
ON FACTORIZATION OF SCHATTEN CLASS TYPE MAPPINGS

CRISTIANE DE ANDRADE MENDES

Abstract. We present some results on factorization of multilinear mappings and
polynomials of Schatten class type S2 through infinite dimensional Banach spaces,
L1 and L∞ spaces. We conclude this work with a factorization result for holomorphic
mappings of Schatten class type S2.

From the linear theory, we know that Hilbert-Schmidt operators factor through an
L1 space and an L∞ space (theorem 1.3) and also through infinite dimensional Banach
spaces (theorem 1.4). The converse is also true in both cases. When we work with
non-linear Hilbert-Schmidt mappings, we notice that none of those linear results can be
extended the same way [10]. The mappings of Schatten class type S2 are, in particular,
Hilbert-Schmidt mappings for which it is possible to obtain an extension of the linear
results cited above.

This work consists of 3 sections. In the first one, we remind some important definitions
and results which will be used later. In section 2, we study the factorization results for
multilinear mappings and polynomials and the third section is devoted to a factorization
result for holomorphic mappings of Schatten class type S2.

1. Preliminaries

Throughout this paper, the symbol IK represents the fields of real numbers and com-
plex ones. The set of all positive integers is denoted by IN. E, E1, ..., En, F always
represent Banach spaces and H,H1, ..., Hn, G, Hilbert spaces over IK. BE represents
the closed unit ball of the space E. L(E1, ..., En;F ) denotes the space of the n-linear
continuous mappings from E1 × ... × En into F . If E1 = ... = En = E, we write
L(nE;F ). The space of the n-homogeneous continuous polynomials from E into F is
denoted by P(nE; F ). If T ∈ L(nE; F ), we write T̂ ∈ P(nE;F ) for the corresponding
polynomial. P̆ ∈ L(nE;F ) indicates the symmetric n-linear mapping which corresponds
to P ∈ P(nE; F ) [11]. W (K) denotes the set of all regular Borel probability measures
on K.

We indicate the space of Schatten-von Neumman (linear) operators of order p from H
into G by Sp(H; G) and the norm ( p-norm if 0 < p < 1), by σp(.) [4].

The space formed by the absolutely (r; s1, ..., sn)-summing multilinear mappings from
E1 × ... × En into F is indicated by Las,(r;s1,...,sn)(E1, ..., En;F ) and the corresponding
norm (or r-norm, if r < 1), by ‖ . ‖as,(r;s1,...,sn). If s1 = ... = sn = s, we write as, (r; s)
in the place of as, (r; s1, ..., sn) and if r = s, we just write as, r. We denote by P(nE; F )
the space of the absolutely (r; s)-summing polynomials and we write ‖ . ‖as,(r;s) for the
corresponding norm (or r-norm) [7], [1].

We indicate by Ld,(s1,...,sn)(E1, ..., En; F ) the space of all (s1, ..., sn) - dominated mul-
tilinear mappings with the corresponding norm (or r-norm) ‖ . ‖d,(s1,...,sn). If s1 =
... = sn = s, we just write d, s in the place of d, (s1, ..., sn). Finally, we indicate by
Pd,r(nE; F ) the space of the r-dominated n homogeneous polynomials from E to F and
we write ‖ . ‖d,r for the corresponding norm (or r-norm) [8], [1].
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For the holomorphic mappings, H(U ; F ) denotes the space of all holomorphic map-
pings from U ⊂ E (a non-void open subset of E) into F (E and F are complex spaces).
The n-th derivative of f in x ∈ U is represented by dnf(x) ∈ L(nE; F ) and the corre-
sponding polynomial, by d̂nf(x) ∈ P(nE;F ).

The space of all sequences (xn)n in E such that ‖ (xn)n ‖p :=

(∑

n∈IN

‖ xn ‖p

) 1
p

< ∞

is denoted by lp(E). lp,w(E) denotes the space of all sequences (xn)n in E such that
(〈x′, xn〉)n is a sequence in lp = lp(IK) for all x′ ∈ E′. A norm (p-norm if p < 1) is

defined by ‖ (xn) ‖p,w := sup
x′∈BE′




∞∑

j=1

| x′(xj) |p



1
p

.

