ 2k
H(f)Ze*Zf/2 (cos%) Z(l+lk+k>(sing> .

k=0

and

In this case, all functions have compact support. The function ¢* is a CN =2 piecewise
polynomials of degree N* — 1, and ¢ has increasing regularity with increasing N. The
functions, ¢* and ¢, are symmetric functions centered at z = 0, for even N* and N, and
centered at r = %, for odd N* and N. They satisfy Strang-Fix conditions of order N* — 1
and N — 1, respectively.

In the extreme case N* =0, ¢*(x) = d(z) is the Dirac distribution and 0y (z) = ¢o m
corresponds to the interpolation scaling functions defined by Delauries and Dubuc [8]. It
can be shown that

Or(z) = /R o+ (9) by v+ (y + 2)dy,

independently of the choices of N, N* such that M = N + N* [12].



2.2 Other Approximation Schemes

sea] Following Harten’s formalism [13], we shall present a class of approximation schemes
in the spline biorthogonal framework. Different schemes shall be distinguished by different
form in which the discretization operators are defined. Hence, in the one-level setting, we
shall always assume that the reconstruction operator has the form

RI(z;0)) = Z ul (k)p(2z — k).
keZ

We say that the approximation scheme {D7 R/} is conservative if R’ is a right-inverse
operator of D/, i.e., D'RI(-;u’) = u’/, Vu’/ € E’. This means that

(DV¢(27 - —k))(s) = O—s-

The biorthogonal projection is an example of a conservative approximation scheme. For
this case, the conservation property is equivalent to the biorthogonal relation.

Now we turn our attention to discretization operators defined in terms of discrete
convolutions of point values with some specific weights. We consider three cases: interpo-
lation, quasi-interpolation and discrete projection.

e Interpolation Scheme

For some 0 < a < 1 consider the discretization operator
(Dlu)(k) =Y y(n)u((k — n+ )277). rczee) (19)
nez
The coefficients v = -, are obtained in such a way that the operator

Thu(z) =Y (Diu)(k)$(2x — k) ezeron) (20)
keZ

interpolates u at the nodes :v‘;g = (k + «@)277. Therefore, it is necessary that

(Dip(27 - —1))(k) = 6}, what shows that the interpolation scheme is conservative. The
interpolation constraint is equivalent to the following relation

FE)pa(€) = 1. ere2a (21)
where N . .
$a(&) = Y plm+a)e ™ F(E) =Y y(m)e ™. fezeon) (22)
meZ meZ

It is possible to find coefficients (k) such that relation (21) is satisfied provided that the
following interpolation condition holds

$al&) # 0, V€. [z (23)

It is well known that the B-splines functions ¢y (z) satisfy the interpolation condition
with o = 0 for even N*, and o = 1/2 for odd N*. Numerical experiments suggest that
equivalent results are valid for the dual functions ¢(z) = ¢n n-(z). For example, Figure
1 shows the function &S/a(é“) corresponding N* = 1 and N = 3. Note that, for « = 0,
¢o(m) = ¢o(—m) = 0 a fact that contradicts the interpolation condition. On the other



Figure 1: (a)-¢o e (b)- ¢y for N* =1 and N =3

JANAN

@) (b)

[c2f1]

Figure 2: ¢ for (a)- N* =2, N =4 and (b)- N* =2, N =6

[c2f4]

hand, ¢~)1 /2(§) # 0 for —m < & < m. The same type of behavior is verified for other scaling

functions with odd N. For even N, Figure 2 shows the graph of (:Z;[)(f) for N* = 2 and
N =4,6. In both cases, we have ¢(§) # 0 for —7 <& < .
Assuming that the interpolation condition is verified, the coefficients (k) can be ob-

tained in terms of the Fourier’s coefficients of the function 1/ (;a(g). However, excepting
the case N* = 0, where ¢y y+ is an interpolation function of compact support, the in-
terpolation constraint can only be achieved with infinitely many coefficients (k) # 0.

Therefore, the implementation of D7 in physical space requires truncated filter coefficients
[9] and the scheme becomes non-conservative. Examples of some interpolating coefficients
are presented in Table 1.

e Quasi-Interpolation Scheme

The interpolation constraint may be replaced by a less restrictive condition to obtain
a scheme that requests only a finite number of non zero coefficients. In this case, the
discretization operator has the same form (19), as in the interpolation case. However
the coefficients y(k), are chosen in such a way that the operator Z = R/DJ is a quasi-
interpolation of order n. That is, Z7q(x) = ¢(z) for every polynomial ¢(z) of degree up to
n. The quasi-interpolation condition may be translated into a relation between discrete
moments of v and the moments of the function ¢.



Table 1: Interpolation coefficients for |y(k)| > 107 and k > 0

(N*,N) k
0 1 2 3 4 5 6 7 8 9
(1,3) 1181 24 1 1 1 1
) 1339 379 288 1204 35183 180840
(1 5) 491 227 __7 R 1 _1 1
) 569 2872 648 6887 2246 81644 114680
(2,4) 718 172 37 _9 _ 7 _ 1 1 1 1 L
) 1165 911 2060 974 1441 1004 23306 10133 30047 284026
(2,6) 427 151 1 _ 7 1 1 1 1 1 1
) 613 895 1164 761 1596 1028 9261 19095 80053 347092

The k-moments of a function, ¢ are defined by
ME = / a*(x)dz.
R

The scaling functions are normalized in such a way that MY = MY, = 1. Using the scale
relation, the moments can be calculated recursively

0 _
My =1

1

k

k -

ME = ﬁz<l>ugﬂwg D E=1,2,.... (mo (24)
=1

where ,ulH are the discrete moments of filter H defined by

phy = Z S'h(s). [mom (25)

SEL

Lemma 2.1 Let p be the order of Strang-Fix condition of the function ¢(z), and suppose
that 0 < n < p. The operator Z7u(z) is a quasi-interpolation operator of order n, if and
only if the following moment relations are satisfied

m
Z ( n; ) ugMg%l =a™, 0<m<n, [czeq (26)
=0
where
/,Lfy = Z kl’y(k), [c2e5] (27)
kEZ
[c219]

