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Abstract

We make use of polynomial approximations and get accurate estimates of elliptic integrals.
The estimates differ from exact values by very small errors, some of order 0.05% (or even less).
The methods explained here can also be used to prove transcendental inequalities.

0. Introduction

Elliptic integrals come out very frequently in the study of complex-based theories like Min-
imal Surfaces, Algebraic Curves, Riemann Surfaces, Quantum Physics and many others. In
order to reckon these integrals, one either tries to use handbooks or special functions, but in
both cases without the guarantee of finding the answer. Moreover, before trying these two al-
ternatives, one generally has to make simplifications like changes of variable, integration by
parts, and so on. Once again, this procedure can be fruitless, for either the integrals cannot be
simplified or even so they lack in handbooks.

Depending on the research area, elliptic integrals are not allowed to be evaluated by com-
puter softwares without the appropriate theoretical error estimates. We refer the red&jer to [
for a brief explanation about different kinds of errors. Among them,inkegration method
error is the hardest one to evaluate, and this task frequently turns out to be unpractical. There
are several reasons for not trusting numerically computed integrals, and some arguments were
already discussed 18], [4] and [B].

This Technical Report deals with an alternative for the evaluation of elliptic integrals by
means of very accurate polynomial approximations. In other words, diiewhich cannot
be usually computed, we take polynomiglandq to approximatef by two rational functions
r andR, in such a way that < f < R throughout the whole integration interval. We shall
haver > 0O for all cases studied here, which is a mild restriction, since one can simply add



integrals over disjoint intervals. Of course, the inequality f < R must be formally proved,

max{ded p),degq)} should not be too high, and the relative erféR—r)/ [ (R+r) must be

of very small order (5% or even less). In this present work we use polynomial estimates

already proved in3] and deal with single evaluations, nameigher [ f > [ror [f < [R.
Moreover, most of the estimating rational integrals in this report can be reckoned by Equa-

tion (7). The final numeric expression is given by

(termy) In(termy) + (termg)[arctariterm) + arctarterms)],

whereterm, is real for everyn. Since all computations presented here can be verified by hand,
the estimates takierm, with finite decimal part. At this point it is important to remark that
(X,¥) € (X, X) x (y,Y) C R4+ x (0,1) impliesXIny < XIny < xInY. But how many decimals
shouldterm, have? In factterny is allowed to have 4 decimals or more (up to 7 in this
work), because of the logarithm algebraic properties. For instance, right after Equation (22)
we have an expression with I¥32568= —7In10+ 3In2+In216571. Now In21657%
€+1In2165712=¢—1In10+4In2+1In3+1n45119. In L] we have tables of logarithm with 15
exact decimals, while is of order 107. So InQ1732568< —1.75297.

Thearctanfunction is much harder to deal with. Because of that, terms 4 and 5 are never
taken here with more than 6 decimals. BesidHs Jve can use the following formulae to
computearctanwith more exact decimals:

h
arctar{x+ h) = arctarx+ arctan———;,
1+ hx+x2

and
00 22n(n! )2 X2n+1
arctarx = .
n; (2n+1)! (1+x2)nHL

This rapidly converging series is due to Castellanos (see detail$)inHor instance, we can
usex = 0.4159 andh = 0.000088 to compute arctard15988> arctan 04159+ arctar{7.5-
107°) > 0.39421.

The readers who prefer a dynamical verification of our assertions are invited to access
“http://www.ime.unicamp.brlvalerio/softwares.html” and download “tecrep83.m” for Mat-
lab. The programme computésrm, for each integral studied here. One can follow each
Lemma and Equation number in this report at the corresponding step by running the software.
Before running the programme, we suggest the reader to fit the command line window into the
whole left-hand side of the screen.

1. First Approach

In this section we make some upper and lower estimates of elliptic integralﬁtﬁK%/P%,
wheren € N andP = QR for trinomialsQ andR. We make strong use of Lemma 2.1 Bj |



and shall refer to the equations there as ((5)), ((6)), etc.

