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Abstract

In this paper we study the existence of solutions and its asymptotic
behavior for the following class of quasilinear elliptic problems in radial
form � −ε2(rα|u′|βu′)′ = rγf(u), in (0, R)

u′(0) = u′(R) = 0,

where α, β, γ are given real numbers, ε > 0 is a small parameter and
0 < R < ∞.

1 Introdução

In this paper we consider the following class of quasilinear elliptic problems in
radial form

(1)
{ −ε2(rα|u′|βu′)′ = rγf(u), in (0, R)

u′(0) = u′(R) = 0

where α, β, γ are given real numbers such that γ ≥ α and β ≥ 0, ε > 0 is a small
parameter and 0 < R < ∞. For that matter we make the following assumptions
on the nonlinearity f :

(f1) f : [a, b] → R is a function of the class C1, with f(a) = f(b) = 0;

(f2) f has exactly 2l + 1 zeros, a = a1 < 0 = a2 < a3 < ... < a2l+1 = b with
l = 1, 2, 3, ... such that f(ai) = 0, ∀ i and f ′(ai) < 0, if i is odd;

(f3) limt→a2l

f(t−a2l)
|t−a2l|β(t−a2l)

> 0.

∗These results appear in the author’s UNICAMP doctoral dissertation.
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It has been emphasized in [4] that most of the phenomena occuring the study
of nonlinear elliptic equations can be more easily explained and understand when
these equations are written in radial form.

Let us consider the operator

Lu := −(rα|u′|βu′)′

acting (weak sense) in absolutely continuous functions u : (0, R) → R.
The motivation for our study is the fact that this operator includes the fol-

lowing operators, when considered acting in radial symmetric functions defined,
say in a ball of RN :
(i) Laplacian: α = γ = N − 1, β = 0,
(ii) p-Laplacian (1 < p < N): α = γ = N − 1, β = p− 2,
(iii) k-Hessian (1 ≥ k < k/2): α = N − k, γ = N − 1, β = k − 1.

We consider the Banach space X̂R of absolutely continuous functions u :
(0, R) → R such that

‖u‖β+2 := ε2
∫ R

0

rα|u′(r)|β+2dr +
∫ R

0

rα|u(r)|β+2dr < ∞.

Let us denote by Lq
θ(0, R), q ≥ 1 and θ > −1, the Banach space of Lebesgue

measurable functions u : (0, R) → R such that

|u|Lq
θ

:=
( ∫ R

0

rθ|u(r)|qdr

)1/q

< ∞.

Associated with each space XR and weight θ we define the critical exponent:

(2) q∗ :=
(θ + 1)(β + 2)

α− β − 1
,

under the assumption that α− β − 1 > 0.
Using standard variational methods (local minimization and the Mountain

Pass Theorem) we can prove that (1) has at least l nonconstant solutions and
using monotone iteration methods we can prove that the nonconstant solutions
approach either al or a2l+1 in Ω as ε → 0 almost everywhere.

More difficult is to prove that the solutions given for Mountain pass Theorem
are different of ai. If i is even we use the existence of solutions and its asymptotic
behavior for the problem (1) with Dirichlet boundary conditions, which we prove
the follow. If i is odd we prove that ai is a local minimum in X̂R. This fact
isn’t trivial, since in this space we don’t have any result saying that if ai is a
local minimum in C1 is also a local minimum in X̂R. This result was obtained
in [10] for space W 1,p

0 (Ω), where Ω a smooth bounded domain of RN .
Our main results are the followings

Theorem 1.1 Suppose that f satisfies the assumptions (f1), (f2) and (f3).
Then, there exists ε0 > 0 such that, for all 0 < ε < ε0, problem (1) has at least
l nonconstant solutions satisfing

a1 < u1(r) < a3 < u2(r) < a5 < ... < a2l−1 < ul(r) < a2l+1,
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where l = 1, 2, 3, ....

Remark 1.1 The theorem 1.1 still is true if we consider the a′is negatives for
all i ≥ 3, i.e., a = a2l+1 < ... < a3 < a2 = 0 < a1 = b. The condition a2 = 0 is
not essential only make easy the presentation.

Theorem 1.2 Suppose that f satisfies the assumptions (f1), (f2) and (f3) for
l = 1 and let uε a nonconstant solution of problem (1). Given any δ > 0, let

Ω+(ε, µ) := {r ∈ (0, R) : 0 < uε(r) < µ < a3}

contain a open ball B(r, w∗(ε, δ)) centered at some r = r(ε, µ) ∈ Ω+(ε, µ) whose
radius w∗(ε, µ) is the maximum of radii of open balls in Ω+(ε, µ). Then

lim
ε→0

w∗(ε, µ) = 0.

2 Auxiliary Results

A fundamental step in the proof of Theorem 1.1 consists in to show the existence
of solutions and its asymptotic behavior for the following Dirichlet problems

(3)
{ −ε2(rα|u′|βu′)′ = rγf(u), in (0, R)

u′(0) = u(R) = 0,

where 0 < R < ∞, α, γ, β are given real numbers such that γ ≥ α and β ≥ 0.
ε > 0 is a small parameter. The function f satisfy the assumptions (f1), (f2)
and (f3) for l = 1.

We consider the Banach space XR of absolutely continuous functions u :
(0, R) → R such that u(R) = 0 and

ε2
∫ R

0

rα|u′(r)|β+2 < ∞.

We recall that λ1 denotes the first eigenvalue of the eigenvalue problem (see
p.145 [4])

(4)
{

Lu = λrδ|u|βu, in (0, R)
u′(0) = u(R) = 0,

where λ, δ are given real numbers, 0 < R < ∞ and is characterized by

λ1 = inf
u∈XR\{0}

∫ R

0
rα|u′(r)|β+2dr

∫ R

0
rδ|u(r)β+2dr

.

We show the following theorem.
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Theorem 2.1 Let f satisfy the assumptions (f1), (f2) and (f3)for l = 1. Then
given any ball B(0, r1) ⊂ B(0, R), 0 < r1 < R, There exists ε0 > 0 such that,
for all 0 < ε ≤ ε0, the Dirichlet problem

(5)
{
−ε2(rα|u′|βu

′
)
′
= rγf(u), in (0, r1)

u′(0) = u(r1) = 0,

has a positive solution 0 < uε(r) < a3 in [0, r1] such that uε → a3 as ε → 0 on
every compact subset of (0, r1). Moreover, the Dirichlet problem

(6)
{ −ε2(rα|u′|βu′)′ = rγf(u), in (r1, R)

u(r1) = u(R) = 0,

has a negative solution a1 < vε(r) < 0 in [r1, R] such that vε → a1 as ε → 0 on
every compact subset of (r1, R).

The prove of Theorem 2.1 is done by combining argument of truncation and
method of lower and upper-solution.

A function u ∈ XR ∩ L∞γ is said to be a lower solution of (3) if




ε2
∫ R

0

rα|u′|βu′φ′dr ≤
∫ R

0

rγf(u)φdr, ∀ φ ∈ XR, φ ≥ 0

u′(0) = 0, u(R) ≤ 0.

