
A new choice for the forcing term and a global convergent inexact

Newton method

Márcia Aparecida Gomes-Ruggiero ∗ Véra Lucia Rocha Lopes †

Julia Victoria Toledo-Benavides ‡

Abstract

Inexact Newton methods for solving F (x) = 0, F : D ⊂ IRn → IRn with F ∈ C1(D),where
D is an open and convex set, find approximation to the step sk of the Newton’s systems
J(xk)s = −F (xk), instead of solving this system exactly as done by Newton’s method. This
means that sk must satisfy a condition like ||F (xk) + J(xk)sk|| ≤ ηk||F (xk)|| for a forcing
term ηk ∈ [0, 1] ([7]). Many authors have presented possible choices for ηk (see [11]). In
this work, a new choice for ηk is introduced, the new method obtained is globalized by the
introduction of a robust backtracking strategy (see [2], [9]), and its convergence properties
are proved. The numerical performance of the new method is presented by plotting the per-
formance profile of the method as proposed in [10]. The results obtained show a competitive
new inexact Newton method.

Key words: inexact Newton method, forcing term, global convergence, iterative linear
system solver, GMRES.

1 Introduction

Consider the nonlinear system
F (x) = 0, (1)

where F ∈ C1(D, IRn) and assume also that there is x∗ ∈ D such that F (x∗) = 0 with J(x∗)
nonsingular, where J(y) is the Jacobian matrix of F at y. From now on, ‖ · ‖ is a norm in IRn

and also its corresponding matrix norm in IRn×n. Let V (x, r) denote an r-neighborhood of x
and let, for γ > 0,

Lipγ(D) = {g such that ‖g(x) − g(y)‖ ≤ γ‖x − y‖, ∀ x, y ∈ D}.
∗DMA-IMECC-UNICAMP, 13083-970 Campinas, SP, Brazil. This author was supported by FAPESP

(Grant 2000-00375-4), PRONEX - Optimization 76.79.1008-00 and CNPq (Grant 140710/99-0). e-mail: mar-
cia@ime.unicamp.br.

†DMA-IMECC-UNICAMP, 13083-970 Campinas, SP, Brazil. This author was supported by PRONEX - Op-
timization 76.79.1008-00 and FAPESP (Grants 2001-07987-8 and 2001-04597-4). e-mail: vlopes@ime.unicamp.br

‡DMA-IMECC-UNICAMP, 13083-970 Campinas, SP, Brazil. This author was supported by CNPq (Grant
300603/99-1). e-mail: julia@ime.unicamp.br.

1

We will assume further that J is λ−Lipschitzian at x∗, that is, there exists a constant λ > 0,
such that

||J(x) − J(x∗)|| ≤ λ ||x − x∗|| (2)

for x sufficiently close to x∗. Let F have a solution in the open, convex set D ⊂ IRn. The
most popular method for solving problem (1) is Newton’s method. The kth step of this method
consists on: given xk, find sk, the exact solution of

J(xk)s = −F (xk), (3)

where J(x) denotes the Jacobian matrix of F at x. Then,

xk+1 = xk + sk. (4)

It is well known that Newton’s method has local quadratic convergence; however, it has some
drawbacks: at each iteration the Jacobian matrix at xk must be computed and the solution of the
linear system (3) is required. Therefore, Newton’s method may be computationally expensive.
To get rid of these drawbacks, several modifications of Newton’s method were proposed in the
last 40 years, such as the quasi-Newton methods, the discrete Newton’s method and the inexact
Newton methods.

At each iteration, instead of solving (3), the quasi-Newton methods solve Bks = −F (xk),
where Bk is an approximation of J(xk) chosen in a specific way.

A very common way to choose Bk is to update these matrices imposing the secant equation

Bk+1sk = yk = F (xk+1) − F (xk). (5)

With this approximation, there is no need to compute derivatives and, in some cases, the solution
of the linear systems is simplified. However, there is a price to be paid: the convergence of quasi-
Newton methods is at most superlinear. Some well-known methods of this class are Broyden’s
method [4], the Column-Updating method, [13], [14], [19] and the Inverse Column-Updating
method [18], [20].

Another modification of Newton’s method is given by the discrete Newton’s method. In
this case the system (3) is solved with the Jacobian matrix approximated by finite differences.
This process requires n extra function evaluations by iteration, since now each column of Bk is
obtained by

(Bk)j =
F (xk + hej) − F (xk)

h
, 1 ≤ j ≤ n,

where ej is the jth vector of the canonical basis of IRn. Choosing conveniently the size of h,
and assuming some other properties on F , quadratic convergence can be obtained. In the case
of large-scale sparse systems with a convenient sparsity pattern, the computation of Bk can be
simplified by means of the following strategy, proposed by Curtis, Powell and Reid, [6]. The
columns of Bk are separated in p groups and just one function evaluation is used to update a
whole group. The condition imposed on the columns to belong to a group is that they have
all their nonzero entries in different lines. This finite difference way of approximating J(xk) in

2

general means a significant decrease in the total number of function evaluations for large scale
structured systems. See also [12] and [21].

