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Abstract

The aim of this article is to develop new simple proofs for the basic
formulas of stochastic analysis in Lie groups, in particular the stochas-
tic exponential and logarithm. We present applications to direct proofs
of the (multiplicative) Doob-Meyer decomposition, Girsanov theorem
for semimartingales in Lie groups and solution of stochastic Lax equa-
tions.
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1 Introduction

Let G be a Lie group with the corresponding Lie algebra G. We denote by
ω the Maurer-Cartan form in G, i.e. if v ∈ TgG, then ωg(v) = Lg−1∗(v). It
corresponds to the unique G-valued left invariant 1–form in G. We recall
that in the case of G = (R>0, ·) the Maurer-Cartan form is ωg = 1

g
dg, and in

the case of the general linear group GL(n, R) the Maurer-Cartan form ω is
g−1dg = (xij)

−1(dxij) where (xij) are the coordinate functions on GL(n, R).
The aim of this article is to develop new proofs for a set of formulas which

are basic in the construction of stochastic analysis in Lie groups, in particular

1This article was written during a pos-doctoral year in the IMECC, UNICAMP. Re-
search supported by FAPESP grant n◦ 01/13158-4.
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we start with basic properties of the stochastic exponential and logarithm.
These formulas will lead naturally to a Doob-Meyer decomposition and an
extension of the Girsanov theorem for semimartingales in Lie groups.

Let θXt
∈ T ∗

Xt
M be an adapted stochastic 1-form along Xt, an M -valued

semimartingale. The integral of the form θ along X was proposed by Ikeda
and Manabe [6] (see also Emery [4] or Meyer [10]). Locally this integral
can be described as: let (U, x1, . . . , xn) be a local system of coordinates
in M . With respect to this chart the 1-form θ can be written as θx =
θ1(x) dx1+. . . θn(x) dxn, where θi(x), i = 1, 2, . . . n, are (C∞, say) functions
in M . Then, the Stratonovich integral of θ along Xt is defined by:

∫

θ ◦ dXt =
n

∑

i=1

∫

θi(Xt) ◦ dXi
t .

Let Mt be a semimartingale in the Lie algebra G. We recall that the
(left) stochastic exponential ǫ(M) of Mt is the stochastic process Xt which
is solution of the Stratonovich left invariant equation on G:

{

dXt = LXt∗ ◦ dMt,

X0 = e.

An interesting geometric characterization of the exponential ǫ(M) is the fact
that it corresponds to the stochastic development of Mt ∈ TeG to the group
G with respect to the left invariant connection ∇L, i.e. ∇L

XY = 0 for all
X, Y ∈ G.

The logarithm of a process Xt on G (with X0 = e) is the following
semimartingale in the Lie algebra:

(log X)t =

∫ t

0
ω ◦ dXs.

where ω is the Maurer-Cartan form in G. One easily checks that the loga-
rithm is the inverse of the stochastic exponential ǫ.

In the next section we present a simpler and more direct proof of the
stochastic Campbell-Hausdorff formula (cf. Hakim-Dowek and Lépingle [5]).
In the last section we apply these formulas to obtain direct proofs of the
(multiplicative) Doob-Meyer, Girsanov theorems in Lie groups and solve
stochastic Lax equations.

2 Main results

Initially we recall some rather straightforward results for semimartingales in
Lie groups. We start with a characterization of ∇L–martingales in G.
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Theorem 2.1 A process Xt on G is a ∇L–martingale if and only if Xt =
X0ǫ(M) for some local martingale M in G.

Proof:
See Hakim-Dowek and Lépingle [5].

¤

Next lemma concerns a pull-back of the Maurer-Cartan forms by homo-
morphisms of Lie groups, this formula will be useful later on.

Lemma 2.1 Let ϕ : G → H be a homomorphism of Lie groups. Then the
pull-back ϕ∗ωH satisfies, for v ∈ TgG:

(ϕ∗ωH)v = ϕ∗(ωG(v))

Proof:
Once ϕ(Lg−1(h)) = Lϕ(g)−1(ϕ(h)), chain rule implies that

Lϕ(g)−1∗(ϕ∗(v)) = ϕ∗(Lg−1∗(v)).

¤

We shall denote by Ig : G → G the adjoint in the group G given by h 7→
ghg−1. The map Ig is an automorphism of G and its derivative corresponds
to the isomorphism of the Lie algebra called adjoint in G denoted by Ad(g) =
Ig∗ : G → G. We have the following well known relation of the adjoint of
the Maurer-Cartan form and the pull-back by the right action (see e.g.
Kobayashi and Nomizu [9]):

Proposition 2.2 The pull-back by the right action satisfies

R∗
g ω = Ad(g−1)ω.