In the same way, a function u ∈ XR ∩ L∞γ is said to be a upper solution of
(3) if





ε2
∫ R

0

rα|(u)′|β(u)′φ′dr ≥
∫ R

0

rγf(u)φdr, ∀ φ ∈ XR, φ ≥ 0

(u)′(0) = 0, u(R) ≥ 0.

Lemma 2.1 Consider g : R → R, a function continuous and increasing, such
that g(0) = 0 and functions u1, u2 ∈ XR ∩ L∞γ such that, for all φ ∈ XR, φ ≥ 0




ε2
∫ R

0

rα|u′2|βu′2φ
′dr +

∫ R

0

g(u2(r))φdr ≤ ε2
∫ R

0

rα|u′1|βu′1φ
′dr +

∫ R

0

g(u1(r))φdr

u2(R) ≤ u1(R).

Then u2 ≤ u1 a.e. (0, R).

The proof of this result is similarly the proof of the Lemma 2.2 in [3].

Lemma 2.2 Let g : R → R, a function continuous and increasing, such that
g(0) = 0. Then, for every function h ∈ Lq′

γ (0, R), where 1/q + 1/q′ = 1, the
problem

(7)




−ε2(rα|u′|βu′)′ + g(u(r)) = h(r), r ∈ (0, R)

u′(0) = u(R) = 0
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admits a unique weak solution u ∈ XR. Moreover, the associated operator T :
Lq′

γ → XR, h 7→ u is continuous and nondecreasing.

Proof: We split the proof in two parts.
Part 1: Consider the function φ ∈ C1(XR,R) defined by

φ(u) :=
ε2

β + 2

∫ R

0

rα|u′|β+2dr +
∫ R

0

G(u)dr −
∫ R

0

h(r)udr,

where
G(u) =

∫ u

0

g(t)dt.

Claim 1: φ is coercive. Indeed,

φ(u) = 1
β+2‖u‖β+2 +

∫ R

0

G(u)dr −
∫ R

0

h(r)udr

≥ 1
β+2‖u‖β+2 −

∫ R

0

h(r)udr.

Hence, φ(u) → +∞ as ‖u‖ → +∞, i.e., φ is coercive.
Claim 2: φ is weakly lower semicontinuous. Indeed, let un ⇀ u in XR. By the
Proposition 1.1 [4] we have

ψ(un) :=
∫ R

0

G(un) → ψ(u) :=
∫ R

0

G(u).

Hence, ψ is weakly lower semicontinuous. So, there exists u0 ∈ XR such that
φ(u0) = minu∈XR

φ(u).
Part 2: Let u1, u2 ∈ XR weak solutions of (7), i.e.,

(8) ε2
∫ R

0

(rα|u′1|βu′1)ϕ
′dr +

∫ R

0

g(u1)ϕdr −
∫ R

0

h(r)ϕdr = 0, ∀ ϕ ∈ XR

and

(9) ε2
∫ R

0

(rα|u′2|βu′2)ϕ
′dr +

∫ R

0

g(u2)ϕdr −
∫ R

0

h(r)ϕdr = 0, ∀ ϕ ∈ XR.

By (8) and (9) we have

ε2
∫ R

0

[(rα|u′1|βu′1)− (rα|u′2|βu′2)]ϕ
′dr +

∫ R

0

[g(u1)− g(u2)]ϕdr = 0.

Choosing ϕ = (u1 − u2)+ and using the fact that g is increasing, we obtain
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0 = ε2
∫ R

0

[(rα|u′1|βu′1)− (rα|u′2|βu′2)]((u1 − u2)+)′dr

+
∫ R

0

[g(u1)− g(u2)](u1 − u2)+dr

= ε2
∫

u1≥u2

rα |u′1|β + |u′2|β
2

|((u1 − u2)+)′|2dr

+
∫

u1≥u2

rα |u′1|β − |u′2|β
2

[|u′1|2 − |u′2|2]dr

+
∫

u1≥u2

[g(u1)− g(u2)](u1 − u2)+dr ≥ 0.

Hence, (u1 − u2)+ = 0 a.e. in (0, R) or, equivalently, u1 ≤ u2 a.e. in (0, R).
Choosing ϕ = (u2−u1)+, using similar argument we obtain that (u2−u1)+ =

0 a.e. in (0, R) or, equivalently, u2 ≤ u1 a.e. in (0, R).
Hence, the problem (7) has a unique weak solution u ∈ XR.
The fact that T is nondecreasing follows from Lemma 2.1. ¤

3 Poof of Auxiliary Results

Proposition 3.1 Suppose that f satisfies the assumptions (f1), (f2) and (f3)
for l = 1. Then given any ball B(0, r1) ⊂ B(0, R), 0 < r1 < R, there exists
ε0 > 0 such that for all 0 < ε ≤ ε0, the Dirichlet problem (5), has a positive
solution 0 < uε(r) < a3 in [0, r1]. Moreover, the Dirichlet problem (6) has a
negative solution a1 < vε(r) < 0 in [r1, R].

Proof: We start proving the existence of the positive solution for problem (5),
for this we use an argument of truncation. Let f1 : R→ R be defined by

f1(u) :=





f(u), if 0 ≤ u ≤ a3

0, if u ≤ 0
0, if u ≥ a3.

Using (f1), we have that there exists M > 0 such that rγf1(t) + Mt is
nondecreasing in t for t ∈ [0, a3].

Now, we consider the following auxiliary problem

(10)
{ −ε2(rα|u′|βu′)′ + Mu = rγf1(u) + Mu, in (0, r1)

u′(0) = u(r1) = 0.

Thus, we will to prove the existence of the positive solution for problem (10) by
using the method of lower and upper-solution. We prove this in tree steps.
Step 1: Observe that the function u(r) ≡ a3, for r ∈ [0, r1] is a upper solution
of (10).
Step 2: Construction of the lower solution of (10). Let

a = lim
t→0

f1(t)
|t|βt
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and λ1 is the first eigenvalue of Lu := −(rα|u′|βu′)′ in (0, R) subject to the
Dirichlet boundary condition. It follows by (f3) that given δ ∈ (0, a), there
exist t0 > 0 such that for all | t |≤ t0 we have

(11) a− δ ≤ f1(t)
| t |β t

.

Let ϕ1 > 0 an eigenvalue corresponding to the first eigenvalue λ1. Take
β1 > 0 such that | β1ϕ1(r) |≤ t0 and β1

(
max(0,r1) ϕ1

)
< a3. From (11)

a− δ ≤ f1(β1ϕ1)
| β1ϕ1 |β β1ϕ1

.

Choosing ε0 > 0 such that ε20λ1
rδ

rγ < a − δ, we have that β1ϕ1 is a lower
solution of problem (10) for all 0 < ε ≤ ε0.
Step 3: We will show that there exists a minimal (and, respectively, a maximal)
weak solution u∗ (resp. u∗) for problem (10) such that β1ϕ1 = u ≤ u∗ ≤ u = a3.
Consider the set

[u, u] := {u ∈ L∞γ (0, r1) : u(r) ≤ u(r) ≤ u(r) a.e. in (0, r1)}
with the topology a.e. of convergence, and define the operator S : [u, u] → Lq

γ

by
Sv = rγf1(v) + Mv ∈ L∞γ (0, r1) ⊂ Lq′

γ (0, r1),∀ v ∈ [u, u],

where q′ is such that 1/q + 1/q′ = 1. We get that S is nondecreasing and
bounded . Moreover, if vn, v ∈ [u, u], then

‖ Svn − Sv ‖q
Lq

γ
=

∫ r1

0

| rγf1(vn) + Mvn − rγf1(v)−Mv |q dr.

