
ON FACTORIZATION OF HILBERT-SCHMIDT MAPPINGS

CRISTIANE DE ANDRADE MENDES

Abstract. We present some results on factorization of Hilbert-Schmidt multilinear
mappings and polynomials through infinite dimensional Banach spaces, L1 and L∞
spaces. We conclude this work with a result on factorization of holomorphic mappings
of Hilbert-Schmidt type.

From the linear theory, we know that Hilbert-Schmidt operators factor through an
L1 space and an L∞ space (theorem 2.3) and also through infinite dimensional Banach
spaces (theorem 2.4). The converse is also true in both cases. Our aim is to study whether
it it possible or not to have similar results for non-linear Hilbert-Schmidt mappings.

This paper consists of 3 sections. In the first one, we make some comments on notation
and we remind important results and definitions to be used later. In section 2, we present
the definitions of Hilbert-Schmidt mappings and we remind the factorization results for
Hilbert-Schmidt linear operators. We also examine two sorts of factorizations for the
multilinear and polynomial cases. The last part is dedicated to the holomorphic mappings
of Hilbert-Schmidt type.

1. Notation and important results

Throughout this paper, the symbolK represents the fields of real numbers and complex
ones. The set of all positive integers is denoted by N and No= N ∪ {0}. E,E1, ..., En, F
always represent Banach spaces and H, H1, ..., Hn, G, Hilbert spaces over K. BE rep-
resents the closed unit ball of the space E. L(E1, ..., En;F ) denotes the space of the
n-linear continuous mappings from E1 × ...×En into F . If E1 = ... = En = E, we write
L(nE;F ). The space of the n-homogeneous continuous polynomials from E into F is
denoted by P(nE; F ). If T ∈ L(nE; F ), we write T̂ ∈ P(nE;F ) for the corresponding
polynomial. P̌ ∈ L(nE;F ) indicates the symmetric n-linear mapping which corresponds
to P ∈ P(nE; F ) ( see [12], 1.10).

For the holomorphic mappings, H(U ; F ) denotes the space of all holomorphic map-
pings from U ⊂ E (a non-void open subset of E) into F (E and F are complex spaces).
The n-th derivative of f in x ∈ U is represented by dnf(x) ∈ L(nE; F ) and the
corresponding polynomial, by d̂nf(x) ∈ P(nE; F ).

The space of all sequences (xn)n in E such that ‖ (xn)n ‖p :=
( ∑

n∈N
‖ xn ‖p

) 1
p

< ∞
is denoted by lp(E). lp,w(E) denotes the space of all sequences (xn)n in E such that
(〈x′, xn〉)n is a sequence in lp = lp(K) for all x′ ∈ E′. A norm (p-norm if p < 1) is

defined by ‖ (xn) ‖p,w := sup
x′∈BE′

(
∞∑

j=1

| x′(xj) |p
) 1

p

.

The definition of absolutely summing n-linear functionals is due to Pietsch [15]. In
[1], Alencar and Matos have presented a definition for vector-valued mappings.
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Definition 1.1. For r, s1, ..., sn ∈ (0,+∞], with 1
r ≤ 1

s1
+ ... + 1

sn
, a mapping T ∈

L(E1, ..., En;F ) is absolutely (r; s1, ..., sn) summing if there is a constant C ≥ 0 such
that (

m∑
i=1

‖ (T (x1
i , ..., x

n
i ))m

i=1 ‖r

) 1
r

≤ C
n∏

k=1

‖ (xk
i )m

i=1 ‖sk,w

for every m ∈ N, k = 1, ..., n and i = 1, ..., m. The vector space of these mappings is indi-
cated by Las,(r;s1,...,sn)(E1, ..., En; F ) and the smallest C satisfying the inequality above, by
‖ T ‖as,(r;s1,...,sn). This defines a norm (r-norm if r < 1) on Las,(r;s1,...,sn)(E1, ..., En;F ).
If s1 = ... = sn = s, we indicate as, (r; s) in the place of as, (r; s1, ..., sn) and if r = s,
we just write as, r.