The idea of inexact Newton methods is different from the ones previously cited. For solving
F (x) = 0, F : D ∈ IRn → IRn with D an open, convex set and F ∈ C1(D) with an inexact
Newton method, the step sk in the kth iteration of the Newton’s method (called an outer
iteration) is found approximately, by applying an iterative linear system solver, whose iterations
are called inner iterations. Solving approximately means that sk must satisfy a condition like
||F (xk)+J(xk)sk|| ≤ ηk||F (xk)|| for a forcing term ηk ∈ [0, 1) ([7]). As an iterative linear system
solver, the most popular method used is the Generalized Minimum Residual (GMRES), [23].

Inexact Newton methods are the subject of this work. We make a brief description of the most
used choices for the forcing term ηk, as were proposed by Eisenstat and Walker in [11]. A new
choice is then introduced and its geometrical motivation is presented, as well as the algorithm
incorporating a globalizing backtracking strategy. These subjects compose Section 2 as well
as convergence results and their proofs. In Section 3 we present and analyze the numerical
performance of this new inexact Newton method. This is done by plotting the performance
profile [10] of the new method, in comparison with the ones proposed in [11]. Finally we make
some comments and present some conclusions, in Section 4.

2 The New Method

The inexact Newton method proposed in this work introduces a new way of choosing the forcing
term ηk initially motivated geometrically. In the algorithm a backtracking strategy is incorpo-
rated, increasing its robustness. These features of the method will be described and studied in
the next subsections, after a brief review of existing inexact Newton methods.

2.1 About inexact Newton methods

Consider F : D ⊂ IRn → IRn, D an open convex set in IRn and assume also that there is x∗ ∈ D
such that F (x∗) = 0 with J(x∗) nonsigular and λ-Lipschitzian at x∗. Dembo, Eisenstat and
Steihaug [7] proposed an algorithm for an inexact Newton method for finding x∗, which can be
formulated as:

Algorithm 1 (Inexact Newton Method)
Step 1: Choose x0 ∈ IRn, the initial approximation.
Step 2: For k = 1 until “convergence”

step 2.1: Choose ηk ∈ [0, 1) and find sk satisfying

||F (xk) − J(xk)sk|| ≤ ηk||F (xk)||, (6)

using an iterative solver for (3)
Step 2.2: xk+1 = xk + sk

Besides meaning a certain accuracy in solving the system (3), which motivates the denomi-
nation of forcing term, ηk also controls the number of inner iterations to be performed for each

3

outer iteration. Many times, values of ηk close to zero (ηk = 0 is Newton’s method), imply a
large number of iterations of the linear solver for each outer iteration, e. g., when xk is far from
the solution. So, a too small choice of ηk does not guarantee a decrease of ||F (x)||. Eisenstat
and Walker [11] call this fact an “oversolving” of the Newtonian system. Until now, the main
purpose of introducing good choices of ηk is to avoid “oversolvings;” obviously, another purpose
is the achievement of fast local convergence also. In [11] the authors introduce two choices for
ηk which completely accomplish the desired objectives, and they prove convergence results for
both choices.

Their first choice of ηk reflects the agreement between the function and its local linear model:

Choice 1: For α = (1 +
√

5)/2 and η0 ∈ [0, 1),

ηk =
‖F (xk) − F (xk−1) − J(xk−1)sk−1‖

‖F (xk−1)‖
, k = 1, 2, 3, · · · (7)

or

ηk =
| ‖F (xk)‖ − ‖F (xk−1) + J(xk−1)sk−1‖ |

‖F (xk−1)‖
, k = 1, 2, 3, · · · (8)

using as safeguard

ηk = max{ηk, η
α
k−1} each time ηα

k−1 > 0.1. (9)

The formulae (7), (8) reflect in different ways the agreement between the function F and its
linear model at the previous step. The choice of ηk in (8) is at least as small as the one in (7).

The second choice made by Eisenstat and Walker in [11] measures the decreasing factor in
the value of ||F ||:

Choice 2: Given γ ∈ [0, 1], α ∈ (1, 2] and η0 ∈ [0, 1), choose

ηk = γ(
‖F (xk)‖

‖F (xk−1)‖
)α k = 1, 2, (10)

using the safeguard

ηk = max{ηk, γηα
k−1} each time γηα

k−1 > 0.1 (11)

In both cases some other practical safeguards were also used for not allowing ηk to become too
small too fast, which causes oversolving.

Under the standing assumptions on F made at the beginning of this subsection, and assuming
also that F (xk) 6= 0 for all k, the authors in [11] proved superlinear convergence results for the
algorithm with Choice 1, and for the second Choice the convergence is proved to be of q−order
α if γ < 1, and if γ = 1 the convergence is of r−order α and q−order p for every p ∈ [1, α).
The inexact Newton method as presented in Algorithm 1 is a locally quadratically convergent
method. In order to get a globally convergent algorithm a line search is usually introduced with
which xk+1 = xk + αksk, where αk > 0 must be such that a sufficient decrease in ||F (x)|| is
achieved.

