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Assume that K independent copies are made from a common prototype DNA sequence whose length
is considered to be a random variable. In this paper the problem of aligning these copies and therefore
the problem of estimating the prototype sequence that produced the copies is addressed. A hidden
Markov chain is used to model the copying procedure and a reversible jump Markov chain Monte
Carlo algorithm is used to sample the parameters of the model from their posterior distribution. Us-
ing the sample obtained, the Bayesian model selection may be made and the prototype sequence may
be selected using the mazimum a posteriori estimate. A prior distribution for the prototype DNA
sequence that incorporates a correlation among neighbouring bases is also considered. Additionally,
an analysis of the performance of the algorithm is presented when different scenarios are taken into

account.
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1 INTRODUCTION

One of the aims of GENOME Projects is to decode the genetic code of living creatures. The
decoding procedure used to read the genetic code in a region of interest (for example, a portion
of a chromosome) is such that some discrepancies may occur from one decoded sequence to
another (sequences coding the same region). Thus, it is necessary to obtain an alignment
of the copies produced from a common prototype sequence so this prototype sequence may
be inferred. (For more information about DNA decoding see, for example, Apostolico and
Giancarlo (1999), Blackwell (1993), Drasdo et al. (1998), Liu and Lawrence (1995), Liu et al.
(1995, 1999), Meidanis and Setubal (1995), Milanesi et al. (1999), Schleif (1993), Waterman
(1989a, 1989b), Weir (1985) and references therein.)

Some methods in the literature use hidden Markov chains to model the base composition of
each fragment and with that construct an alignment by maximum likelihood (see, for example,
Bishop and Thompson (1986), Churchill (1989, 1992, 1995) and Krogh et al. (1994), Thorne
and Churchill (1995), Thorne et al. (1991)). However, the methods and the initial distribution
for the data, used up to now, do not take into account the correlation among neighbouring
bases present in a DNA sequence. The present work intends to take into account that type of
correlation. Another problem with most of the existing methods is that they are static in the
sense that they reconstruct a DNA sequence after fixing the maximum alignment length.

In this work a two-step method for producing an alignment is proposed. Even though in
the beginning a hidden Markov chain is used to obtain a likelihood function for the sequences
copied from the prototype, the present work differs from previous ones when a reversible
jump Markov chain Monte Carlo method is used to select the Bayesian model and to estimate
the parameters of the model. This is made in the following way. The prototype sequence,
its length and the parameters of the hidden Markov chain are considered parameters of the
Bayesian model. After obtaining the likelihood function, the reversible jump Markov chain
Monte Carlo method is used to obtain samples from the joint posterior distribution of the
parameters. These sampled values are then used to select the Bayesian model and within

this model the sequence that has the largest marginal posterior distribution is the one chosen



to represent the prototype DNA word. Garcia and Rodrigues (1999) use reversible jump
Markov chain Monte Carlo in a similar problem. However, the DNA decoding procedure is not
modelled using hidden Markov chains. In Garcia and Rodrigues (2001) hidden Markov chains
are used to model the decoding procedure. Nevertheless, in neither work an implementation
of the algorithm is presented.

Unless otherwise stated, the following assumptions are considered throughout this paper.
The order in which the bases appear in the decoded sequences are final. The possible mutations
are the usual ones: deletion, insertion and replacement. These mutations may be considered
as produced during the decoding procedure (i.e., if there are not enough pieces of DNA ending
in a specific position, the letter appearing at that position may not be read and consequently
the base is deleted - bases may also be misread or inserted). Transposition between two
consecutive bases is considered an occurrence of two substitutions. Bases are read one by
one by the scanner. Homogeneity within a sequence is also assumed. (For heterogeneous
sequences one may use the approach presented by Boys and Henderson (2003) to identify the
homogeneous segments in heterogeneous sequences and then apply the procedure described
here to each homogeneous segment.)

The outline of the paper is as follows. In Section 2 the basic assumptions for the hidden
Markov model are given. The Bayesian model is described in Section 3 and the spatial
correlation between sites in the prototype sequence is described as a four colour Potts model
(commonly used in image restoration problems - Wu (1982)). Section 4 presents a reversible
jump Markov chain Monte Carlo algorithm used to obtain a sample from the joint posterior
distribution of the parameters of the Bayesian model. Some simulated results obtained by the
implementation of the algorithm proposed in Section 4 is presented in Section 5. Finally, in

the last section some remarks about the method proposed in this paper are made.



2 A HIDDEN MARKOV MODEL

Let M be a random variable assuming values on {1,2,...}; K > 1 be a known and fixed
natural number; and X™ = (X, X,,...,Xy,), where X; € {A,C,G,T} = A, be a DNA

(M) are produced by

word called prototype sequence. Assume that K independent copies of X
a given decoding mechanism (see, Blackwell (1993), Casella and Robert (1995) and Churchill
(1995), for example). Denote these copies by xu) = Xiji,---» Xig» ¢ = 1,2,..., K, where
¢; indicates the length of the sth copy. Note that due to errors that may occur during the
decoding procedure the decoded sequences and the prototype sequence may not have the same
length. Different copies may also have different lengths.