Details about the linear theory and Lp spaces can be seen in [4]. For the holomorphic
mappings theory, see [11].

The definition of Hilbert-Schmidt m-functionals is due to Dwyer [5]. These mappings
were also studied by Matos in [9] for the vector-valued case.

Definition 1.1. A multilinear mapping T ∈ L(H1, ..., Hn;G) is a Hilbert-Schmidt map-
ping if, for each k = 1, ..., n, there exist an orthonormal basis (hk

jk
)jk∈Jk

of Hk such that

(
∑

j1,...,jn

‖T (h1
j1 , ..., h

n
jn

)‖2) 1
2 < +∞. We denote by LHS(H1, ...,Hn; G) the space of such

mappings.

We can prove that, if T ∈ LHS(H1, ...,Hn; G), then (
∑

j1,...,jn

‖T (h1
j1 , ..., h

n
jn

)‖2) 1
2 < +∞

for all orthonormal bases of H1, ..., Hn.
In the linear case, we have S2(H; G) = LHS(H; G) and σ2(.) =‖ . ‖HS . Pelczynski has

proved in [13] that LHS(H;G) = Las,p(H;G) for all p ≥ 1 and B−1
p ‖ . ‖HS ≤‖ . ‖as,p

≤ A−1
1 ‖ . ‖HS where A1 and Bp are constants of the Khinchin’s inequality [4].

Definition 1.2. A polynomial P ∈ P(nH; G) is a Hilbert-Schmidt polynomial if P̆ ∈
LHS(nH;G). The space of such polynomials is indicated by PHS(nH; G) and a norm is
defined by ‖ P ‖HS =‖ P̆ ‖HS.

We present now the results on factorization of Hilbert-Schmidt linear operators.

Theorem 1.3. (Lindenstrauss-Pelczynski, [6]) Let u ∈ L(H;G). The following are
equivalent:
(i) u ∈ LHS(H; G).
(ii) u factors through an L∞ space.
(iii) u factors through an L1 space.

A more recent result was proved by Diestel, Jarchow and Tonge. A proof can be seen
in [4], 19.2.

Theorem 1.4. u ∈ LHS(H; G) if and only if, for any infinite dimensional Banach space
Z, there are operators v ∈ L(Z; G) and w ∈ L(H; Z) such that u = v ◦ w. Moreover, we
can choose w to be compact and v, compact and 2-summing.

About 1.4, write u(h) =
∞∑

s=1

τs(h | hs)gs, with τ = (τs)s ∈ l2 and (hs)s , (gs)s

orthonormal sequences in H and G, respectively. We will prove later (2.9) that τs =
αsσsβs, where σ = (σs)s ∈ l2 and α = (αs)s, β = (βs)s ∈ co. On the proof of 1.4, we

can notice that w and v can be chosen in such a way that ‖ w ‖≤ 8 ‖ β ‖
1
4∞ and ‖ v ‖as,2
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≤ 12C ‖ α ‖∞‖ β ‖
1
4∞‖ σ ‖2, where 1 ≤ C ≤ 4 is a constant which depends on the space

Z considered.
An important factorization result for dominated mappings is the following Pietsch’s

theorem. We present a multilinear version of the theorem. The polynomial version is
analogous. For a proof, see [14], 3.17.

Theorem 1.5. Let r1, ..., rn ∈ [1,∞), T ∈ L(E1, ..., En;F ) and Kj ⊂ BE′j a weak star
compact subset of BE′j with the property ‖xj‖ = sup{|x′j(xj)|; x′j ∈ Kj}, j = 1, ..., n. The
following conditions are equivalent:
(i) T is (r1, ..., rn)-dominated.
(ii) For all j = 1, ..., n, there exist µj ∈ W (Kj), Xj ⊂ Lrj

(µj) a closed subspace,
j = 1, ..., n and S ∈ (X1, ..., Xn;F ) such that T = S ◦ (Jr1 ◦ iE1 , ..., Jrn ◦ iEn), where
iEj

: Ej −→ C(Kj) is given by iEj
(x)(x′) = 〈x′, x〉, x′ ∈ Kj, x ∈ Ej and Jrj

: C(Kj) −→
Lrj (µj) is the formal inclusion, j = 1, ..., n. In addition, ‖ S ‖ =‖ T ‖d,(r1,...,rn).