Proof: By definition of quasi-interpolation operator, the coefficients (k) must to be
so that, for 0 < m < n,

2 = 33 ym)(k - nt )"z k)

k€Z neZ
= D (s+a)™ Y y(n)p(x—s—n)
SEZ nez



= Z(s + )" ®(z — s)

SEZ

= Y fal852), (e2esa) (28)

SEZ

where ®(z) =) -, v(n)$(z—n) and fo(y;z) = (y+a)"@(x—y). The Fourier transform

of ® satisfies (&) = F(¢ )5({ ), from which we conclude that ®(z) also satisfies the Strang-
Fix condition with order p. Considering that

~

Falern) = /R e € (y + )" B(z — y)dy

_ sf% ( " ) (@t (1) [ )y

R
e S A Y GO Vi P
S0 ) o T
then fo(2mk;z) = 0 for k € Z\ {0}. For k = 0 we have
N - — S m T4 o)™ (_1)S ds&:)
fos) = 37 ) S s ©
- ) @+ @) (1) M
>(7) :

Applying the Poisson summation formula and the equation (28), the moments Mj, satisfy
the relations

m
2" = fo(0z) =) ( ’Z ) (24 o)™ (=1)° M5,.
s=0
This is only possible if
Mg = o,

and the statement of the Lemma follows by considering £ = 0 in the expression

PE S (e P
=2 (1) FEOF©

S

|
Next, we shall describe another useful relation characterizing a quasi-interpolation
scheme.

Lemma 2.2 Let ¢(z) be a function that satisfies the Strang-Fix condition with order
p. Suppose that y(k) are the coefficients of a quasi-interpolation scheme Z7u(z) of order
n < p. Then the following relation holds

F(E)al€) =1+ OE)™ ™, fauasi (29)

where 7(£) and ¢, (€) are given by (22).  feziz]

10



Proof: From the definition of the functions F(¢) and ¢4 (€) it follows that

FEdald) = A plk +a)e

keZ

= F(E) D BE + 2km)ciEHh

kEZ
= ) A + 2km)p(& + 2o el lE )
keZ
= ) B¢ + 2km)etelErHT)
keZ
= EI;({)eio‘5 + Z 6(5 + 2k7r)em(5+2k”)
k#0

= fO)+ f(&+2kn)
k#0

where we use the fact that y(¢) is a 27-periodic function and f(&) = eio‘§§(§). We note
that ®(¢) = F(¢ )$(§ ), from which we conclude that ® satisfies the Strang-Fix condition
with same order of ¢. Therefore f(0) = 1 and f(£) has zeros of order p + 1 at ¢ = 2k,
keZ\{0}. For1<n<p

Moy = > (") o2

s=0
_ < n > (_l)sanfsM%
s=0 5
- n
_ n _1\S
= «a < < )( 1)*=0
s=0
and the result of Lemma holds [ |

Since the Strang-Fix condition determines the degree of the polynomials that can be
represented in V}, then the order of a quasi-interpolation scheme is bounded by the order
of the Strang-Fix condition of ¢(x). Therefore, the largest order of quasi-interpolation
scheme in terms of ¢(z) = ¢y n+(2), is N — 1 (Lemma 2.1). The coefficients y(k), can be
obtained by solving the linear systems (26) and (27). For that, it is necessary to know the
moments of the function ¢(z), which can be calculated by the recursive procedure (24).
Knowing the moments Mg’”, 0 <m < N—1, the moments ufr can be determined by solving

the linear system (26), which is upper triangular, with 1 s on the main diagonal. Therefore,
the coeflicients (k) should be obtained by relations (27), which are of Vandermonde type.
Theses equations present infinite solutions depending on the range of indices k for which
(k) are nonzero. Considering the support |k| < [(N — 1)/2|, where || represents the
integer part of the number, the coefficients (k) are symmetric around £ = 0 and they
are uniquely determined. Table 2 shows the coefficient y(k) # 0, &k > 0 for the families
(N*,N) = (1,3), (1,5), (2,4), (2,6), (3,5), (3,7)

e Discrete Projection Scheme
In opposition to biorthogonal projection and interpolation operator, quasi-interpolation

schemes are not usually conservative. The conservation property is an important fact in
multiscale representations, as shall be described in Section 2.3.

11



Table 2: Quasi-Interpolation coefficients for y(k) # 0

le2ts] (N*, N) k
0 1 2 3
11 1
(133) 12 24
863 77 —17
(1v5) 960 1440 5760
5 1
(274) 6 12
97 1 -1
(2,6) 190 10 210
233 67 -7
(375) 320 480 1920
(3 7) 173863 47309 —209 457
) 241920 322560 32256 967680

The concept of discrete projection was introduced by Ware [15] with the idea of having a
conservative quasi-interpolation scheme, where the discretization is performed with finitely
many non-zero coefficients. In this case, oversampling is needed

(Dlu)(k) =Y v(n)u((n +2k)277 ).

nez

The coefficients (k) are obtained so that the operator Z9u(z) = R (x; Diu) is a projection,
which means that the discretization operator must satisfy

(DIg(27 - 1)) (k) =01, 1ce2202) (30)
producing a conservative scheme.

Lemma 2.3 The filter coefficients v(k) for a discrete projection are characterized by the
relation

1= () 0(&) +Fo(O)h1/2(€); wesous (31)
where . .
Fe(€) =D v(2k)e ™ and  Fo(€) = Y (2k + 1)e . rezeary (32)
keZ keZ

Proof: Formula (30) can be expressed as

1= S e S y(n)g(n/2 + k)

keZ nez
= Z v(2n) Z e *Ep(n + k) + Z v(2n + 1) Z e *p(n+1/2 4+ k)
nez kEZ nez keZ
= 3e(§)$0() +Fo()$1/2(6).
which proves the Lemma. |

12



Note that the role of the relation (31) for the discrete projection is similar to role of
the relations (21) and (29) for interpolation and quasi-interpolation cases.