The prototype DNA word X™) is an unknown vector of bases belonging to {A,C,G, T},
The observed data is Y = (xq),...,X(k)), i.e., the outcome produced by K independent
realisations of the mechanism used to decode the prototype sequence X™). Assume that the
decoded sequences Y are results of a hidden Markov chain denoted by s = {sy, £k =0,1,2,...}
where each sy, is of one of the following type of states: R-states, representing mutations (this
can be either a replacement of a base by a different one or a replacement of a base by itself, and
therefore a correct copy); D-states, meaning that a deletion occurred; and I-states indicating
that an insertion has occurred. Besides the I, R, and D states, two spurious states are added
to the state space of s. These states, denoted by B and E, are used to indicate the beginning
and the end of the decoding process, respectively, (see Churchill (1995) and Churchill and
Lazareva (1999)). The spurious states are mute states, i.e., they do not produce an output.
The initial state of the sequence s is set to be B with probability one. Unless otherwise stated,
from now on the procedure will be described for the case K = 1.

Each base Xy, t =1,2,..., M will be associated to one of the R, I, or D states as follows.
X, is associated to the states I;, R;, D; in a way that if the value of the hidden Markov chain
is R;, that means that the base X; was either correctly copied or was replaced by another
base; if its value is I;, then that means that a base has been inserted before the base X,
was processed; if its value is D; then that means that the base X; was deleted during the

decoding process. An additional state is also considered. The state I, will indicate the



possible insertions that may occur after the last base of X is processed. Hence, given M,
the state space of the hidden Markov chain is S = {B, Ry, 1, D1, ..., Ry, Ingy Dagy Ingin, E'}
where [ consecutive visits to state I; means that [ insertions were made before base X; was
examined, t = 1,2,..., M; and [ consecutive visits to state I;;,; implies that [ insertions were
made after the base X, was processed. Let n = min{k : s, = E, k > 2} — 1. Therefore,
the hidden Markov chain is given by s = sq,...,s,. The decoded sequence x = x1,...,Xn
produced as a realisation of the chain s has state space R = {A,C,G,T,*, —}, where x
appears in a specific position to indicate that at that position it was not possible to decide
what base was present, and “—” indicates that the base in the prototype sequence that would
occupy that position was deleted during the decoding process. (The states B and E are
suppressed in s since they produce no output and are used only to indicate the beginning and
the end of the decoding process.) Hence, for a given DNA word X" = (Xy,...,X,,) the
output data is {Xu) = Xi,1,-- -5 Xipn» ¢ = 1,2,..., K} and the corresponding hidden states are
{6y =si1,--Sin;, 0 =1,2,..., K}

For M = m given, let Agy) = ()\(m) (i’j))i,jes be the transition matrix for the hidden
Markov chain, i.e., Apm)(3,7) = P(sk, = jlspk—1 =), 1 <k <n+1,4i,5 €85 A\m)(i,B) =
Ay (E,i) = 0, for all i € S and Ay (E, E) = 1. Denote by Ty = (mm)(i, j))ie&jER the
distribution of the observed states given the hidden states, i.e., 7(m)(i,7) = P(xx = j | sk = 1),
1 <k <n,i€S,je R. Thematrices Ay, and I,y are stochastic and are (3m+-2) x (3m+-2)
and (3m) x 6 matrices, respectively.

Remarks. 1. Since homogeneity of the DNA sequence is assumed, then the reduced state

space &' = {B,I, R, D, E} will be used for the hidden Markov chain. Therefore, the reduced

transition matrix is considered, i.e., given that M = m,

=
&)
I
=
2

That implies that the transition from any state I; is the same. Likewise for the states R; and

D;.



2. Also due to homogeneity we may work with the reduced observation matrix II, i. e.,

given that M = m we have

Tm) (1, A) - 7y (1, C) - 7uy (1, G) - 7y (L,T) - mmy (1, %) 0

71'(‘%) (R, A) 71'(‘%) (R,C) W(/}n) (R, Q) W(/}n) (R,T) 71'(‘%) (R,*) 0

M = Tomy (B A) 700 (R, C) 7( (R, G) 7((R,T) w0, (R,%) 0
Ty (B A) 76y (R, C) 7( (R, G) 7(y(R,T) w(,(R,%) 0

ﬂ(j;n) (R, A) ﬂ(j;n) (R,C) W(j;n) (R, Q) W(j;n) (R,T) ﬂ(j;n) (R,*) 0

0 0 0 0 0 1

where )\ (R, ), 7() (R, -), 76y (R, +), Tl (R, ) indicate the observation probabilities when
the R state has occurred in the hidden Markov chain and this state corresponds to the letter
A, C, G, and T in the prototype sequence, respectively. The last line of II,,), corresponds to
the possible observations from a D state and the last column of II(,,,) indicates the observation
produced by the output “—” (which corresponds to a deletion). Therefore, if either I or R is
associated to X;, then the observation of a state “—” is not possible and if D is associated to
X, then the only output allowed is the state “—7.

