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Assume that K independent 
opies are made from a 
ommon prototype DNA sequen
e whose length

is 
onsidered to be a random variable. In this paper the problem of aligning these 
opies and therefore

the problem of estimating the prototype sequen
e that produ
ed the 
opies is addressed. A hidden

Markov 
hain is used to model the 
opying pro
edure and a reversible jump Markov 
hain Monte

Carlo algorithm is used to sample the parameters of the model from their posterior distribution. Us-

ing the sample obtained, the Bayesian model sele
tion may be made and the prototype sequen
e may

be sele
ted using the maximum a posteriori estimate. A prior distribution for the prototype DNA

sequen
e that in
orporates a 
orrelation among neighbouring bases is also 
onsidered. Additionally,

an analysis of the performan
e of the algorithm is presented when di�erent s
enarios are taken into

a

ount.

KEY WORDS: Bayesian inferen
e; Sequen
es alignment; Reversible jump Markov Chain Monte
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1 INTRODUCTION

One of the aims of GENOME Proje
ts is to de
ode the geneti
 
ode of living 
reatures. The

de
oding pro
edure used to read the geneti
 
ode in a region of interest (for example, a portion

of a 
hromosome) is su
h that some dis
repan
ies may o

ur from one de
oded sequen
e to

another (sequen
es 
oding the same region). Thus, it is ne
essary to obtain an alignment

of the 
opies produ
ed from a 
ommon prototype sequen
e so this prototype sequen
e may

be inferred. (For more information about DNA de
oding see, for example, Apostoli
o and

Gian
arlo (1999), Bla
kwell (1993), Drasdo et al. (1998), Liu and Lawren
e (1995), Liu et al.

(1995, 1999), Meidanis and Setubal (1995), Milanesi et al. (1999), S
hleif (1993), Waterman

(1989a, 1989b), Weir (1985) and referen
es therein.)

Some methods in the literature use hidden Markov 
hains to model the base 
omposition of

ea
h fragment and with that 
onstru
t an alignment by maximum likelihood (see, for example,

Bishop and Thompson (1986), Chur
hill (1989, 1992, 1995) and Krogh et al. (1994), Thorne

and Chur
hill (1995), Thorne et al. (1991)). However, the methods and the initial distribution

for the data, used up to now, do not take into a

ount the 
orrelation among neighbouring

bases present in a DNA sequen
e. The present work intends to take into a

ount that type of


orrelation. Another problem with most of the existing methods is that they are stati
 in the

sense that they re
onstru
t a DNA sequen
e after �xing the maximum alignment length.

In this work a two-step method for produ
ing an alignment is proposed. Even though in

the beginning a hidden Markov 
hain is used to obtain a likelihood fun
tion for the sequen
es


opied from the prototype, the present work di�ers from previous ones when a reversible

jump Markov 
hain Monte Carlo method is used to sele
t the Bayesian model and to estimate

the parameters of the model. This is made in the following way. The prototype sequen
e,

its length and the parameters of the hidden Markov 
hain are 
onsidered parameters of the

Bayesian model. After obtaining the likelihood fun
tion, the reversible jump Markov 
hain

Monte Carlo method is used to obtain samples from the joint posterior distribution of the

parameters. These sampled values are then used to sele
t the Bayesian model and within

this model the sequen
e that has the largest marginal posterior distribution is the one 
hosen
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to represent the prototype DNA word. Gar
ia and Rodrigues (1999) use reversible jump

Markov 
hain Monte Carlo in a similar problem. However, the DNA de
oding pro
edure is not

modelled using hidden Markov 
hains. In Gar
ia and Rodrigues (2001) hidden Markov 
hains

are used to model the de
oding pro
edure. Nevertheless, in neither work an implementation

of the algorithm is presented.

Unless otherwise stated, the following assumptions are 
onsidered throughout this paper.

The order in whi
h the bases appear in the de
oded sequen
es are �nal. The possible mutations

are the usual ones: deletion, insertion and repla
ement. These mutations may be 
onsidered

as produ
ed during the de
oding pro
edure (i.e., if there are not enough pie
es of DNA ending

in a spe
i�
 position, the letter appearing at that position may not be read and 
onsequently

the base is deleted - bases may also be misread or inserted). Transposition between two


onse
utive bases is 
onsidered an o

urren
e of two substitutions. Bases are read one by

one by the s
anner. Homogeneity within a sequen
e is also assumed. (For heterogeneous

sequen
es one may use the approa
h presented by Boys and Henderson (2003) to identify the

homogeneous segments in heterogeneous sequen
es and then apply the pro
edure des
ribed

here to ea
h homogeneous segment.)

The outline of the paper is as follows. In Se
tion 2 the basi
 assumptions for the hidden

Markov model are given. The Bayesian model is des
ribed in Se
tion 3 and the spatial


orrelation between sites in the prototype sequen
e is des
ribed as a four 
olour Potts model

(
ommonly used in image restoration problems - Wu (1982)). Se
tion 4 presents a reversible

jump Markov 
hain Monte Carlo algorithm used to obtain a sample from the joint posterior

distribution of the parameters of the Bayesian model. Some simulated results obtained by the

implementation of the algorithm proposed in Se
tion 4 is presented in Se
tion 5. Finally, in

the last se
tion some remarks about the method proposed in this paper are made.

3



2 A HIDDEN MARKOV MODEL

Let M be a random variable assuming values on f1; 2; : : :g; K � 1 be a known and �xed

natural number; and X

(M)

= (X

1

;X

2

; : : : ;X

M

), where X

i

2 fA,C,G,Tg = A, be a DNA

word 
alled prototype sequen
e. Assume that K independent 
opies of X

(M)

are produ
ed by

a given de
oding me
hanism (see, Bla
kwell (1993), Casella and Robert (1995) and Chur
hill

(1995), for example). Denote these 
opies by �

(i)

= �

i;1

; : : : ; �

i;q

i

, i = 1; 2; : : : ; K, where

q

i

indi
ates the length of the ith 
opy. Note that due to errors that may o

ur during the

de
oding pro
edure the de
oded sequen
es and the prototype sequen
e may not have the same

length. Di�erent 
opies may also have di�erent lengths.