It can be shown that T ∈ Las,(r;s1,...,sn) if and only if
(
T (x1

j , ..., x
n
j )

)∞
j=1

∈ lr(F )

whenever (xk
j )∞j=1 ∈ lrk,w(Ek), k = 1, ..., n.

Pérez-Garćıa has proved the following theorem for multilinear mappings [14].

Theorem 1.2. If Ej is an L∞,λj space, then L(E1, ..., En;K) = Las,(1;2)(E1, ..., En;K)

and ‖ T ‖as,(1;2) ≤ KG,n

n∏
j=1

λj ‖ T ‖, for all T ∈ L(E1, ..., En;K).

In [10], Matos has introduced a more restrictive concept for multilinear mappings.

Definition 1.3. For r, s1, ..., sn ∈ (0;+∞], with r ≥ sk, k = 1, ..., n, a mapping T ∈
L(E1, ..., En;F ) is fully absolutely (r; s1, ..., sn)-summing if there is a constant C ≥ 0
such that (

m∑
j1,...,jn=1

‖ T (x1
j1

, ..., xn
jn

) ‖p

) 1
p

≤ C
n∏

k=1

‖ (xk
j )m

j=1 ‖sk,w

for every m ∈ N, xk
j ∈ Ek, k = 1, ..., n and j = 1, ...,m. Lfas,(r;s1,...,sn)(E1, ..., En; F )

denotes the space of such mappings and ‖ T ‖fas,(r;s1,...,sn), the smallest C which satisfies
the inequality above. This is a norm (r-norm, if r < 1) for the space Lfas,(r;s1,...,sn)(E1, ..., En; F ).
If s1 = ... = sn = s, we indicate fas, (r; s) in the place of fas, (r; s1, ..., sn) and if r = s,
we just write fas, r.

An important result on fully absolutely summing mappings, due to Bombal, Pérez-
Garćıa and Villanueva [2], is the following

Theorem 1.4. If Ej is an L∞,λj space, 1 ≤ j ≤ n and H a Hilbert space, then

L(E1, ..., En;H) = Lfas,2(E1, ..., En; H) and ‖ T ‖fas,2≤ kn

n∏
j=1

λj ‖ T ‖ where kn =

(B4)2n and B4 is a Khinchin’s inequality constant (see [5], 1.10).

2. Hilbert-Schmidt multilinear mappings and polynomials

The definition of Hilbert-Schmidt m-functionals is due to Dwyer [7]. Those mappings
were also studied by Matos in [9] and [10] for the vector-valued case.

Definition 2.1. A multilinear mapping T ∈ L(H1, ..., Hn;G) is a Hilbert-Schmidt map-
ping if, for each k = 1, ..., n, there exist an orthonormal basis (hk

jk
)jk∈Jk

of Hk such
that (

∑
j1,...,jn

‖T (h1
j1

, ..., hn
jn

)‖2) 1
2 < +∞. We denote by LHS(H1, ...,Hn; G) the space

of such mappings. This is a Hilbert space with the following inner product (T | S) =∑
j1,...,jn

(T (h1
j1

, ..., hn
jn

) | S(h1
j1

, ..., hn
jn

)) (T, S ∈ LHS(H1, ..., Hn;G)). The correspond-
ing norm is denoted by ‖ T ‖HS.

We can prove that, if T ∈ LHS(H1, ..., Hn; G), then (
∑

j1,...,jn
‖T (h1

j1
, ..., hn

jn
)‖2) 1

2 <
+∞ for all orthonormal bases of H1, ..., Hn.
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Definition 2.2. A polynomial P ∈ P(nH; G) is a Hilbert-Schmidt polynomial if P̌ ∈
LHS(nH;G). The space of such polynomials is indicated by PHS(nH; G) and a norm is
defined by ‖ P ‖HS =‖ P̌ ‖HS.

We present now the results on factorization of Hilbert-Schmidt operators.