3. Note that, when R is associated with the last base of X and the copied sequence still
has some bases to be accounted for, that means that the remaining bases of x are results of
insertions and we will have only transitions from I to I and from I to E. If R is associated
with a base in X (which is not the last one) and in the next step there is no base to be
processed in the observed sequence, then that means that the remaining bases of X have been
deleted during the decoding procedure.

4. Note if X; = C and if R is associated to X;, then the most likely output is C'. Similar
situation occurs if we have X; = A, G, T instead of X; = C.

Next the general Bayesian model is presented.



3 A BAYESIAN MODEL

There is a natural hierarchical structure expressed by modelling the joint distribution of the

parameter 0 = (M, XM), Ay, s, I(ary) and the output Y as

P11 | X0, 31) P(XO[01) P(3), &

(see, for example, Richardson and Green (1997) and Robert et al. (2000)). There are several

choices for each component of the above model (1). The ones considered here are:

1. The prior probability of M. The length M of the prototype sequence will have a
truncated Poisson distribution with parameter pu, i.e.,

M

ik
P(M) o " Tkot,.., ko) (M),

where [4(x) =1, if © € A and it is zero otherwise. Other choices for P(M) are possible.
Liu et al. (1999) suggested it to be uniform in a suitable range of possible lengths,
say lp + 1 and Ly, and Robert et al. (2000) consider P(M) as the uniform distribution
on {1,2,..., Mmax}, where Mmax is some given number. The length M may also be
considered as a random variable with a geometric distribution with some parameter

0<p<l
2. The prior probability of X(™) given its length M. Two cases will be considered:

(a) Independent case. Churchill and Lazareva (1999) assume that, given M, the

(M)

sequence X'/ has independent and identically distributed components with known

letter frequencies «;, i € {A,C, G, T}, that is
M
PXM|\M) =] ax,, X:i€{ACG,T}. (2)
t=1

(b) Non-independent case. In this work the independence assumption is dropped

and a spatial dependence among the sites is introduced. The dependence assumed



here is that given the sequence length M the configuration of the sequence X )

follows a four colour Potts model, that is,

1
P(XM|M) = ~
B8,M

€xp (Z Bir I{XtXr}(X(M))) ) (3)

{t.r}

where the sum is over all unordered neighbours {t,7} (neighbourhood to be de-
fined), with t,r € {1,2,..., M}, and Zg ) is a normalising constant. Boundary
conditions are free. The k-colour Potts model (K > 1) has been extensively used
in image recovery and recognition. (For more information on Potts model and its
applications see, for example, Ferrari et al. (1995), Greig et al. (1989), Hebert and
Leahy (1992), Hurn and Jennison (1993), and Wu (1982), among others.) In the
present, case the neighbourhood considered is the nearest neighbour and we also
assume that 3y, = B, = [ for all t,r € {1,2,..., M}. Hence, the expression (3)

may be written as

P(XM| M) =

M
Zl exp (Mﬁ + 26 Z 1{tht—1}(X(M))> . (4)
8,M

; t=2

It is possible to consider this particular case for ;. because the sequence is consid-
ered to be homogeneous. (For heterogeneous DNA sequences one may use the ap-
proach proposed by Boys and Henderson (2003) to identify homogeneous segments
and then apply the hypothesis of the same value of ;. for each of the segments.

Note that in this case we may have distinct values of § for distinct homogeneous

segments.)

3. The prior distribution of the transition matrix A, given M. It seems rea-
sonable to assume that given M, the error process is conditionally independent of the
prototype sequence X(™)_ A natural choice for the prior distribution of Ay given M, is
to assume that every row Ay (k), k = 1,2, 3 of the reduced matrix Ay is independently
distributed according to a suitable Dirichlet distribution on the three dimensional sim-
plex As. The choice of the parameter of the Dirichlet distribution is arbitrary. Robert

et al. (2000) suggest using all parameters equal to one, while Churchill and Lazareva
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(1999) give some other values for the parameters. Hence, we use the Dirichlet distribu-
tions with parameters: (a;g, a;p,a;r), i = R, D, I to sample the first, the second and the
third rows of Ay, respectively. The particular values for the parameters (a;g, aip, a:r),

1 = R, D, I of will be given in Section 5.

