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Abstract

The aim of this article is to develop new simple proofs for the basic
formulas of stochastic analysis in Lie groups, in particular the stochas-
tic exponential and logarithm. We present applications to direct proofs
of the (multiplicative) Doob-Meyer decomposition, Girsanov theorem
for semimartingales in Lie groups and solution of stochastic Lax equa-
tions.
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1 Introduction

Let G be a Lie group with the corresponding Lie algebra G. We denote by
w the Maurer-Cartan form in G, i.e. if v € TG, then wy(v) = Ly-1,(v). It
corresponds to the unique G-valued left invariant 1-form in G. We recall
that in the case of G = (R, -) the Maurer-Cartan form is wy, = %dg, and in
the case of the general linear group GL(n,R) the Maurer-Cartan form w is
g 'dg = (w;j) "' (dz;;) where (x;;) are the coordinate functions on GL(n,R).

The aim of this article is to develop new proofs for a set of formulas which
are basic in the construction of stochastic analysis in Lie groups, in particular
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we start with basic properties of the stochastic exponential and logarithm.
These formulas will lead naturally to a Doob-Meyer decomposition and an
extension of the Girsanov theorem for semimartingales in Lie groups.

Let 0x, € T, M be an adapted stochastic 1-form along X¢, an M-valued
semimartingale. The integral of the form # along X was proposed by Ikeda
and Manabe [6] (see also Emery [4] or Meyer [10]). Locally this integral
can be described as: let (U,x!,...,2") be a local system of coordinates
in M. With respect to this chart the 1-form 6 can be written as 6, =
0 (x) dzt+...0"(z) do™, where §(x), i = 1,2,...n, are (C*, say) functions
in M. Then, the Stratonovich integral of 8 along X; is defined by:

/HodXt :Z/ei(xt) odX}.
=1

Let M; be a semimartingale in the Lie algebra G. We recall that the
(left) stochastic exponential €(M) of M; is the stochastic process X; which
is solution of the Stratonovich left invariant equation on G:

dX; = Lx,s« odM,
Xp=e.

An interesting geometric characterization of the exponential e(M) is the fact
that it corresponds to the stochastic development of M; € T.G to the group
G with respect to the left invariant connection V%, i.e. V%Y = 0 for all
X, Y €@.

The logarithm of a process X; on G (with Xo = e) is the following
semimartingale in the Lie algebra:

t
(log X); :/ wodXs.
0

where w is the Maurer-Cartan form in G. One easily checks that the loga-
rithm is the inverse of the stochastic exponential e.

In the next section we present a simpler and more direct proof of the
stochastic Campbell-Hausdorff formula (cf. Hakim-Dowek and Lépingle [5]).
In the last section we apply these formulas to obtain direct proofs of the
(multiplicative) Doob-Meyer, Girsanov theorems in Lie groups and solve
stochastic Lax equations.

2 Main results

Initially we recall some rather straightforward results for semimartingales in
Lie groups. We start with a characterization of VX-martingales in G.



Theorem 2.1 A process X; on G is a VE-martingale if and only if X; =
Xoe(M) for some local martingale M in G.

Proof:
See Hakim-Dowek and Lépingle [5].
0
Next lemma concerns a pull-back of the Maurer-Cartan forms by homo-
morphisms of Lie groups, this formula will be useful later on.

Lemma 2.1 Let ¢ : G — H be a homomorphism of Lie groups. Then the
pull-back p*wy satisfies, for v € T,G:

(Prwr)v = @u(wa(v))

~1(¢(h)), chain rule implies that

Lgo(g)*l*(so* (U)) = w*(Lgfl*(U))'

O

We shall denote by I, : G — G the adjoint in the group G given by h +—

ghg~'. The map I, is an automorphism of G and its derivative corresponds

to the isomorphism of the Lie algebra called adjoint in G denoted by Ad(g) =

Iy : G — G. We have the following well known relation of the adjoint of

the Maurer-Cartan form and the pull-back by the right action (see e.g.
Kobayashi and Nomizu [9]):

Proposition 2.2 The pull-back by the right action satisfies

* -1
Ry w=Ad(g™" )w.