4

2.2 The new choice for the forcing term ηk

As was already said, the main concern in the choice of the forcing term has been to avoid inner
oversolvings. Nevertheless, our motivation to look for a new choice of ηk involved also the outer
iterations; they are in general expensive because they need a new evaluation of the Jacobian
matrix and also because for each outer iteration, the line search in the linear solver will require
extra function evaluations, which also contribute for the computational price of the inexact
Newton method. Therefore, we decided to look for a choice of ηk that could deal well with the
inner oversolving and also with the outer oversolving. We call outer oversolving the need for
many outer iterations due to a poor step generated by the linear solver. A new choice for ηk and
the inclusion of a line search, strong enough to minimize both the inner and the outer iterations
were our goal in this work. We then designed a choice for ηk taking into account the relation
between the change in the value of ||F || during one outer iteration and the number of inner
iterations performed to complete an outer iteration. We introduced in the algorithm the global
line search used in [2] and [9], focusing on minimizing both the inner and the outer number of
iterations.

2.3 The geometrical motivation

When trying to choose the next value for η, ηk+1, it seems to be important to consider the
information: the variation in the norm of F , ‖Fk+1‖ − ‖Fk‖ and the computational cost at the
iteration k. Since each inner iteration involves the solution of a linear system and a line search
procedure, we define the computational cost (pricek) as the number of iterations performed
by the iterative linear solver (iterink) plus the number of function evaluations (fevalk), that is
pricek = iterink+ fevalk. Note that both (iterink) and (fevalk) are computed from the beginning
of the process until the step k.

0 20 40 60 80 100 120 140
−10

−8

−6

−4

−2

0

2

4

6

Inner Iterations

lo
g(

|F
(x

k)|
2)

θ

θ

positive angle

negative angle

b
k

a
k

φ
k

Figure 1: Geometrical motivation for choosing ηk and detail of the triangle

We used these measures at the ratio:

ak
√

a2
k + b2

k

, (12)

5

where ak = (log10 ‖Fk+1‖ − log10 ‖Fk‖) and bk = log10(pricek) − log10(pricek−1), seen triangle
ABC in Figure 1, right. This Figure also shows that the ratio (12) is the cosine of the angle θk,
(θk ∈ (−π/2 , π/2)). It seems to be an important ingredient to be used when trying to choose
ηk. If this ratio is small, then we get a significant decrease in ‖F‖ for a comparatively small
cost. In other words, it is advantageous to perform several inner iterations before going to the
outer iteration. On the other hand, if the ratio is large, the inner iterations are not achieving
much, so we should quickly update xk at the outer iteration.

When ||F || increases from one iteration to the next (see Figure 1, left) , θk > 0 and if ‖F‖
decreases, θk < 0. Notice also that θk becomes close to −π/2 when ||F || decreases sharply and
that θk > 0 or too close to 0 means oversolving.

Therefore, our strategy is to tie the choice of ηk to the variations of θk in the following way:
the value of ηk is decreased when θk is close to −π/2; otherwise, its value is increased. Keeping
also in mind the convergence of the algorithm, we introduce our choice:

ηk = [1/(k + 1)]1.1 cos2(θk)
||F (xk)||
||F (xk−1)||

(13)

This choice for ηk consists of three terms. The introduction of the first one, [1/(k+1)]1.1 has the
purpose of yielding a superlinear convergence rate to the algorithm. It is known (see [7]) that
superlinear convergence rate is attained if ηk → 0 when k → ∞. Besides that, this factor consti-
tutes also a weight for the term cos2(θk). Observe that, for the same angle θ, [1/(k+1)]1.1 cos2(θ)
decreases as k increases, ensuring superlinear convergence. The second term, cos2(θk) has the
geometrical motivation already described. We use the power 2 to skip the computation of a
square root and also to accelerate the convergence of the process, since the function cos(x)
decreases very slowly from 1 to 0, when x ∈ [0 , π/2]. Finally, the factor ‖F (xk)‖/‖F (xk−1)‖
has the objective of considering the decreasing rate in ||F || from iteration (k − 1) to iteration
k. Although this expression for ηk is similar to that of Choice 2 from Eisenstat and Walker
([11]), we observe that there exists a crucial difference between them: in our choice γ changes
dinamically during the process, while in Choice 2 of [11] γ remains constant.

2.4 About the line search

The line search used, besides being a global strategy, is intended to avoid outer oversolvings.
This is how it works: let σ ∈ (0, 1), ̺min < ̺max < 1 and {µk} (k = 0, 1, 2, ...) be a sequence of
positive numbers, such that

Σ∞
k=0µk = µ < ∞, (14)

and let x0 ∈ IRn be a initial guess for the solution of F (x) = 0.
Given xk ∈ IRn, the kth approximation to the solution, do

Algorithm 2 (Line Search [2], [9])
Step 1: Compute the search direction sk;
Step 2: ξ = 1;
Step 3:

step 3.1: While
‖F (xk + ξsk)‖ > [1 − ξσ]‖F (xk)‖ + µk, (15)

6

step 3.2: take ξnew ∈ [̺minξ, ̺maxξ],
step 3.3: ξ = ξnew;

Step 4:

step 4.1: ξk = ξ;
step 4.2: xk+1 = xk + ξksk;

This nonmonotone strategy is similar to the one introduced by Li and Fukushima in [17],
but less prone to scaling problems than that.

