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Abstract

We make use of polynomial approximations and get accurate estimates of elliptic integrals.
The estimates differ from exact values by very small errors, some of order 0.05% (or even less).
The methods explained here can also be used to prove transcendental inequalities.

0. Introduction

Elliptic integrals come out very frequently in the study of complex-based theories like Min-
imal Surfaces, Algebraic Curves, Riemann Surfaces, Quantum Physics and many others. In
order to reckon these integrals, one either tries to use handbooks or special functions, but in
both cases without the guarantee of finding the answer. Moreover, before trying these two al-
ternatives, one generally has to make simplifications like changes of variable, integration by
parts, and so on. Once again, this procedure can be fruitless, for either the integrals cannot be
simplified or even so they lack in handbooks.

Depending on the research area, elliptic integrals are not allowed to be evaluated by com-
puter softwares without the appropriate theoretical error estimates. We refer the reader to [3]
for a brief explanation about different kinds of errors. Among them, theintegration method
error is the hardest one to evaluate, and this task frequently turns out to be unpractical. There
are several reasons for not trusting numerically computed integrals, and some arguments were
already discussed in [3], [4] and [5].

This Technical Report deals with an alternative for the evaluation of elliptic integrals by
means of very accurate polynomial approximations. In other words, given

∫
f which cannot

be usually computed, we take polynomialsp andq to approximatef by two rational functions
r andR, in such a way thatr ≤ f ≤ R throughout the whole integration interval. We shall
haver ≥ 0 for all cases studied here, which is a mild restriction, since one can simply add
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integrals over disjoint intervals. Of course, the inequalityr ≤ f ≤ R must be formally proved,
max{deg(p),deg(q)} should not be too high, and the relative error

∫
(R− r)/

∫
(R+ r) must be

of very small order (0.05% or even less). In this present work we use polynomial estimates
already proved in [3] and deal with single evaluations, namelyeither

∫
f >

∫
r or

∫
f <

∫
R.

Moreover, most of the estimating rational integrals in this report can be reckoned by Equa-
tion (7). The final numeric expression is given by

(term1) ln(term2)+(term3)[arctan(term4)+arctan(term5)],

wheretermn is real for everyn. Since all computations presented here can be verified by hand,
the estimates taketermn with finite decimal part. At this point it is important to remark that
(x̃, ỹ) ∈ (x,X)× (y,Y) ⊂ IR+× (0,1) implies X lny < x̃ln ỹ < xlnY. But how many decimals
should termn have? In fact,term2 is allowed to have 4 decimals or more (up to 7 in this
work), because of the logarithm algebraic properties. For instance, right after Equation (22)
we have an expression with ln0.1732568= −7ln10+ 3ln2+ ln216571. Now ln216571=
ε+ ln216571.2= ε− ln10+4ln2+ ln3+ ln45119. In [1] we have tables of logarithm with 15
exact decimals, whileε is of order 10−7. So ln0.1732568<−1.75297.

Thearctan function is much harder to deal with. Because of that, terms 4 and 5 are never
taken here with more than 6 decimals. Besides [1], we can use the following formulae to
computearctanwith more exact decimals:

arctan(x+h) = arctanx+arctan
h

1+hx+x2 ,

and

arctanx =
∞

∑
n=0

22n(n!)2

(2n+1)!
x2n+1

(1+x2)n+1 .

This rapidly converging series is due to Castellanos (see details in [2]). For instance, we can
usex = 0.4159 andh = 0.000088 to compute arctan0.415988> arctan0.4159+ arctan(7.5 ·
10−5) > 0.39421.

The readers who prefer a dynamical verification of our assertions are invited to access
“http://www.ime.unicamp.br/∼valerio/softwares.html” and download “tecrep6103.m” for Mat-
lab. The programme computestermn for each integral studied here. One can follow each
Lemma and Equation number in this report at the corresponding step by running the software.
Before running the programme, we suggest the reader to fit the command line window into the
whole left-hand side of the screen.

1. First Approach

In this section we make some upper and lower estimates of elliptic integrals like
∫

tn/2/P
1
2 ,

wheren∈ N andP = QR2 for trinomialsQ andR. We make strong use of Lemma 2.1 in [3]
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and shall refer to the equations there as ((5)), ((6)), etc.