The pull-back of the canonical form by multiplication and inverse is given
by:

Proposition 2.3 Let m : G x G — G be the multiplication and i : G — G
be the inverse in the group. Then the pull-backs satisfy:

a) m*w = Ad~!(m)(1}w) + miw;

b) i*w = —Ad w.



Proof:
Let w = (u,v) € Ty )G x G =~ TyG x T,G. Then

m'w(w) = w(mww) = w(Rpsu~+ Lgv)
= Lign)-1+(Bust + Lgsv)
= Lyt RuLy-r,u+ Ly-1,Ly1, Lyev
= Ad(h Hw(u) + w(v).

For the inverse function, consider the diagonal map A : G — G x G given
by A(g) = (g,9). We have that m o (Id X i) o A = e, then the pull-back
(mo (Id x i) o A)*w = 0 which implies, using the formula of item (a), that

Adw + 17w =0

O
Next lemma presents the main formulas which are useful in calculations
with the logarithm.

Lemma 2.2 Given semimartingales X and Y in G, we have the following
formulas:

a) If ¢ : G — H is a homomorphism then

px(log X) = log(p(X));
b) log(XY) = [Ad(Y 1) od(log X) +logY;
c) log(X™1) = [ Ad(X) o d(log X).

Proof:
For the first formula, note that

log(pX) = /Lp*wHodX

= /SO*WG odX

= . log X.

The second identity follows from the calculation:



log(XY) = /wodm(X, Y)
_ / m*wod(X,Y)
= [ (Ad  mo)mie + mie) 0 d(X.Y)
- /Ad(Y‘l)od(/wodX)+/wodY
— /Ad(yl) odlog X +logY.
Finally, for the last formula we have that
log(X™1) = /i*wodX
— /—Adw odX
_ _/Ad(X)od(/w 0 dX)

= —/Ad(X)od(logX).

We have now an easy way to prove the formulae below:

Theorem 2.4 We have the following stochastic Campbell-Hausdorff for-
mula:

a) (M + N)=¢([Ad(e(N))odM)e(N);
b) e(M)™' =¢(— [Ad(e(M))odM).

Proof:
For the first formula we just have to check that:

log <e ( / Ad(e(N) odM) e(N)>

/Ad(e(N)l) o dlog <e </ Ad(e(N)) odM>) + log(e(N))
= M+N.



And for the second formula:

o (e [ aacon anr)

_ / Ad(e(M)) o dM

— —/Ad(e(M)) o dlog(e(M))
= log(e(M)™).

3 Applications

Our first application of these formulas is a multiplicative version of the Doob-
Meyer decomposition. It was originally established by R. L. Karandikar in
the case of group of matrices [8] and by M. Hakim-Dowek, D. Lepingle [5]
(See also [2], [3]) in the general case.

Theorem 3.1 (Doob-Meyer decomposition in Lie groups) Let X =
Xoe(M) be a semimartingale in G with M = N + A, where N is a local
martingale and A is a process of finite variation in G. Then we have that

X =XoYZ=XoZ'Y'

where Y, Y are VI -martingales and Z, Z' are processes of finite variation in
G. Moreover, they are given by Y = [ Ad(e(A))odN, Y’ =€(N), Z = ¢(A)
and Z' = ([ Ad(e(N) dA).

Proof:

Apply the stochastic Campbell-Hausdorff formula (Theorem 2.4) to the
classical Doob-Meyer decomposition M = N + A. The processes Y and Y’
are VI-martingales by Theorem 2.1.

O

We call the decomposition of the above theorem X = XoYZ (X =
XoZ'Y'") the left (right) multiplicative Doob-Meyer decomposition of X.
Now, we show a multiplicative version of the Girsanov theorem.

Theorem 3.2 (Girsanov-Meyer theorem in Lie groups) Let P and Q
be equivalent probability laws on the filtered space (2, F, Fi>0) with Radon-
Nikodyn derivative Ay = Ep(j—% | Fi). Let X be a semimartingale in G with
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left multiplicative Doob-Meyer decomposition XoY Z with respect to P. Then
X has left multiplicative Doob-Meyer decomposition XoVW with respect to
Q where

V:e(/Ade(logZ+/;d[A,B])d(B—/ild[A, B])

and )
W =e(log Z + / Zd[A’ B])

where B is the semimartingale By =logY Z —log Z.