Observe that this iteration is well defined and that sk is allowed to be equal to zero. As
will be stressed in the section of numerical experiments, an adequate line search improves the
numerical performance of the algorithms.

2.5 The Algorithm

Now we are ready to introduce the new algorithm; its numerical performance is presented in the
section Numerical Experiments. The following assumptions are needed to define the algorithm
and also in the proofs of the convergence results in the next section. Assume that F : IRn → IRn

is continuously differentiable in IRn. Assume also that σ ∈ (0 , 1), 0 < ρmin < ρmax < 1 and
that {µk} is a sequence such that µk > 0 for all k = 0, 1, 2, . . . and

∑∞
k=0 µk = µ < ∞.

Let x0 ∈ IRn be an arbitrary initial point, set k = 0. Given xk ∈ IRn, the kth iterate of the
algorithm and the precision ε > 0, the steps for obtaining the new iterate xk+1 are the following:

Algorithm 3. (Inexact Newton method):
While ‖F (xk)‖2 > ε,
Step 1: Choose ηk;
Step 2: Find sk such that

‖F (xk) + J(xk)sk‖2 ≤ ηk‖F (xk)‖2;

Step 3: xaux = xk + sk and then compute F (xaux). Set ξ = 1.
Step 4: While

‖F (xaux)‖2 > [1 − ξσ]‖F (xk)‖2 + µk, (16)

step 4.1: compute ξnew ∈ [̺minξ, ̺maxξ], and
step 4.2: ξk = ξnew;
step 4.3: xaux = xk + ξksk

Step 5: xk+1 = xaux; k = k + 1;

2.6 Convergence

In this subsection we state and prove convergence results for Algorithm 3. We will not present
the proof for Lemma 2.6.1, because it is basically the same as that of Lemma 1 in [2].

Lemma 2.6.1. Let xk be a sequence generated by Algorithm 3. If, for some sequence of indices
K0 ⊂ {0, 1, 2, . . .}, limk∈K0

F (xk) = 0, then

lim
k→∞

F (xk) = 0.

7

In particular, if x∗ is a limit point of xk such that F (x∗) = 0, then every limit point of the
sequence xk is a solution of (1).

Proof. (See [2])

The proof of the next Lemma is identical to the one of Lemma 2 in [2]; so, we will only state
it, too.

Lemma 2.6.2. Let xk be a sequence generated by Algorithm 3 and assume that all the limit points
of the sequence xk are solutions of (1). Assume also that x∗ is a limit point of xk such that
J(x∗) is nonsingular and

lim
k→∞

‖xk+1 − xk‖ = 0.

Then, the whole sequence converges to x∗.

Proof. (See [2])

We finish this section with the convergence Theorems.

Theorem 2.6.1. Assume that the sequence {xk} is generated by Algorithm 3 and that there exists
M > 0 such that, for an infinite sequence of indices K1 ⊂ {0, 1, 2, . . .},

‖J(xk)sk + F (xk)‖2 ≤ ηk‖F (xk)‖2 (17)

and ‖sk‖2 < M . Then any limit point of the subsequence {xk}k∈K1
is a solution of the system

1. Moreover, if a limit point of {xk} exists, then F (xk) → 0 and every limit point of {xk} is a
solution to 1.

Proof.

Let K2 ⊂ K1 be a sequence of indices such that limk∈K2
= x∗. The proof will be done,

considering two cases. Firstly, let us consider that {ξk}k∈K2
does not tend to 0. In this case,

there will exist a sequence K3 of indices, K3 ⊂ K2 and ξ̄ > 0 such that ξk ≥ ξ̄ > 0, ∀ k ∈ K3.
So, by (16),

‖F (xk+1)‖ ≤ ‖F (xk)‖ + ξ̄σ‖F (xk)‖ + µk, ∀k ∈ K3.

But for all k, including k /∈ K3,

‖F (xk+1)‖ ≤ ‖F (xk)‖ + µk.

Then, adding all these inequalities, we have:

σξ̄
∑

k∈K3

‖F (xk)‖ ≤ ‖F (x0)‖ +
∞
∑

k=0

µk = ‖F (x0)‖ + µ.

Therefore, limk∈K3
= 0 and then, F (x∗) = 0.

8

Let us consider now the second case, in which we assume that limk∈K2
ξk = 0. Taking into

account the way in which ξnew is chosen, for k ∈ K2, k large enough, there exists ξ
′

k > ξ, ξ
′

k ∈
[ξk/ρmax , ξk/ρmin] such that limk∈K2

ξ
′

k = 0 and

‖F (xk + ξ
′

ksk)‖ > ‖F (xk)‖ − ξ
′

kσ‖F (xk‖ + µk.