Let vn → v a.e. in Ω. Applying the Lebesgue dominated convergence theorem,
we obtain that ‖ Svn − Sv ‖Lq

γ
→ 0, and then, S is continuous.

Consider the continuous nondecreasing operator F : [u, u] → XR defined by
F := ToS, (where T is the continuous and nondecreasing defined in Lemma 2.2,
i.e., for a function v ∈ [u, u], F (v) is the unique solution of problem (10) with
ε = 1.

Writing u1 = F (u) and u1 = F (u) we obtain that ϕ ∈ XR, ϕ > 0,
∫ r1

0

rα | u′1 |β u′1ϕ
′ +

∫ r1

0

Mu1ϕ =
∫ r1

0

(rγf1(u) + Mu)ϕ

≥
∫ r1

0

rα | u′ |β u′ϕ′ +
∫ r1

0

Muϕ

and
∫ r1

0

rα | (u1)′ |β (u1)′ϕ′ +
∫ r1

0

Mu1ϕ =
∫ r1

0

(rγf1(u) + Mu)ϕ

≤
∫ r1

0

rα | (u)′ |β (u)′ϕ′ +
∫ r1

0

Muϕ.
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Applying Lemma 2.1 and taking into account that F is nondecreasing, we obtain

u ≤ F (u) ≤ F (u) ≤ F (u) ≤ u, a.e. in (0, r1), ∀ u ∈ [u, u].

Repeating the same reasoning, we can prove the existence of sequences (un) and
(un) satisfying u0 = u , un+1 = F (un), u0 = u, un+1 = F (un) and, for every
weak solution u ∈ [u, u] of problem (10) with ε = 1, we obtain

u = u0 ≤ u1 ≤ ... ≤ un ≤ u ≤ un ≤ ... ≤ u1 ≤ u0 = u, a.e. in (0, r1).

Then, un → u∗, un → u∗, a.e. in (0, r1), with u∗, u∗ ∈ [u, u], and u∗ ≤ u∗

a.e. in (0, r1). Since un+1 = F (un) → F (u∗) and un+1 = F (un) → F (u∗) in
XR, by continuity of F , then u∗, u∗ ∈ XR with u∗ = F (u∗) and u∗ = F (u∗).
This completes the proof. Then, u∗ is minimal weak solution (respectively, u∗

maximal weak solution) of (10) with ε = 1 such that u∗, u∗ ∈ [u, u], ∀ 0 <
ε ≤ ε0. In particular, every solution u ∈ [u, u] of (10) with ε = 1 satisfies also
u∗ ≤ u ≤ u∗, a.e. in (0, r1). Since the solutions u∗ and u∗ are between 0
and a3 then u∗ and u∗ are solutions of (5). Therefore, there exists a solution
uε : u∗ ∈ [β1ϕ1, a3] of (5), for all 0 < ε ≤ ε0.

To prove the existence of the negative solution vε(r),where a1 ≤ vε ≤ 0, is
enough to consider the truncation function f2 : R→ R defined by

f2(u) :=





f(u), if a1 ≤ u ≤ 0
0, if u ≤ a1,
0, if u ≥ 0,

and the problem
{ −ε2(rα|u′|βu′)′ = rγf2(u), em (r1, R)

u(r1) = u(R) = 0.

We consider here, λ1 the first eigenvalue of problem
{ −(rα|u′|βu′)′ = λrδ|u|βu, in (r1, R)

u(r1) = u(R) = 0

and ϕ1 > 0 the eigenfunction corresponding to the first eigenvalue λ1. ¤

3.1 Asymptotic Behavior of a Class of Solutions

We have the following proposition which shows the asymptotic behavior of a
class of solutions of (5) as ε → 0.

Proposition 3.2 Let be 0 < uε < a3 a positive solution of (5) and let be
a1 < vε < 0 a negative solution of (6). Then
i) uε → a3 as ε → 0 uniformly on every compact subset of (0, r1);
ii) vε → a1 as ε → 0 uniformly on every compact subset of (r1, R).
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Proof: i) The proof follows by adapting some arguments made in Theorem 4
of [7].

First, observe that exist µ ∈ (0, 1) such that uε ∈ C1,µ(0, r1), by Proposition
2.2 [4].

Consider the function f1 : R→ R defined at the Proposition 3.1 and ϕ1 > 0
an eigenfunction corresponding to the first eigenvalue λ1 of Lu := −(rα|u′|βu′)′

in (0, r1) subject to Dirichlet boundary conditions. Since f1 ≥ 0, f1 6≡ 0 and
ϕ1 > 0 from Lemma 3.2 in [4], we have uε > 0 in (0, r1), u′ε ≤ 0 in (0, r1), ϕ1 > 0
in (0, r1) and ϕ′1 ≤ 0 in (0, r1)

Consequently, there exists β1 > 0 such that for all 0 < ε ≤ ε0, we have
uε(r) ≥ β1ϕ1, and for a given η > 0 there is Cη such that

(12) uε(r) ≥ Cη > 0,

for all r ∈ Ωη := {r ∈ (0, r1) : dist(r, r1) > η}. Take ϕ1 such that ‖ ϕ1 ‖= 1.
Since uε is solution of (10) it follows that

(13) ε2
∫ r1

0

rα | u′ε |β u′εϕ
′dr =

∫ r1

0

rγf1(uε)ϕdr, ∀ ϕ ≥ 0, ϕ ∈ XR.

In particular, for ϕ = ϕ1, we obtain

(14) ε2
∫ r1

0

rα | u′ε |β u′εϕ
′
1dr =

∫ r1

0

rγf1(uε)ϕ1dr.

Claim: The expression in the left-hand of (14) goes to zero as ε → 0. Indeed,
observe that 0 < uε ≤ a3 and f1(uε) ≤ C̃. Thus, using the Hölder inequality
and (13) with ϕ = uε, we obtain

ε2
∫ r1

0

rα | u′ε |β u′εϕ
′
1dr ≤ Cε2

(
1
ε2

∫ r1

0

rγf1(uε)uεdr

) (β+1)
β+2

≤ Ĉε
2

β+2 , for some constant Ĉ.

Define dη := inf{ϕ1(r) : r ∈ Ωη} > 0. Then,

(15) dη

∫

Ωη

rγf1(uε)dr ≤
∫

Ωη

rγf1(uε)ϕ1dr <

∫ r1

0

rγf1(uε)ϕ1 → 0, ε → 0.