The prototype DNA word X

(M)

is an unknown ve
tor of bases belonging to fA,C,G,Tg

M

.

The observed data is Y = (�

(1)

; : : : ; �

(K)

), i.e., the out
ome produ
ed by K independent

realisations of the me
hanism used to de
ode the prototype sequen
e X

(M)

. Assume that the

de
oded sequen
es Y are results of a hidden Markov 
hain denoted by s = fs

k

; k = 0; 1; 2; : : :g

where ea
h s

k

is of one of the following type of states: R-states, representing mutations (this


an be either a repla
ement of a base by a di�erent one or a repla
ement of a base by itself, and

therefore a 
orre
t 
opy); D-states, meaning that a deletion o

urred; and I-states indi
ating

that an insertion has o

urred. Besides the I, R, and D states, two spurious states are added

to the state spa
e of s. These states, denoted by B and E, are used to indi
ate the beginning

and the end of the de
oding pro
ess, respe
tively, (see Chur
hill (1995) and Chur
hill and

Lazareva (1999)). The spurious states are mute states, i.e., they do not produ
e an output.

The initial state of the sequen
e s is set to be B with probability one. Unless otherwise stated,

from now on the pro
edure will be des
ribed for the 
ase K = 1.

Ea
h base X

t

, t = 1; 2; : : : ;M will be asso
iated to one of the R, I, or D states as follows.

X

t

is asso
iated to the states I

t

, R

t

, D

t

in a way that if the value of the hidden Markov 
hain

is R

t

, that means that the base X

t

was either 
orre
tly 
opied or was repla
ed by another

base; if its value is I

t

, then that means that a base has been inserted before the base X

t

was pro
essed; if its value is D

t

then that means that the base X

t

was deleted during the

de
oding pro
ess. An additional state is also 
onsidered. The state I

M+1

will indi
ate the
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possible insertions that may o

ur after the last base of X is pro
essed. Hen
e, given M ,

the state spa
e of the hidden Markov 
hain is S = fB;R

1

; I

1

; D

1

; : : : ; R

M

; I

M

; D

M

; I

M+1

; Eg

where l 
onse
utive visits to state I

t

means that l insertions were made before base X

t

was

examined, t = 1; 2; : : : ;M ; and l 
onse
utive visits to state I

M+1

implies that l insertions were

made after the base X

M

was pro
essed. Let n = minfk : s

k

= E; k � 2g � 1. Therefore,

the hidden Markov 
hain is given by s = s

1

; : : : ; s

n

. The de
oded sequen
e � = �

1

; : : : ; �

n

produ
ed as a realisation of the 
hain s has state spa
e R = fA;C;G; T; �;�g, where �

appears in a spe
i�
 position to indi
ate that at that position it was not possible to de
ide

what base was present, and \�" indi
ates that the base in the prototype sequen
e that would

o

upy that position was deleted during the de
oding pro
ess. (The states B and E are

suppressed in s sin
e they produ
e no output and are used only to indi
ate the beginning and

the end of the de
oding pro
ess.) Hen
e, for a given DNA word X

(M)

= (X

1

; : : : ;X

M

) the

output data is f�

(i)

= �

i;1

; : : : ; �

i;n

i

; i = 1; 2; : : : ; Kg and the 
orresponding hidden states are

fs

(i)

= s

i;1

; : : : ; s

i;n

i

; i = 1; 2; : : : ; Kg.

For M = m given, let �

(m)

=

�

�

(m)

(i; j)

�

i;j2S

be the transition matrix for the hidden

Markov 
hain, i.e., �

(m)

(i; j) = P (s

k

= j j s

k�1

= i), 1 � k � n + 1, i; j 2 S; �

(m)

(i; B) =

�

(m)

(E; i) = 0, for all i 2 S and �

(m)

(E;E) = 1. Denote by �

(m)

=

�

�

(m)

(i; j)

�

i2S;j2R

the

distribution of the observed states given the hidden states, i.e., �

(m)

(i; j) = P (�

k

= j j s

k

= i),

1 � k � n, i 2 S; j 2 R. The matri
es �

(m)

and �

(m)

are sto
hasti
 and are (3m+2)�(3m+2)

and (3m)� 6 matri
es, respe
tively.

Remarks. 1. Sin
e homogeneity of the DNA sequen
e is assumed, then the redu
ed state

spa
e S

0

= fB; I; R;D;Eg will be used for the hidden Markov 
hain. Therefore, the redu
ed

transition matrix is 
onsidered, i.e., given that M = m,

�

(m)

=

0

B

B

B

B

B

�

�

(m)

(R;R) �

(m)

(R;D) �

(m)

(R; I)

�

(m)

(D;R) �

(m)

(D;D) �

(m)

(D; I)

�

(m)

(I; R) �

(m)

(I;D) �

(m)

(I; I)

1

C

C

C

C

C

A

:

That implies that the transition from any state I

t

is the same. Likewise for the states R

t

and

D

t

.
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2. Also due to homogeneity we may work with the redu
ed observation matrix �, i. e.,

given that M = m we have

�

(m)

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�

(m)

(I; A) �

(m)

(I; C) �

(m)

(I; G) �

(m)

(I; T ) �

(m)

(I; �) 0

�

A

(m)

(R;A) �

A

(m)

(R;C) �

A

(m)

(R;G) �

A

(m)

(R; T ) �

A

(m)

(R; �) 0

�

C

(m)

(R;A) �

C

(m)

(R;C) �

C

(m)

(R;G) �

C

(m)

(R; T ) �

C

(m)

(R; �) 0

�

G

(m)

(R;A) �

G

(m)

(R;C) �

G

(m)

(R;G) �

G

(m)

(R; T ) �

G

(m)