2. Multilinear mappings and polynomials of Schatten class type

The Schatten class type mappings were studied by Braunss and Junek in [3].

Definition 2.1. Let 0 < p < ∞. A multilinear mapping T ∈ L(H1, ...,Hn; F ) is of
Schatten class type Sp if , for each i = 1, ..., n, there exist a Hilbert space Ki, an operator
Ti ∈ Sp(Hi; Ki) and S ∈ L(K1, ..., Kn; F ) such that T = S ◦ (T1, ..., Tn). We denote the
space of such mappings as L(Sp)(H1, ..., Hn; F ). A norm (or

p

n
norm if p < 1) for that

space is ‖ T ‖Sp= inf
T=S◦(T1,...,Tn)

‖ S ‖
n∏

j=1

σp(Tj).

In [2], Braunss gives the following definition for polynomials.

Definition 2.2. Let 0 < p < ∞. A polynomial P ∈ P(nH; F ) is of Schatten class type
Sp if there exist a Hilbert space K, an operator S ∈ Sp(H; K) and Q ∈ P(nK; F ) such
that T = Q ◦ S. We denote the space of such polynomials by P(Sp)(nH; F ) and also
‖ P ‖Sp= inf

P=Q◦S
‖ Q ‖ σp(S)n. Braunss [2] has proved that ‖ . ‖Sp is a q-norm, where

q = min{1, p} if n = 1 and F is a Hilbert space; q = min{1,
2p

2 + p
} if n = 1 and F is a

Banach space (non Hilbert); q = min{ 2
n

,
p

n
} if n ≥ 2.

As in the linear case, we can prove the following

Proposition 2.3. If p ≥ 2 and T ∈ L(Sp)(H1, ..., Hn;F ), then
∑

j1,...,jn

‖ T (h1
j1 , ..., h

n
jn

) ‖p<

+∞ for all orthonormal bases (hi
ji

)ji∈Ji of Hi, i = 1, ..., n.

The proposition above can be proved using the definition and the properties of the
Schatten linear operators (see [4], 4.7). As a consequence, we have

Corollary 2.4. (i) L(S2)(H1, ..., Hn;G) ⊂ LHS(H1, ..., Hn; G). Moreover, ‖ T ‖HS

≤‖ T ‖S2 for all T ∈ L(S2)(H1, ..., Hn; G). The inclusion is strict in general.

(ii) P(S2)(nH; G) ⊂ PHS(nH; G). Moreover, ‖ P ‖HS ≤ nn

n!
‖ P ‖S2 for all P ∈

P(S2)(nH; G). The inclusion is strict in general.

The relationship between the norms ‖ . ‖HS and ‖ . ‖S2 can be extracted from the
proof of 2.3. To prove (ii) in 2.4, we use (i) of the same result and the fact that P ∈
P(Sp)(nH; F ) if and only if there exist T ∈ L(Sp)(nH; F ) such that P = T̂ .
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The example below shows that the inclusion in 2.4 is strict in general.

Example 2.5. T ∈ L(2l2; IK), T (x, y) =
∞∑

j=1

1
j
xjyj. It is clear that T ∈ LHS(2l2; IK). If

T was a Schatten class type S2 mapping, T would be written in the form T = S ◦ (T1, T2)
as in 2.1. For (xk)∞k=1, (yk)∞k=1 ∈ l2,w(l2), we would have:

∞∑

k=1

‖ T (xk, yk) ‖ ≤‖ S ‖
( ∞∑

k=1

‖ T1x
k ‖2

) 1
2

( ∞∑

k=1

‖ T2y
k ‖2

) 1
2

< +∞.

Nevertheless, if ek indicates the k-th element of l2 usual basis ((ek)k ∈ l2,w(l2)), we

have
∞∑

k=1

‖ T (ek, ek) ‖ =
∞∑

k=1

1
k

= ∞, a contradiction. Therefore, T 6∈ L(S2)(2l2; IK).

There is an interesting relationship between dominated mappings and Schatten class
type S2 mappings.