. Error process. The prior distribution of the error sequence s given A and M,

follows a Markov chain with transition matrix Ay as described in Section 2.

. Distribution of Il given XM) and M. Assume that the rows of I (s are inde-
pendent and that given X(*) and M, its first row II(5;)(1) has the non-zero probabil-
ities sampled from the five dimensional simplex Ay using a Dirichlet distribution with
parameter (a4, ajc, arg, arr,ar). Rows Iy (k), k = 2,3,4,5, have non-zero prob-
abilities sampled from the simplex A5 using a Dirichlet distribution with parameter
(axa, axc, axa, axr,ax«), where the X is to indicate the dependence on the value that
appears in the sequence X at a given position. So, if we are sampling the values related
to the fifth letter of the sequence X and this is an A (with R the corresponding state of
the hidden Markov chain), then we use the probabilities that appear on the second row
of IIar) to obtain the respective observation probability. For the last row of Il we
have that 1, (6) = (0,0,0,0,0,1) with probability one. Note that since the parameter
space is enlarged to include the prototype sequence X ™), it is not necessary to deal

with a mixture of Dirichlet distributions as in Churchill and Lazareva (1999).

. The likelihood function. Since the output Y is produced through the hidden Markov
chain mechanism, the likelihood of Y given the parameter # = (M, XM), Ay, s, Hary)
depends only on M, II(js and s. Therefore,

K .
LOY[M, XY, Ay, s, Tan) =TT Ll | M, 89,110

~

= H W(M)(Sz',u Xi,l)w((j&[)(si,% Xi2) - - -W((j&)(si,ni, Xin:)



where s = (8i,15---,8in,;) is the error sequence that produced the observation x(;
(recall that x(; has been extended to have the same length as s by assigning Xij = —
whenever s; ; = D) and HEZ]'\)@ is the observation matrix associated to the ith observation

and the Markov chain that produced it.

The main purpose of this work is to sample values of (M, X)), Ay, s, Hagy) from their
joint posterior distribution P (M, X(M), Ay, s, Iar)|Y) and use the sample for the Bayesian
model selection. This will be done in Section 4, when a reversible jump Markov chain Monte
Carlo method (Carlin and Chib (1995) and Green (1995)) is used to obtain a sample from
the joint posterior distribution. The joint posterior distribution, in the present case, can be

written as

P(X™|M,Y) P(M|Y)
o L(Y|M,s, ) P(s[Aqr), M) P(Aan| M) (5)

P (I | X, M) P(XPD|M) P(M),

and the main task is to construct a Markov chain whose stationary distribution is P( M, X,

Ay, s, ar)|Y). This is done in the next section.

4 MAXIMUM A POSTERIORI THROUGH
REVERSIBLE JUMP MCMC

Mazximum a posteriori methods have been widely used for image restoration when the dimen-
sion (number of pixels) of the image is known (see the survey paper by Geman (1990) and
references therein, and also Ferrari et al. (1995), Greig et al. (1989), Hebert and Leahy (1992)
and Hurn and Jennison (1993), among others). However, the usual methodology is not appro-
priate when the dimension is unknown or random, as is the case analysed here. Carlin and Chib

(1995) and Green (1995) introduced the concept of Bayesian model determination when the
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dimension of the model is unknown. Note that given M, the vector (M, X (M), Ay, s, Iary)

lies in
Cu = {M} x {A,C,GTH x (A3)° x {I, R, D}" x (A5 x {0})” x (0,0,0,0,0,1),

where As x {0} is used to indicate the set of all six dimensional vectors whose first five
coordinates form a vector in the simplex Aj and the sixth coordinate is zero. In general,
(M, X Aary, s, (any) lies in € = US5_,Cus.

Bayesian inference about M and X®™) will be done in two steps. A sample {(M, X (M) Aary,
s,Iay)j,j = 1,2,...,J} is drawn from the joint posterior distribution using a reversible
jump Markov chain Monte Carlo. The model M = m chosen is the one that maximises the
marginal posterior P(M|Y) which is estimated by the proportion of time that the parameter
(M, X M), Ay, 8, I1(ary) stays in the dimension M = m. Among the sequences that belong
to the model in dimension M = m, the one chosen to estimate the prototype sequence is the
sequence X (™ that maximises P(X™|M = m,Y).

The reversible jump Markov chain Monte Carlo used to obtain a sample { (M, X (M) Ay, s,
M), 7 =1,2,...,J} is described as follows. (As usual, there is a certain flexibility in choos-
ing conveniently the kernel of transition.) If the actual state of the chain is (A4, X(M), Ay, s,
II(ar)), at the time of a transition an independent random choice is made among attempting

each of the three moves:

(r) replacement of a base at a randomly chosen site by a randomly chosen base;
(b) birth of a randomly chosen base at a randomly chosen location;

(d) death of a base at a randomly chosen site;

(M)

with probabilities r,,, by and dyy, respectively, depending only on the dimension of X'/ and

satisfying

These probabilities are chosen so that

g p(M +1)
by =c mln{l, W}

11



and
p(M — 1)}
p(M)
with ¢ > 0 a suitable constant subject to by, + dyy < 1, for all M > 1. Therefore, the

dy =c min{l,

reversibility condition p(M) by = p(M + 1) dpr4q is satisfied.