(R; �) 0

�

T

(m)

(R;A) �

T

(m)

(R;C) �

T

(m)

(R;G) �

T

(m)

(R; T ) �

T

(m)

(R; �) 0

0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where �

A

(m)

(R; �), �

C

(m)

(R; �), �

G

(m)

(R; �), �

T

(m)

(R; �) indi
ate the observation probabilities when

the R state has o

urred in the hidden Markov 
hain and this state 
orresponds to the letter

A, C, G, and T in the prototype sequen
e, respe
tively. The last line of �

(m)

, 
orresponds to

the possible observations from a D state and the last 
olumn of �

(m)

indi
ates the observation

produ
ed by the output \�" (whi
h 
orresponds to a deletion). Therefore, if either I or R is

asso
iated to X

t

, then the observation of a state \�" is not possible and if D is asso
iated to

X

t

, then the only output allowed is the state \�".

3. Note that, when R is asso
iated with the last base of X and the 
opied sequen
e still

has some bases to be a

ounted for, that means that the remaining bases of � are results of

insertions and we will have only transitions from I to I and from I to E. If R is asso
iated

with a base in X (whi
h is not the last one) and in the next step there is no base to be

pro
essed in the observed sequen
e, then that means that the remaining bases of X have been

deleted during the de
oding pro
edure.

4. Note if X

t

= C and if R is asso
iated to X

t

, then the most likely output is C. Similar

situation o

urs if we have X

t

= A;G; T instead of X

t

= C.

Next the general Bayesian model is presented.
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3 A BAYESIAN MODEL

There is a natural hierar
hi
al stru
ture expressed by modelling the joint distribution of the

parameter � = (M;X

(M)

;�

(M)

; s;�

(M)

) and the output Y as

P (M;X

(M)

;�

(M)

; s;�

(M)

;Y) / L(YjM;X

(M)

;�

(M)

; s;�

(M)

)P (�

(M)

jM)P (sj�

(M)

;M)

P (�

(M)

jX

(M)

;M)P (X

(M)

jM)P (M); (1)

(see, for example, Ri
hardson and Green (1997) and Robert et al. (2000)). There are several


hoi
es for ea
h 
omponent of the above model (1). The ones 
onsidered here are:

1. The prior probability of M . The length M of the prototype sequen
e will have a

trun
ated Poisson distribution with parameter �, i.e.,

P (M) /

�

M

M !

I

fk

0

+1;:::;K

0

g

(M);

where I

A

(x) = 1, if x 2 A and it is zero otherwise. Other 
hoi
es for P (M) are possible.

Liu et al. (1999) suggested it to be uniform in a suitable range of possible lengths,

say l

0

+ 1 and L

0

, and Robert et al. (2000) 
onsider P (M) as the uniform distribution

on f1; 2; : : : ;M

max

g, where M

max

is some given number. The length M may also be


onsidered as a random variable with a geometri
 distribution with some parameter

0 < p < 1.

2. The prior probability of X

(M)

given its length M . Two 
ases will be 
onsidered:

(a) Independent 
ase. Chur
hill and Lazareva (1999) assume that, given M , the

sequen
e X

(M)

has independent and identi
ally distributed 
omponents with known

letter frequen
ies �

i

, i 2 fA;C;G; Tg, that is

P (X

(M)

jM) =

M

Y

t=1

�

X

t

; X

t

2 fA;C;G; Tg: (2)

(b) Non-independent 
ase. In this work the independen
e assumption is dropped

and a spatial dependen
e among the sites is introdu
ed. The dependen
e assumed
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here is that given the sequen
e length M the 
on�guration of the sequen
e X

(M)

follows a four 
olour Potts model, that is,

P (X

(M)

jM) =

1

Z

�;M

exp

0

�

X

ft;rg

�

tr

1

fX

t

=X

r

g

(X

(M)

)

1

A

; (3)

where the sum is over all unordered neighbours ft; rg (neighbourhood to be de-

�ned), with t; r 2 f1; 2; : : : ;Mg, and Z

�;M

is a normalising 
onstant. Boundary


onditions are free. The k-
olour Potts model (k � 1) has been extensively used

in image re
overy and re
ognition. (For more information on Potts model and its

appli
ations see, for example, Ferrari et al. (1995), Greig et al. (1989), Hebert and

Leahy (1992), Hurn and Jennison (1993), and Wu (1982), among others.) In the

present 
ase the neighbourhood 
onsidered is the nearest neighbour and we also

assume that �

tr

= �

rt

= � for all t; r 2 f1; 2; : : : ;Mg. Hen
e, the expression (3)

may be written as

P (X

(M)

jM) =

1

Z

�;M

exp

 

M � + 2 �

M

X

t=2

1

fX

t

=X

t�1

g

(X

(M)

)

!

: (4)

It is possible to 
onsider this parti
ular 
ase for �

tr

be
ause the sequen
e is 
onsid-

ered to be homogeneous. (For heterogeneous DNA sequen
es one may use the ap-

proa
h proposed by Boys and Henderson (2003) to identify homogeneous segments

and then apply the hypothesis of the same value of �

tr

for ea
h of the segments.

Note that in this 
ase we may have distin
t values of � for distin
t homogeneous

segments.)

3. The prior distribution of the transition matrix �

(M)

given M . It seems rea-

sonable to assume that given M , the error pro
ess is 
onditionally independent of the

prototype sequen
e X

(M)

. A natural 
hoi
e for the prior distribution of �

(M)

givenM , is

to assume that every row �

(M)

(k), k = 1; 2; 3 of the redu
ed matrix �

(M)

is independently

distributed a

ording to a suitable Diri
hlet distribution on the three dimensional sim-

plex �

3

. The 
hoi
e of the parameter of the Diri
hlet distribution is arbitrary. Robert

et al. (2000) suggest using all parameters equal to one, while Chur
hill and Lazareva
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(1999) give some other values for the parameters. Hen
e, we use the Diri
hlet distribu-

tions with parameters: (a

iR

; a

iD

; a

iI

), i = R;D; I to sample the �rst, the se
ond and the

third rows of �

(M)

, respe
tively. The parti
ular values for the parameters (a

iR

; a

iD

; a

iI

),

i = R;D; I of will be given in Se
tion 5.