Theorem 2.3. (Lindenstrauss-Pelczynski, [8]) Let u ∈ L(H;G). The following are
equivalent:
(i) u ∈ LHS(H; G).
(ii) u factors through an L∞ space.
(iii) u factors through an L1 space.

A more recent result was proved by Diestel, Jarchow and Tonge (see [5], 19.2).

Theorem 2.4. u ∈ LHS(H; G) if and only if, for any infinite dimensional Banach space
Z, there are operators v ∈ L(Z; G) and w ∈ L(H; Z) such that u = v ◦ w. Moreover, we
can choose w to be compact and v, compact and 2-summing.

There is an important relationship between Hilbert-Schmidt multilinear mappings and
fully absolutely summing multilinear mappings.

Proposition 2.5. (Matos, [10]) If p ∈ [2,∞), then LHS(H1, ...,Hn; G) = Lfas,p(H1, ...,Hn;G)
and there are constants bp > 0 and dp > 0 such that (dp)n ‖ T ‖fas,p ≤‖ T ‖HS

≤ (bp)n ‖ T ‖fas,p for all T ∈ Lfas,p(H1, ..., Hn; G).

The first factorization result is the following

Theorem 2.6. Let T ∈ L(H1, ..., Hn; G). If there exist an L∞ space Xj, Sj ∈ L(Hj ;Xj),
j = 1, ..., n and R ∈ L(X1, ..., Xn; G) such that T = R◦(S1, ..., Sn), then T ∈ LHS(H1, ...,Hn; G).
The converse is not true in general.

Proof. We have R ∈ Lfas,2(X1, ..., Xn; G) ( theorem 1.4) and consequently,
T = R ◦ (S1, ..., Sn) ∈ Lfas,2(H1, ..., Hn;G) = LHS(H1, ...,Hn; G) (proposition 2.7).

The converse is not true. The mapping T ∈ L(2l2;K) given by T (x1, x2) =
∑
j∈N

1
j x1

jx
2
j

is a Hilbert-Schmidt mapping. If the factorization was possible, say T = R ◦ (S1, S2), we
would have R ∈ Las,(1,2)(X1, X2;K) (theorem 1.2) and consequently, T ∈ Las,(1,2)(2l2;K)
which is not true, because

∑
j∈N

| T (ej , ej) | =
∑
j∈N

1
j . ¤

Corollary 2.7. Let P ∈ P(nH; G). If there exist an L∞ space, S ∈ L(H; X) and
Q ∈ P(nX; G) such that P = Q ◦ S, then P ∈ PHS(nH;G). The converse is not true in
general.

The same is true if we consider the factorization through an L1 space. The proof of
theorem 2.6 is the same, using the analogous of theorem 1.4 for L1 spaces [2]. In this
case, we have no answer about the converse.

There is a class of multilinear mappings and polynomials, formed by the Schatten class
type S2 mappings ([3] and [4]), for which it is possible to prove also the converse of the-
orem 2.6 and corollary 2.7, not only for the L∞ and L1 spaces, but also for factorization
through infinite dimensional Banach spaces (see [11]).

As the first form of factorization did not work as well as we would like it to do, we
will study another sort of factorization. Before we announce the next result, we need the
following definition and lemma.

Definition 2.8. Let T ∈ L(E1, ..., En; F ). The adjoint operator T ′ ∈ L(F ′;L(E1, ..., En;K))
is defined by T ′(ϕ)(x1, ..., xn) = ϕ(T (x1, ..., xn)), for all ϕ ∈ F ′ and xj ∈ Ej, j = 1, ..., n.
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Lemma 2.9. If T ∈ LHS(H1, ..., Hn; G), then T ′′ ∈ LHS (LHS(H1, ..., Hn;K)′; G).

Proof. First, observe that if T ∈ LHS(H1, ...,Hn; G), then T ′g′ ∈ LHS(H1, ..., Hn;K) for
all g′ ∈ G′.