Proposition 2.6. (i) For all 1 ≤ p ≤ 2, we have L(S2)(H1, ..., Hn; F ) = Ld,p(H1, ...,Hn;F ).
Moreover ‖ T ‖S2 ≤‖ T ‖d,p ≤ (A−1

1 )n ‖ T ‖S2 , where A1 is a constant of Khinchin’s
inequality [4].
(ii) For all 1 ≤ p ≤ 2, we have P(S2)(nH; F ) = Ld,p(nH; F ). Moreover, ‖ P ‖S2

≤‖ P ‖d,p ≤ (A−1
1 )n ‖ P ‖S2 .

Proof. We will prove (i). (ii) can be proved the same way, making use of the analogous
theorems for polynomials.

If T ∈ Ld,p(H1, ..., Hn;F ) ⊂ Ld,2(H1, ..., Hn; F ), 1 ≤ p ≤ 2, then using theorem 1.5, we
have T = S ◦(J1

2 ◦iH1 , ..., J
n
2 ◦iHn) , with ‖ S ‖=‖ T ‖d,2 and Jj

2 ◦iHj ∈ Las,2(Hj ;L2(µj))
= S2(Hj ; L2(µj)) ([4], 2.9). Therefore, T ∈ L(S2)(H1, ..., Hn; F ) . Moreover

‖ T ‖S2 ≤‖ T ‖d,2

n∏

j=1

‖ Jj
2 ‖as,2 ≤‖ T ‖d,p

On the other hand, consider T ∈ L(S2)(H1, ..., Hn; F ) and a decomposition for T , T =
R◦(S1, ..., Sn), Sj ∈ S2(Hj ; Kj), Kj a Hilbert space j = 1, ..., n and R ∈ L(K1, ..., Kn; F ).
Using Pietsch’s factorization result (1.5 for the linear case), we can write Sj = wj ◦ vj ,
where vj ∈ Las,p(Hj ; X

p
j ), vj = Jp ◦ iHj , µj ∈ W (BHj ), Xp

j is a closed subspace of
Lp(µj) and wj ∈ L(Xp

j ; Kj) is such that ‖ wj ‖ =‖ Sj ‖as,p, j = 1, ..., n. Write T̃ =
R ◦ (w1, ..., wn) ∈ L(Xp

1 , ..., Xp
n; F ). If (hj

k)m
k=1 ⊂ Hj , j = 1, ..., n, we have

(
m∑

k=1

‖ T (h1
k, ..., hn

k ) ‖ p
n

)n
p

≤‖ T̃ ‖
(

m∑

k=1

‖ v1h
1
k ‖p

) 1
p

...

(
m∑

k=1

‖ vnhn
k ‖p

) 1
p

≤‖ T̃ ‖
n∏

j=1

‖ vj ‖as,p‖ (hj
k)m

k=1 ‖w,p.

Therefore, T ∈ Ld,p(H1, ..., Hn; F ). In addition,

‖ T ‖d,p ≤‖ T̃ ‖
n∏

j=1

‖ vj ‖as,p =‖ R ‖‖ w1 ‖ ... ‖ wn ‖
n∏

j=1

‖ Jp ‖as,p‖ iHj ‖

≤‖ R ‖
n∏

j=1

‖ Sj ‖as,p ≤ A−1
1 ‖ R ‖

n∏

j=1

σ2(Sj).

As the decomposition taken is arbitrary, we conclude ‖ T ‖d,p ≤ A−1
1 ‖ T ‖S2 . ¤
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We now present the factorization result for the Schatten class type mappings.

Theorem 2.7. Let T ∈ L(H1, ..., Hn; F ). The following conditions are equivalent:
(i) T ∈ L(S2)(H1, ..., Hn;F ).
(ii) For each j = 1, ..., n, there exist an L1 space Yj, an operator Rj ∈ L(Hj ; Yj) and
R ∈ Ld,2(Y1, ..., Yn; F ) such that T = R ◦ (R1, ..., Rn).
(iii) For each j = 1, ..., n, there exist an L∞ space Xj, an operator Sj ∈ L(Hj ; Xj) and
S ∈ Ld,2(X1, ..., Xn; F ) such that T = S ◦ (S1, ..., Sn).