Now, suppose by contradiction that there are a number C1 > 0 and a sequence
εj → 0 such that the Lebesgue’s measure of the sets

(16) Ωη,j := {r ∈ Ωη : uεj (r) < a3 − η}
are bounded from below by C1. It follows from (15) that

(17) Ij :=
∫

Ωη,j

rγf1(uεj )dr → 0, as εj → 0.

Observe that in Ωη,j , from (12) and (16), we have Cη ≤ uεj ≤ a3 − η.
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Since f1 is bounded from below in the interval [Cη, a3 − η] by a number
d > 0, from (16) it follows

Ij =
∫

Ωη,j

rγf1(uεj
)dr ≥ d

∫

Ωη,j

rγdr = dC ≥ d′|Ωη,j | ≥ d′C1,

for any 0 < d′ ≤ dC
|Ωη,j | , which contradicts (17). Therefore, | Ωη,j | does not

bounded from below, i.e., uε(r) → a3, on every compact subset of (0, r1) as
ε → 0.
ii) It follows similarly such as in the positive case i). ¤
Demonstração do Teorema 2.1: The proof follows directly from Proposition
3.1 and from the Proposition 3.2. ¤

4 Proof of Theorem 1.1

The proof is done by using a version of the Mountain Pass Theorem, due a Hofer
[11] in order to show the existence of critical points of the mountain pass type.

4.1 Particular Case

First, we consider the particular case of the Theorem 1.1.

Theorem 4.1 Let be f satisfying the assumptions (f1), (f2) and (f3) for l = 1.
Then there exists ε0 > 0 such that, for all 0 < ε < ε0, the problem (1) has at
least one nonconstant solution uε verifying a1 < uε(r) < a3.

In order to prove the Theorem 4.1, we use the results that we will prove
below.

Lemma 4.1 Let be f satisfying the assumptions (f1), (f2) and (f3) for l = 1.
Then there exists functions of class C1, f1 : (−∞, a1] → R+, f2 : [a3, +∞) →
R− and real numbers η1 and η1 such that:
(i) f1(a1) = f(a1), f ′1(a1) = f ′(a1) and f1(t) > 0 for all t ∈ (η1, a1);
(ii) f2(a3) = f(a3), f ′2(a3) = f ′(a3) and f2(t) < 0 for all t ∈ (a3, η1);
(iii) η1 and η1 are so that η1 < a1 < a3 < η1,

∫ a1

η1

f1(t)dt =
∣∣∣∣
∫ 0

a1

f(t)dt

∣∣∣∣,
∣∣∣∣
∫ η1

a3

f2(t)dt

∣∣∣∣=
∫ a3

0

f(t)dt

and ∀ t ∈ [0, 1], we have

η1 < t(1− t)a3 + (a3 − a1)t + a1 < η1

and
η1 < t(1− t)a1 + (a3 − a1)t + a1 < η1.
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Proof: We start proving the existence of η1.
We take

α(t) := t(1− t)a1 + (a3 − a1)t + a1.

Thus, 0 = d
dt (α(t)) = −2ta1 +a3 if, and only if, t = a3

2a1
. Moreover, since a1 < 0

and d2

dt α(t) = −2a1 it follows that α( a3
2a1

) = a2
3

4a1
+ a1 is the minimal value of

α(t). Finally we define

η1 :=
a2
3

4a1
+ 2a1.

For the proof of the existence of η1 we take

β(t) := t(1− t)a3 + (a3 − a1)t + a1.

We note that 0 = d
dt (β(t)) = (1 − 2t)a3 + a3 − a1 if, and only if, t = 1 − a1

2a3
.

Since d2

dt β(t) = −2a3 and a3 > 0 we have β(1− a1
2a3

) = a2
1

4a3
+ a3 is the maximal

value of β. Now, we take

η1 :=
a2
1

4a3
+ 2a3.

Now, we are going to prove the existence of function f1.
We take g(t) = f ′(a1)(t− a1) and ξ1, ξ2 functions of class C1 so that ξ1 ≡ 1

at a neighbourhood of a1, ξ2 ≡ 1 at a neighbourhood of η1, ξ1(t) + ξ2(t) = 1 for
all t ∈ [η1, a1] and ∫ a1

η1

g(t)ξ1(t)dt <

∣∣∣∣
∫ 0

a1

f(t)dt

∣∣∣∣.

Now, we choose r > 0 such that
∫ a1

η1

[rξ2(t)g(t) + ξ1(t)g(t)]dt =
∣∣∣∣
∫ 0

a1

f(t)dt

∣∣∣∣.

We define f1 : (−∞, a1] → R+ by

f1(t) :=
{

rξ2(t)g(t) + ξ1(t)g(t), η1 ≤ t ≤ a1

rf ′(a1)t− ra1f
′(a1), t ≤ η1.

We note that for t ≤ η1 the graph of f1 is the tangent line to f1 at the point
(η1, f1(η1)).

Finally, we prove the existence of f2.
We take g(t) = f ′(a3)(t− a3) and ξ1, ξ2 functions of class C1 so that ξ1 ≡ 1

at a neighbourhood of a3, ξ2 ≡ 1 at a neighbourhood of η1, ξ1(t) + ξ2(t) = 1 for
all t ∈ [a3, η1] and

Now, we choose r > 0 such that
∣∣∣∣
∫ η1

a3

[rξ2(t)g(t) + ξ1(t)g(t)]dt

∣∣∣∣=
∫ a3

0

f(t)dt.
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We define f2 : [a3, +∞) → R− by

f2(t) :=
{

rξ2(t)g(t) + ξ1(t)g(t), a3 ≤ t ≤ η1

rf ′(a1)t− ra1f
′(a1), t ≥ η1.

We observe that for t ≥ β1 the graph of f2 is the tangent line to f2 at the
point (η1, f2(η1)).

Thus the proof of Lemma is concluded. ¤
As consequence of the Maximum Principle we have the following lemma.

Lemma 4.2 If uε is a nonconstant solution of the Neumann problem

(18)
{
−ε2(rα|u′|βu′)′ = rγ f̂(u), in (0, R)
u′(0) = u′(R) = 0,

where f̂ : R→ R is a truncation function defined by

f̂(t) :=





f(t), a1 ≤ t ≤ a3

f1(t), t ≤ a1

f2(t), t ≥ a3,

and f1 and f2 are defined in Lemma 4.1. Then a1 ≤ uε(r) ≤ a3, i.e., uε is
nonconstant solution of (1).

Proof: We start proving that uε(r) ≤ a3. Indeed, let be

v(r) :=
{

uε(r)− a3, if uε(r) ≥ a3

0, if uε(r) < a3

and Ω+ := {r ∈ (0, R) : uε(r) ≥ a3}.
Notice that

ε2
∫ R

0

rα|u′|βu′v′dr =
∫ R

0

rγ f̂(uε)vdr =
∫

Ω+

rγf2(uε)vdr ≤ 0.

So, ∫ R

0

rα|v′|β+2 ≤ 0.

Thus, it follows that |v′| = 0. Since uε is nonconstant, there exists r ∈ (0, R)
with uε(r) < a3. So that, v ≡ 0. Therefore, uε(r) ≤ a3, for all r ∈ (0, R).