Bezout ‘s Theorem [7] guarantees the existence of a solution for equation (31), with
finitely many nonzero coefficients, if the symbols ¢o(§) and ¢;/2(§) do not have common
zeros. This property is known to be valid for the B-splines functions [6]. We have tested
this property for some dual scaling functions ¢(z) = ¢y y-(z), and the results show that
¢~)0(§ ) and 'S /2(§) do not have common zeros. However, we could not figure out yet whether

this remains true or not in all the cases. Figure 3 displays zeros of %0 and %1 /2(§ ) for the
cases (N*7 N) = (17 3)7 (27 4)7 (37 3)7 (27 6)'

N* =

|
—

0.5

an

N*=3eN=3 N*=2eN =

Figure 3: Zeros of ¢ (0) and ¢/, ().

[c2fT7]

As well as for the quasi-interpolation operator, the system (30), which defines the
coefficients for the discrete projection, can have infinitely many solutions, depending on the
range of indices & for which (k) # 0. However, fixing this range domain in 2 |Supp(¢)| —3
and considering that the coefficients are symmetric around k& = 0, the system (30) has a
unique solution. Table 3 shows the coefficients (k) obtained for some cases.

13



Table 3: Discrete Projection coefficients y(k) # 0

(N*,N) Kk
0 1 2 3 4 5 6 7
7 55 1 1
(1,3) 5 576 72 576
[c2t6]
(1,5) 1151 107 142 19 27 4 7 18
) 1624 792 12067 25832 63649 54441 934226 107334566
(2,4) 535 2605 231 04 33 9 5
) 1346 10013 4475 16799 7450 17374 205914

2.2.1 Discretization and Global Approximation Errors

[sec23] In the approximation schemes {DZ, R/} corresponding to interpolation, quasi-
interpolation and discrete operator, the discretization operators D? are an alternative form
of the biorthogonal one. The next statement gives an estimation of the discretization error
Eiy = Diu — Dlu.

Theorem 2.4 (erais) Let ¢ and ¢* be integrable scaling functions with compact support,
and suppose that ¢ satisfies the Strang-Fix condition with order p. If D! is the dis-
cretization operator associated to interpolation, quasi-interpolation of order p or discrete
projection, then, for v € H**! n < p, the discretization error satisfies the estimation

[(DIu)(s) — (D7u)(s)] < 277\ gn+1, Vs € Z. discrer] (33)

Proof: In all the cases, the error £/¢ = DJg— Dl +q is cancelled for polynomials ¢ € P, n < p.
For the interpolation and quasi-interpolation case we have

[Eu(s)] = |€(u—q)(s)]

< 2j/]R(u—q)(m)¢ 2z — s)dz| +

Z’y (u—q)((s — k4 a)27)

keZ

S e fu—dl,

where Q; s = Supp(¢* (2/z — 5)) U {U, Lk v(s — k) # 0}, with I; ; = 277k, 277 (k + 1)).
The error estimation (33) is obtained by Whitney s Theorem [3], which establishes that

n+1)
Ll e T
For the discrete projection case, the proof is similar. |
The global error approximation of biorthogonal projection, P/ = RIDJ, satisfies the
estimation (16). The approximation schemes considered in the present paper are included
in a broader class of schemes treated in [10, 11]. Global error estimates can be obtained,
provided some basic hypothesis are verified, as stated in the following Lemma.

Lemma 2.5 [gamma] Let ¢(z) be a scaling function of compact support satisfying a
Strang-Fix condition of order p. In association with the operators of interpolation or
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quasi-interpolation of order p, define the function 7(¢) = ¥(¢)e™*€. Similarly, in the case
of discrete projection, let 7(§) = 7(£/2). Then the assymptotic relation is verified

U(€)da(€) =1+ 0P

Proof: For interpolation case we consider the equation (21) and we have
1 = 3(6)a()
= 7€) ) bk +a)e” ™

keZ

= 5(6) Y P& + 2km)eilE 2D

kEeZ
= F()$(E)e " +7(€) Y P& + 2km)e &),
k#0

Being the order of the Strang-Fix condition of ¢ equal to p, it follows that
PE)T(E)e™™ =1+ O(PH).

For the quasi-interpolation case, instead of (21), we consider equation (29), with n = p,
and the proof proceeds analogously as in the interpolation case.
For the discrete projection, we take equation (31), which implies that

L= %)Y ¢(k)e ™ +5,(6) Y ¢k +1/2)e”

kez ke

= 5e(©) Y P&+ 2km) +7o(8) Y P& + 2him)el/HET2HT)

kez ke

= "B + 2km) (&’—(5) + %(é‘)ei(f/um))

keZ

= Z$(§+2k7r

keZ

= > (€ +2kn) (Zv (25)e2 (/2R £ N " (25 + 1)e (2s+1)(£/2+k7r)>

keZ SEZ SEZ

= > g€ + 2kn)F(E2 + k).

keZ

i(2s+1)¢
7(2s) zs£—|—63””27 2s+1)e s )
SEZ

From the Strang-Fix condition of ¢, we have

FE/2)H(E) = 1+ O(EPT). teades (34)

|
Having in mind the statement of Lemma 2.5, the application of the results in [10, 11]
implies the following global error estimates.

Theorem 2.6 Let ¢(z) be a scaling function of compact support satisfying a Strang-Fix
condition of order p. If Z/u(z) is an operator of interpolation, quasi-interpolation of order
p or discrete projection associated to ¢, then the following approximation error estimate
holds

lu — Tulfers < C277 N7 [uf[gp,

for 0 < s < min{N,r}, where r is the regularity degree such that ¢ € H".
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2.3 Multilevel Approximation Schemes

[anaME]
As described in Section 2.1, the biorthogonal projection P’/ may be expressed in two
ways. There is the one-level representation P/ = RIDJ, where the discretization and
reconstruction operators are expressed in terms of scaling functions, and there is the
multilevel representation Pj = R‘&ED‘&E, , where the discretization operator D?\/[E and
reconstruction operator Rg\/[ ; are expressed in terms of multilevel wavelet bases.