Proposition 1.1.The following inequalities hold:

J1 :=
∫ 1

0

t
1
2 dt

(t2 +0.1t +1)
1
2 (t2 +0.15t +1.06)

> 0.3774; (1)

J2 :=
∫ 1

0

t
1
2 dt

(t2 +0.1t +1)
1
2 (1+0.15t +1.06t2)

> 0.3895; (2)

J3 :=
∫ 1

0

2dt

(t4 +0.1t2 +1)
1
2 (t4 +0.15t2 +1.06)

< 1.49845; (3)

J4 :=
∫ 1

0

t3/2dt

(t2 +0.1t +1)
1
2 (1+0.15t +1.06t2)

< 0.19961. (4)

Proof

¿From ((5)) it follows that

J1

2
>

∫ 1

0

t2[−0.31t2 +1+0.2555t2(t2−1)2]dt
t4 +0.15t2 +1.06

. (5)

The numeratorp1 of the integrand at (5) is bigger than

p2 := (0.2555t4−0.549325t2−0.24293125)(t4 +0.15t2 +1.06)+1.6187t2 +0.2575.

Therefore,

J1 >−0.7498799̇3+
∫ 1

0

3.2374t2 +0.515
t4 +0.15t2 +1.06

dt. (6)

If α, β, A andB are real numbers withA2 < 4B, then∫ (αt2 +β)dt
t4 +At2 +B

=
αb−β

4ab
ln

(
t2−at+b
t2 +at+b

)
+

αb+β
2bc

(
arctan

2t−a
c

+arctan
2t +a

c

)
, (7)

wherea = (−A+2B
1
2 )

1
2 , b = B

1
2 andc = (A+2B

1
2 )

1
2 . We use this and (6) to conclude that

J1 >−0.74988+0.495254ln0.18991+1.25734(arctan0.415988+arctan2.2752). (8)

We finally conclude thatJ1 > 0.3774. In the case ofJ2 we have

J2

2
> 0.943396

∫ 1

0

t2[−0.31t2 +1+0.2555t2(t2−1)2]dt
t4 +0.14151t2 +0.9434

. (9)
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The numerator of the integrand at (9) is againp1, which is bigger than

p3 := (0.2555t4−0.54716t2−0.218111)(t4 +0.14151t2 +0.9434)+1.54705t2 +0.20575.

Therefore,

J2 >−0.943396·0.6988+0.943396
∫ 1

0

3.0941t2 +0.4115
t4 +0.14151t2 +0.9434

dt. (10)

By means of (7) and (10) we conclude that

J2 +0.65925
0.943396

> 0.4974591ln0.1899149+1.218369(arctan0.45576+arctan2.31501),

and finally one hasJ2 > 0.3895. Now we use ((6)) in order to get

J3

2
<

∫ 1

0

[−0.39t2 +1.07385+0.24(t2−0.65)3]dt
t4 +0.15t2 +1.06

. (11)

Since the numeratorp4 of (11) is equal to

p5 := (0.24t2−0.504)(t4 +0.15t2 +1.06)−0.2646t2 +1.54218,

we now use (7) to conclude that

J3 <−0.848−0.637795ln0.1899+0.82977(arctan0.416+arctan2.27524),

which finally gives usJ3 < 1.49845. In the case ofJ4 we have

J4

2
< 0.9434

∫ 1

0

t4[−0.39t2 +1.07385+0.24(t2−0.65)3]dt
t4 +0.1415t2 +0.9433

. (12)

The numerator of (12) ist4p4 =: p6, which is smaller than

p7 :=(0.24t6−0.50196t4−0.24116t2+1.5156)(t4+0.1415t2+0.9433)+0.01304t2−1.4296.

We now use (7) to conclude that

J4 < 0.9434[2.7382141+0.553269ln0.18992−1.010599(arctan0.4558+arctan2.315)],

henceJ4 < 0.19961.
q.e.d.
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2. Second Approach

In this section we make further evaluations by upper and lower bounds, this time for simpler
elliptic integrals like

∫
tn/2/P

1
2 , wheren∈ N andP = QR2 for binomialsQ andR. Lemma 2.1

in [3] will be again strongly referred to, and its equations indicated by ((7)), ((8)), etc.