4. Error pro
ess. The prior distribution of the error sequen
e s given �

(M)

and M ,

follows a Markov 
hain with transition matrix �

(M)

as des
ribed in Se
tion 2.

5. Distribution of �

(M)

given X

(M)

and M . Assume that the rows of �

(M)

are inde-

pendent and that given X

(M)

and M , its �rst row �

(M)

(1) has the non-zero probabil-

ities sampled from the �ve dimensional simplex �

5

using a Diri
hlet distribution with

parameter (a

IA

; a

IC

; a

IG

; a

IT

; a

I�

). Rows �

M

(k), k = 2; 3; 4; 5, have non-zero prob-

abilities sampled from the simplex �

5

using a Diri
hlet distribution with parameter

(a

XA

; a

XC

; a

XG

; a

XT

; a

X�

), where the X is to indi
ate the dependen
e on the value that

appears in the sequen
e X at a given position. So, if we are sampling the values related

to the �fth letter of the sequen
e X and this is an A (with R the 
orresponding state of

the hidden Markov 
hain), then we use the probabilities that appear on the se
ond row

of �

(M)

to obtain the respe
tive observation probability. For the last row of �

(M)

we

have that �

(M)

(6) = (0; 0; 0; 0; 0; 1) with probability one. Note that sin
e the parameter

spa
e is enlarged to in
lude the prototype sequen
e X

(M)

, it is not ne
essary to deal

with a mixture of Diri
hlet distributions as in Chur
hill and Lazareva (1999).

6. The likelihood fun
tion. Sin
e the output Y is produ
ed through the hidden Markov


hain me
hanism, the likelihood of Y given the parameter � = (M;X

(M)

;�

(M)

; s;�

(M)

)

depends only on M , �

(M)

and s. Therefore,

L(YjM;X

(M)

;�

(M)

; s;�

(M)

) =

K

Y

i=1

L(�

(i)

jM; s

(i)

;�

(i)

(M)

)

=

K

Y

i=1

�

(i)

(M)

(s

i;1

; �

i;1

)�

(i)

(M)

(s

i;2

; �

i;2

) : : : �

(i)

(M)

(s

i;n

i

; �

i;n

i

)
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where s

(i)

= (s

i;1

; : : : ; s

i;n

i

) is the error sequen
e that produ
ed the observation �

(i)

(re
all that �

(i)

has been extended to have the same length as s

(i)

by assigning �

i;j

= �

whenever s

i;j

= D) and �

(i)

(M)

is the observation matrix asso
iated to the ith observation

and the Markov 
hain that produ
ed it.

The main purpose of this work is to sample values of (M;X

(M)

;�

(M)

; s;�

(M)

) from their

joint posterior distribution P (M;X

(M)

;�

(M)

; s;�

(M)

jY) and use the sample for the Bayesian

model sele
tion. This will be done in Se
tion 4, when a reversible jump Markov 
hain Monte

Carlo method (Carlin and Chib (1995) and Green (1995)) is used to obtain a sample from

the joint posterior distribution. The joint posterior distribution, in the present 
ase, 
an be

written as

P (M;X

(M)

;�

(M)

; s;�

(M)

jY) = P (s j�

(M)

;M;Y)P (�

(M)

jM;Y)P (�

(M)

jX

(M)

;M;Y)

P (X

(M)

jM;Y)P (M jY)

/ L(YjM; s;�

(M)

)P (sj�

(M)

;M)P (�

(M)

jM) (5)

P (�

(M)

jX

(M)

;M)P (X

(M)

jM)P (M);

and the main task is to 
onstru
t a Markov 
hain whose stationary distribution is P (M; X

(M)

;

�

(M)

; s;�

(M)

jY). This is done in the next se
tion.

4 MAXIMUM A POSTERIORI THROUGH

REVERSIBLE JUMP MCMC

Maximum a posteriori methods have been widely used for image restoration when the dimen-

sion (number of pixels) of the image is known (see the survey paper by Geman (1990) and

referen
es therein, and also Ferrari et al. (1995), Greig et al. (1989), Hebert and Leahy (1992)

and Hurn and Jennison (1993), among others). However, the usual methodology is not appro-

priate when the dimension is unknown or random, as is the 
ase analysed here. Carlin and Chib

(1995) and Green (1995) introdu
ed the 
on
ept of Bayesian model determination when the

10



dimension of the model is unknown. Note that given M , the ve
tor (M;X

(M)

;�

(M)

; s;�

(M)

)

lies in

C

M

= fMg � fA,C,G,Tg

M

� (�

3

)

3

� fI; R;Dg

n

� (�

5

� f0g)

5

� (0; 0; 0; 0; 0; 1);

where �

5

� f0g is used to indi
ate the set of all six dimensional ve
tors whose �rst �ve


oordinates form a ve
tor in the simplex �

5

and the sixth 
oordinate is zero. In general,

(M;X

(M)

;�

(M)

; s;�

(M)

) lies in C = [

1

M=1

C

M

.

Bayesian inferen
e aboutM andX

(M)

will be done in two steps. A sample f(M;X

(M)

;�

(M)

;

s;�

(M)

)

j

; j = 1; 2; : : : ; Jg is drawn from the joint posterior distribution using a reversible

jump Markov 
hain Monte Carlo. The model M = m 
hosen is the one that maximises the

marginal posterior P (M jY) whi
h is estimated by the proportion of time that the parameter

(M; X

(M)

; �

(M)

; s;�

(M)

) stays in the dimension M = m. Among the sequen
es that belong

to the model in dimension M = m, the one 
hosen to estimate the prototype sequen
e is the

sequen
e X

(m)

that maximises P (X

(m)

jM = m;Y).