If (hi
ji

)ji∈Ji is an orthonormal basis for Hi, i = 1, ..., n and if L ∈ L(H1, ..., Hn;H ′)
is given by L(h1, ..., hn)(u) = u(h1, ..., hn), for all u ∈ H = L(H1, ..., Hn;K), then(
L(h1

j1
, ..., hn

jn
)
)
ji∈Ji,i=1,...,n

is an orthonormal basis for H ′ and T ′′(L(h1
j1

, ..., hn
jn

))
= J(T (h1

j1
, ..., hn

jn
)), where J : G ↪→ G′′ is the canonical inclusion. Therefore
∑

j1,...,jn

‖ T ′′(ϕj1,...,jn
) ‖2 =

∑
j1,...,jn

‖ J(T (h1
j1

, ..., hn
jn

)) ‖2

=
∑

j1,...,jn

‖ T (h1
j1

, ..., hn
jn

) ‖2< +∞

¤

Theorem 2.10. Let T ∈ LHS(H1, ..., Hn; G). Then, for all infinite dimensional Banach
space Z, we have T = V ◦ S, where S ∈ L(H1, ..., Hn; Z) and V ∈ L(Z; G).

In addition, we may choose V in such a way that it is compact and 2-summing.

Proof. By the lemma, we have T ′′ ∈ LHS(H ′;G), H = LHS(H1, ...,Hn;K). Using the
Diestel-Jarchow-Tonge result (theorem 2.4), there exist w ∈ L(H; Z) and v ∈ L(Z;G)
such that T ′′ = v ◦ w. v and w may be chosen compact and v, 2-summing.

If L ∈ L(H1, ...,Hn; H) is the n-linear mapping defined on the lemma, write S = w ◦L
and V = v. Then V ◦ S = J ◦ T ≡ T . ¤

Corollary 2.11. Let P ∈ PHS(nH;G). Then, for all infinite dimensional Banach space
Z, we have P = V ◦Q, where Q ∈ L(nH; Z) and V ∈ L(Z; G).

Proof. If P ∈ PHS(nH; G), then P̌ = V ◦ S as in 2.10. Therefore, P = V ◦ Ŝ. ¤

As a consequence, we can say that Hilbert-Schmidt multilinear mappings and polyno-
mials factors through an L1 or L∞ space.

The converse is not true in general as the following example show.

Example 2.12. T ∈ (2l2;K), T (x1, x2) =
∞∑

j=1

1√
j
x1

jx
2
j . Let Z be a Banach space, Z 6=

{0}, and b ∈ Z, b 6= 0. We define S : l2× l2 → Z, S(x1, x2) = T (x1, x2)b. If Y = [b] and
V : Y → K is given by V (αb) = α, α ∈ K, using the Hahn-Banach theorem, there exists
Ṽ ∈ Z ′ such that Ṽ | Y = V . It is not difficult to see that Ṽ ◦S = T . On the other hand,
T 6∈ LHS(2l2;K).

We can prove that if T ∈ L(H1, ..., Hn;G) factors as in theorem 2.10, then T is strongly
2-summing (Dimant’s definition - see [6]). It is an open problem to decide whether
strongly 2-summing multilinear mappings defined on Hilbert spaces can be decomposed
as in the theorem.

Remark 2.13. Some comments must be done about the norms of the operators involved
on the proof of theorem 2.10 and its corollary.

Let u ∈ LHS(H;G), u(h) =
∞∑

n=1
τn(h | hn)gn, where (τn)n ∈ l2 and (hn)n , (gn)n are

orthonormal sequences in H and G, respectively.
For each n ∈ N, we can write τn = αnσnβn, where σ = (σn)n ∈ l2, α = (αn)n ∈ co and

β = (βn)n ∈ co. Examining the proof of Diestel-Jarchow-Tonge factorization theorem 2.4
, w and v can be chosen in such a way that
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‖ w ‖≤ 8 ‖ β ‖ 1
4 ‖ u ‖

1
4
HS

‖ v ‖as,2≤ 12C ‖ α ‖∞‖ β ‖
1
4∞‖ σ ‖2‖ u ‖

1
4
HS

(see [5], 19.2) where 1 ≤ C ≤ 4 is a constant that depends on Z.
Let u = T ′′ (theorem 2.10). V ∈ L(Z; G) and S ∈ L(H1, ...,Hn; Z) can be chosen

such as
‖ S ‖≤‖ w ‖≤ 8 ‖ β ‖

1
4∞‖ T ‖

1
4
HS

‖ V ‖as,2≤ 12C ‖ α ‖∞‖ β ‖ 1
4 ‖ σ ‖2‖ T ‖

1
4
HS.