Remark. Note that (b) and (d) involve changing the dimension of the parameter space,
hence standard Markov chain Monte Carlo methods do not apply.

In order to describe the steps of the Markov chain Monte Carlo, the dependence on M
is dropped from some of the notation. Therefore, from now on A is used to represent the
transition matrix of the hidden Markov chain that will possibly be updated and A’ is the
updated matrix; II is the observation matrix that will possibly be updated and II’ is the
updated matrix. The proposal distributions for the jumps of the reversible jump Markov

chain are given in the following way.
1. Replacement: If a replacement move is chosen, then,

(a) select a position ¢t uniformly in {1,2,..., M};

(b) replace X; by X} chosen uniformly from A (note that a base can be replaced by
itself and that some other distribution may be used to select from 4) and let

X'M) = (Xy,..., X1, X!, X410, .., Xyr) be the updated sequence;

(c) update the matrix A independently sampling its rows using their posterior distribu-
tion, i.e., if n%, t,J = R, D, I count the number of transitions in the hidden Markov
chain from the state 7 to state j, then sample sample rows 1, 2 and 3 of A’ from a
Dirichlet distribution with parameter (a;z + ni, a;p + ndy, a;r +nd), i = R, D, I,

respectively.
(d) Update the error sequence s using the updated matrix A'.

(e) The updating of the matrix IT is made by independently sampling its rows using
the following mechanism. Let R4, Rc, Rg, Ry mean that R is an output of the

hidden Markov chain and that it is associated to the letter A, C', G, T, respectively,

12



in the sequence X™) and let ninja

1 =1,Rs,Re,Rg, Ry, j = A,C,G, T, %, count
the number of times that the hidden Markov chain produces the output ¢ and
the character observed is j. Then, the first five elements of the first five rows of
the matrix IT will be sampled from a Dirichlet distribution with parameter (a;4 +
nil, aic + nit, aig + nat, ai + nik), i@ = I, Ra, Re, Rg, Ry, respectively. The last
element in each of the first five rows of II' is zero with probability one. The row

corresponding to the observation from a D state is (0,0,0,0,0, 1) with probability

one.

The acceptance probability of this move is

: L(Y|M,Il',s") P(s'|A', M) P(IT'|X"™) M) P(A'|M)
m‘“{l’ L(Y|M,TIL,s) P(s|A, M) P(LX), M) P(A|M)
P(X/™)|M) Qw',e)J}
PXMM)Q(0,6")

where QQ(6,6") is the proposal transition from 6 to 6’ and the ratio Q(¢',0)/Q(9,0') is

given by
f(A) g(Il) P(s [ A, M)
F(A) g(Il) P(s'| A7, M)’

where f(-) and g(-) are the products of Dirichlet distributions used to update of the non-

zero probabilities of the rows of A and II, respectively, and P(- | A’, M) is the probability
of the error sequence when the updated matrix A’ is considered. The transformation
from the space where  belongs to the space to which 6 = (M, X'™) A’ ' TI') belongs
to is given by the transformations considered in items (a), (b), (c), (d) and (e) above

and therefore the Jacobian, .J, is equal to one. We also have, for the prior distribution

(4), that

X = P (28 [l (X) = Ly X)) if £ =1,
p(X"™| M) M M .
p(XO0ary P (28 [14xs, =x00 ) (X') = Iz mx, (X)), i 2 = M,
p(X'MD[M) AR 1(M) (M)
pXOonpn) 7P 25,2[1{"@:’%1}()( ) = o=z X))

if2<t<M-—1.

13



2. Birth: If a birth move is chosen, then,

(a) select a position ¢t uniformly in {1,..., M + 1};
(b) rename the basis in the following way:

i. if t = 1, then X is chosen uniformly from A and X| = X,_;, for r =
2.3, M+1;

ii. if ¢ = M + 1, then Xj, , is chosen uniformly from A and X = X,, for
r=1,2,...,M;

iii. if 2 <t < M, then X! = X, for 1 <r <t—1, X} is chosen uniformly from
Aand X! = X, fort+1<r<M+1,

and let X'+ = (X!, ..., X),,,) be the updated sequence.

(c) The updating of the matrices A and II, and of the error sequence s is made in the

same manner as proposed in the replacement move.

