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Abstract

We show how to get accurate polynomial estimates in a fixed real interval.
We explain the methods used to get theoretical exactness of up to 0.05% for
evaluation of transcendental integrals. A discussion of further applications of
these estimates is also presented.

0. Introduction

Throughout the centuries, all practical problems involving measurement of
sizes, mapping and handling of shapes, tracking of movements and many others,
have been accomplished by no other means but mathematical modelling. Mathe-
matics is, in fact, our utmost approach at predicting, explaining and reproducing
natural phenomena, even if total exactness cannot be reached. Although innu-
merable improvements have been added to mathematical models, one steadily
needs more exactness, and so the modelling enhances with increasing complex-
ity. This is the typical case for Nuclear Physics, Micro-engineerings, Digital
Systems and many others.

Irrational numbers are a simple instance that total exactness cannot be at-
tained in practical life. However, modern computers are equipped to handle
them with overshooting precisions. But some numeric integrations fail to suc-
ceed if one does not previously apply suitable changes of variables:

∫ π
0 sin 1

t dt,∫ e
0 [(1− ln t)/(e− t)]1/2dt, etc. Moreover, in order to assure the exactness of nu-

meric integration, one needs to control some different errors: integration method
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error, truncation error and rounding error. For example, the first one is at
most max[0,1] |f IV|/(180n4) for

∫ 1
0 fdt calculated with Simpson’s Method, with

[0, 1] equally partitioned by n ∈ 2N \ {0}, where f IV is the 4th derivative of f .
Numeric software integration normally works with iteration algorithms which
disregard the method error analysis, a theoretically rather unsafe procedure (see
further comments in [2]). The second kind of error is typical for series that one
truncates in order to compute the approximate sum.

The latter refers to machine precision, because numbers like 1/3 and
√

2 will
be taken with finite decimal part. Some softwares can handle them symbolically,
but sometimes we get residual answers. For instance, the software Matlab 6.0 for
Linux gives (

√
5−1)/4− sin(π/10) ≡ 5.55 ·10−17 in long precision mode. Similar

problems also occur for Mathematica, Maple and others. The rounding error
also refers to the smallest and biggest positive numbers the machine works with.
For example, Matlab 6.0 takes 2−1075 = 0 but 2−1074 > 0. This means that the
computer graph of any f : [0, 1] → IR will never show us what happens between
two “consecutive numbers”. Although in practical problems so much precision
is indeed irrelevant, for Pure Mathematics every assertion must be irrefutably
proved. But what made Mathematics so inexorable in this sense? The reason is
that intuition alone is insufficient to assure the truth about facts. This can be
exemplified by classical problems like the brachistochone, the Peano curve, the
horned sphere, the long line, the differentiable f with nowhere continuous f ′1,
Gödel’s incompleteness theorem, and many others.

For these reasons, when a mathematical model uses transcendental integrals,
we must either evaluate them by controlling all numeric errors or make use of
subtable approximate integrands with explicit primitives. This second choice is
preferable when the theoretical estimate of max[0,1] |f IV| becomes impractical.
In this work we show how to deal with this second alternative through accurate
polynomial approximations. We use them to substitute terms in integrands in
order to get explicit primitives. These primitives give us lower and upper bounds
of the desired transcendental function. For example, from Lemma 1.1 in this
report we have that

P (s) sin s−Q(s) cos s <

∫ s

0

sin tdt√
t2 + 0.1t + 1

< R(s) sin s−S(s) cos s, ∀ s ∈ [0, 1],

where P = 0.7665s2−1.022s−1.5875, Q = 0.2555s3−0.511s2−1.5875s+2.022,
R = 0.72s2 − 0.936s − 1.5258 and S = 0.24s3 − 0.468s2 − 1.5258s + 1.9439. In

1See more about the Köpcke function in [1], p. 228.
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this example our theoretical error is smaller than 0.04%.