In corollary 2.11, V and Q can be chosen such as

‖ Q ‖≤‖ S ‖≤ 8 ‖ β ‖
1
4∞‖ P ‖

1
4
HS

‖ V ‖as,2≤ 12C ‖ α ‖∞‖ β ‖ 1
4 ‖ σ ‖2‖ P ‖

1
4
HS.

The choice made above will be of great importance for the holomorphic mappings
factorization result.

3. Hilbert-Schmidt holomorphic mappings

In this section, we will study the Hilbert-Schmidt holomorphic mappings. Our aim is
to prove a factorization result similar to the one we have proved for polynomials (corollary
2.11). All the spaces considered in this section will be complex ones.

The Hilbert-Schmidt holomorphic mappings has been also studied by Dwyer [7].

Definition 3.1. Let U ⊂ H be a non-void open subset of H and f ∈ H(U ; G). f is a
Hilbert-Schmidt mapping in h ∈ U if the following conditions hold true
(1) d̂mf(h) ∈ PHS(mH; G) for all m ∈ No and
(2) there exist real numbers C ≥ 0 and c ≥ 0 such that ‖ 1

m! d̂
mf(h) ‖HS≤ Ccm for all

m ∈ No.
If f is a Hilbert-Schmidt mapping in all h ∈ U , we say that f is a Hilbert-Schmidt

mapping on U . We denote the class of such mappings as HHS(U ; G).
We say that f ∈ H(H; G) is a Hilbert-Schmidt mapping of bounded type if f is

a Hilbert-Schmidt mapping in H and lim
m→∞

(
1

m! ‖ d̂mf(0) ‖HS

) 1
m

= 0. We indicate the

class of such mappings by HHb(H; G).

The factorization result is the following

Theorem 3.2. Let f ∈ H(U ; G), where U ⊂ H is a non-void open subset of H. Suppose
that f is a Hilbert-Schmidt mapping in ho ∈ U . Then, there exist a neighborhood Uo

of ho in U , an L∞ space X, an holomorphic mapping g ∈ H(Uo;X) and an operator
V ∈ L(X; G) such that f = V ◦ g in Uo.

Before we show the proof of 3.2, we will prove the following lemma

Lemma 3.3. Given n ∈ N, δ > 0 and τ = (τs)s ∈ l2, there exist γ = (γs)s ∈ co and

σ = (σs)s ∈ l2 such that ‖ γ ‖∞=
1

n8+δ
, ‖ σ ‖2≤ A, A > 0 does not depend on the choice

of n ∈ N and τs = γsσs for each s ∈ N.

Proof. With no loss of generality, we will suppose that ‖ τ ‖2= 1 and τs ≥ 0 for all
s ∈ N.Write No = 0. We can inductively define a sequence of positive integers N1 <

N2 < ... < Nk < ... such that, for each k ∈ N, τ2
1 + ... + τ2

Nk
≥ 2n+k − 1

2n+k
and Nk is the

smallest positive integer with this property. Then, we write
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γNk−1+1 = ... = γNk
=

1
(n + k − 1)8+δ

σNk−1+1 = (n + k − 1)8+δτNk−1+1 , ... , σNk
= (n + k − 1)8+δτNk

.

In this way, we can define the two sequences γ = (γs)s ∈ co with ‖ γ ‖∞=
1

n8+δ
and

σ = (σs)s such that σsγs = τs. We have to verify that σ ∈ l2.