The reversible jumpMarkov 
hain Monte Carlo used to obtain a sample f(M;X

(M)

;�

(M)

; s;

�

(M)

)

j

; j = 1; 2; : : : ; Jg is des
ribed as follows. (As usual, there is a 
ertain 
exibility in 
hoos-

ing 
onveniently the kernel of transition.) If the a
tual state of the 
hain is (M;X

(M)

;�

(M)

; s;

�

(M)

), at the time of a transition an independent random 
hoi
e is made among attempting

ea
h of the three moves:

(r) repla
ement of a base at a randomly 
hosen site by a randomly 
hosen base;

(b) birth of a randomly 
hosen base at a randomly 
hosen lo
ation;

(d) death of a base at a randomly 
hosen site;

with probabilities r

M

, b

M

and d

M

, respe
tively, depending only on the dimension of X

(M)

and

satisfying

r

M

+ b

M

+ d

M

= 1:

These probabilities are 
hosen so that

b

M

= 
 min

n

1;

p(M + 1)

p(M)

o

11



and

d

M

= 
 min

n

1;

p(M � 1)

p(M)

o

;

with 
 > 0 a suitable 
onstant subje
t to b

M

+ d

M

< 1, for all M � 1. Therefore, the

reversibility 
ondition p(M) b

M

= p(M + 1) d

M+1

is satis�ed.

Remark. Note that (b) and (d) involve 
hanging the dimension of the parameter spa
e,

hen
e standard Markov 
hain Monte Carlo methods do not apply.

In order to des
ribe the steps of the Markov 
hain Monte Carlo, the dependen
e on M

is dropped from some of the notation. Therefore, from now on � is used to represent the

transition matrix of the hidden Markov 
hain that will possibly be updated and �

0

is the

updated matrix; � is the observation matrix that will possibly be updated and �

0

is the

updated matrix. The proposal distributions for the jumps of the reversible jump Markov


hain are given in the following way.

1. Repla
ement: If a repla
ement move is 
hosen, then,

(a) sele
t a position t uniformly in f1; 2; : : : ;Mg;

(b) repla
e X

t

by X

0

t


hosen uniformly from A (note that a base 
an be repla
ed by

itself and that some other distribution may be used to sele
t from A) and let

X

0(M)

= (X

1

; : : : ;X

t�1

;X

0

t

;X

t+1

; : : : ;X

M

) be the updated sequen
e;

(
) update the matrix � independently sampling its rows using their posterior distribu-

tion, i.e., if n

�

ij

, i; j = R;D; I 
ount the number of transitions in the hidden Markov


hain from the state i to state j, then sample sample rows 1, 2 and 3 of �

0

from a

Diri
hlet distribution with parameter (a

iR

+ n

�

iR

; a

iD

+ n

�

iD

; a

iI

+ n

�

iI

), i = R;D; I,

respe
tively.

(d) Update the error sequen
e s using the updated matrix �

0

.

(e) The updating of the matrix � is made by independently sampling its rows using

the following me
hanism. Let R

A

, R

C

, R

G

, R

T

mean that R is an output of the

hidden Markov 
hain and that it is asso
iated to the letter A, C, G, T , respe
tively,

12



in the sequen
e X

(M)

, and let n

�

ij

, i = I; R

A

; R

C

; R

G

; R

T

, j = A;C;G; T; �, 
ount

the number of times that the hidden Markov 
hain produ
es the output i and

the 
hara
ter observed is j. Then, the �rst �ve elements of the �rst �ve rows of

the matrix � will be sampled from a Diri
hlet distribution with parameter (a

iA

+

n

�

iA

; a

iC

+ n

�

iC

; a

iG

+ n

�

iG

; a

i�

+ n

�

i�

), i = I; R

A

; R

C

; R

G

; R

T

, respe
tively. The last

element in ea
h of the �rst �ve rows of �

0

is zero with probability one. The row


orresponding to the observation from a D state is (0; 0; 0; 0; 0; 1) with probability

one.

The a

eptan
e probability of this move is

min

(

1;

L(YjM;�

0

; s

0

)P (s

0

j�

0

;M)P (�

0

jX

0(M)

;M)P (�

0

jM)

L(YjM;�; s)P (sj�;M)P (�jX

(M)

;M)P (�jM)

P (X

0(M)

jM)Q(�

0

; �)

P (X

(M)

jM)Q(�; �

0

)

J

)

where Q(�; �

0

) is the proposal transition from � to �

0

and the ratio Q(�

0

; �)=Q(�; �

0

) is

given by

f(�) g(�)P (s j�

0

; M)

f(�

0

) g(�

0

)P (s

0

j�

0

; M)

;

where f(�) and g(�) are the produ
ts of Diri
hlet distributions used to update of the non-

zero probabilities of the rows of � and �, respe
tively, and P (� j�

0

; M) is the probability

of the error sequen
e when the updated matrix �

0

is 
onsidered. The transformation

from the spa
e where � belongs to the spa
e to whi
h �

0

= (M;X

0(M)

;�

0

; s

0

;�

0

) belongs

to is given by the transformations 
onsidered in items (a), (b), (
), (d) and (e) above

and therefore the Ja
obian, J , is equal to one. We also have, for the prior distribution

(4), that

p(X

0(M)

jM)

p(X

(M)

jM)

= exp

�

2�

h

1

fX

2

=X

0

1

g

(X

0(M)

)� 1

fX

2

=X

1

g

(X

(M)

)

i�

; if t = 1;

p(X

0(M)

jM)

p(X

(M)

jM)

= exp

�

2�

h

1

fX

0

M

=X

M�1

g

(X

0(M)

)� 1

fX

M

=X

M�1

g

(X

(M)

)

i�

; if t =M;

p(X

0(M)

jM)

p(X

(M)

jM)

= exp

 

2�

t+1

X

k=t

h

1

fX

0

k

=X

0

k�1

g

(X

0(M)

)� 1

fX

k

=X

k�1

g

(X

(M)

)

i

!