Proposition 2.1.The following inequalities hold:

J5 :=
∫ 1

0

2t2dt

(t4 +1)
1
2 (t4 +0.7164)

> 0.5442; (13)

J6 :=
∫ 1

0

t
1
2 dt

(t2 +1)
1
2 (1+0.7164t2)

> 0.4521; (14)

J7 :=
∫ 1

0

2dt

(t4 +1)
1
2 (t4 +0.7164)

< 2.20891; (15)

J8 :=
∫ 1

0

t3/2dt

(t2 +1)
1
2 (1+0.7164t2)

< 0.24097. (16)

Proof

¿From ((7)) it follows that

J5

2
>

∫ 1

0

t2[−0.293t2 +1+0.22t2(t2−1)(t2−1.22)]dt
t4 +0.7164

, (17)

and the numeratorp8 of (17) is bigger than

p9 := (0.22t4−0.4884t2−0.18221)(t4 +0.7164)+1.34988t2 +0.13053.

Therefore,

J5 >−0.60202+
∫ 1

0

2.69976t2 +0.26106
t4 +0.7164

dt. (18)

Now we apply (7) to (18) and get

J5 >−0.60202+0.45949ln0.173257+1.156(arctan0.53718+arctan2.53718),

which finally impliesJ5 > 0.54424. In the same way one has

J6

2
> 1.395868

∫ 1

0

t2[−0.293t2 +1+0.22t2(t2−1)(t2−1.22)]dt
t4 +1.396

, (19)
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and the numerator of (19) is againp8, which is bigger than

p10 := (0.22t4−0.4884t2−0.33172)(t4 +1.396)+1.6818t2 +0.46308.

It follows that

J6 >−1.395868·0.90104+1.395868
∫ 1

0

3.3636t2 +0.92616
t4 +1.396

dt,

and from (7) we have

J6 > 1.395868[−0.90104+0.4195446ln0.173258+1.34901(arctan0.301+arctan2.301)].

Therefore,J6 > 0.45211. RegardingJ7, from ((8)) we have

J7

2
<

∫ 1

0

[−0.3766t2 +1.08471+0.22(t2−1)(t2−0.6)2]dt
t4 +0.7164

, (20)

and the numeratorp11 of (20) is smaller than

p12 := (0.22t2−0.484)(t4 +0.7164)−0.191t +1.35225.

It follows that

J7 <−0.821̇3+
∫ 1

0

−0.382t2 +2.7045
t4 +0.7164

,

and from (7) we have

J7 <−0.821̇3−0.687368ln0.173257+1.08113365(arctan0.5372+arctan2.5372),

which finally impliesJ7 < 2.20891. Now we use ((8)) once more to get

J8

2
< 1.39587

∫ 1

0

t4[−0.3766t2 +1.08471+0.22(t2−1)(t2−0.6)2]dt
t4 +1.3958

, (21)

of which the numerator ist4p11 =: p13, and this latter is smaller than

p14 := (0.22t6−0.484t4−0.34047t2 +1.68108)(t4 +1.3958)+0.47524t2−2.346445.

Because of that we have

J8 < 1.39587·3.00444+1.39587
∫ 1

0

0.9505t2−4.6928
t4 +1.3958

dt, (22)

which implies

J8 < 1.39587[3.00444+0.800597ln0.1732568−0.982848(arctan0.3011+arctan2.3011)].

6



This finally gives usJ8 < 0.24097.
q.e.d.

3. Third Approach

We now deal with much heavier kinds of integrals like
∫

RQ±1/2, in whichR is rational and
Q is a trinomial. All lower and upper approximation formulae from [3] will be frequently used.

Proposition 3.1.The following inequalities hold:

J9 :=
∫ 1

0

(t4−0.1t2 +1)−
1
2

(t2−0.1)2 +0.7164
(1− t2)dt < 0.8645; (23)

J10 :=
∫ 1

0

t2(t4 +1)−
1
2

1+1.06t4 (1− t2)dt > 0.1005; (24)

J11 :=
∫ 1

0

[−0.15− t2 +0.7222(1+ t2 + t4)]
(1+1.06t4)(t4 +1.06)

(t4−0.1t2 +1)
1
2 dt > 0.443; (25)

J12 :=
∫ 1

0

[
1

t4 +1.06
+

t4

1+1.06t4

]
dt

(t4 +1)
1
2

> 0.8812; (26)

J13 :=
∫ 1

0

t2(t4−0.1t2 +1)−1/2

(t2−0.0764)2 +0.7164
dt < 0.3018; (27)

J14 :=
∫ 1

0

t2(t4−0.1t2 +1)−1/2

(1−0.0764t2)2 +0.7164t4dt < 0.24994. (28)

Proof

¿From ((17)) it follows that

J9 < 0.473−1
∫ 1

0

(t4−0.2t2 +2.11416)−1(1− t2)
t4−0.2t2 +0.7264

dt <

1.52344
∫ 1

0

(
1− t2

t2−0.2+0.7264
+

t2−1
t2−0.2+2.11416

)
dt.