Moreover, given ε > 0, R, R1, ..., Rn can be taken in (ii) in such a way that ‖ Rj ‖= 1,
j = 1, ..., n and ‖ R ‖d,2≤ (1 + ε)(KG)n ‖ T ‖S2 and S, S1, ..., Sn in (iii) such that
‖ Sj ‖= 1, j = 1, ..., n and ‖ S ‖d,2≤ (1 + ε) ‖ T ‖S2 .

The result 2.7 is analogous to the linear factorization theorem due to Lindenstrauss
and Pelczynski. For the Hilbert-Schmidt case, it is possible to prove that (ii) ⇒ (i) and
(iii) ⇒ (i) (without the condition that S and R are 2-dominated). The converse (i) ⇒
(iii) is not true in general. For the L1 space case, we have no answer about the converse
[10]. We also have a multilinear version for the Diestel-Jarchow-Tonge result.

Theorem 2.8. A multilinear mapping T ∈ L(H1, ..., Hn; F ) is of Schatten class type
S2 if and only if, given infinite Banach spaces Z1, ..., Zn, there exist Sj ∈ L(Hj ; Zj),
j = 1, ..., n and S ∈ Ld,2(Z1, ..., Zn;F ) such that T = S ◦ (S1, ..., Sn).

Moreover, given ε > 0 and δ > 0, S and S1, ..., Sn can be chosen in such a way that

‖ S ‖d,2 ≤ (1 + ε) ‖ T ‖S2

(
48A

n5+ 5δ
5

)n

, A > 0 is a constant, and ‖ Sj ‖as,2 ≤ 8

n1+ δ
8
.

We will prove theorem 2.8. The proofs of (i) ⇔ (ii) and (i) ⇔ (iii) in 2.7 are almost
the same, using 1.3 in the place of 1.4.

Before the proof of 2.8, we prove the following lemma.

Lemma 2.9. Given n ∈ IN, δ > 0 and τ = (τs)s ∈ l2, there exist γ = (γs)s ∈ co and

σ = (σs)s ∈ l2 such that ‖ γ ‖∞=
1

n8+δ
, ‖ σ ‖2≤ A, A > 0 does not depend on the choice

of n ∈ IN and τs = γsσs for each s ∈ IN.

Proof. With no loss of generality, we suppose that ‖ τ ‖2= 1 and τs ≥ 0 for all s ∈
IN.Write No = 0. We can inductively define a sequence of positive integers N1 < N2 <

... < Nk < ... such that, for each k ∈ IN, τ2
1 + ...+ τ2

Nk
≥ 2n+k − 1

2n+k
and Nk is the smallest

positive integer with this property. Then, we write

γNk−1+1 = ... = γNk
=

1
(n + k − 1)8+δ

σNk−1+1 = (n + k − 1)8+δτNk−1+1 , ... , σNk
= (n + k − 1)8+δτNk

.

In this way, we can define the two sequences γ = (γs)s ∈ co with ‖ γ ‖∞=
1

n8+δ
and

σ = (σs)s such that σsγs = τs. We have to verify that σ ∈ l2.

∞∑
s=1

σ2
s =

∞∑

k=1

Nk∑

s=Nk−1+1

(n + k − 1)2(8+δ)τ2
s ≤

∞∑

k=1

(n + k − 1)2(8+δ)

(
1− 2n+k−1 − 1

2n+k−1

)

=
∞∑

k=1

(n + k − 1)2(8+δ)

2n+k−1
=

∞∑

l=n+1

(l − 1)2(8+δ)

2l−1
≤

∞∑

l=1

(l − 1)2(8+δ)

2l−1

Using the ratio test, we can prove that A :=
∞∑

l=1

(l − 1)2(8+δ)

2l−1
< +∞. ¤
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Proof. (2.8) Given ε > 0 and T ∈ L(S2)(H1, ...,Hn;F ), for each j = 1, ..., n, there exist
a Hilbert space Kj , an operator uj ∈ S2(Hj ;Kj) = Las,2(Hj ; Kj), j = 1, ..., n and
L ∈ L(K1, ..., Kn;F ) such that T = L ◦ (u1, ..., un), with σ2(uj) = 1, j = 1, ..., n and
‖ L ‖≤ (1 + ε) ‖ T ‖S2 .