∞∑
s=1

σ2
s =

∞∑
k=1

Nk∑
s=Nk−1+1

(n + k − 1)2(8+δ)τ2
s ≤

∞∑
k=1

(n + k − 1)2(8+δ)
∞∑

s=Nk−1+1

τ2
s

≤
∞∑

k=1

(n + k − 1)2(8+δ)

(
1− 2n+k−1 − 1

2n+k−1

)
=

∞∑
k=1

(n+k−1)2(8+δ)

2n+k−1

=
∞∑

l=n+1

(l − 1)2(8+δ)

2l−1
≤

∞∑
l=1

(l − 1)2(8+δ)

2l−1

Using the ratio test, we can prove that
∞∑

l=1

(l − 1)2(8+δ)

2l−1
is a convergent series.

¤

Proof. (theorem 3.2) We suppose initially that f(ho) = 0. We write Pn = 1
n! d̂

nf(ho) ∈
PHS(nH; G), n ∈ N. There exist C ≥ 0 and c ≥ 0 such that ‖ Pn ‖HS≤ Ccn for all
n ∈ N. Using corollary 2.11 with Z = l∞, we have Pn = Vn ◦Qn, where Qn ∈ P(nH; l∞),
Vn ∈ Las,2(l∞; G). They can be chosen such that (see comments 2.13 and lemma 3.3)

‖ Qn ‖≤ 8 1

n1+ δ
8
‖ Pn ‖

1
4
HS and ‖ V ‖as,2≤ 48A 1

n5+ 5δ
8
‖ Pn ‖

1
4
HS , where A > 0 does not

depend on n ∈ N (use αs = βs = (γs)
1
2 for all s ∈ N - the same notation of lemma 3.3

and comments 2.13).
Let ε > 0 be such that εc

1
4 < 1. Write Rn = ε−nQn ∈ P(nH; l∞), vn = εnVn ∈

L(l∞; G), X = l∞(l∞) (an L∞ space), in : l∞ → X the inclusion in the n-th coordinate
and πn : X → l∞ the projection on the n-th coordinate. We have vn ◦ Rn = Pn

for all n ∈ N. Also ‖ Rn ‖ 1
n≤ ε−1 ‖ Qn ‖ 1

n ≤ ε−1
(

8

n1+ δ
8

) 1
n

C
1
4n c

1
4 for each n ∈ N

and limsup
n→∞

‖ Rn ‖ 1
n≤ ε−1c

1
4 . Therefore, the mapping g(h) =

∞∑
n=1

in ◦ Rn(h − ho) is

holomorphic in some neighborhood Uo of ho ∈ U .
Observe that, for each n ∈ N,

‖ vn ◦ πn ‖≤ 48AC
1
4

n5+ 5δ
8

.

By the comparison test, we have that
∑
n
‖ vn ◦ πn ‖ is convergent. So, we define

v ∈ L(X; G), vx =
∑
n

(vn ◦ πn)(x). For all h ∈ Uo, we have (v ◦ g)(h) = f(h).

Now we work with the case f(ho) 6= 0. Define f1 ∈ H(U ;G), f1(h) = f(h) − f(ho).
Using the first part of the proof for f1, there exist v1 ∈ L(X1; G) (X1 is an L∞ space)
and g1 ∈ H(U1;X1) such that f1 = v1 ◦ g1 in U1 (a neighborhood of ho ∈ U). We call
X = C×X1 and p1 : X → C, p2 : X → x1 the corresponding projections. Define

g1 : U1 → X, g(h) = (1, g1(h))

v : X → G, v(x) = f(ho)p1(x) + v1 ◦ p2(x).

g ∈ H(U1; X), v ∈ L(X; G) and v ◦ g = f in U1. ¤
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The same proof can be done for L1 spaces. Use l1 in the place of l∞ and define
X = l1(l1).

As a consequence, we have

Corollary 3.4. If f ∈ HHb(H;G), then there exist an L∞ space (or an L1 space) X, an
holomorphic mapping g ∈ H(H;X) and an operator V ∈ L(X; G) such that f = V ◦ g.
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