Similarly, we have a1 ≤ uε, taking

w(r) :=
{

uε(r)− a1, uε(r) ≤ a1

0, uε(r) > a1

and Ω− := {r ∈ (0, R) : uε(r) ≤ a1}.
This finishes the proof of Lemma. ¤
Thus, by Lemma 4.1, it follows that a solution for problem (18) is a solution

for problem (1), since f ≡ f̂ in [a1, a3]. Therefore, to prove the Theorem 4.1 is
equivalent to prove the following theorem.
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Theorem 4.2 Let be f satisfying the conditions (f1), (f2) and (f3). Then there
exists ε0 > 0 such that, for all 0 < ε < ε0, the problem (18) has at least one
nonconstant solution uε.

Define a functional on X̂R by

Jε(u) :=
ε2

β + 2

∫ R

0

rα|u′|β+2dr −
∫ R

0

rγF̂ (u)dr,

where
F̂ (u) :=

∫ u

0

f̂(t)dt,

which is C1 with derivative given by

J ′ε(u)ϕ = ε2
∫ R

0

rα|u′|βϕ′dr −
∫ R

0

rγ f̂(u)ϕdr, ∀ ϕ ∈ X̂R.

Critical points of Jε are weak solutions (18).
We will prove that Jε verifies the Mountain Pass geometry, namely,
The functional Jε satisfies the Palais-Smale condition if every sequence (un) ⊂

X̂R satisfying Jε(un) → c and Jε → 0 has a subsequence convergent.

Lemma 4.3 The functional Jε satisfies the condition Palais-Smale.

Proof: Let (un) ⊂ X̂R be a sequence satisfing Jε(un) → c and J ′ε(un) → 0, as
n →∞.

Hence,

(19) | Jε(un) |=
∣∣∣∣

ε2

β + 2

∫ R

0

rα|u′|β+2dr−
∫ R

0

rγF̂ (un)dr

∣∣∣∣6 d for some d > 0,

and

(20) | J ′ε(un)v |=
∣∣∣∣ε2

∫ R

0

rα | u′n |β u′nv′dr −
∫ R

0

rγ f̂(un)vdr

∣∣∣∣≤ δn‖v‖,

for all v ∈ X̂R where δn → 0, n →∞.
Claim: (un) is bounded. Indeed, define

vn(r) =
{

un(r)− η1, if un(r) ≥ η1,
0, if un(r) < η1,

and Ω1 := {r ∈ (0, R) : un(r) ≥ η1}.
From (20), we have

∣∣∣∣ε2
∫ R

0

rα|v′n|β+2dr −
∫ R

0

rγ f̂(un)vndr

∣∣∣∣≤ δn‖vn‖.
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Since f̂(un) ≤ −C in Ω1, it follows that

(21) ε2
∫ R

o

rα|v′n|β+2dr + C

∫ R

0

rγvndr ≤ δn‖vn‖

(22) C

∫ R

0

rγvndr ≤ δn‖vn‖.

Define wn := vn

‖vn‖ . Hence, ‖wn‖ = 1. Taking subsequence if necessary we

can assume that wn ⇀ w weakly in X̂R, wn → w in Lp
θ and wn(r) → w(r) a.e.

in (0, R). Dividing (22) by ‖vn‖, we have

C

∫ R

0

rγwndr ≤ δn.

Applying the limits on both sides and taking account that wn ≥ 0, we have that
w ≡ 0 a.e. in (0, R). Dividing (21) by ‖vn‖, and taking the limit as n →∞, we
obtain

(23) ε2
∫ R

0

rα |v′n|β+2

‖vn‖ → 0.

On the other hand,

(24) 1 = ‖wn‖ = ε2
∫ R

0

rα|w′n|β+2dr +
∫ R

0

rα|wn|β+2dr.

Thus,

ε2
∫ R

0

rα|w′n|β+2dr → 1.

Multiplying and dividing (23) by ‖vn‖β+1, we obtin

‖vn‖β+1ε2
∫ R

0

rα

∣∣∣∣
(

vn

‖vn‖
)′∣∣∣∣

β+2

dr = ‖vn‖β+1ε2
∫ R

0

rα|w′n|β+2dr → 0.

Also, from (24) it follows that ‖vn‖ → 0 as n →∞. Consequently, ‖vn‖ ≤ C.
Now, define

zn(r) :=





un(r), if η1 ≤ un(r) ≤ η1

0, if η1 ≥ un(r)
0, if un(r) ≥ η1

and Ω2 := {r ∈ (0, R) : η1 ≤ un(r) ≤ η1}.
From (20), we have

∣∣∣∣ε2
∫ R

0

rα|z′n|β+2dr −
∫ R

0

rγ f̂(un)zndr

∣∣∣∣≤ δn‖zn‖ bXR
.
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Since |f̂(un)| ≤ Ĉ in Ω2 and |zn| ≤ c1 in Ω2, where c1 = max{|η1|, |η1|}, we
obtain

ε2
∫ R

0

rα|z′n|β+2dr ≤ δn‖zn‖+
∫ R

0

rγ |f̂(un)||zn|dr ≤ δn‖zn‖+ C

Hence,

‖zn‖β+2 = ε2
∫ R

0

rα|z′n|β+2dr +
∫ R

0

rα|zn|β+2dr ≤ C + δn‖zn‖.

Since β ≥ 0, then ‖zn‖ ≤ C.
Finally, we consider the sequence

tn(r) :=
{

un(r)− η1, if un(r) ≤ η1

0, if un(r) > η1

and the set Ω3 := {r ∈ (0, R) : un(r) ≤ η1 < 0}.
Similarly, as in the case of the sequence (vn), we have ‖tn‖ ≤ C.
Let un := vn + zn + tn. Then, (un) in bounded in Ω. Thus, Jε satisfies the

(PS) condition. ¤

Lemma 4.4 The functional Jε is lower bounded.

Proof: Let Ω1 := Ω3

⋃
Ω4 and Ω2 := Ω5

⋃
Ω6, with

Ω3 := {r ∈ (0, R) : 0 ≤ u(r) ≤ a3}, Ω4 := {r ∈ (0, R) : a3 < u(r) < ∞},
Ω5 := {r ∈ (0, R) : a1 ≤ u(r) ≤ 0}, Ω6 := {r ∈ (0, R) : −∞ < u(r) < a1}.

How Ω3 and Ω5 are bounded, we have
∫

Ω1

rγF̂ (u)dr =
∫

Ω3

rγF̂ (u)dr +
∫

Ω4

rγF̂ (u)dr

< C̃ +
∫

Ω4

rγF̂ (a3)dr ≤ C

and ∫

Ω2

rγF̂ (u)dr =
∫

Ω5

rγF̂ (u)dr +
∫

Ω6

rγF̂ (u)dr

< C +
∫

Ω6

rγF̂ (a1)dr < C.

Also, ∫ R

0

rγF̂ (u)dr =
∫

Ω1

rγF̂ (u)dr +
∫

Ω2

rγF̂ (u)dr < C.

Hence,

Jε(u) = ε2

β+2

∫ R

0

rα|u′|β+2dr −
∫ R

0

rγF̂ (u)dr

≥ ε2

β+2

∫ R

0

rα|u′|β+2dx]− C ≥ −C.