The readers who prefer a dynamical verification of our assertions are invited
to access “http://www.ime.unicamp.br/∼valerio/softwares.html” and download
“tecrep60 03.m” for Matlab. The programme does not work with other oper-
ations except addition, subtraction and multiplication of numbers with finite
decimal part. All numbers are shown with 14 decimals in the programme, and
at any expression products altogether never exceed 13 decimals with a sole ex-
ception at Equation 15 (see below). One can follow each Lemma and Equa-
tion number in this report at the corresponding step by running the software.
In this paper, and in the programme, each polynomial inequality like pi > pj

is lastly proved through a term-by-term comparison. That is, we shall have
pi =

∑n
k=0 akit

k > pj =
∑n

k=0 bkjt
k because aki ≥ bkj ∀k with at least one sharp

inequality. Before running the programme, we suggest the reader to fit the com-
mand line window into the whole left-hand side of the screen.

1. First Approach

In this section we obtain some basic inequalities for functions of the form
A

1
2 /B, where both A and B are 2nd-order polynomials with real coefficients.

One works with the special case when A1/2/B is bounded by and quite close to
an affine function in the unitary interval.

Lemma 1.1. The following inequalities hold for t ∈ (0, 1)

(t2 + 1)
1
2

t2 + 0.15t + 1.06
> −0.3001t + 0.94; (1)

(t2 + 1)
1
2

1 + 0.15t + 1.06t2
> −0.37t + 1; (2)

(t2 + 0.1t + 1)
1
2

t2 + 0.7164
< −0.69t + 1.54; (3)

(t2 + 0.1t + 1)
1
2

1 + 0.7164t2
< 1.003; (4)
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Proof

We notice that

p1 := (t2+1)−[(t2+0.15t+1.06)(−0.3001t+0.94)]2 > p2 := −0.09007t6+0.53716t5+

−0.9072972t4 + 0.9150537t3 − 0.814893t3 + 0.3529368t + 0.0071097,

and p2(1) = 0. Hence (1) will hold providing p3 := [p2/(1−t)−0.0071097]/t > 0.
But

p3 > p4 := 0.09t4 − 0.45t3 + 0.46t2 − 0.46t + 0.36,

with p4(1) = 0. Thus, (1) will be valid if p5 := p4/(1 − t) > 0, where p5 =
−0.09t3 + 0.36t2 − 0.1t + 0.36. Since 0.36 > 0.1 > 0.09, then p5 is positive in
[0, 1] and this implies (1).

Now rewrite (2) as

p6 := −0.15382084t6+0.7879298t5−1.18158825t4+1.22638t3−1.0574t2+0.44t > 0

and consider the assertion

p6/t > p7 := −0.187t5 + 0.787t4 − 1.2t3 + 1.22t2 − 1.06t + 0.44 > 0.

The polynomial p7 has a root at t = 1, so we need to show that p8 :=
p7/(1 − t) − 0.007 > 0. Once again p8(1) = 0, so consider p9 := p8/(1 − t) =
−0.187t3 + 0.413t2 − 0.187t + 0.433. Since p9 > (−0.187t + 0.413)(t2 + 1), we
finally conclude (2). Regarding (3), first notice that

(t2 + 0.1t + 1)− (0.69t− 1.54)2(t2 + 0.7164)2 < p10, where

p10 := −0.47t6 + 2.13t5 − 3.05t4 + 3.045t3 − 2.64t2 + 1.2t− 0.215.

One sees that p10(1) = 0, hence consider p11 := p10/(1 − t) + 0.685t5. Once
again p11(1) = 0 and so we take p12 := p11/(5 − 5t). It is not difficult to verify
that

p12 < p13 := (−0.231t2 − 0.085186t− 0.20814)(t− 0.403)2 + 0.00009(t− 1),

which is always negative in [0, 1]. Hence (3) is valid, indeed. It remains to verify
(4), of which the left-hand side takes its maximum at t = T , where 0.07164T 2 −
2T + 1.3328 = 0. Since 0.07164t2 ≥ 0, then T > 0.6664. So the replacement
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1 + 0.7164T 2 = 20T − 12.328 makes sense, namely T is real. By substituting T 2

in (4) we get
2.07164T − 1.325636

20T − 12.328
< 1.0032,

which is true, indeed. If not, we would get −18.04854T ≥ −11.076442952, which
would imply T ≤ 0.614 (contradiction). This means that (4) is also valid.