The acceptance probability of this move is

, L(Y|M + 1,11, s") P(s'|A", M + 1) P(IU|X"M+Y M 4+ 1) P(A'|M + 1)
— {1’ L(Y|M,TL,s) P(s|A, M) P(TX®D, M) P(A|M)
P(X'™M+D|M +1) Q(6, 0) J}
P(XM|M) Q(6,0")

where QQ(6,0") is the proposal transition from 6 to 6’ and the ratio Q(¢',0)/Q(6,0') is
given by

F(A) g(T1) P(s | A, M) M + 1

fA) g(Il) P(s' [ A, M +1) M

where f(-), g(-) are the products of the Dirichlet distributions used to update the matri-
ces A and TII, respectively, and P(- | A’; M) is the probability of the error sequence when
the updated matrix A’ is considered. The Jacobian, J, of the transformation from the
space where  belongs to the space which 6 = (M + 1, X(M+D A’ &' II') belongs to is
obtained from the transformations given in items (a), (b) and (c) above and therefore,

J = 1. Furthermore,

14



P(X/(M+1)|M +1) Zgnr 5 ,

J— ) , (M+1) . _
PXOOM)  Zywer . P (28 1, =xqy (X)) if £ =1,
P(XMDIM +1)  Zsm

_ ) 6 , I(M+1) . —
BRI = Zy ® O (26 L, (X)) i = M+ 1,
(
(

P(X'™M|IM +1)  Zgy t+1
= 2 Lxr—x (X)) 2 <t < M
P(XM)|M) Zorres P BkZ:t x=xq_,) ( )|, if2<t <M,

3. Death: If a death move is chosen, then,

(a) select a position ¢ uniformly in {1,..., M}, delete the base X; and rename the
remaining basis in the following way: X! = X, , for 1 <r <t—-1, X! = X, for

t<r<M-—1.

(b) The updating of the matrices A and IT and the error sequence s is made using the

procedure described when the replacement move is chosen.

The acceptance probability of this move is

_ L(Y|M —1,1I's") P(s'|A', M — 1) P(II'|X'™=D M — 1) P(A'|M — 1)
min< 1,
L(Y|M,11,s) P(s|A, M) P(II X)), M) P(A|M)
PXUTVIM - 1)Q(9,0)
P(XM|M)Q(6,6")

where
PXMYVIM 1) Zsu
= : - — (MM if + —
P(XOD| M) = Zg i1 e = exp ( 251{x2:x1}(X )) ift=1
P(X/(M—1)|M _ 1) Zﬁ o 5
= : - — (MY if ¢ =
P(XM)[M) T Zpa € = exp ( 201x =X} (X )) ift=»M
P(X/(M71)|M —1) Zgur 5 t+1
= d - —9 1« _ X (M)
PO~ Zoar s ¢ P 7202 ey (X

if2<t<M-—1,

and the ratio Q(¢',0)/Q(6,0") is given by

f(A)g(M) P(s| A, M) M — 1
fN) g(I1) P(s | A/, M = 1) M
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where f(-), g(-) and P(-| A/, M — 1) are given in a similar way as they were given when
considering the replacement and birth moves. The Jacobian J of the transformation
from the model where 6 belongs to the model that ¢ = (M — 1, XM=Y A’ ¢ II')
belongs to is given by the transformations presented in (a) and (b) above and therefore

is equal to one.

The problem now is to run this Markov chain for a sufficiently large number of steps and
when the stationary state is attained the actual state of the chain (X M, Aoy, s, Hary)
gives us a sample of the posterior distribution (5) and the usual measures may be used to
decide about the Bayesian model. Once the model is chosen, the sequence within this model

that has the largest marginal posterior is the one chosen to represent the prototype sequence.

5 SIMULATION

In this section some details about the implementation of the algorithm proposed in this paper
are given. Besides the values for the various variables used in the programme, some graphics

and comments about the results obtained are presented.

5.1 Setting the parameters

In order to perform the simulation of the algorithm some of the parameters presented in a
more general framework during Sections 2, 3 and 4 must be specified. Therefore, the following

is considered.

1. The choice of the hyperparameter y is left to the researcher to choose. One suggestion is
to take p approximately the mean size of the sequences the researcher has as data (i.e.,
the mean length of K decoded sequences that the researcher is using as observed data).
In the present case we take u = 53. Several values of ¢ (appearing in the reversible jump
Monte Carlo) are taken in order to compare the performance of the algorithm depending

on what prior distribution of the sequence X and the length M were considered. The
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values used in the simulations were basically ¢ = 0.001,0.01,0.1,0.33333, 0.35. The first
three values were chosen to make birth and death moves with low probability and the
other two values were chosen to have ¢ as close as possible to the maximum value of ¢

such that dy; + by < 1.