Therefore, Jε is lower bounded. ¤

15



Lemma 4.5 ai, with i odd, is strict local minimum of Jε in X̂R.

Proof: First of all, we will prove that Jε has a local minimum in C1. Also,
let δ > 0 such that F̂ (ai) ≥ F̂ (t), to |t − ai| < δ and u ∈ C1 such that
‖u(r) − ai‖C1 = max{|u(r) − ai|, |u′(r) − ai|} < δ. We claim that there exists
η > 0 such that Ωη := {r ∈ (0, R) : |u(r)−ai| > η} has positive measure. Indeed,
let u ∈ C1(0, R), u 6≡ ai. Then, there exists r0 ∈ (0, R) such that u(r0) 6= ai.
Hence, there exists η > 0 such that either u(r0) > ai + η or u(r0) < ai − η.

Since u is continuous there exists a ball Bδ(r0) such that |u(r)− ai| > η, for
all r ∈ Bδ(r0). Therefore, Ωη has positive measure.

Now, we define c1 := max{F̂ (ai − η), F̂ (ai + η)}. Since ai a strict local
maximum of F̂ , we have

∫ R

0

rγF̂ (u)dr ≤
∫

Ωη

rγc1dr +
∫

(0,R)\Ωη

rγF̂ (ai)dr

< F̂ (ai)
∫

Ωη

rγdr +
∫

(0,R)\Ωη

rγF̂ (ai)dr =
∫ R

0

rγF̂ (ai)dr.

Therefore,

Jε(u) ≥ −
∫ R

0

rγF̂ (u)dr > −
∫ R

0

rγF̂ (ai)dr = Jε(ai),

i.e., ai is a strict local minimum of Jε in C1.
Take ai = a3. Assume that a3 is a local minimum of Jε in C1 and a3 is

not a local minimum in X̂R. Then for all η > 0 small enough, there exists
vη ∈ Bη ⊂ X̂R such that

(25) Jε(vη) = min
v∈Bη

Jε(v) < Jε(a3),

where Bη is a ball of radius η centered at a3,

Bη := {v ∈ X̂R : ‖v − a3‖ ≤ η},

since, Bη is weakly close and Jε is lower bounded in Bη.
Therefore, vη satisfies the Euler equation

(26) J ′ε(vη)ϕ = G′(vη)ϕ, ∀ ϕ ∈ X̂R, where G(vη) := ‖vη − a3‖,

i.e.,

ε2
∫ R

0

rα|v′η|βv′ηϕ′−
∫ R

0

rγ f̂(vη)ϕ = µη

[
ε2

∫ R

0

rα|v′η|βv′ηϕ′+
∫ R

0

rα|vη−a3|β(vη−a3)ϕ
]
,

for all ϕ ∈ X̂R and for some Lagrange multiplier µη. Since vη is minimum of Jε

in Bη then µη ≤ 0.
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Rewriting the equation above, we have

(27) (1− µη)ε2
∫ R

0

rα|v′η|βv′ηϕ′ =
∫ R

0

[rγ f̂(vη) + µηrα|vη − a3|β(vη − a3)]ϕ,

for all ϕ ∈ X̂R. Thus, vη is weak solution of problem

(28)





−(1− µη)ε2(rα|v′η|βv′η)′ = µηrα|vη − a3|β(vη − a3)

+rγ f̂(vη), in (0, R)

v′η(0) = v′η(R) = 0.

We will show that a1 ≤ vη(r) ≤ a3, for all r ∈ (0, R).
Claim 1: vη is nonconstant. Indeed, if vη ≡ constant then vη ≡ a3, since
vη → a3 in X̂R, that contradict (25).
Claim 2: vη ≤ a3. Indeed, let

v(r) :=
{

vη(r)− a3, if vη(r) ≥ a3

0, if vη(r) < a3

and Ω+ := {r ∈ (0, R) : vη(r) ≥ a3}.
From (27), we have

(1− µη)ε2
∫ R

0

rα|v′η|βv′ηv′dr =
∫ R

0

[rγ f̂(vη) + µηrα|vη − a3|β(vη − a3)]vdr

=
∫

Ω+

[rγf2(vη)v + µηrα|vη − a3|β+2]dr ≤ 0,

a.e. since, f2(t) ≤ 0, v ≥ 0, µη ≤ 0. The function f2 is a function defined in
Lemma 4.1.

Since, (1− µη) ≥ 0, ε2 > 0 e v′η = v′, we have

∫ R

0

rα|v′|β+2 ≤ 0.

It follows v ≡ constant. Also, if vη(r) ≥ a3, for all r ∈ (0, R) it follows that
v ≡ vη − a3. Hence vη ≡ constant. It is a contradiction. Therefore, there exists
r ∈ (0, R) such that vη(r) < a3, i.e., v(r) = 0. Then v(r) ≡ 0, for all r ∈ (0, R),
i.e., vη ≤ a3 for all r ∈ (0, R).
Claim 3: a1 ≤ vη. Indeed, it follows similarly as in the claim 2 if we take

w(r) :=
{

vη(r)− a1, vη(r) ≤ a1

0, vη(r) > a1

and Ω− := {r ∈ (0, R) : vη(r) ≤ a1}.
Therefore, of the claim 2 and 3, we have that a1 ≤ vη(r) ≤ a3, i.e.,

sup(0,R) |vη| ≤ C∗.
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Then from Theorem 2 in [14], we have that there exists a positive constant
θ ∈ (0, 1) such that vη ∈ C1,θ and moreover, there exists a positive constant
C = C((0, R), C∗, β) such that ‖vη‖C1,θ ≤ C.

Thus, from Ascoli-Arzelá Theorem we get there exists a subsequence of
(vηj

) = (vη) such that vη → a3 in C1. It contradict the fact that a3 is local min-
imum of Jε in C1. Indeed, a3 local minimum of Jε in C1 follows Jε(a3) ≤ Jε(v)
for all v ∈ C1 such that 0 < ‖v − a3‖C1 < δ0 for some δ0 > 0. Since vη → a3 in
C1 it follows Jε(a3) ≤ Jε(vη).

On the other hand, we have from (25) that Jε(vη) < Jε(a3), for all η > 0
small enough. Hence the contradict.

Therefore, a3 is local minimum of Jε in X̂R.
Similarly, it follows that a1 is local minimum of Jε in X̂R.
Without loss of generality, we suppose that ai is strict local minimum of Jε in

X̂R. Contrary case, for all δ > 0, there exists vδ ∈ X̂R such that Jε(vδ) = Jε(ai).
Hence, vδ is a critical point of Jε in X̂R. ¤

We will use arguments of [5] to obtain the next lemma.

Lemma 4.6 If a is a strict local minimum of Jε, i.e.,

(29) Jε(a) < Jε(u)

for all u ∈ X̂R such that 0 < ‖u − a‖ < δ0 for some δ0 > 0. Then, for any
0 < ρ < δ0,

(30) inf{Jε(u) : u ∈ X̂R and ‖u− a‖ = ρ} > Jε(a).