The pull-back of the canonical form by multiplication and inverse is given
by:

Proposition 2.3 Let m : G × G → G be the multiplication and i : G → G

be the inverse in the group. Then the pull-backs satisfy:

a) m∗ω = Ad−1(π2)(π
∗
1ω) + π∗

2ω;

b) i∗ω = −Ad ω.
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Proof:
Let w = (u, v) ∈ T(g,h)G × G ≃ TgG × ThG. Then

m∗ω(w) = ω(m∗w) = ω(Rh∗u + Lg∗v)

= L(gh)−1∗(Rh∗u + Lg∗v)

= Lh−1∗Rh∗Lg−1∗u + Lh−1∗Lg−1∗Lg∗v

= Ad(h−1)ω(u) + ω(v).

For the inverse function, consider the diagonal map ∆ : G → G × G given
by ∆(g) = (g, g). We have that m ◦ (Id × i) ◦ ∆ = e, then the pull-back
(m ◦ (Id × i) ◦ ∆)∗ω = 0 which implies, using the formula of item (a), that

Adω + i∗ω = 0

¤

Next lemma presents the main formulas which are useful in calculations
with the logarithm.

Lemma 2.2 Given semimartingales X and Y in G, we have the following
formulas:

a) If ϕ : G → H is a homomorphism then

ϕ∗(log X) = log(ϕ(X));

b) log(XY ) =
∫

Ad(Y −1) ◦ d(log X) + log Y ;

c) log(X−1) =
∫

Ad(X) ◦ d(log X).

Proof:
For the first formula, note that

log(ϕX) =

∫

ϕ∗ωH ◦ dX

=

∫

ϕ∗ωG ◦ dX

= ϕ∗ log X.

The second identity follows from the calculation:
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log(XY ) =

∫

ω ◦ dm(X, Y )

=

∫

m∗ω ◦ d(X, Y )

=

∫

(

Ad−1(π2)π
∗
1ω + π∗

2ω
)

◦ d(X, Y )

=

∫

Ad(Y −1) ◦ d(

∫

ω ◦ dX) +

∫

ω ◦ dY

=

∫

Ad(Y −1) ◦ d log X + log Y.

Finally, for the last formula we have that

log(X−1) =

∫

i∗ω ◦ dX

=

∫

−Ad ω ◦ dX

= −

∫

Ad(X) ◦ d(

∫

ω ◦ dX)

= −

∫

Ad(X) ◦ d(log X).

¤

We have now an easy way to prove the formulae below:

Theorem 2.4 We have the following stochastic Campbell-Hausdorff for-
mula:

a) ǫ(M + N) = ǫ
(∫

Ad(ǫ(N)) ◦ dM
)

ǫ(N);

b) ǫ(M)−1 = ǫ
(

−
∫

Ad(ǫ(M)) ◦ dM
)

.

Proof:
For the first formula we just have to check that:

log

(

ǫ

(∫

Ad(ǫ(N) ◦ dM

)

ǫ(N)

)

=

∫

Ad(ǫ(N)−1) ◦ d log

(

ǫ

(∫

Ad(ǫ(N)) ◦ dM

))

+ log(ǫ(N))

= M + N.
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And for the second formula:

log

(

ǫ

(

−

∫

Ad(ǫ(M) ◦ dM

))

= −

∫

Ad(ǫ(M)) ◦ dM

= −

∫

Ad(ǫ(M)) ◦ d log(ǫ(M))

= log(ǫ(M)−1).

¤

3 Applications

Our first application of these formulas is a multiplicative version of the Doob-
Meyer decomposition. It was originally established by R. L. Karandikar in
the case of group of matrices [8] and by M. Hakim-Dowek, D. Lepingle [5]
(See also [2], [3]) in the general case.

Theorem 3.1 (Doob-Meyer decomposition in Lie groups) Let X =
X0ǫ(M) be a semimartingale in G with M = N + A, where N is a local
martingale and A is a process of finite variation in G. Then we have that

X = X0Y Z = X0Z
′Y ′

where Y, Y ′ are ∇L–martingales and Z, Z ′ are processes of finite variation in
G. Moreover, they are given by Y =

∫

Ad(ǫ(A)) ◦ dN , Y ′ = ǫ(N), Z = ǫ(A)
and Z ′ = ǫ(

∫

Ad(ǫ(N) dA).

Proof:
Apply the stochastic Campbell-Hausdorff formula (Theorem 2.4) to the

classical Doob-Meyer decomposition M = N + A. The processes Y and Y ′

are ∇L–martingales by Theorem 2.1.
¤

We call the decomposition of the above theorem X = X0Y Z (X =
X0Z

′Y ′) the left (right) multiplicative Doob-Meyer decomposition of X.
Now, we show a multiplicative version of the Girsanov theorem.