Write uj(h) =
∞∑

s=1

τ (j)
s (h | h(j)

s )k(j)
s , where τ (j) = (τ (j)

s )s ∈ l2, ‖ t(j) ‖2 σ2(uj) = 1,

(h(j)
s )s is an orthonormal sequence in H and (k(j)

s )s, an orthonormal sequence in Kj .
By the lemma 2.9, given δ > 0, we can write τ (j)

s = α(j)
s σ(j)

s β(j)
s for each s ∈ IN, where

σ(j) = (σ(j)
s )s ∈ l2, ‖ σ(j) ‖2≤ A, α(j)

s = β(j)
s =

√
γ

(j)
s , α(j) = (α(j)

s )s and β(j) = (β(j)
s )s

∈ co, with ‖ α(j) ‖∞ =‖ β(j) ‖∞ =
1

n4+ δ
2
.

Using theorem 1.4, for each j = 1, ..., n, we have uj = vj ◦ wj , where wj ∈ L(H;Zj),

vj ∈ Las,2(Zj ;Kj), with ‖ wj ‖ ≤ 8

n1+ δ
8

and ‖ vj ‖as,2 ≤ 48A

n5+ 5δ
8

.

If S = L ◦ (v1, ..., vn) ∈ L(Z1, ..., Zn;F ), for (zj
i )

m
i=1 ⊂ Zj , j = 1, ..., n, we can write

(
m∑

i=1

‖ S(z1
i , ..., zn

i ) ‖ 2
n

)n
2

≤‖ L ‖
m∏

j=1

(
m∑

i=1

‖ vjz
j
i ‖2

) 1
2

≤‖ L ‖
m∏

j=1

‖ vj ‖as,2‖ (zj
i )

m
i=1 ‖w,2

Then, ‖ S ‖d,2 ≤‖ L ‖
m∏

j=1

‖ vj ‖as,2 ≤ (1 + ε) ‖ T ‖S2

(
48A

n5+ 5δ
8

)n

, and also,

T = S ◦ (S1, ..., Sn) if Sj = vj , j = 1, ..., n.
Suppose now that T ∈ L(H1, ..., Hn;F ) can be decomposed as described in 2.8. We

can use theorem 1.5 to get a decomposition for S ∈ Ld,2(Z1, ..., Zn; F ) say, S = S̃ ◦
(w1, ..., wn) with wj ∈ Las,2(Hj ;L2(µj)) = S2(Hj ; L2(µj)), µj ∈ W (BZ′j ), j = 1, ..., n

and S̃ ∈ L(L2(µ1), ..., L2(µn); F ). If we call vj = wj ◦ Sj , we have the decomposition
T = S̃ ◦ (v1, ..., vn) and we conclude that T is a multilinear Schatten class type mapping
S2. ¤

For polynomials, the result is analogous.

Theorem 2.10. Let P ∈ P(nH; F ). The following conditions are equivalent:
(i) P ∈ P(S2)(nH;F ).
(ii) There exist an L1 space Y , an operator R ∈ L(H; Y ) and Q ∈ Pd,2(Y ; F ) such that
P = Q ◦R.
(iii) There exist an L∞ space X, an operator S ∈ L(H; X) and Q ∈ Pd,2(X; F ) such
that P = Q ◦ S.

Moreover, given ε > 0, Q,R can be taken in (ii) in such a way that ‖ R ‖= 1 and
‖ Q ‖d,2 ≤ (1 + ε)(KG)n ‖ P ‖S2 and Q,S in (iii) such that ‖ S ‖= 1, j = 1, ..., n and
‖ Q ‖d,2≤ (1 + ε) ‖ P ‖S2 .

Theorem 2.11. A polynomial P ∈ P(nH; F ) is of Schatten class type S2 if and only
if, given an infinite dimensional Banach space Z, there exist S ∈ L(H; Z) and Q ∈
Pd,2(Z; F ) such that P = Q ◦ S.

Moreover, given ε > 0 and δ > 0, S and Q can be chosen in such a way that ‖ Q ‖d,2

≤ (1 + ε) ‖ P ‖S2

(
48A

n5+ 5δ
5

)n

, A > 0 is a constant, and ‖ S ‖ ≤ 8

n1+ δ
8
.
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It is important to say that there are other ways to choose the sequences in 2.9 and
consequently, in 2.8 and 2.11. The choice made is (one of) the best for the proof of the
factorization result for holomorphic mappings.