Then,
‖F (xk + ξ

′

ksk‖ > (1 − ξ
′

kσ)‖F (xk)‖.
So, ‖F (xk + ξ

′

k)sk‖ − ‖F (xk) + J(xk)ξ
′

ksk‖ + ‖F (xk) + J(xk)ξ
′

ksk‖ > (1 − ξ
′

kσ)‖F (xk)‖.

Thus,

‖F (xk + ξ
′

ksk)−F (xk)− J(xk)ξ
′

ksk‖+ ‖ξ′

k[F (xk) + J(xk)sk]‖ − ξ
′

k‖F (xk‖ > (1− σksk)‖F (xk)‖.

Now, by (17),
‖F (xk + ξ

′

ksk) − F (xk) − J(xk)ξ
′

ksk‖ + ξ
′

k‖F (xk)‖ + (1 − ξ
′

k)‖F (xk‖ > (1 − σksk)‖F (xk)‖.

After some algebraic manipulation, we have

ξ
′

k‖F (xk‖(1 − σ) < ‖F (xk + ξ
′

ksk) − F (xk) − J(xk)ξ
′

ksk)‖.
Then,

‖F (xk‖ <
‖F (xk + ξ

′

ksk) − F (xk) − J(xk)ξ
′

ksk)‖
ξ
′

k

. (18)

Now, ‖sk‖ is bounded, {ξ′

k} tends to 0 and F
′
is continuous. These things together imply that

the right-hand side of (18) tends to 0 when k ∈ K2. Therefore, limk∈K2
‖F (xk‖ = 0 and then

F (x∗) = 0. The rest of the proof follows from Lemma 2.6.1.

Theorem 2.6.2. Let all the assumptions of Theorem 2.6.1 hold. If (17) is valid for k large enough,
with limk→∞ ηk = 0, then the convergence of xk to x∗ is superlinear.

Proof.

By Theorem 2.6.1, limk→∞{xk} = x∗. Since ‖sk‖ ≤ M and by the uniform continuity of
J(x), we have that

‖F (xk + sk) − [F (xk) + J(xk)sk]‖ ≤ o(‖sk‖), ∀ k = 0, 1, 2,

So,
‖F (xk + sk)‖ − ‖F (xk) + J(xk)sk‖ ≤ o(‖sk‖),

that is,
‖F (xk + sk)‖ ≤ ‖F (xk) + J(xk)sk‖ + o(‖sk‖) ≤ ηk‖F (xk‖ + o(‖F (xk)‖.

Since ‖F (xk‖ tends to 0,
‖F (xk + sk)‖

‖F (xk)‖
≤ ηk also tends to 0.

9

Thus, for k large enough, ‖F (xk + sk)‖ ≤ (1 − σ)‖F (xk)‖, which means that

‖F (xaux)‖ ≤ (1 − ξσ)‖F (xk)‖ + µk

is true for ξ = 1. Then for k large enough, xk+1 = xk + sk and so,

lim
k→∞

‖F (xk+1)‖
‖F (xk‖

= 0. (19)

Since J(x∗) is nonsingular, there exist c > 0 and C > 0 such that

c‖x − x∗‖ ≤ ‖F (xk‖ ≤ C‖x − x∗‖

for all x close enough to x∗. Then, by (19),

lim
k→∞

‖xk+1 − x∗‖
xk − x∗‖

= 0.

3 Numerical Experiments

3.1 Introduction

In order to test the new algorithm proposed in this work we implemented it and the inexact
Newton algorithms with ηk constant (ηk = 0.01) and with the two choices proposed by Eisenstat
and Walker in [11]; the same global line search strategy described previously was used in all the
tests. We used as test problems three kinds of two-dimensional boundary-value problems, whose
general formulation is:
Find u : Ω = [0, 1] × [0, 1] → IR such that, for λ ∈ IR,

−∆u + h(λ , u) = f(x, y), in Ω (20)

u(x, y) = 0 on ∂Ω. (21)

The real valued function h(λ, u), the values of the parameter λ and the two-variables function
f define different instances of this problem.

We used a grid with 63 interior points in each axis. The unknowns of the discretized system
are the values of u at these grid points. All the derivatives were approximated using central
differences. Replacing in (20) the function and the derivatives by their approximations, and
using the boundary conditions, we obtain a nonlinear system of equations like (20-21), with
dimension 3969 (the total number of grid points).

In sections 3.3 to 3.5, we define the operators and make a comparative analysis, using the
performance profiles of the inexact Newton methods described in Section 2, applied to different
instances of the system in (20) and (21). In all the cases, the boundary condition is u = 0 and
∆ is the Laplacian operator.

10

3.2 Implementation Features

In this section we give more details about the implementation of the algorithms. All the tests
were performed in an Pentium III - 1.0GHz computer, using the software MatLab 6.1. In what
follows, we give details of the implementation of some parts of the method.