Theorem 3.2 (Girsanov-Meyer theorem in Lie groups) Let P and Q

be equivalent probability laws on the filtered space (Ω,F ,Ft≥0) with Radon-
Nikodyn derivative At = EP (dQ

dP
| Ft). Let X be a semimartingale in G with
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left multiplicative Doob-Meyer decomposition X0Y Z with respect to P . Then
X has left multiplicative Doob-Meyer decomposition X0V W with respect to
Q where

V = ǫ(

∫

Adǫ(log Z +

∫

1

A
d[A, B])d(B −

∫

1

A
d[A, B]))

and

W = ǫ(log Z +

∫

1

A
d[A, B])

where B is the semimartingale Bt = log Y Z − log Z.

Proof:
Apply the classical Girsanov-Meyer theorem ( see e.g. [12, Thm. 20, p.

109]) to log(Y Z) and the stochastic exponential.
¤

3.1 Stochastic Lax Equation

Lax equations have been well known for quite a long time by its applications
in integrable systems, see e.g. among many other authors, Perelomov [11].
In this application we use the formulae presented before to show an explicit
solution for the stochastic Lax equation. Firstly, we recall that given a
G-valued semimartingale M , with M0 = 0, an equation of the form

{

dXt = [Xt, ◦dMt]
X(0) = X0

(1)

is called a stochastic Lax equation.

Proposition 3.3 The solution of (1) is given by:

X = Ad(ǫ(−

∫

Ad(ǫ(M)) ◦ dM)) X0

Proof: Once the adjoint is an isomorphism, there exists a unique process
ut in G such that the solution Xt = Ad(u−1

t )X0. A direct calculation shows
that

dXt = [Xt, ◦d log ut]

Then, by uniqueness of the solution, Xt is the solution of the Lax equation
(1) if and only if

M = log u,
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that is, the solution is given by:

X = Ad(ǫ(M)−1)X0 = Ad(ǫ(−

∫

Ad(ǫ(M)) ◦ dM))X0

¤

Corollary 3.4 Let G = K · S, where K and S are Lie subgroups of G with
the corresponding Lie algebras K and S. Assume that K ∩S = {e} and that
Ad(K)S ⊆ S. The solution of (1) is given by

X = Ad(ǫ(

∫

Ad(ǫ(MK)) ◦ dMS)ǫ(MK))X0

where MK and MS are the corresponding projections of M on K and S.

Proof:
Let Xt = Ad(u−1

t )X0 be the solution of (1), we have that

log u = MK + MS ,

hence, by the stochastic Campbell-Hausdorff formula (Thm. 2.4):

u = ǫ(MK + MS) = ǫ

(∫

Ad(ǫ(MK)) ◦ dMS

)

ǫ(MK).

¤

Example: Lax equation in the Heisenberg Lie algebra.

Let Mt be a martingale in the Lie algebra of the Heisenberg group given by:

Mt =





0 M1
t M2

t

0 0 M3
t

0 0 0



 ,

where M1
t , M2

t and M3
t are real martingales with respect to a certain filtra-

tion (Ft)t≥0. Consider the equation:

dXt = [Xt, ◦dMt],

with

X0 =





0 x0 y0

0 0 z0

0 0 0



 .
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A direct calculation from the definition shows that

ǫ(M)−1 =







0 −M1
t

(

M1
t M3

t − M2
t −

∫ t

0 M1
s ◦ dM3

s

)

0 0 −M3
t

0 0 0







We remark that in this example, the left exponential equals the right expo-
nential (hence ǫ(M)−1 = ǫ(−M)) if and only if

∫

M1 dM3 =
∫

M3 dM1.
Finally, Proposition 3.3 states that the solution X = Ad(ǫ(M)−1)X0 is given
by:

Xt =





0 x0

(

x0 M3
t + y0 − z0 M1

t

)

0 0 z0

0 0 0



 .

3.2 Remark on Rotation Matrix

Given a stochastic dynamical system on a Riemannian manifold M , the Lya-
punov exponents and the rotation numbers (or more generally, the rotation
matrix) provide, respectively, the asymptotic radial and angular behaviour
of the system (see e.g. L. Arnold [1] and the references therein). We recall
that given an initial orthonormal basis u0 in the orthonormal frame bundle
OM , the difference between the induced flow in OM (by Gram-Schmidt or-
thonormalization of the linearized flow) and the parallel transport in OM is
given by a process gt in the structural group O(n, R) of the principal bundle
π : OM → M .

With the formulae given in the previous section, the matrix of rotation,
as defined in Ruffino [13] can be written as

R(u0) = lim
t→∞

1

t
log gt,

when the limit exists (for details and existence results for stochastic systems
see [13]). The definition, as stated by the formula above, shows that we
can consider the matrix of rotation as a Lyapunov exponent of the system
induced in the structural group O(n, R) in the same way that the original
Lyapunov exponents of the system in M (as stated in Arnold [1]) are the
asymptotic exponents of the system induced in structural group Gl(n, R) of
the frame bundle BM → M .
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