Proof: Assume by contradiction that the infimum in (30) is equal to Jε(a) for
some ρ with 0 < ρ < δ0. So there exists a sequence un ∈ X̂R with ‖un − a‖ = ρ
and, say, Jε(un) ≤ Jε(a) + 1

2n2 . Call

A := {u ∈ X̂R : ρ− δ ≤ ‖u− a‖ ≤ ρ + δ},
where δ > 0 is chosen so that 0 < ρ − δ and ρ + δ < δ0. In view of our
contradiction hypothesis an (29), it follows that inf{Jε(u) : u ∈ A} = Jε(a).

We now apply for each n Ekeland’s principle to the functional Jε on A to
get the existence of vn ∈ A such that

(31) Jε(vn) ≤ Jε(un),

(32) ‖vn − un‖ ≤ 1
n

,

(33) Jε(vn) ≤ Jε(u) +
1
n
‖u− vn‖, ∀ u ∈ A.

Our purpose is to show that vn is a Palais-Smale sequence for Jε in X̂R, i.e.,
Jε(vn) ≤ C (it follows by (31)) and J ′ε(vn) → 0, as n →∞.
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Once this is proved, we get, that vn has a convergent subsequence. Denote
this subsequence by vn we have that vn → v in X̂R. Notice that v ∈ A, since
A is complete. Hence, v ∈ X̂R and therefore it satisfies ‖v − a‖ = ρ and
Jε(v) = Jε(a), which contradicts (29).

For we conclude the proof we will prove that J ′ε(vn) → 0, as n →∞, We first
fix n > 1

δ , take w ∈ X̂R and ut := vn + tw. We observe that for |t| sufficiently
small, ut = vn + tw ∈ A. Indeed,

lim
t→0

‖ut − a‖ = ‖vn − a‖ ≤ ‖vn − un‖+ ‖un − a‖ ≤ 1
n

+ ρ < δ + ρ.

On the other hand,

‖vn − a‖ ≥ ‖a− un‖ − ‖un − vn‖ ≥ ρ− 1
n

> ρ− δ.

Also, we can take u = ut in (33),and then, for t > 0,

(34)
Jε(vn)− Jε(vn + tw)

t
≤ 1

n

1
t
‖vn − tw − vn‖ ≤ 1

nt
‖tw‖.

Taking the limit in (34) as t → 0, we obtain 〈J ′ε(vn), w〉 ≤ 1
n‖w‖. Consequently,

|〈J ′ε(vn), w〉| ≤ 1
n
‖w‖, ∀ w ∈ X̂R.

Also, J ′ε(vn) → 0, n →∞ and vn is a sequence (PS) for Jε in W 1,p(Ω). There-
fore, the proof of the lemma is concluded. ¤
Demonstração do Teorema 4.2: We define

Γ := {h ∈ C([0, 1], X̂R) : h(0) = a1 e h(1) = a3}
and

γε := inf
h∈Γ

max
t∈[0,1]

Jε(h(t)).

By Lemma 4.6 γε := infh∈Γ maxt∈[0,1] Jε(h(t)) > c = max{Jε(a1), Jε(a3)}.
Since Jε satisfies the condition (PS), it follows from Theorem of [11] that

there exists u critical point of Jε such that Jε(u) = γε. Moreover, u is the
mountain-pass type, since if the critical points are not isolated in X̂R then
there exists an infinite of critical points of Jε. Since a1 and a3 are strict local
minimum then u 6= a1 and u 6= a3. Therefore, in order to show the existence
of a nonconstant critical point of Jε, we only need to prove that γε < 0, since
Jε(0) = 0.

We claim that γε < 0. In fact, we consider B ⊂ (0, R) the open ball and we
define

u0(r) :=
{

vε(r), r ∈ B
wε(r), r ∈ [0, R]\B,

where vε is the positive solution for the Dirichlet problem (5) in B and wε is
the negative solution for the Dirichlet problem (6) in [0, R]\B.
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Since (0, R) ∈ C1 and vε, wε ∈ Lp(0, R) it follows that u0 ∈ X̂R.
Now, given ε > 0 we consider the special path

hε(t) := t(1− t)u0(r) + (a3 − a1)t + a1, in Γ.

Then we claim that there exists a small number ε0 > 0, such that, for
all 0 < ε < ε0 and for all t ∈ [0, 1] maxJε(hε(t)) < 0. In fact, suppose by
contradiction that there is not exist this ε0 > 0. Then for any ε0 > 0, there is
an ε < ε0 such that

(35) Jε(hε(tε)) ≥ 0,

for some tε ∈ [0, 1]. Then choose a sequence (εk) such that

lim
k→∞

εk = 0, Jε(hεk
(tεk

)) ≥ 0, 0 ≤ lim
k→0

tεk
= θ ≤ 1.

Without loss of generality, let be εk = ε and tεk
= t. Now, given any open ball

B ⊂ [0, R], we have

Jε(hε(t)) = ε2

β+2

∫

B

rα|h′ε(t)|β+2dr +
ε2

β + 2

∫

(0,R)\B
rα|h′ε(t)|β+2dr

−
∫ R

0

rγF̂ (hε(t))dr

= ε2

β+2 tβ+2(1− t)β+2

(∫

B

rα|v′ε|β+2dr +
∫

(0,R)\B
rα|w′ε|β+2dr

)

−
∫ R

0

rγF̂ (t(1− t)u0 + (a3 − a1)t + a1)dr.

Since
ε2

∫

B

rα|v′ε|β+2dr =
∫

B

rγ f̂(vε)vεdr

and
ε2

∫

(0,R)\B
rα|w′ε|β+2dr =

∫

(0,R)\B
rγ f̂(wε)wεdr

we get

(36)
Jε(hε(t)) = tβ+2(1−t)β+2

β+2

[∫

B

rγ f̂(vε)vεdr +
∫

(0,R)\B
rγ f̂(wε)wεdr

]

−
∫ R

0

rγF̂ (t(1− t)u0 + (a3 − a1)t + a1)dr.

Since vε → a3 as ε → 0 uniformly on every compact subset of B and wε → a1

as ε → 0 uniformly on every compact subset of Ω\B, so

lim
ε→0

∫

B

rγ f̂(vε)vεdr = 0 and lim
ε→0

∫

(0,R)\B
rγ f̂(wε)wεdr = 0.
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If we take the limit on both sides of (36), it follows from the dominated conver-
gence theorem and the above facts that

limε→0 Jε(hε(t)) = limε→0

[
−

∫ R

0

rγF̂ (t(1− t)u0(r, ε) + (a3 − a1)t + a1)dr

]

= −rγF̂ (θ(1− θ)a3 + (a3 − a1)θ + a1)|B|
−rγF̂ (θ(1− θ)a1 + (a3 − a1)θ + a1)|(0, R)\B|,

where |A| is the Lebesgue measure of A ⊂ RN . By an assumptions for f̂ , Lemma
4.1, we have

(37) −F̂ (θ(1− θ)a3 + (a3 − a1)θ + a1) ≤ 0

and

(38) −F̂ (θ(1− θ)a1 + (a3 − a1)θ + a1) ≤ 0.