;

if 2 � t �M � 1:
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2. Birth: If a birth move is 
hosen, then,

(a) sele
t a position t uniformly in f1; : : : ;M + 1g;

(b) rename the basis in the following way:

i. if t = 1, then X

0

1

is 
hosen uniformly from A and X

0

r

= X

r�1

, for r =

2; 3; : : : ;M + 1;

ii. if t = M + 1, then X

0

M+1

is 
hosen uniformly from A and X

0

r

= X

r

, for

r = 1; 2; : : : ;M ;

iii. if 2 � t � M , then X

0

r

= X

r

, for 1 � r � t� 1, X

0

t

is 
hosen uniformly from

A and X

0

r

= X

r�1

for t + 1 � r �M + 1,

and let X

0(M+1)

= (X

0

1

; : : : ;X

0

M+1

) be the updated sequen
e.

(
) The updating of the matri
es � and �, and of the error sequen
e s is made in the

same manner as proposed in the repla
ement move.

The a

eptan
e probability of this move is

min

(

1;

L(YjM + 1;�

0

; s

0

)P (s

0

j�

0

;M + 1)P (�

0

jX

0(M+1)

;M + 1)P (�

0

jM + 1)

L(YjM;�; s)P (sj�;M)P (�jX

(M)

;M)P (�jM)

P (X

0(M+1)

jM + 1)Q(�

0

; �)

P (X

(M)

jM)Q(�; �

0

)

J

)

where Q(�; �

0

) is the proposal transition from � to �

0

and the ratio Q(�

0

; �)=Q(�; �

0

) is

given by

f(�) g(�)P (s j�

0

; M)M + 1

f(�

0

) g(�

0

)P (s

0

j�

0

; M + 1)M

:

where f(�), g(�) are the produ
ts of the Diri
hlet distributions used to update the matri-


es � and �, respe
tively, and P (� j�

0

; M) is the probability of the error sequen
e when

the updated matrix �

0

is 
onsidered. The Ja
obian, J , of the transformation from the

spa
e where � belongs to the spa
e whi
h �

0

= (M + 1;X

(M+1)

;�

0

; s

0

;�

0

) belongs to is

obtained from the transformations given in items (a), (b) and (
) above and therefore,

J = 1. Furthermore,

14



P (X

0(M+1)

jM + 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M+1

e

�

exp

�

2� 1

fX

1

=X

0

1

g

(X

0(M+1)

)

�

; if t = 1;

P (X

0(M+1)

jM + 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M+1

e

�

exp

�

2� 1

fX

0

M+1

=X

M

g

(X

0(M+1)

)

�

; if t =M + 1;

P (X

0(M+1)

jM + 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M+1

e

�

exp

 

2 �

t+1

X

k=t

1

fX

0

k

=X

0

k�1

g

(X

0(M+1)

)

!

; if 2 � t �M;

3. Death: If a death move is 
hosen, then,

(a) sele
t a position t uniformly in f1; : : : ;Mg, delete the base X

t

and rename the

remaining basis in the following way: X

0

r

= X

r

, for 1 � r � t� 1, X

0

r

= X

r+1

for

t � r � M � 1.

(b) The updating of the matri
es � and � and the error sequen
e s is made using the

pro
edure des
ribed when the repla
ement move is 
hosen.

The a

eptan
e probability of this move is

min

(

1;

L(YjM � 1;�

0

; s

0

)P (s

0

j�

0

;M � 1)P (�

0

jX

0(M�1)

;M � 1)P (�

0

jM � 1)

L(YjM;�; s)P (sj�;M)P (�jX

(M)

;M)P (�jM)

P (X

0(M�1)

jM � 1)Q(�

0

; �)

P (X

(M)

jM)Q(�; �

0

)

J

)

where

P (X

0(M�1)

jM � 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M�1

e

��

exp

�

�2�1

fX

2

=X

1

g

(X

(M)

)

�

if t = 1

P (X

0(M�1)

jM � 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M�1

e

��

exp

�

�2�1

fX

M

=X

M�1

g

(X

(M)

)

�

if t =M

P (X

0(M�1)

jM � 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M�1

e

��

exp

 

�2�

t+1

X

k=t

1

fX

k

=X

k�1

g

(X

(M)

)

!

if 2 � t �M � 1;

and the ratio Q(�

0

; �)=Q(�; �

0

) is given by

f(�) g(�)P (s j�

0

; M)M � 1

f(�

0

) g(�

0

)P (s

0

j�

0

; M � 1)M

;
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where f(�), g(�) and P (� j�

0

; M � 1) are given in a similar way as they were given when


onsidering the repla
ement and birth moves. The Ja
obian J of the transformation

from the model where � belongs to the model that �

0

= (M � 1;X

0(M�1)

;�

0

; s

0

;�

0

)

belongs to is given by the transformations presented in (a) and (b) above and therefore

is equal to one.

The problem now is to run this Markov 
hain for a suÆ
iently large number of steps and

when the stationary state is attained the a
tual state of the 
hain (X

(M)

;M;�

(M)

; s;�

(M)

)

gives us a sample of the posterior distribution (5) and the usual measures may be used to

de
ide about the Bayesian model. On
e the model is 
hosen, the sequen
e within this model

that has the largest marginal posterior is the one 
hosen to represent the prototype sequen
e.

5 SIMULATION

In this se
tion some details about the implementation of the algorithm proposed in this paper

are given. Besides the values for the various variables used in the programme, some graphi
s

and 
omments about the results obtained are presented.

5.1 Setting the parameters

In order to perform the simulation of the algorithm some of the parameters presented in a

more general framework during Se
tions 2, 3 and 4 must be spe
i�ed. Therefore, the following

is 
onsidered.

1. The 
hoi
e of the hyperparameter � is left to the resear
her to 
hoose. One suggestion is

to take � approximately the mean size of the sequen
es the resear
her has as data (i.e.,

the mean length of K de
oded sequen
es that the resear
her is using as observed data).