Proposition 1.1.The following inequalities hold

1 tzdt
= / : > 0.3774; 1)
0 (t2+0.1t+1)2(t2+0.15 + 1.06)
1 tzdt
gy = / i > 0.3895; 2)
0 (t2+0.1t+1)2(1+ 0.15 + 1.062)
1 2dt
P / i < 1.49845; 3)
0 (t4+0.1t2+41)2 (t4+0.152 + 1.06)

t3/2dt

1
P / : <0.19961 )
0 (t240.1t+1)2(1+0.15 +1.06t2)

Proof

¢From ((5)) it follows that

()

A >/1t2[—0.3112+1+0.25532(t2—1)2]dt
2 " Jo t4+0.152+1.06

The numeratop; of the integrand at (5) is bigger than
p2 := (0.2558* — 0.54932%° — 0.24293125(t* 4 0.15:2 + 1.06) + 1.618%% + 0.2575

Therefore,
1 3.2374%2+0.515

t4+0.152+1.06
If a, B, AandB are real numbers with? < 4B, then

(at?+B)dt ab—BIn (tz—ater) ab+pB

(6)

7> —0.7498793 + /
0

2t—a 2t+a
"1 AR+B  4ab \tZrat+b)  2bc <arCtarT + amarT) - 0
wherea= (—A+ ZB%)%, b= Bz andc = (A+ ZB%)%. We use this and (6) to conclude that
J1 > —0.74988+0.495254|n 018991+ 1.25734 arctan 0415988+ arctan 22752).  (8)
We finally conclude thaf; > 0.3774. In the case gk we have

112[—0.31t% + 1+ 0.255582(t%> — 1)?|dt
t440.141512 + 0.9434

2 0.943396/
0

: ©)
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The numerator of the integrand at (9) is agpinwhich is bigger than
ps := (0.2553% — 0.54716° — 0.218111(t* + 0.14151% 4 0.9434) + 1.5470%° + 0.20575
Therefore,

1 3.094%2+0.4115
—0.943396 0.6988-+ 0.943396 dt. 10
J2 > + /ot4—1—0.141512—|—0.9434 (10)

By means of (7) and (10) we conclude that

J>+0.65925

0.943396 0.4974591In 01899149+ 1.218369arctan 045576+ arctan 231500,

and finally one hag, > 0.3895. Now we use ((6)) in order to get

17 2 2 _ 3
s _ / 0392 + 1.07385+ 0.24(t2 - 0.65)%dt an
0

2 t4+0.1%2+1.06

Since the numeratqgs, of (11) is equal to
ps := (0.24t> — 0.504)(t* + 0.15t% + 1.06) — 0.26462 + 1.54218
we now use (7) to conclude that
J3 < —0.848—0.637795In 01899+ 0.8297(arctan 0416+ arctan 227524,
which finally gives usj; < 1.49845. In the case g we have

1t4]-0.3%2 + 1.07385+ 0.24(t2 — 0.65)3|dt
t44 0.14182 4 0.9433

% 0.9434 /
2 0

(12)

The numerator of (12) i€*'ps =: ps, Which is smaller than
p7:=(0.24:°—0.50196% —0.24116%+1.5156)(t* +0.14152+0.9433 +0.01304% — 1.4296
We now use (7) to conclude that
J4 < 0.94342.7382141+ 0.553269In018992— 1.010599arctan 04558+ arctan 2315)],

hencef, < 0.19961.
g.e.d.



2. Second Approach

In this section we make further evaluations by upper and lower bounds, this time for simpler
elliptic integrals Iikeft”/z/P%, wheren € N andP = QR for binomialsQ andR. Lemma 2.1
in [3] will be again strongly referred to, and its equations indicated by ((7)), ((8)), etc.