• Line search procedure

If the vector xk + ξksk does not give an acceptable decrease in the value of the function, in
the sense of (15), then we compute the new step size as ξnew = 0.5ξk. For the parameter
σ used in the criterion (15), we took σ = 10−4.

• The sequence µk

We define:
ftip(0) = ‖F (x0)‖,
ftip(k) = min{‖F (xk)‖, f tip(k − 1)}, if k is a multiple of 3 and
ftip(k) = ftip(k − 1), otherwise.

Then, we set:

µk =
ftip

(k + 1)1.1
.

• The initial value and safeguards for η.
For all the choices for ηk we set the initial value: η0 = 0.1. For the choices 1 and 2 of [11]
and for the new choice, ηk = min{ηk, 0.1} if k ≤ 3, and ηk = min{ηk, 0.01} if k > 3.
At the final iterations we have adopted the safeguard introduced in [22] which can be
described as: since the linear model is F (x) ∼ F (xk) + J(xk)s, at the final iterations, we
can have: ||F (xk+1)|| ∼ ||F (xk) + J(xk)sk|| ≤ ηk||F (xk)||. In this case it is important to
set ηk such that ηk||F (xk)|| ∼ ε where ε is the precision required for the nonlinear system.
A safeguard which represents these ideas is: if ηk ≤ 2ε then we set ηk = 0.8ε||F (xk)||.

• Stopping criterion

The process is finished successfully if ‖F (xk)‖ ≤ 10−6 and k < 100.

3.3 Performance profile

Introduced by Dolan and Moré, ([10]) in 2002, the “performance profile” is a powerful tool to
compare the performance of ns solvers of a set S when applied to solve np problems of a set
P , using some measure such as the number of function evaluations or the computing time, for
instance. It was applied here to compare the inexact Newton method with the new choice that we
introduced, with the three other choices: the choice with ηk constant (ηk = 0.01) and choices 1
and 2, proposed in [11], which were described in subsection 2.1. We used the performance profile
to compare all the problems tested with four options of measure: the number of inner iterations,
the number of outer iterations, the number of function evaluations and also the elapsed cpu

time.
Let ms,p denote the performance measurement , such as cpu time required to solve problem

p by solver s. For each problem p and solver s the performance ratio rs,p is computed as

11

rs,p =
ms,p

min{ms,p ∀s ∈ S}
if the problem p is solved by solver s; otherwise,

rs,p = rM ,

where rM is a large enough fixed parameter.
Then, for each s ∈ S, the cumulative distribution function ρs : IR → [0, 1], for performance

ratio rs,t, is built:

ρs(t) =
1

np

size{p ∈ P | rs,p ≤ t}.

This function represents the performance of the solver s, it is nondecreasing and piecewise
constant. At the analysis of solver s, the points ρs(1) and t, such that, ρs(t) = 1, give us
important information, Let s be the solver s which gives the maximum value for the function
ρs(1). This solver can solve the maximum number of problems using the minimum number of
the measure m. The efficiency of the solver s in terms of the number of problems that can be
solved is evaluated by the minimum value of t, denoted by ts, such that ρs(t) = 1, if there exists
such value for t < rM . Therefore, the best solver in terms of efficiency will be the solver ŝ for
which tŝ = min{ts,∀s ∈ S}.

3.4 Bratu problem

For the Bratu problem, h(λ, u) = −λeu so our boundary-value problem is:

−∆u − λeu = f(x, y) in Ω, u(x, y) = 0 on ∂Ω. (22)

If f(x, y) ≡ 0 we have the homogeneous problem. In this case, there is a critical value λcrit for
which the problem has two solutions if λ ∈ (0, λcrit) and no solution if λ > λcrit, λcrit ≈ 6.81,
[1]. Based on the formulation of Bratu problem we generated a set of problems by computing
the function f(x, y) in such a way that the exact solution is u∗(x, y) = 10xy(1 − x)(1 − y)ex4.5

(see [16],[9]). In this set of problems, positive values of λ result in a nonlinear system that is
hard to solve [15].

In Figure 2, we show the results obtained when the four algorithms were applied for this
problem with the following values for λ: −1000, −500, −250, −100, −50, −10, 1, 3, 5, 7 and
10. The initial approximations were: x0 = (0, 0, . . . , 0) and a vector whose components were
randomly generated in the interval: [−5, 5], for a total of np = 22 problems. In Figure 2 the
continuous line represents the performance of the new choice for ηk and this choice is indicated
by NC in the legends. The choices 1 and 2 of [11] are indicated by EW1 and EW2 in the legends
and represented at the figures by lines (---) and (.-.-.), respectively. The constant choice
(ηk = 0.01) is represented by C = 0.01 in the legends and by a line (. . .) at the figures. The
measures used for the performance profile analysis are denoted by: minner for the number of
inner iteration; mouter for the number of external iterations; mevalf for the number of function
evaluations and mcpu for the cpu time.