Since,
η1 < θ(1− θ)a3 + (a3 − a1)θ + a1 < η1,

η1 < θ(1− θ)a1 + (a3 − a1)θ + a1 < η1

and F̂ is zero only in η1, 0 and η1 then if (37) and (38) are zeros, we have that

θ(1− θ)a3 + (a3 − a1)θ + a1 = 0 = θ(1− θ)a1 + (a3 − a1)θ + a1,

i.e., θ(1− θ)a3 = θ(1− θ)a1. Since a3 6= a1, then θ(1− θ) = 0, i.e., either θ = 0
or θ = 1. Hence either F̂ (a1) = 0 or F̂ (a3) = 0. Then either a1 = 0 or a3 = 0,
which is impossible. We conclude that either

−F̂ (θ(1− θ)a3 + (a3 − a1)θ + a1) < 0

or
−F̂ (θ(1− θ)a1 + (a3 − a1)θ + a1) < 0.

Hence, limε→0 Jε(hε(t)) < 0, which is a contradiction to (35). Also, γε < 0. ¤

Corollary 4.1 Let f be satisfying (f1), (f2) and (f3) for l = 1 and let uε the
nonconstant solution of (1) such that Jε(uε) = γε. Then

lim
ε→0

supJε(uε) < 0.

Proof: From the proof of Theorem 4.2 there exists a number ε1 positive such
that Jε(hε1(t)) < 0 for all t ∈ [0, 1], where

hε1(t) = t(1− t)u0(r, ε1) + (a3 − a1)t + a1,

u0 is defined in proof of Theorem 4.2.
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Hence, for all 0 < ε < ε1, Jε(hε1(t)) ≤ Jε(hε1(t)) < 0 for all t ∈ [0, 1]. It
follows from the intermediate value theorem that there exists tε ∈ [0, 1] such
that hε1(tε) = uε. Consequently, Jε(hε1(tε)) = Jε(uε), for some tε ∈ [0, 1], and
so the assertion is true. ¤
Demonstração do Teorema 4.1: The proof follows directly from the Theo-
rem 4.2 and Lemma 4.2 ¤
Demonstração do Teorema 1.1: For each l = 1, 2, .... we consider the func-
tion f̃ : [a2l−1 − a2l, a2l+1 − a2l] → R of class C1 defined by f̃(t) := f(t + a2l).
Then from Theorem 4.1, the problem

(39)
{
−ε2(rα|v′|β+2 + v′)′ = rγ f̃(v), r ∈ (0, R)
v′(0) = v′(R) = 0,

has a nonconstant solution vl(r) such that a2l−1 − a2l < vl(r) < a2l+1 − a2l,
where v = u − a2l. So, ul = vl + a2l is a nonconstant solution for the problem
(1) with a2l−1 < ul < a2l+1.

Hence, there exists at least l nonconstants solutions for the problem (1)
satisfy

a1 < u1(r) < a3 < u2(r) < a5 < ... < a2l−1 < ul(r) < a2l+1.

¤

5 Asymptotic Behavior for a Class of Solutions

Demonstração do Teorema 1.2: Let 0 < µ < a3. We shall prove by contra-
diction. Suppose that limε→0 w∗(ε, µ) 6= 0. Then there is a convergent sequence
{w∗(εk, µ)} such that limk→∞ w∗(εk, µ) = αµ > 0. This means that, for each
εk > 0, there is rk = r(εk, µ) ∈ Ω+(εk, µ) so that the ball B(rk, αµ), centered at
the point rk with the radius αµ, is contained in Ω+(εk, µ).

Notice that uε is a upper solution of the Dirichlet problem

(40)
{ −ε2k(rα|u′|β+2u′)′ = rγf(u), r ∈ B(rk, αµ)

u′(0) = u(r) = 0, r ∈ ∂B(rk, αµ).

Claim: There are εk0 and β1 > 0 such that β1ϕ1 is a lower solution for the
problem (40) for all 0 < εk ≤ εk0 , where ϕ1 is an eigenfunction corresponding
to the first eigenvalue λ1 of operator Lu := −(rα|u′|β+2u′)′ subject to Dirichlet
boundary condition. In fact, this follow similarly as in the step 2 in proof of the
Proposition 3.1.

Also, from Theorem 2.1 we know that the problem (40) has a minimal solu-
tion u∗ with β1ϕ1 ≤ u∗ ≤ uε and so that u∗ → a3 on every compact subset of
B(rk, αµ) as εk → 0. This leads to a contradiction for µ < a3. ¤

22



Remark 5.1 If we choose an open ball B = B(x, w∗(ε, µ)) centered at some
point r = r(ε, µ) whose radius w∗(ε, µ) is the maximum of the radii of balls in

Ω−(ε, µ) = {r ∈ (0, R) : a1 < −µ < u(r, ε) < 0}
we can prove, by a similar method, that limε→0 w∗(ε, µ) = 0.

Remark 5.2 By a translation we can remark that Theorem 1.2 and remark 5.1
give us the asymptotic behavior of any solution ul(x) obtained in the Theorem
1.1.

5.1 Examples

Example 5.1 Let f : R→ R defined by

f(u) :=
|u|p−2u(p− p|u|p)

(1 + |u|p) .

Hence, f satisfies the conditions (f1), (f2), (f3), for l = 1, where a1 = −1,
a2 = 0 and a3 = 1.

Also, by Theorem 1.1 there is ε0 > 0 so that the Neumann problem
{
−ε2(rα|u′|βu′)′ = rγ |u|p−2u(p−p|u|p)

(1+|u|p) , in (0, R)
u′(0) = u′(R) = 0,

has a nonconstant solution a1 ≤ uε ≤ a3 for all 0 < ε < ε0 and p ≥ 2.

Example 5.2 Let f : R → R defined by f(u) = u(a − u2), where a ∈ R+.
Hence, f satisfies the conditions (f1), (f2), (f3), for l = 1, where a1 −

√
a,

a2 = 0 and a3 =
√

a.

Since, by Theorem 1.1 there is ε0 > 0 so that the Neumann problem
{ −ε2(rα|u′|βu′)′ = rγu(a− u2), in (0, R)

u′(0) = u′(R) = 0,

has at least l nonconstant solutions satisfy

a1 ≤ u1(x) ≤ a3 ≤ u2(x) ≤ a5 < ... < ul(x) < a2l+1

for all 0 < ε < ε0.

Example 5.3 Let f : [−π, (2l − 1)π] → R defined by f(u) = sen(u). Hence, f
satisfies the conditions (f1), (f2), (f3), for p = 2, l = 1, 2, 3, ... where

a1 = −π < a2 = 0 < a3 = π < ... < a2l = (2l − 2)π < a2l+1 = (2l − 1)π.

Hence, from Theorem 1.1 there is ε0 > 0 so that the Neumann problem
{ −ε2(rα|u′|βu′)′ = rγsen(u), in (0, R)

u′(0) = u′(R) = 0,

has at least l nonconstant solutions satisfy

a1 ≤ u1(x) ≤ a3 ≤ u2(x) ≤ a5 < ... < ul(x) < a2l+1

for all 0 < ε < ε0.
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