In Section 2.2, other types of one-level approximation schemes 77 = RID! have been
considered for discretizations D! defined in terms of discrete convolutions with function
point values. In the multilevel context, there is also interest in considering approximation
schemes {Dg, v Rosp ) where the discretization operators

DZ,ME = {nggr":]v"'vggil}

are also functionals defined by discrete convolutions. In this sense, one idea could be to
define GLu by the substitution of u!*! = D!ty in formula (12) by some of the alternative
discretizations DL lu. That is,

Z g ( DH'I Y(m). [gais) (35)

meZ

If {DJ,R7} is a conservative scheme then, it holds

(Gip(2' - —m)) (k) =0, (GLp(2' - —m))(k) = Sk, te2es (36)

which means that the scheme {D‘Z ME> 7'\’,3\4 g} is also conservative. In this sense, let Glu be

the discretization defined by (35), where D!l is associated with interpolation or discrete
projection operator, which are conservative schemes. If

=N (k)@ — k) + Y S d(k)w(2's — k),

keZ, 1>J keZ

then, by the conservation property (36), it follows that

(Gru)(s) DI IAL! Lo k))(s). rezes (37)

I>A+1keZ

This equation shows that the aliasing error GMu — gg\u can be expanded in terms of
contributions from superior levels [ > A + 1.
By Lemma 2.4 it follows that

1(Gu)(s) — (G u)(s)] S 27 AFVETD ]|y, rezear (38)
which is not reasonable for less refined scale levels.

2.3.1 An Alternative Multilevel Discretization

Having in mind the degradation of the aliasing error (38) at coarse scale levels, we shall
describe a procedure to improve this estimate. It was suggested by Frohlich and Schneider
[9] for interpolation case and explored by Ware [15] for the discrete projection.
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Define
() =u(z) - Y d\Ek)p(@2 s — k),

keZ
and let

(Go)(s) = dM(s) + Do D d(k)(GR(2" - —k))(s).

I>A 2 kEZ

If d = G2v is used as an approximation for d* = G*u, then the error d*» —d* only depends
on the wavelet coefficients of u on levels [ > X\ 4 2, one order higher than in formula (37).
Consequently, the accuracy order for the estimation (38) is improved. This argument
can be applied to obtain approximations of d* in unrefined levels, which are more precise
than the ones given by gg\u. Precisely, if d/~! = ggflu, then, for m = 2,3,..., define
A= (s) = (G2~ v)(s), where v(z) is the modified function

m—1
v(z) =u(z) = > Y d (k)2 e — k).

n=1 keZ

Therefore, we obtain the multilevel discretization

J _ =i _y=d 3J 3j—1
D, ypu =ty ={0",d",...d""},

which is the result of the Modified Analysis Algorithm 2.1.

Algorithm 2.1 Modified Analysis
[alg1]

Require: u(zr), z € X/
fori=5—-1:(-1):J do

d' « G (u)
u(z) « u(z) = Y _d'(k)p(@2'z — k), v €X'
keZ
end for
a’ DCJ(u)

Ensure: @), = {a’,d’,...d’ !}

The inverse transform is obtained by the Modified Synthesis Algorithm 2.2. As the
functionals D! and G are defined in terms of a finite number of non zero coefficients, in
both algorithms, the total number of operations is of the order Z{: g H#X L

In Ware [15] an estimation for the aliasing error is given in the case of the discrete
projection. The proof can be easily extended to consider the case interpolation.

Theorem 2.7 [alternativo] Let D‘g‘be the discretization associated with the interpolation
or to the discrete projection. If @}, = {u/,d’,...d’"'} is the multiresolution analysis
of u generated by the corresponding to Algorithm 2.1. If u € HP*! and a > 0, then we
have

W — Whyslloo S 277179 u g,

where p is the Strang-Fix condition order of function ¢.
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Algorithm 2.2 Modified Synthesis

[sintese]

Require: ﬁ‘}'\/[E ={w/,d’,...d" "}

u(z) « Y ' (k)p(2'w — k), v € X’
kEZ
fori=J:1:5—-1,do
u(z) « u(z) + Y d'(k)p2z—k), zeX

keZ
u(z) Zal(k)gﬁ(% —k)+ Z d(kyp(@z — k), zex*/x!
ke kEZ
altl ch+1u
end for

Ensure: u(z), z € X/.

2.3.2 The Importance of the Conservation Property

scon] The conservation property allows us to obtain the expression (37) for the aliasing
error which is fundamental for a good performance of algorithm 2.1. If the scheme is
not conservative, the relation (36) is not valid and an equation similar to (37) cannot be
obtained. This is the case of the non conservative quasi-interpolation operators.
In order to verify these facts, we shall apply the modified Analysis Algorithm 2.1
corresponding to the quasi-interpolation scheme to the Fourier modes. Let u(z) = =%,
Thus

TMu)(s) = e PTER(2m),
(GIMu)(s) = e PTESI(2M T ),

where z = 2791, S1(2) = G*(2)7(2) with G*(z) = 3,.cz 9" (n)e” "2
The function u is modified on each iteration m and the coefficients d/~™(s) are applied
to this new function to get

m—1
B (s) = (G u)(s) = D0 30 ARG DT k) (s). e (39)

n=1 k€Z

In general, for A +1 < k we have

G2 —E))(s) = Y g (1= 25) > y(m)p(2" M1 —n+a) — k). rczes0)  (40)

leZ nez
Considering m = 1 in (39) it follows that
d7H(s) = GI7 (w)(s) = eT**81(2).