2. Second Approach

This section is devoted to much finer estimates, which can be applied to get
very small theoretical errors. They can be of order 0.05% or even less, depe-
dending on the use of these approximations. A little difference between positive
functions can give a much smaller difference for their integrals.

Lemma 2.1 For t ∈ (0, 1) the following equations hold:

(t2 + 0.1t + 1)[−0.31t + 1 + 0.2555t(t− 1)2]2 =: p14 < 1; (5)

(t2 + 0.1t + 1)[−0.39t + 1.07385 + 0.24(t− 0.65)3]2 =: p20 > 1; (6)

(t2 + 1)[−0.293t + 1 + 0.22t(t− 1)(t− 1.22)]2 =: p27 < 1; (7)

(t2 + 1)[−0.3766t + 1.08471 + 0.22(t− 1)(t− 0.6)2]2 =: p30 > 1; (8)

Proof

A thorough computation shows that

p15 :=
1− p14

t
> p16 := −0.0653t7 + 0.25459t6 − 0.27244t5 − 0.329t4

+0.72908t3 − 0.3558t2 + 0.0299t + 0.00897, (9)

which is divisible by (1− t). We have

p16

1− t
= 0.0653t6−0.18929t5+0.08315t4+0.41215t3−0.31693t2+0.03887t+0.00897.

Now observe that

p17 :=
p16

1− t
> (t− 0.4433)2p18 − 0.0004272t + 0.0004274 =: p19, (10)

where p18 := 0.0653t4 − 0.1317t3 − 0.0473t2 + 0.396t + 0.04345. Since 0.396 >
0.1317 + 0.0473, then p18 > 0 in [0, 1]. This proves (5). Now we have that

p21 := p20 − 1 > (t− 0.7645)2p22 − 0.00057t + 0.00063 =: p23 (11)
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where p22 := 0.0576t6−0.1309t5−0.0209t4+0.4018t3−0.0754t2−0.0526t+0.0262.
This polynomial has the following property:

p24 := p22 − 0.0576t6 > (t− 0.2935)2p25 − 0.01t + 0.013 =: p26, (12)

where p25 := −0.1309t3 − 0.0978t2 + 0.3556t + 0.1417. Since 0.3556 > 0.1309 +
0.0978, then p25 > 0 in [0, 1]. This proves (6). Regarding (7), first observe that
p28 := (1− p27)/t is such that

p28 > p29 := 0.95t7+0.97t6+1.19t5+0.59t4+0.83t3+1.737t2−0.412t+2.12, (13)

which is always positive in [0, 1]. This proves (7). Finally observe that

p30 − 1 > (t− 0.309)2p31 + 0.76 · 10−4(1− t) =: p32, (14)

where p31 := 0.0484t6− 0.18305t5 +0.15t4 +0.3715t3− 0.5374t2 +0.04t+0.1148.
In order to simplify our further analyses, we shall take p31 > p33 := 0.048t6 −
0.184t5 + 0.15t4 + 0.37t3 − 0.5374t2 + 0.04t + 0.1148. We have

p33 > (t− 0.9372)2p34, (15)

where

p34 := 0.048t4 − 0.09403t3 − 0.068412t2 + 0.32435t + 0.1306508, (16)

which is always positive in [0, 1]. This concludes the proof of Lemma 2.1.

3. Third Approach

This last section exemplifies how we can increase exactness by further re-
finements in our approximations. The following lemma shows a two-step way of
getting increasingly close to

√
t2 − 0.1t + 1 by lower bounding polynomials.

Lemma 3.1 For t ∈ (0, 1) the following equations hold:

p35 := [(t2 − 0.1t + 1)− (0.473t2 − 0.0946t + 1)2]/t > 0; (17)

p37 := p35 − 0.132(t + 0.55)(1− t2) > 0. (18)

Proof

Consider p36 := (p35 − 1.344 · 10−5)/(1 − t). Since all coefficients of p36 are
positive, then (17) holds. Now take p38 := (p37 − 1.344 · 10−5)/(1− t). We have
103 · p38 > 90t2 − 71t + 16, with no real roots, which implies (18).
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