Let us analyze now the important values: ρs(1) and t, such that, ρs(t) = 1 from Figure
2. The new choice solved approximately 20% of the problems with the minimum value when

12

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

Figure 2: Performance profile using the inner and outer iterations, number of function evalua-
tions and cpu time as measures, in clockwise order.

the number of inner iterations and the cpu time where used as measure, and it solved almost
the total set of problems with the minimum number of outer iterations and number of function
evaluations. For these three measures, the new choice achieved ρs(t) = 1 when t = 1.3. Also,
the new choice is the best method in terms of the efficiency when the measures are the number
of inner iterations and the cpu time, because it is the choice that achieves the value 1 for ρs(t)
with the minimum value for t. Even though using the other two measures (the number of outer
iterations and the number of function evaluations), the new choice was not the best, it is still
competitive. The choice with constant value for ηk had a very poor performance for this set of
problems. The choice EW2 had a similar overall performance as that of the choice NC. However,
in the examples that follow, we will see that NC may outperform EW2. The choice EW1 is also
similar to NC in what concerns to the measures inner iterations and cpu time.

13

3.5 Convection-Diffusion problem

The Convection-Diffusion problems have the formulation:

−∆u + λu(ux + uy) = f(x, y), in ∂Ω, u(x, y) = 0 on ∂Ω, λ ∈ IR. (23)

As in 3.3, f(x, y) was computed in such a way that u∗(x, y) = 10xy(1 − x)(1 − y)ex4.5

is the
solution.

In Figure 3 we show the results obtained when the four algorithms were applied for this
problem with the following values for λ: 5, 10, 25, 50, 75, 100, 110, 125 and 150. In all the cases
the initial approximation was x0 = (0, 0, . . . , 0). In this figure we adopted the same symbols
used for Bratu problem. We observed that the new choice was the first one to achieve the
value 1 for the function ρs(t) for all measures. This value was achieved at t = 1.1 when the
measures were outer iterations and number of function evaluations, t = 1.2 when the measure
was inner iterations and t = 1.3 when the measure was cpu time. These results indicate,
again, the robustness of the proposed choice for ηk. For all the measures, the new choice solved
the maximum number of problems with the minimum value of the respectively measure. For
inner iterations as measure, NC and EW1 solved approximately 40% of the problems using the
minimum value. However, EW1 had a poor performance in terms of efficiency because it solved
all the problems only for t = 1.9! With the measures outer iterations and number of function
evaluations, NC had a superior performance because it solved approximately 80% of the problems
with the minimum value and achieved the value ρs(t) = 1 for t = 1.1. EW1 and EW2 had similar
performance and C had the worse performance: it was not the best in terms of the value of ρs(1)
for any measure and achieved the value ρs(t) = 1 only for high values for t.

3.6 Another nonlinear problem

In this case, we solved the problem (20) proposed by Briggs, Henson and McCormick [3]:

−∆u + λueu = f(x, y), in Ω, u(x, y) = 0 on ∂Ω, where (24)

f(x, y) = ((9π2 + γe(x2−x3)sin(3πy))(x2 − x3) + 6x − 2)sin(3πy)

In Figure 4, we show the results obtained when the four algorithms were applied for this
problem with the following values for λ: 10, 100 and 1000. The initial approximations were
vectors with these constant components: -2, -1, 0, 1, 2 and 10, and a vector whose components
were randomly generated in the interval [−2 2]. Again, for all the measures, the choice NC solved
the maximum number of problems with the minimum value of the measure, which indicates the
efficiency of our strategy. For this set of problems, the choices EW1, EW2 and NC had a similar
robustness, that is, all of them solved all the problems with a value of t ∈ [1.2; 1.3]. Also, the
constant choice, C, had a poor performance: this choice was the last one to achieve the value 1
for the function ρs(t) for all the measures, and this choice solved a low number of problems with
the minimum number (only almost 5% of the problems) when the measures were the number of
outer iterations and number of function evaluations.

14

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

Figure 3: Performance profile using the inner and outer iterations, the number of function
evaluations and cpu time as measures, in clockwise order.

4 Conclusions

In this work we proposed a new Inexact–Newton method with a different choice for the forcing
term ηk and with a robust line search strategy, which resulted in an algorithm with a global
convergence result. We think that the robustness of our algorithm is due to both strategies:
the new choice of the forcing term and the inclusion of a good backtracking strategy. How-
ever, the new choice for ηk is what had the decisive influence in the performance, because, for
comparing the different choices, the same backtracking strategy was introduced in all of them.
The numerical experiments showed that this new algorithm is competitive in terms of number
of inner and outer iterations performed, which allow us to conclude that our objectives were
obtained: to built an inexact Newton algorithm avoiding the high number of inner iterations at
linear system solver without performing a very large number of outer iterations. Besides, it is
important to observe that these objectives were achieved without an increase in the number of
function evaluations.

15

1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

t

ρ s(t
)

C=0.01
EW1
EW2
NC

Figure 4: Performance profile using the inner and outer iterations, number of function evalua-
tions and cpu time as measures, in clockwise order.