Proof:
Apply the classical Girsanov-Meyer theorem ( see e.g. [12, Thm. 20, p.
109]) to log(Y Z) and the stochastic exponential.
O

3.1 Stochastic Lax Equation

Lax equations have been well known for quite a long time by its applications
in integrable systems, see e.g. among many other authors, Perelomov [11].
In this application we use the formulae presented before to show an explicit
solution for the stochastic Lax equation. Firstly, we recall that given a
G-valued semimartingale M, with My = 0, an equation of the form

dXt = [Xt, Oth]
{ X(0) = Xo W)

is called a stochastic Lax equation.

Proposition 3.3 The solution of (1) is given by:
X = Ad(e(/Ad(e(M)) odM)) Xo

Proof: Once the adjoint is an isomorphism, there exists a unique process
u; in G such that the solution X; = Ad(u;, 1)Xo. A direct calculation shows
that

dX: = [X;, odloguy]

Then, by uniqueness of the solution, X; is the solution of the Lax equation
(1) if and only if

M = logu,



that is, the solution is given by:
X = Ad(e(M) ™)Xo = Ad(e(— / Ad(e(M)) odM)) Xy
O

Corollary 3.4 Let G = K-S, where K and S are Lie subgroups of G with
the corresponding Lie algebras IKC and S. Assume that KNS = {e} and that
Ad(K)S C S. The solution of (1) is given by

X = Ad(e( / Ad(e(My)) o dMs)e(Mx))Xo

where My and Mg are the corresponding projections of M on K and S.

Proof:
Let X; = Ad(u; ') Xy be the solution of (1), we have that

logu = Mg + Mg,

hence, by the stochastic Campbell-Hausdorff formula (Thm. 2.4):

u=e(Mc+ Ms) =e¢ </ Ad(e(Mx)) o dM3> e(Mx).

Example: Lax equation in the Heisenberg Lie algebra.

Let M; be a martingale in the Lie algebra of the Heisenberg group given by:

0 M} M?
My=|0 0 M} |,
0 0 0

where M}, M? and M} are real martingales with respect to a certain filtra-
tion (F¢)¢>0. Consider the equation:

dXt = [Xh Oth]a

with

8
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A direct calculation from the definition shows that

(o (Mth,? — M2 ['M! o dM§>
(M) =1{o0 o —M}
0 0 0

We remark that in this example, the left exponential equals the right expo-
nential (hence e(M)~! = ¢(—M)) if and only if [ M! dM? = [ M3 dM*.
Finally, Proposition 3.3 states that the solution X = Ad(e(M)~1)Xj is given
by:

0 zo (zo MP+yo— 20 M})
X = 0 O 20
0 O 0

3.2 Remark on Rotation Matrix

Given a stochastic dynamical system on a Riemannian manifold M, the Lya-
punov exponents and the rotation numbers (or more generally, the rotation
matrix) provide, respectively, the asymptotic radial and angular behaviour
of the system (see e.g. L. Arnold [1] and the references therein). We recall
that given an initial orthonormal basis ug in the orthonormal frame bundle
OM, the difference between the induced flow in OM (by Gram-Schmidt or-
thonormalization of the linearized flow) and the parallel transport in OM is
given by a process g; in the structural group O(n,R) of the principal bundle
7m:0OM — M.

With the formulae given in the previous section, the matrix of rotation,
as defined in Ruffino [13] can be written as

1
R(uo) = tli}?o n log gt,

when the limit exists (for details and existence results for stochastic systems
see [13]). The definition, as stated by the formula above, shows that we
can consider the matrix of rotation as a Lyapunov exponent of the system
induced in the structural group O(n,R) in the same way that the original
Lyapunov exponents of the system in M (as stated in Arnold [1]) are the
asymptotic exponents of the system induced in structural group Gl(n,R) of
the frame bundle BM — M.
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