3. Holomorphic mappings of Schatten class type

The main purpose of this section is to present a factorization result for holomorphic
mappings of Schatten class type S2. The spaces considered in this section are complex.

The holomorphic mappings has been already studied by Braunss in [2].

Definition 3.1. Let 0 < p < ∞ and f ∈ H(U ; F ), where U ⊂ G is a non-void open
subset of H. f is a mapping of Schatten class type Sp in h ∈ H if d̂nf(h) ∈ P(Sp)(nH; F )

for all n ∈ INo and there exist real numbers C ≥ 0 and c ≥ 0 such that ‖ 1
n!

d̂nf(h) ‖Sp

≤ Ccn for all n ∈ INo.
If f is of Schatten class type in all h ∈ U , we say that f is of Schatten class type on

U . We denote the class of such mappings by H(Sp)(U ;F ).

The factorization result is

Theorem 3.2. Let U ⊂ H be an open subset of H, f ∈ H(U ;F ) and ho ∈ U . Then, f
is of Schatten class type S2 in ho if and only if, there exist an L∞ space X, an operator
S ∈ L(H; X) and g ∈ H(X;F ) of 2-dominated type (see [8], 3.2) in xo = Sho, such that
f = g ◦ S in Uo, where Uo is a neighborhood of ho.

Proof. We call Pn =
1
n!

d̂nf(ho) ∈ P(S2)(nH;F ) for each n ∈ IN. Using 2.11, we can

write Pn = Qn ◦ Sn, where Sn ∈ L(H; l∞), ‖ Sn ‖ ≤ 8

n1+ δ
8

and Qn ∈ Pd,2(nl∞; F ), with

‖ Qn ‖d,2 ≤ (1 + ε) ‖ Pn ‖S2

(
48A

n5+ 5δ
8

)n

. (*)

We denote X = l∞(l∞), in : l∞ → X the n-th inclusion and πn : X → l∞ the n-th

projection, n ∈ IN. Observe that ‖ in ◦Sn ‖≤ 8

n1+ δ
8

and by the comparison test, we have

that
∞∑

n=1

‖ in ◦ Sn ‖< +∞. So , we define S ∈ L(H;X), S(h) =
∞∑

n=1

in ◦ wn(h).

If we define g(x) = f(ho) +
∞∑

n=1

Qn ◦ πn(x − xo), we have g ∈ H(X;F ) , because

lim sup
n→∞

‖ Qn ◦ πn ‖ 1
n = 0. Moreover, if Uo is a neighborhood of ho where f(h) =

f(ho) +
∞∑

n=1

Pn(h− ho) for all h ∈ Uo, we have

(g ◦ S)(h) = f(ho) +
∞∑

n=1

Qn ◦ πn(Sx− Sxo) = f(ho) +
∞∑

n=1

Qn ◦ πn

( ∞∑

k=1

ik ◦ wk(h− ho)

)

= f(ho) +
∞∑

n=1

Qn ◦ wn(h− ho) = f(ho) +
∞∑

n=1

Rn ◦ vn ◦ wn(h− ho)

= f(ho) +
∞∑

n=1

Rn ◦ un(h− ho) = f(ho) +
∞∑

n=1

Pn(h− ho) = f(h).

g is 2-dominated in xo = Sho ∈ X. In fact, we know that
1
n!

d̂ng(xo) = Qn ◦ πn ∈
Pd,2(X; F ) for all n ∈ IN. Using (*) and the fact that ‖ Pn ‖S2≤ Ccn for all n ∈ INo, we
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reach the desired conclusion.

(ii)⇒ (i) For n ∈ IN,
1
n!

d̂nf(ho) =
1
n!

d̂ng(Sho) ◦ S ∈ Pd,2(nH;F ) = P(S2)(nH; F ) (see

2.6). ¤

We can show the result above for an L1 space. We only use l1 in the place of l∞ and
define X = l1(l1).

Remark 3.3. Using the same notation as in 3.2, if U is a ho-balanced set, then we have

f(h) = f(ho) +
∞∑

n=1

Pn(h− ho) for all h ∈ U and consequently, f = g ◦ S in U (see [11],

8.4).
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