Through the results obtained in (39) and (40), for m = 2 it holds

d72s) = GIAw)(s) = 3 AR (G (2 k) ()

kEZ
— e 1558, (22) [1 - Sl(z)@Z(Zz)]

— efi4sk52(z),
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where e {pv(z) = rez e~"%y)(k). Applying this procedure for m = 3,4,..., we obtain
djfm(s) = efizmszm(z),

where S),,(z) are calculate by interactive formula

n=1

Sm(z) = Sy (2™ 12) {1 -

m—1
> Sn(z)@Z(Z”z)] } , with S; = G*(2)7(z).

For comparison, consider also the case of discrete projection. Now, the iterative formula
is given by

m—2
Sm(z) = Sl(2m_lz) {1 - [Z Sn(z){:bv(an)] } - Smfl(z)T(Qm_lz)u m > 27 [eql] (41)
n=1

where

Si(z) = G*(2)7(2/2),
SQ(Z) = 51(2Z)—51(Z)T(2z),

T(z) = G'(2) [Fel2)(2) + Fol2)ro(2)

The exact wavelet coefficients are d/=™(k) = e‘infmkziz*@mz). Therefore, the aliasing
error, in both cases, satisfies

(k) = |d&"(k) - dj*m(k)lA
e 271G (2 2) ¢4 (272) — S(2)]
~ ¢(m)z?N.

Numerical results show that the term c(m) maintains a growth of the type cpp(m) =
2N for the discrete projection case, and cor(m) = 22Nm - for quasi-interpolation case.
Figure 4 shows this result for the family (2,4) and (2,6). In both cases, the lines marked
with O and + correspond to the degradation factor for the aliasing error associated to the
simple algorithm d2~™ = G2~ ™u for quasi-interpolation and discrete projection, respec-
tively, which are quite similar in both cases. On the other hand, the lines marked with
O and ¢ correspond to their modified versions. As expected, it is noticeable the decrease
in the degradation factor for the modified conservative discrete projection case. We also
note that in the quasi-interpolation case, not only the modified algorithm is not able to
improve the aliasing error but it even gets worst.

3 Second Part: Discretization of Differential Operators

[parttwo] 'This section is dedicated to discretizations £’ for the operator L£(u,v) = uv,.
Using the concepts of discretization and reconstruction operators, a general formulation
is described for several strategies. This methodology was proposed by Cullen and Morton
[5] in order to generalize the concept of truncation error used in different schemes. Pre-
cisely, for a differential operator L£(u,v) we shall consider a general form of discretization
L7(w’,v7) given by

L(u,v) ~ LI (0!, vI) =DJ [E(T\’,j(a;; uj),Rj(a;;vj)] , [c2e8] (42)
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Figure 4: Degradation Factor for the Aliasing Error
[fig3]

where w/ = Diy and v/ = Diy. If D! = DI we have a Petrov-Galerkin scheme, which
usually does not give an efficient strategy for the evaluation of nonlinear terms. Instead,
hybrid formulations use two different discretizations (D! # DJ). The operator D’ is
used in discretization of « and v and the operator D’ is used after differentiation and
multiplication. For the consistence analysis, we shall consider the truncation error given

by
TE(u,v) = D/L(u,v) — L(W,v7). [c2e10] (43)

The purpose of this analysis is to establish the consistency of the discretization £/ in
terms the truncation error order. We shall focus on nonlinear interactions of Fourier
modes u(z) = e~ and v(z) = ¢ %®, where 1, € R. To fix ideas, in what follows,
the exposition shall be restricted to approximation schemes in the context of biorthogonal
multiresolution analyses defined by splines ¢* = ¢ and their duals ¢ = ¢n n~. However,
the same analysis can be performed for other similar contexts.

3.1 Petrov-Galerkin Formulation
Given the discrete values u/ and v/, the calculation of £7(u’,v/) is given by

P = S wmpim) [ @ity s = m) G+ s = n)dy

meZ nel.

= Z Z u! (m)v? (M)A(s —m, s —n), [eze19] (44)

meZ nel.
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where

Am.m) = A (mem) = [ 8oty +m) G+ )y (45)

The values of the coefficients A(m, n) depend on different choices of N and N*. Considering
the Fourier modes u(z) = e~ and v(z) = e %" it proceeds that

uj(m) - e_ﬂijnma* (2_j77) and vj (n) = e_iijna* (2_‘76)-

Therefore the discrete operator is given by

L, 07)(s) = e TG (w)§* (2)Mw, 2),  teao (46)
where w = 2777, z = 277¢ and

Nw,z) = Z Z e MWeT i) (m,n).

meZ nel.

On the other hand,
(D7 L(u,v))(5) = —i&e g (w + 2). feary) (47)

Substituting (47) and (46) in truncation error equation (43), we obtain

(TB) (5) = ~ike™™ @) | 5w + 2) — L3 ()" (2)Aw, 2) | = —ie™ @+ A (w,2).

The order of the truncation error depends on the behavior of the symbol

Aw,z) = ¢*(w+2) — éa*(w)(;*(z))\(w,z). feq09] (48)

As shall be proved in Theorem 3.2 of Section 3.3,

M1
A(w, z) ~ O(w™zM ™). festy (49)

m=0

In spite of the fact that the asymptotic order depends only on M, the asymptotic constants
also depend on the choice of N and N*. We shall consider some numerical evidences of
this fact. To calculate the coefficients A\(m,n), some properties are required. By the scale
relation (45) we obtain that the coefficients A(m,n) satisfy the eigenvector problem

A(m,n) =83 > a(2m —k,2n — )A(n,m), (eara) (50)

kEZ leZ

where a(k,l) depends on filter coefficients of H and H* as following

a(k,1) = h*(s)h(s + k)h(s +1).

SEZ

The statements of the next lemma are also useful for the calculations.

Lemma 3.1 The coefficients \(m,n), defined in (45), satisfy
(i) Vm,n € Z, \(—m,—n) = —X(m,n).
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(i) Y > mA(m,n)=0.

meEZ neZ

(i) Y Y nA(m,n)=-1.
meZ neZ

[e211]

The main ingredients for the proof are the symmetry of ¢ and the fact that the set
{¢(- = k); k € Z} is a partition of the unit, i.e., Y, ., d(z —k) =1, Vr € R.