. The prior distribution for the sequence length M is a truncated Poisson distribution
on {49,50,...,57} whose mean is 53. This distribution will be referred to as the Pois-
son(53, {49,50,...,57}). Besides this prior two others are taken into account. They are
the truncated Poisson(53) with mean 53, taking values on {1,2,...} and the Uniform
distribution on {49, 50,...,57} which will be referred to as Poisson(53, {1,2,...}) and
Uniform{49, 50, ..., 57}, respectively.

. The parameters of the Dirichlet distribution used to sample values for the rows of A
are given by (a;r,a;r,a;p) = (1,6,1), i = R,D,I. The parameters of the Dirich-
let distribution used to sample values for the rows of the matrix Il are given by,
(axa, 0xc,0xa, oxT, 0x:) = (6,1,1,1,1) if X = A and for X = C,G, T, similar sets of
parameters are considered (i.e., if X = C then (axa, axc,axa, oxr,0x+) = (1,6,1,1,1)).
Additionally, the Dirichlet distribution used to sample the row corresponding to the in-

sertion state has parameter (ara, arc, arq, arr, ar) = (1,1,1,1,1).

. When using the assumption of independence for the bases in the prototype sequence
(i.e., the prior distribution of X is given by (2)), from Churchill and Lazareva (1999) we
use the values a; = 0.25 for all i € {A,C, G, T} and when the Potts distribution (given
by (4)) is considered, we take = 1.

. The sequence X used to initialise the algorithm was the sequence

TAGACAGGGGCCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAACTT
which is the sequence 1 given, as observed data, by Churchill and Lazareva (1999) where
we write the letter G in place of the unknown letter in position 9. Only one sequence

was used as observed data. This sequence is the first sequence considered by Churchill
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and Lazareva (1999) as observed data, and was obtained from Seto et. al. (1993) and it is
TAGACAGG*GCCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAACTT.

5.2 Computational details

The programming of the algorithm was made in FORTRAN and implemented on a IBM SP3 at
the Instituto de Matematicas, UNAM. In order to compare the performance of the algorithm,
several runs were made. A typical run of two million steps takes around five minutes of CPU
time which, in the tests performed, corresponds to ten minutes in real time. When a Silicon
Graphics machine is used the time may increase to forty five minutes in real time.

The first step taken was to diagnose the speed of convergence when taking as a measure of
reference the convergence of the sample mean of the sequence length M. Before considering
the several possibilities for the prior distributions of M and X a preliminary test was made.
Figure 1 shows the plots obtained. In that case, we assume that M and X have as prior
distributions a Poisson(54, {1,2,...}) and the Potts distribution (4) with 5 = 1, respectively.
The values of ¢ considered were 0.1,0.01,0.001,0.0065 and 0.0085 and initially runs of 10°
steps were performed. It is possible to observe that by step 4 x 10° stationarity is achieved
when ¢ = 0.1, 0.01, 0.0065. When using ¢ = 0.001 and ¢ = 0.0085 it is possible to observe that
apparently, stationarity is achieved at steps 6x 10° and 5x 10°, respectively. However, since the
ergodic means where different of the one obtained when considering the other values of ¢, we
have decided to run the algorithm for ¢ = 0.001 and ¢ = 0.0085 again, but now an additional
10° steps were performed. What is observable from Figure 1 is that for ¢ = 0.001 stationarity
is achieved when we reach step 14 x 10° and for ¢ = 0.0085 we have that stationarity is
achieved when step 5 x 10° is reached. It is worth calling attention to the fact that when
¢ = 0.0085 in the first run (when only 10° steps were performed) the sample mean stays more
or less the same for around 4 x 10° steps, giving the idea that stationarity had already been

reached, and then starts increasing its value.
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Figure 1: Initial convergence diagnose for the sample mean of M when M has as prior a

Poisson(54, {1,2,...}) distribution and X has prior distribution the Potts distribution with
B=1.

After the preliminary convergence diagnose was made, we have decided to perform 2 x 10°
iterations of the algorithm in order to verify the convergence of the empirical mean of M in
each of the cases considered. Once convergence had been attained, a sample of size 6 x 10*
was taken, using every fifth value generated, to perform inferences. Inferences were performed
for the choice of model made by the reversible jump Markov chain Monte Carlo algorithm,

for the behaviour of the probabilities bys, rys and djy, as well as, for the sample of M. From
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now on, the possible values of ¢ used are the ones given in Section 5.1.