In the present 
ase we take � = 53. Several values of 
 (appearing in the reversible jump

Monte Carlo) are taken in order to 
ompare the performan
e of the algorithm depending

on what prior distribution of the sequen
e X and the length M were 
onsidered. The
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values used in the simulations were basi
ally 
 = 0:001; 0:01; 0:1; 0:33333; 0:35. The �rst

three values were 
hosen to make birth and death moves with low probability and the

other two values were 
hosen to have 
 as 
lose as possible to the maximum value of 


su
h that d

M

+ b

M

< 1.

2. The prior distribution for the sequen
e length M is a trun
ated Poisson distribution

on f49; 50; : : : ; 57g whose mean is 53. This distribution will be referred to as the Pois-

son(53, f49; 50; : : : ; 57g). Besides this prior two others are taken into a

ount. They are

the trun
ated Poisson(53) with mean 53, taking values on f1; 2; : : :g and the Uniform

distribution on f49; 50; : : : ; 57g whi
h will be referred to as Poisson(53, f1; 2; : : :g) and

Uniformf49; 50; : : : ; 57g, respe
tively.

3. The parameters of the Diri
hlet distribution used to sample values for the rows of �

are given by (a

iI

; a

iR

; a

iD

) = (1; 6; 1), i = R;D; I. The parameters of the Diri
h-

let distribution used to sample values for the rows of the matrix � are given by,

(a

XA

; a

XC

; a

XG

; a

XT

; a

X�

) = (6; 1; 1; 1; 1) if X = A and for X = C;G; T , similar sets of

parameters are 
onsidered (i.e., ifX = C then (a

XA

; a

XC

; a

XG

; a

XT

; a

X�

) = (1; 6; 1; 1; 1)).

Additionally, the Diri
hlet distribution used to sample the row 
orresponding to the in-

sertion state has parameter (a

IA

; a

IC

; a

IG

; a

IT

; a

I�

) = (1; 1; 1; 1; 1).

4. When using the assumption of independen
e for the bases in the prototype sequen
e

(i.e., the prior distribution of X is given by (2)), from Chur
hill and Lazareva (1999) we

use the values �

i

= 0:25 for all i 2 fA;C;G; Tg and when the Potts distribution (given

by (4)) is 
onsidered, we take � = 1.

5. The sequen
e X used to initialise the algorithm was the sequen
e

TAGACAGGGGCCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAACTT

whi
h is the sequen
e 1 given, as observed data, by Chur
hill and Lazareva (1999) where

we write the letter G in pla
e of the unknown letter in position 9. Only one sequen
e

was used as observed data. This sequen
e is the �rst sequen
e 
onsidered by Chur
hill
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and Lazareva (1999) as observed data, and was obtained from Seto et. al. (1993) and it is

TAGACAGG*GCCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAACTT.

5.2 Computational details

The programming of the algorithmwas made in FORTRAN and implemented on a IBM SP3 at

the Instituto de Matem�ati
as, UNAM. In order to 
ompare the performan
e of the algorithm,

several runs were made. A typi
al run of two million steps takes around �ve minutes of CPU

time whi
h, in the tests performed, 
orresponds to ten minutes in real time. When a Sili
on

Graphi
s ma
hine is used the time may in
rease to forty �ve minutes in real time.

The �rst step taken was to diagnose the speed of 
onvergen
e when taking as a measure of

referen
e the 
onvergen
e of the sample mean of the sequen
e length M . Before 
onsidering

the several possibilities for the prior distributions of M and X a preliminary test was made.

Figure 1 shows the plots obtained. In that 
ase, we assume that M and X have as prior

distributions a Poisson(54, f1; 2; : : :g) and the Potts distribution (4) with � = 1, respe
tively.

The values of 
 
onsidered were 0:1; 0:01; 0:001; 0:0065 and 0:0085 and initially runs of 10

6

steps were performed. It is possible to observe that by step 4 � 10

5

stationarity is a
hieved

when 
 = 0:1; 0:01; 0:0065. When using 
 = 0:001 and 
 = 0:0085 it is possible to observe that

apparently, stationarity is a
hieved at steps 6�10

5

and 5�10

5

, respe
tively. However, sin
e the

ergodi
 means where di�erent of the one obtained when 
onsidering the other values of 
, we

have de
ided to run the algorithm for 
 = 0:001 and 
 = 0:0085 again, but now an additional

10

6

steps were performed. What is observable from Figure 1 is that for 
 = 0:001 stationarity

is a
hieved when we rea
h step 14 � 10

5

and for 
 = 0:0085 we have that stationarity is

a
hieved when step 5 � 10

5

is rea
hed. It is worth 
alling attention to the fa
t that when


 = 0:0085 in the �rst run (when only 10

6

steps were performed) the sample mean stays more

or less the same for around 4� 10

5

steps, giving the idea that stationarity had already been

rea
hed, and then starts in
reasing its value.
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Figure 1: Initial 
onvergen
e diagnose for the sample mean of M when M has as prior a

Poisson(54, f1; 2; : : :g) distribution and X has prior distribution the Potts distribution with

� = 1.

After the preliminary 
onvergen
e diagnose was made, we have de
ided to perform 2� 10

6

iterations of the algorithm in order to verify the 
onvergen
e of the empiri
al mean of M in

ea
h of the 
ases 
onsidered. On
e 
onvergen
e had been attained, a sample of size 6 � 10

4

was taken, using every �fth value generated, to perform inferen
es. Inferen
es were performed

for the 
hoi
e of model made by the reversible jump Markov 
hain Monte Carlo algorithm,

for the behaviour of the probabilities b

M

, r

M

and d

M

, as well as, for the sample of M . From
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now on, the possible values of 
 used are the ones given in Se
tion 5.1.