We report some numerical experiments that confirm the estimation (49) and give the
asymptotic constants of symbol A for families (N*, N) = (1, 3), (1,5). The values of A(p, q)
are obtained by solving the eigenvalue problem (50) for N = 3,5. All the cases present
2-dimension eigenspaces, but only one eigenvector satisfies the normalization criterion,
described in Lemma 3.1. In this way, we obtain the following results:

e N*=1,N=3
In this case, A(n,m) # 0 for —2 <n < 2 and —2 < m < 2. Table 4 shows the values
of A(m,n) # 0 for m > 0. For m < 0 we observe that A\(m,n) = —A(—m, —n).

Table 4: Values of A(m,n) for N*=1e N =3

m 1
2 1 0 1 2
11 28
0 -5 15
1 L 31 7 _1 1
90 270 30 6 27
9 | 1 1 1 5 1
4320 240 80 432 288

[c2t3]

The first terms of A(w, z) is given by

1 1 1 1
Aw,z) ~ %,24 + %z?’w + %zzw2 - %zw3.

This result can be compared to one obtained by Cullen-Morton for Galerkin scheme,
using the hat function. They obtained

1 1 1
A IO S I S .
(w,2) 180° T90” W0t Y T 360°Y

Note that the constants are smaller than for the Petrov-Galerkin scheme of the same
order.

e N*=1,N=5
In this case A(m,n) # 0 for —4 <m <4 e —4 <n < 4. Table 5 shows the values of
A(m,n) # 0 for m > 0, and we obtain
4 4 5 5 4 o 5 5

A ~ LI W .
(w,2) 5117 Tein Yt o016 Y 2016°Y
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Table 5: Values of A\(m,n) for N*=1e N =5

[tab35]
m n
-4 -3 -2 -1 0 1 2 3 4
0 20 314 _ 395 611
89267 29267 3003 837
1l =20 _ 40 369 _ 768 466 _ 2281 265 _ 46 __8
190967 13383 11429 4751 1715 12630 5374 5879 39923
9 1 11 _ 201 245 _ 181 40 _m 76 3
151618 37150 24792 9993 1285 1387 20428 54335 73456
3 8 1 _ 17 3 _ 45 30 _ 19 1
212103 35896 20471 1721 31771 54131 170011 223264
4 1 1 1 2 1
678343 128891 74371 195791 265548

[c2t4]

3.2 Hybrid Schemes

sechi] In general, Galerkin or Petrov-Galerkin schemes are not efficient strategies for non-
linear operators. To overcome this difficulty, pseudo-spectral schemes appear in numerical
analysis of nonlinear evolution equations, where the linear part is calculated in the Fourier
space, and the nonlinear terms are evaluated in the physical domain. In wavelet analysis,
similar pseudo-wavelet methods have been adopted. [2, 3, 9, 14]. In these formulations,
the evaluation of the nonlinear terms in physical domain uses functionals defined in terms
of point values like, interpolation and quasi-interpolation. Our purpose is to give a com-
mon formulation for these schemes in order to have a unified framework for the analysis
of the truncation error.

e Interpolation and quasi-interpolation schemes

In both cases, the discretization operator has the form
(Dlu)(k) = Y v(n)u((k = n+ @)27), (51)
nez

for some 0 < o < 1. The discretization of L£(u,v), defined in (42), is given by

L, 07)(s) =20 y(k) D> wl (m)v? (n)d(s — k + o — m)%(s —k+a—n). [c2e2s]

kEZ ~— mEZLnEL
(52)

Applying the discretization operator on the Fourier modes u(z) = ™% and v(z) = e7%*
we have v/ (m) = e ™™ ¢*(w) and v/ (n) = e "*"¢*(z), where w = 2775 and z = 277(.

So, we have

L (u?,07)(s) = 278 (2)§" (w)e “CHIF(z + w) da(w) Bal2), (53)
where
7O = Y e k), (54)
keZ
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$a(€) = D e MP(m+ ), rezens) (55)

meZ
ga(f) = Téei&"%(nwwx). [c2e27] (56)

Therefore, the truncation error has the following form

() (5) = =ice ) [§(w+2) - 5 @F (Ialw) Fale) T F ]| - o

(57)
e Discrete projection scheme

In this case, the discretization operator is given by

(Dlu)(k) = D y(n)u((n +2k)27771).

nez

Applying to the Fourier modes u(z) = ¢~ and v(z) = ¢, we obtain

LW w)(s) = 2§ (F (e ™) 5w+ 2)go(w) fow) +Folw + 215 (w) Brya(w)]

= 24*(2)$* (w)e P WTAT (w, 2),

where, 7.(£) and 7,(&) are defined in (32) and

T(w,2) = Ye(w + 2) do(w)Bo(2) +Fo(w + 2) 51/251/2@)-

The truncation error for the discrete projection is given by

(TE) (s) = —ie™ "+ [Zs?(w +2) = L F @) () (w,2)| (59)

As shall be proved in Theorem 3.3, in all three hybrid formulations, the symbol A(w, z)
satisfies the asymptotic behavior

for even N, and
Aw,2) ~ O()N ™!+ 3 O(w) O()M 17,
j=0
for odd N. In Table 6 numerical results are reported for the cases (N*, N) = (1,5), (2,4),
where we give the asymptotic constants of the symbol A.
3.3 Truncation Error Analysis

[ter]
In all the considered formulations, the truncation errors for the Fourier’s modes are
given by the general form

24
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Table 6: Asymptotic terms of A.