Let the DNA sequence have as prior distribution the Potts distribution with parameter
f = 1. When M has prior distribution the Poisson(53,{1,2,...}), then it is possible to see
from Figure 2(a) that for ¢ = 0.01 two million steps were not enough to make the sample
mean of M to converge, whereas for all other values around 5 x 10° iterations were enough. In
particular, for ¢ = 0.33333 and ¢ = 0.35, 1 x 10° iterations are enough to achieve convergence
and for ¢ = 0.1 convergence is reached around iteration 4 x 10°. Having performed this test
we have decided not to consider the case in which ¢ = 0.01. If M has as prior distribution
the Poisson(53, {49,50,...,57}), we have by observing Figure 2(b), that for all values of ¢
convergence is attained around iteration number 2 x 10°. In the case where M has as prior
distribution the Uniform{49, 50, ...,57}, from Figure 2(c) we have that convergence is attained
around iteration number 60 x 103 except for ¢ = 0.01. Therefore, using the same procedure as
for the Poisson(53, {1,2,...}) prior distribution the statistics were made using the remaining
values of ¢. When the bases forming X are independent and identically distributed and M
has as prior distribution the Poisson(53, {49,50,...,57}) and the Uniform{49,50,...,57}
the behaviour of the sample mean is similar to those shown in Figure 2(b) and 2(c) with
convergence attained around iteration number 2 x 10° and 3 x 10°, respectively. The case
where M has as prior distribution the Poisson(53, {1,2,...}) is not considered here because
of the slowness of the convergence.

Figure 3 illustrates the histograms of the values of M that are accepted by the reversible
jump Markov chain Monte Carlo. Figure 3(a), 3(b) and 3(c) represent the case where X
has prior distribution the Potts distribution and M has as prior distribution the Poisson(53,
{1,2,...}), Poisson(53, {49, 50, ...,57}) and the Uniform{49, 50, ...,57}, respectively. Figure
3(d) is a typical example for the case where X is formed by independent and identically
distributed bases and M has prior distribution the Poisson(53, {49, 50,...,57}). The value
of ¢ used to produce the graphics is ¢ = 0.35.

The relationship among the probabilities of the occurrence of the events of birth, death

and replacement in the reversible jump Markov chain Monte Carlo algorithm is shown in
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Figure 2: Convergence diagnose, for different values of ¢, of the sample mean of the sequence

length M for the various prior distributions of X and M.
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Figure 3: Histograms of values of M produced by the reversible jump Markov chain Monte

Carlo algorithm using ¢ = 0.35 when different prior distributions for X and M are considered.

the plots of Figure 4, where a portion of the values produced by the algorithm for the case
where ¢ = 0.35 was used. The lighter solid line on these plots is the probability of occurrence
of a death event (dj;); the dashed line is the probability of a birth event (by); and the
remaining line corresponds to the probability of a replacement (r)s). Figures 4(a) and 4(b)
represent the case where X has prior distribution the Potts distribution and M has the
Poisson(53, {1,2,...}) and the Poisson(53, {49, 50, ...,57}), respectively, as prior distribution.
In Figure 4(c) we have that X has independent and identically distributed bases and M has

the Poisson(53, {49,50,...,57}) distribution as its prior. Note that when comparing the
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behaviour of dyy, 737, and by in the cases of Figure 4(a) and 4(b) the algorithm produces a

more mixed behaviour in the case where X has as prior the Potts distribution and M has

the Poisson(53, {49, 50, ...,

its prior distribution. The case where M has prior distribution the Uniform{49, 50, ...,

57}), than in the case where M has the Poisson(53, {1,2,..

}) as
57}

distribution is not presented here because the probabilities d,s, rys, and by, are constant.

Birth, death and replacement probabilities
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Figure 4: Probabilities of occurrence of birth, death and replacement events using ¢ = 0.35

for a certain number of steps after the burn-in period for the several prior distributions of X

and M.
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Even though the convergence of the sample mean of M when X has independent and
identically distributed bases is fast, the value of M that has the largest probability is not
52 (which corresponds to the length of the sampled DNA analysed). Instead the one with
the largest probability is 49 with over than four times more weight than the one given to
M =52 (see Figure 3(d)). Note that when X has as prior distribution the Potts distribution,
then the fastest convergence of the sample mean of M is when M has prior distribution the
Uniform{49, 50, ...,57}, second fastest is when the prior is the Poisson(53, {49, 50,...,57})
and the slowest is when M has as prior distribution the Poisson(53, {1,2,...}) (Figure 2).
We also have that in the latter case the mode of the marginal posterior is around 44 which is

way off the length of the sampled DNA sequence.

6 CONCLUSION

In this work our attention was focused on the presentation of an algorithm to find a Bayes
estimate of a prototype DNA sequence, its length and the alignment of the copies of this
prototype sequence. The novelties of our approach are: in the Bayes method we use a prior
distribution for the DNA sequence that incorporates the spatial correlation among the bases
given by a four colour Potts model; the length of the prototype sequence (and the length of
the alignment) is considered a random variable; a sample from the joint posterior distribution
is obtained from a Monte Carlo procedure based on a Markov chain with reversible jumps;
during the generation of a sample from the joint distribution of the prototype sequence and

its length, the length of the sequence is allowed to change.
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