The constant choice has the only advantage of being easy to implement and EW1 and EW2 had
a very similar and efficient performance. However, NC seems to be superior to the other choices
because it is faster in terms of number of inner and outer iterations and requires fewer function
evaluations, and it can solve the whole set of problems with the minimum value of t for almost
all the measures.

References

[1] Averick, B. M., Carter, R. G., Moré, J. J. and Xue, G.-L., The Minpack-2 test problem
collection Preprint MCS-P153-0692, Mathematics and Computer Science Division, Argonne
National Laboratory, 1992.

[2] Birgin, E. G., Krejić, N. and Mart́ınez, J. M., Globally convergent inexact quasi-Newton
methods for solving nonlinear systems, Numerical Algorithms, Vol. 32, pp. 249–260, 2003.

16

[3] Briggs, W. L., Henson, V. E. and McCormick, S. F., A multigrid tutorial, 2nd. edition, SIAM,
2000.

[4] Broyden, C. G. , A class of methods for solving sparse nonlinear systems, Math. Comput.,
Vol. 25, pp. 285–294, 1965.

[5] Broyden, C. G., Dennis Jr., J. E. and Moré, J. J., On the local and superlinear convergence
of quasi-Newton methods. J. Inst. Math. Appl. Vol. 12, pp. 223-245, 1973.

[6] Curtis, A., Powell, M. J. D. and Reid, J., On the estimation of sparse Jacobian matrices.
J. Inst. Math Appl., Vol. 13, pp. 117-119, 1974.

[7] Dembo, R. S., Eisenstat, S. C. and Steihaug, T., Inexact Newton methods. SIAM J. Numer.
Anal., Vol. 19, No. 2, pp. 401-408, 1982.

[8] Dennis, Jr., J. E. and Schnabel, R. B., Numerical Methods for Unconstrained Optimization

and Nonlinear Equations, SIAM Classics in Applied Mathematics, 1996.

[9] Diniz-Ehrhardt, M. A., Gomes-Ruggiero, M. A., Lopes, V. L. R. and Mart́ınez, J. M.,
Discrete Newton’s method with local variations for solving large-scale nonlinear systems, to
appear in Optimization.

[10] Dolan, E. D. and Moré, J. J., Benchmarking optimization software with performance profiles.
Math. Program. Ser. A 91, pp. 291-213, 2002.

[11] Eisenstat, S. C. and Walker, H. F., Choosing the forcing terms in inexact Newton method.
SIAM J. Sci. Comput., Vol. 17, No. 1, pp. 16-32, 1996.

[12] Goldfarb, D. and Toint, Ph. L., Optimal estimation Jacobian and Hessian matrices that
arise in finite difference calculations. Mathematics of Computation, Vol. 43, No. 167, pp.
69-88, 1984.

[13] Gomes–Ruggiero, M. A. and Mart́ınez, J. M., The Column-Updating Method for Solving
Nonlinear Equations in Hilbert Space. M2AN Mathematical Modeling and Numerical Anal-
ysis, Vol. 26, No. 2, pp. 309–330, 1992.

[14] Gomes–Ruggiero, M. A., Mart́ınez, J. M. and Moretti, A. C., Comparing Algorithms for
Solving Sparse Nonlinear Systems of Equations. SIAM Journal Scientific and Statistical
Computing, Vol. 13, No.2, pp. 459-483, 1992.

[15] Gomes–Ruggiero, M. A., Kozakevich, D. N. and Mart́ınez, A Numerical Study on Large–
Scale Nonlinear Solver. Computers and Mathematics with Applications, Vol. 32, No. 3, pp.
1–13, 1996.

[16] Kelley, C. T.,Iterative methods for linear and nonlinear equations. SIAM, 1995.

[17] Li, D-H. and Fukushima, M., Derivative-free line search and global convergence of Broyden-
like method for nonlinear equations. Optimization Methods and Software, Vol. 13, pp. 181-
201, 2000.

17

[18] Lopes, V. L. R. and Mart́ınez, J. M., Convergence properties of the inverse column-updating
method. Optimization Methods and Software Vol. 6, pp. 127-144, 1995.

[19] Mart́ınez, J. M., A quasi-Newton method with modification of one column per iteration.
Computing, Vol. 33, pp. 353-362, 1984.

[20] Mart́ınez, J. M. and Zambaldi, M. C., An inverse column-updating method for solving
large-scale nonlinear systems of equations. Optimization Methods and Software Vol. 1, pp.
129-140, 1992.

[21] Newsam, G. N. and Ramsdell, J. D., Estimation on sparse Jacobian matrices. SIAM J.
Algebraic Discrete Methods, Vol. 4, pp. 404-418, 1983.

[22] Pernice, M., and Walker, H., NITSOL: a Newton iterative solver for nonlinear systems.
SIAM J. Sci. Comput., Vol. 19, No. 1, pp. 302-318, 1998.

[23] Saad, Y. and Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., Vol. 7, No. 3, 1986.

18