Scheme || (1,5) (2,4)
I Bt | P+ Blw 4+ 22207 + Blawd
QI %z‘l %z‘l - %z?’w - %Oz2w2 — %zw?’ — %w‘l
DP —%z‘l %z‘l + %z?’w + %2211)2 + %zuﬁ

[c2t7]

(TE)(s) = —i¢e (T2 A(w, 2),

where

~ =~

Aw,2) = |Fw +2) ~ -5 @) (2)Aw, )

in the Petrov-Galerkin formulation,

~

Aw,2) = F(w+2) ~ -F@)F ()galw) Fale) T 2),

in the case of interpolation and quasi-interpolation operator, and

— ~

A(w, 2) = F(w + 2) — S5 (W) ()T w, 2)

in the case of discrete projection operator. Thus, the truncation error order depends on
the behaviour of the symbol A(w, z).

Theorem 3.2 Suppose that N > N*. For the Petrov-Galerkin formulation, the symbol
A(w, z), defined in (48), satisfies

[teo2]

Proof: Applying the Poisson summation formula on A(w, z) we have

Mw, 2) =i Z (z + 2n7r)$(w + 2mm) a(z + 2n7r)$*(w + 24+ 2(m 4+ n)7w). [ezeaz201 (60)
m,neZ

We consider the representation

¢(z) = oz —a), ¢*(z) = ¢"(z — @), (easol (61)

where a = 0 for even N, N* and o = 1/2 for odd N, N*. The symmetric properties of ¢ e
@* assure that ¢ and ¢* are symmetricaly centered on zero and they satisfy the Strang-Fix
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condition of the same order as ¢ and ¢*. The Fourier transform @(¢) and ¢*(¢) are real
function that satisfy

~

$(&) =B, F7(E) = e P (e).
Consequently,

Mw, 2) =i Z (z 4+ 2nm)p(w + 2mm) p(z + 2n7)o" (w + 2z + 2(m + n) ).
m,neZ

We split the summation above into four terms

(D) (I (I (IV)
—l = = ———

Mwyz)= DL 1+D L 1+D 01+ > [ ]

m=-—n m=0 m#0 m#0,n7#0
n#0 n=0 m#—n

The main ingredients for the analysis of each term are the Strang-Fix condition of ¢* and
©, the biorthogonal relation and symmetry of ¢* and ¢.

I-Term: In this case, we have

(1) = —i@*(w + 2) | 20(2) P(w) + Y _ (2 — 2mm)P(z — 2mm) P(w + 2m)
m#0

For m > 1, let f,,(w,z) = (2 — 2mm)gm (w, 2) + (z + 2m7)q_,(w, z), where ¢ (w,z) =
o(w + 2mm) p(z — 2mm), in such a way that

(I) = =i@"(w + 2) | 20(2) §(w) + Y fuu(w, 2)

m>1
Taking into consideration that
8kqm dl(ﬁ dk—l()’p\
Bt 0) = G (Brm) ey (=2mm),

and the Strang-Fix condition of ¢, we conclude that the partial derivative of the functions
qm(w, z) are zero at (0,0) for 0 <[ < N—1or 0 < k—[ < N —1. Particularly, it holds for
all partial derivative of order £ < 2N — 1 or for all superior orders if [ = k. Consequently,
it also proceeds that

O fon
a1 0 =0
where 0 < k < 2N — 1 or | = k. Besides, fp,(w,z) are anti-symmetric around the point
(0,0), ie., fm(—w,—2) = —fm(w,z). Therefore, all partial derivative of f,,(w,z) with
even order are zero at (0,0). Considering the above results, and the fact that
POP(E) = L+ O(EY), ern (62)
we conclude that
i 2N -1
__/\* A~k — _ 5" m _ 2N—m
— P (W) (2)(1) = —F"(w +2) + mz::o O(w™2*N="). (63)
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IT-Term: This term is given by
—ip(w) Z(z +2mm)p(z + 2mn) " (2 + w + 27n).
n#0

In this case, we consider ¢, (w,z) = @(z + 2mn)P*(z + w + 2mn) and fp,(w, z) as in the

() =

previous case, obtaining that

(1) = —ip(w mewz

m>1

Again, by Strang-Fix condition of both ¢* and ¢ it follows that

0 g, — [ k—1)d"p oh—m e
W(O’O):Z( m >dzm(2m“)W(2m”):0’
m=0

for Kk < M —1 or superior order if [ = k. By anti-symmetry of f,,(w, z) and (62) it follows

that
; M-1
Th ~k _ m_ M—m
— " (w)3" (2)(11) = > O@w™zM™). (64)
m=0
ITI-Term: In this case, we have
(ITT) = —iz 3(2) Y P(w + 2mm)3* (2 + w + 2mm).
m#0
Now, we consider fp,(w,z) = p(w + 2mn)p* (z + w + 2mm), so that
(III) = —iz p(z Z fm(w, z)
m#0
As in the previous cases, it proceeds that for kK < M — 1
9" [k
Sulds +7550,0) =0.
Therefore
i M-1 o
— @ (w)p* (2)(I1I) = mZ:OO(w z ). [ (65)

VI-Term: We have
=—i Z (z + 2nm)p(z + 2nm) P(w + 2mm) % (2 + w + 2(n + m)).

In this case, we consider fy, ,(w,z) = (2 4+ 2m7n) gun(w,z) + (2 —2mn) ¢ —n(w, 2)
where ¢ n(w,2) = P(w + 2nm)P(z + 2mm)P* (2 + w + 2(m + n)7), so that

V)= —i Z fmn(w, 2).

m,n>1

m#n
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By the Strang-Fix condition of ¢ and ¢* and anti-symmetric property of f, »(w, z), it
follows that

O finm
duioz1 0 =0
for 0 < k < N* +2N. Therefore
i N*+2N -1
— P (W)@ ()IV) = > O™ NNy (66)
m=0

which is a higher order term than previous ones. Substituting the contribution of terms
(63), (64), (65) e (66) into (48), we conclude the proof. [ |

Theorem 3.3 In all three hybrid formulations corresponding to interpolation, quasi-
interpolation of order NV — 1 and discrete projetion, the symbol A satisfies the asymptotic
behavior