We now use (7) in order to get

J9

1.52344
<−0.3937ln0.14609+0.070645(arctan0.505403+arctan2.75561)+

0.2393ln0.16388+0.09488(arctan0.14405+arctan2.28667).
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henceJ9 < 0.86444. Now we use ((7)) to obtain

1.06J10 >
∫ 1

0

p8(1− t2)
t4 +0.9434

dt,

andp8(1− t2) =: p15 is bigger than

p16 := (−0.22t6 +0.7084t4−0.2563t2−1.693)(t4 +0.9434)+1.2417t2 +1.597.

Therefore, from (7) it follows that

1.06J10 >−1.6682−0.072198ln0.17163+1.03529(arctan0.43496+arctan2.43496),

soJ10 > 0.1005. Regarding (25), we first use the fact that

1
(1+1.06t4)(t4 +1.06)

>
1.06−1

0.1166

(
1

t4 +0.9434
− 1

t4 +1.06

)
,

and apply it together with ((17)) in order to obtain

1.06·0.1166J11 > 0.03983−
∫ 1

0

0.146t2 +0.0853
t4 +0.9434

dt+
∫ 1

0

0.1202t2 +0.1242
t4 +1.06

dt.

¿From (7) it follows that

0.123596J11 > 0.03983− [0.0104ln0.171625+0.0838814(arctan0.435+arctan2.435)]+

0.083916(arctan0.39376+arctan2.39376).

Because of that,J11 > 0.44301. Now, from ((7)) we have

J12 >
∫ 1

0

(
1

t4 +1.06
+

t4

1+1.06t4

)
[−0.293t2 +1+0.22t2(t2−1)(t2−1.22)]dt.

Therefore,

J12 > 0.873159+
∫ 1

0

(
1

t4 +1.06
− 0.89

t4 +0.943

)
(0.22t6−0.4884t4−0.0246t2 +1)dt

> 0.8275+0.89
∫ 1

0

0.232t2−1.4606
t4 +0.943

dt+
∫ 1

0

−0.2578t2 +1.5177
t4 +1.06

dt.

¿From (7) it follows that

J12 > 0.8275+0.89[0.31144ln0.171625−0.4564013(arctan0.43512+arctan2.43512)]+

−0.3017ln0.1716244+0.423815(arctan0.39376+arctan2.39376).
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HenceJ12 > 0.8812. Now we analyseJ13 and use ((17)) to assert that

J13 <
∫ 1

0

t2(0.473t4−0.0946t2 +1)−1

(t2−0.0764)2 +0.7164
dt <

2.114165
1.928678

∫ 1

0

(
1.3918t2−0.0472·0.7222

t4−0.1528t2 +0.7222
− 1.3918t2−0.0472·2.114

t4−0.2t2 +2.114

)
<

1.0962
∫ 1

0

(
1.3918t2−0.034

t4−0.1528t2 +0.7222
− 1.3918t2−0.1

t4−0.2t2 +2.114

)
.

¿From (7) it follows that

J13

1.0962
< 0.2629977ln0.15223+0.543446(arctan0.51375+arctan2.70241)+

−0.2071237ln0.16387−0.40199(arctan0.144+arctan2.28669),

thusJ13 < 0.3018. Finally, by using again ((17)) we have

J14 <
∫ 1

0

t2(0.473t4−0.0946t2 +1)−1

0.7222t4−0.1528t2 +1
dt <

1.384658
2.114165

0.534

∫ 1

0

(
0.7294t2 +0.0116·1.3846

t4−0.2116t2 +1.3846
− 0.7294t2 +0.0116·2.114

t4−0.2t2 +2.114

)
<

5.48201401
∫ 1

0

(
0.7294t2 +0.0161

t4−0.2116t2 +1.3846
− 0.7294t2 +0.0245

t4−0.2t2 +2.114

)
.

¿From (7) it follows that

J14 < 5.48201401[0.111722ln0.1522+0.253875(arctan0.27226+arctan2.46095)+

−0.10105ln0.16387−0.226744(arctan0.144065+arctan2.28669)],

thusJ14 < 0.249935.
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