Proposition 2.1. The following inequalities hold

2t?dt
/ > 0.5442; (13)
(t4+1)2(t4+0.7164)

> 0.4521; (14)
(t2+1)2(140. 71642)

(t4+1)2 t4+0 7164
t3/2dt

< 0.24097 (16)
(t2+1)2(1+0.71642)

=)

< 2.20891; (15)
=
w= )

Proof

¢From ((7)) it follows that

s /1 t2[—0.2932 + 1+ 0.222(t2 - 1)(t? - 1.22)]dt’ a7
2 0 t4+0.7164
and the numeratqgpg of (17) is bigger than
po := (0.222* —0.48842 — 0.18221) (t* + 0.7164) + 1.34988> + 0.13053
Therefore,
5> —0.60202+ /O ' 269235&;)‘6246106 (18)
Now we apply (7) to (18) and get
J5 > —0.60202+ 0.45949In 0173257+ 1.156(arctan 053718+ arctan 253718,
which finally implies s > 0.54424. In the same way one has
]26 o1 395868/1 t2[—0.2932 + 1+t2.—2k2]:_:2:§§6_ 1)(t2 - 1.22)]dt’ (19)



and the numerator of (19) is aggig, which is bigger than
p1o:= (0.22t* —0.4884% — 0.33172(t* + 1.396) + 1.68182 + 0.46308

It follows that

13.36362+0.92616 it
t4+1.396 ’

Js > —1.395868 0.90104+ 1.395868/
J0O

and from (7) we have
J6 > 1.395868—0.90104+ 0.4195446In 0173258+ 1.34901arctan 0301+ arctan 2301)].

Therefore % > 0.45211. Regardingy, from ((8)) we have

I _ /l [~0.37662 4-1.0847 14 0.22(t? — 1)(t? — O.G)Z}dt, (20)
2 0 t4+0.7164
and the numeratqpy of (20) is smaller than
p12:= (0.224% — 0.484)(t* +0.7164) — 0.191t + 1.35225
It follows that . | 0,387+ 27045
h< —O.8213+/0 07164
and from (7) we have
97 < —0.8213—0.687368In 0173257+ 1.0811336%arctan 05372+ arctan 25372),
which finally impliesf; < 2.20891. Now we use ((8)) once more to get
% - /01 t4[—0.37662 + 1.08:17j1;(;.92§ét2 —1)(t? — 0.6)2]dt’ 21)

of which the numerator ig*p11 =: p13, and this latter is smaller than
p14:= (0.22° — 0.484% — 0.340472 + 1.68108 (t* + 1.3958 + 0.475242 — 2.346445

Because of that we have

10.95052 - 4.6928
22
t4+1.3958 at, (22)

95 < 1.39587- 3.00444+ 1.39587 / '
0
which implies

Js < 1.395873.00444+ 0.800597In 01732568 0.98284&arctan 03011+ arctan 23011)].
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This finally gives usfg < 0.24097.
g.e.d.

3. Third Approach

We now deal with much heavier kinds of integrals likRQ*/2, in whichRis rational and
Qis atrinomial. All lower and upper approximation formulae fraBhwill be frequently used.

Proposition 3.1. The following inequalities hold

ol -0+ 1)z 5 _
% ._/ 0175 o71ea )t < 08645 (23)
L1 2 .
1[-0.15—t?+0.7222A1 +t? +-t%)] , 5 a1
= t4 — 0.1t% + 1)2dt > 0.443; 2
T / (Ir106%) @106 ¢ oW HDrdi>0443 (29
1 1 t dt
= .8812; 2
2 /o [t4—|—1.06+1+1.06t4 (t+1)3 > 08812 (26)

12t —0.212+1)"1/2
— dt < 0.3018; 27
= /o(t2—0.0764)2+0.7164 < ! 27

1 t2(t4—0.1t2+1)_1/2
= dt < 0.24994 28
Sus /o (1-0.0764%)21 0.71644° " (28)

Proof

¢From ((17)) it follows that

4021242114161 t?)

dt
t4_0.2t210.7264 <

1t
9o < 04731 / (
0

1 52344/l 1t -1 dt
: o \i2-02107264 2_021211416)%"

We now use (7) in order to get

Jo
1.52344

0.23931In 016388+ 0.09488 arctan 014405+ arctan 228667).