(a) For even N

(b) For odd N

[c2teol]

Proof: For the interpolation case we have

~ i~ = —

Aw, z) = ¢™(w + z) — ;¢*(w)$*(2)¢a(w) Ba(z) Y(w+ 2).
The interpolation condition 37({)(;&(5) = 1 is satisfied with & = 0, for even N, and o = 1/2,
for odd N. Therefore, we consider the representation (61) and it proceeds that

e—ia(w-i—z) e I i
Aw,z) = =—=—= |9p*(w + 2)¢a(w + 2) — —
ba(w + 2) z

0" (W)9*(2)a(w) Bal2)|,

where we have used the inerpolation condition and the fact that ¢ (w) is a function
bounded away from zero. The estimation of A(w,z) depends on the terms into brackets.
Again, the main ingredients for this analysis are: the Strang-Fix condition of ¢* and
¢, the biorthogonal relation and symmetry of ¢* and ¢. The symbol A(w,z) can be
represented by

e—ta(w+z) ~ i _ ~
M) = S [+ 2) = 2] - (67

aa(w + z)

Sk ry Y

where §(w) = @* (w)pa(w) and f(z) = $*(2)Ba(z). Applying Poisson summation formula,
it follows that

Pa(w) =Y Glw + 2rk)e W) = N G(w + 27k).

kEZ keZ
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Therefore, we obtain

(w) = 7" (w)P(w) + §*(w) Y qr(w),
E>1

where g (w) = @(w + 2k7) + p(w — 27k). By the Strang-Fix condition and symmetry of
¢, and recalling (62), it follows that

dqp ,

for 0 <n < N —1 and all odd n. Therefore

1+ O(w)Y  foreven N ,
q(w) = [eb2] (68)
1+ O(w)Nt! for odd N .

Applying the same procedure to ¢(w + z), we have

( N
1+ Z O(w™zN"m), for even N,
m=0
g(w+z) = < [eb3] (69)
N+1
1+ Z O(w™zN ™) for odd N.
\ m=0

Poisson summation formula applied to ,ga(z) implies that

Ba(z) =0 Y (2 +2mk)p(z + 2mk)e™H2™) = i Y™ (2 + 2mk) B (= + 27k).
kEZ kEZ

Therefore, we have

f(2) = 28" (2)9(2) + 7°(2) ) _ fu(2),

k>0
where fi(2) = (z + 27k)p(2 + 27k) + (2 — 27k)p(z — 27k). By the Strang-Fix condition
and symmetry of ¢, and recalling (62), it follows that
d" fr
dz"

(O)Z(L
for 0 <n < N —1 and all even n Consequently

i 1+ 0NN 1+ 0(2)N,  for even N,
_;f(z) = [eb1] (70)
1+ 0NN 1 0(z)N-1, for odd N.
Therefore, substituting (69), (68) e (70) into the symbol equation (67) we conclude the
statement of Theorem for the interpolation case.

The quasi-interpolation differs from the interpolation case for the fact that, instead of
the interpolation constraint, it holds that 3(¢)ga(€) = 1 + O(&N) (see Lemma 29 with
n =p = N — 1). Therefore, following the same steps of the proof for the interpolation,
the statement of Theorem also holds for the quasi-interpolation case.

For the discrete projection, we have

— ~

Aw, 2) = F(w +2) ~ -5 (W) ()P (w, 2),
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where
T(w, 2) = Ye(w + 2) do(w)Bo(2) +Fo(w + 2) 1 /2(w)B1/2(2),

and the functions 7, and 7, are defined by (32). Combining (34) with (62), it proceeds
that

(#(6) = 3E7D) d(6) = OE™). wen (71)
Therefore, R
F(£/2) = ¢*(€) + O(E™). te2eazss) (72)
The term I' can be expressed by
D(w,z) = Fe(w+2) go(w)Bo(2) + Folw + 2) b1/2(w)Brya(2)
= YN (z+20m)p(z + 2nm)(w + 20m)F ((w + 2)/2 + (0 + k)7). tezeazbTB)
neZ ke

Note that if this expression y((w + 2)/2 + (n + k)) is replaced by ¢ (w + 2 + 2(n + k)7)
we obtain the formula (60) associated to the symbol A(w, z) of the Petrov-Galerkin formu-
lation. Therefore, having in mind the result in (72), the proof for the discret projection
proceeds as in the case of the Petrov-Galerkin formulation. |

4 Conclusion

In the context of biorthogonal multirresolution analysis, we have considered different ap-
proximation schemes {DZ,R?' } where, instead of the usual biorthogonal discretization,
alternative discretizations D7 are used. Three cases have been analyzed: interpolation,
quasi-interpolation and discrete projection. In all the cases, D’ are functionals defined
in terms of discrete convolutions with function point values. We have also applied these
schemes in the definition of hybrid discretizations of the nonlinear advection operator.
These hybrid schemes may present a disadvantage in relation to a Petrov-Galerkin scheme,
regarding the truncation error order. While Petrov-Galerkin scheme presents supercon-
vergence order N + N*, where N — 1 is the order of thr Strang-Fix condition of the trial
functions and N* — 1 is the one of the test functions, in the hybrid schemes the consis-
tency order is N —1 (in some cases, due to symmetric properties, an improvement up to N
may be obtained. However, hybrid schemes may have the advantage of an easy numerical
implementation. On this aspect, some considerations are in order:

¢ Quasi-interpolation and discrete projection can be defined with a finite number of
non zero coefficients. On the other hand, excepting some special cases, interpolation
constraint (21) can only be achieved with infinitely many nonzero coefficients.

e For multilevel representations, a modified analysis algorithm is recommended to
improve the precision of wavelet coefficients in less refined levels. For this, it is
essential to have a conservative approximation scheme, which is not the case for
quasi-interpolation.

After these considerations, the discrete projection scheme seems to be a better option for
applications that involve the calculation of nonlinear terms in the multilevel context.
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