Let the DNA sequen
e have as prior distribution the Potts distribution with parameter

� = 1. When M has prior distribution the Poisson(53,f1; 2; : : :g), then it is possible to see

from Figure 2(a) that for 
 = 0:01 two million steps were not enough to make the sample

mean ofM to 
onverge, whereas for all other values around 5�10

5

iterations were enough. In

parti
ular, for 
 = 0:33333 and 
 = 0:35, 1� 10

5

iterations are enough to a
hieve 
onvergen
e

and for 
 = 0:1 
onvergen
e is rea
hed around iteration 4� 10

5

. Having performed this test

we have de
ided not to 
onsider the 
ase in whi
h 
 = 0:01. If M has as prior distribution

the Poisson(53, f49; 50; : : : ; 57g), we have by observing Figure 2(b), that for all values of 



onvergen
e is attained around iteration number 2 � 10

5

. In the 
ase where M has as prior

distribution the Uniformf49; 50; : : : ; 57g, from Figure 2(
) we have that 
onvergen
e is attained

around iteration number 60�10

3

ex
ept for 
 = 0:01. Therefore, using the same pro
edure as

for the Poisson(53, f1; 2; : : :g) prior distribution the statisti
s were made using the remaining

values of 
. When the bases forming X are independent and identi
ally distributed and M

has as prior distribution the Poisson(53, f49; 50; : : : ; 57g) and the Uniformf49; 50; : : : ; 57g

the behaviour of the sample mean is similar to those shown in Figure 2(b) and 2(
) with


onvergen
e attained around iteration number 2 � 10

5

and 3 � 10

5

, respe
tively. The 
ase

where M has as prior distribution the Poisson(53, f1; 2; : : :g) is not 
onsidered here be
ause

of the slowness of the 
onvergen
e.

Figure 3 illustrates the histograms of the values of M that are a

epted by the reversible

jump Markov 
hain Monte Carlo. Figure 3(a), 3(b) and 3(
) represent the 
ase where X

has prior distribution the Potts distribution and M has as prior distribution the Poisson(53,

f1; 2; : : :g), Poisson(53, f49; 50; : : : ; 57g) and the Uniformf49; 50; : : : ; 57g, respe
tively. Figure

3(d) is a typi
al example for the 
ase where X is formed by independent and identi
ally

distributed bases and M has prior distribution the Poisson(53, f49; 50; : : : ; 57g). The value

of 
 used to produ
e the graphi
s is 
 = 0:35.

The relationship among the probabilities of the o

urren
e of the events of birth, death

and repla
ement in the reversible jump Markov 
hain Monte Carlo algorithm is shown in

20



Figure 2: Convergen
e diagnose, for di�erent values of 
, of the sample mean of the sequen
e

length M for the various prior distributions of X and M .
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Figure 3: Histograms of values of M produ
ed by the reversible jump Markov 
hain Monte

Carlo algorithm using 
 = 0:35 when di�erent prior distributions for X and M are 
onsidered.

the plots of Figure 4, where a portion of the values produ
ed by the algorithm for the 
ase

where 
 = 0:35 was used. The lighter solid line on these plots is the probability of o

urren
e

of a death event (d

M

); the dashed line is the probability of a birth event (b

M

); and the

remaining line 
orresponds to the probability of a repla
ement (r

M

). Figures 4(a) and 4(b)

represent the 
ase where X has prior distribution the Potts distribution and M has the

Poisson(53, f1; 2; : : :g) and the Poisson(53, f49; 50; : : : ; 57g), respe
tively, as prior distribution.

In Figure 4(
) we have that X has independent and identi
ally distributed bases and M has

the Poisson(53, f49; 50; : : : ; 57g) distribution as its prior. Note that when 
omparing the

22



behaviour of d

M

, r

M

, and b

M

in the 
ases of Figure 4(a) and 4(b) the algorithm produ
es a

more mixed behaviour in the 
ase where X has as prior the Potts distribution and M has

the Poisson(53, f49; 50; : : : ; 57g), than in the 
ase where M has the Poisson(53, f1; 2; : : :g) as

its prior distribution. The 
ase where M has prior distribution the Uniformf49; 50; : : : ; 57g

distribution is not presented here be
ause the probabilities d

M

, r

M

, and b

M

are 
onstant.

Figure 4: Probabilities of o

urren
e of birth, death and repla
ement events using 
 = 0:35

for a 
ertain number of steps after the burn-in period for the several prior distributions of X

and M .
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Even though the 
onvergen
e of the sample mean of M when X has independent and

identi
ally distributed bases is fast, the value of M that has the largest probability is not

52 (whi
h 
orresponds to the length of the sampled DNA analysed). Instead the one with

the largest probability is 49 with over than four times more weight than the one given to

M = 52 (see Figure 3(d)). Note that when X has as prior distribution the Potts distribution,

then the fastest 
onvergen
e of the sample mean of M is when M has prior distribution the

Uniformf49; 50; : : : ; 57g, se
ond fastest is when the prior is the Poisson(53, f49; 50; : : : ; 57g)

and the slowest is when M has as prior distribution the Poisson(53, f1; 2; : : :g) (Figure 2).

We also have that in the latter 
ase the mode of the marginal posterior is around 44 whi
h is

way o� the length of the sampled DNA sequen
e.

6 CONCLUSION

In this work our attention was fo
used on the presentation of an algorithm to �nd a Bayes

estimate of a prototype DNA sequen
e, its length and the alignment of the 
opies of this

prototype sequen
e. The novelties of our approa
h are: in the Bayes method we use a prior

distribution for the DNA sequen
e that in
orporates the spatial 
orrelation among the bases

given by a four 
olour Potts model; the length of the prototype sequen
e (and the length of

the alignment) is 
onsidered a random variable; a sample from the joint posterior distribution

is obtained from a Monte Carlo pro
edure based on a Markov 
hain with reversible jumps;

during the generation of a sample from the joint distribution of the prototype sequen
e and

its length, the length of the sequen
e is allowed to 
hange.
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