< —0.3937In014609+ 0.07064%arctan 05605403+ arctan 275561 +
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hencefy < 0.86444. Now we use ((7)) to obtain

1 _ 2
pg(1—t°) dt.

1
06710 > /o t4+0.9434

andpg(1—t?) =: p1sis bigger than
p1s:= (—0.22t°+0.7084* — 0.2563% — 1.693)(t* +0.9434) + 1.241 %% + 1.597.
Therefore, from (7) it follows that
1.06710 > —1.6682—0.072198In 017163+ 1.03529 arctan 043496+ arctan 243496,

S0 %10 > 0.1005. Regarding (25), we first use the fact that

1 . 1061 1 1
(1+1.06:4)(t4+1.06) = 0.1166\t*+0.9434 t4+1.06)’
and apply it together with ((17)) in order to obtain

10.1462+0.0853 /1 0.12022+0.1242
0

1.06-0.1166;; > 0.03983— dt.
Vi1 > /o t410.9434 %1+ 1.06

¢ From (7) it follows that
0.123596);1 > 0.03983— [0.0104In0171625+ 0.0838814arctan 0435+ arctan 2435)]+

0.08391Garctan 039376+ arctan239376.
Because of thatf;; > 0.44301. Now, from ((7)) we have

1 1 t4
~0.293% + 1+ 0.224%(t? — 1) (t*> — 1.22)]dlt.
j12>/0 <t4+1.06+l+1.06t4>[ +1+ (= 1)( )

Therefore,

1 B 0.89
t44+1.06 t4+0.943

1
12> 0.873159+ / < ) (0.22° — 0.4884"% — 0.02462 + 1)dt
0

'10.2322 - 1.4606 1025782415177

827 : .

>08 5+089/O o dt+/0 1ot
¢From (7) it follows that

J12 > 0.8275+0.89[0.311441n 0171625 0.4564013arctan 043512+ arctan 243512+

—0.3017In01716244+ 0.42381%arctan 039376+ arctan 239376 .
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Hence’» > 0.8812. Now we analysé s and use ((17)) to assert that

dt <

g < /1 t2(0.473% - 0.09462 +1)*
13 (t2—0.07642+0.7164

1.928678/o \ t4—0.15282+0.7222 = t4—0.2t2+2.114

10962/1 1.39182-0.034 B 1.39182-0.1
: 0o \t4—-0.15282+0.7222 t4—0.2t2+2.114)°

¢From (7) it follows that

3
1.0962

—0.2071237In016387— 0.40199 arctan 0144+ arctan 228669,

2.114165 1<1.39182—0.0472- 0.7222 1.39182-0.0472 2.114>

< 0.2629977In 015223+ 0.543446arctan 051375+ arctan 270241 +

thus %13 < 0.3018. Finally, by using again ((17)) we have

dt <

g /1 t2(0.473* - 0.09462 4 1)1
14 0.72224 - 0.15282+ 1

1.38465

82.114165/1 0.72942 +0.0116- 1.3846 0.72942+0.0116-2.114
0.534 Jo t4—0.21162+1.3846 t4—0.2t242.114

1 2 5
5.4820140]/ <t 0.7294<+0.0161 0.7294 +0.0245>.
0

4_0.21162+1.3846 t4—0.22+2114
¢ From (7) it follows that

J14 < 5.482014010.1117221In 01522+ 0.25387Farctan 027226+ arctan 246095 +

—0.101051n016387— 0.226 744 arctan 0144065+ arctan 228669,
thus 14 < 0.249935.
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