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Assume that K independent opies are made from a ommon prototype DNA sequene whose length

is onsidered to be a random variable. In this paper the problem of aligning these opies and therefore

the problem of estimating the prototype sequene that produed the opies is addressed. A hidden

Markov hain is used to model the opying proedure and a reversible jump Markov hain Monte

Carlo algorithm is used to sample the parameters of the model from their posterior distribution. Us-

ing the sample obtained, the Bayesian model seletion may be made and the prototype sequene may

be seleted using the maximum a posteriori estimate. A prior distribution for the prototype DNA

sequene that inorporates a orrelation among neighbouring bases is also onsidered. Additionally,

an analysis of the performane of the algorithm is presented when di�erent senarios are taken into

aount.

KEY WORDS: Bayesian inferene; Sequenes alignment; Reversible jump Markov Chain Monte

Carlo method; Hidden Markov model; Potts model.
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1 INTRODUCTION

One of the aims of GENOME Projets is to deode the geneti ode of living reatures. The

deoding proedure used to read the geneti ode in a region of interest (for example, a portion

of a hromosome) is suh that some disrepanies may our from one deoded sequene to

another (sequenes oding the same region). Thus, it is neessary to obtain an alignment

of the opies produed from a ommon prototype sequene so this prototype sequene may

be inferred. (For more information about DNA deoding see, for example, Apostolio and

Gianarlo (1999), Blakwell (1993), Drasdo et al. (1998), Liu and Lawrene (1995), Liu et al.

(1995, 1999), Meidanis and Setubal (1995), Milanesi et al. (1999), Shleif (1993), Waterman

(1989a, 1989b), Weir (1985) and referenes therein.)

Some methods in the literature use hidden Markov hains to model the base omposition of

eah fragment and with that onstrut an alignment by maximum likelihood (see, for example,

Bishop and Thompson (1986), Churhill (1989, 1992, 1995) and Krogh et al. (1994), Thorne

and Churhill (1995), Thorne et al. (1991)). However, the methods and the initial distribution

for the data, used up to now, do not take into aount the orrelation among neighbouring

bases present in a DNA sequene. The present work intends to take into aount that type of

orrelation. Another problem with most of the existing methods is that they are stati in the

sense that they reonstrut a DNA sequene after �xing the maximum alignment length.

In this work a two-step method for produing an alignment is proposed. Even though in

the beginning a hidden Markov hain is used to obtain a likelihood funtion for the sequenes

opied from the prototype, the present work di�ers from previous ones when a reversible

jump Markov hain Monte Carlo method is used to selet the Bayesian model and to estimate

the parameters of the model. This is made in the following way. The prototype sequene,

its length and the parameters of the hidden Markov hain are onsidered parameters of the

Bayesian model. After obtaining the likelihood funtion, the reversible jump Markov hain

Monte Carlo method is used to obtain samples from the joint posterior distribution of the

parameters. These sampled values are then used to selet the Bayesian model and within

this model the sequene that has the largest marginal posterior distribution is the one hosen
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to represent the prototype DNA word. Garia and Rodrigues (1999) use reversible jump

Markov hain Monte Carlo in a similar problem. However, the DNA deoding proedure is not

modelled using hidden Markov hains. In Garia and Rodrigues (2001) hidden Markov hains

are used to model the deoding proedure. Nevertheless, in neither work an implementation

of the algorithm is presented.

Unless otherwise stated, the following assumptions are onsidered throughout this paper.

The order in whih the bases appear in the deoded sequenes are �nal. The possible mutations

are the usual ones: deletion, insertion and replaement. These mutations may be onsidered

as produed during the deoding proedure (i.e., if there are not enough piees of DNA ending

in a spei� position, the letter appearing at that position may not be read and onsequently

the base is deleted - bases may also be misread or inserted). Transposition between two

onseutive bases is onsidered an ourrene of two substitutions. Bases are read one by

one by the sanner. Homogeneity within a sequene is also assumed. (For heterogeneous

sequenes one may use the approah presented by Boys and Henderson (2003) to identify the

homogeneous segments in heterogeneous sequenes and then apply the proedure desribed

here to eah homogeneous segment.)

The outline of the paper is as follows. In Setion 2 the basi assumptions for the hidden

Markov model are given. The Bayesian model is desribed in Setion 3 and the spatial

orrelation between sites in the prototype sequene is desribed as a four olour Potts model

(ommonly used in image restoration problems - Wu (1982)). Setion 4 presents a reversible

jump Markov hain Monte Carlo algorithm used to obtain a sample from the joint posterior

distribution of the parameters of the Bayesian model. Some simulated results obtained by the

implementation of the algorithm proposed in Setion 4 is presented in Setion 5. Finally, in

the last setion some remarks about the method proposed in this paper are made.
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2 A HIDDEN MARKOV MODEL

Let M be a random variable assuming values on f1; 2; : : :g; K � 1 be a known and �xed

natural number; and X

(M)

= (X

1

;X

2

; : : : ;X

M

), where X

i

2 fA,C,G,Tg = A, be a DNA

word alled prototype sequene. Assume that K independent opies of X

(M)

are produed by

a given deoding mehanism (see, Blakwell (1993), Casella and Robert (1995) and Churhill

(1995), for example). Denote these opies by �

(i)

= �

i;1

; : : : ; �

i;q

i

, i = 1; 2; : : : ; K, where

q

i

indiates the length of the ith opy. Note that due to errors that may our during the

deoding proedure the deoded sequenes and the prototype sequene may not have the same

length. Di�erent opies may also have di�erent lengths.

The prototype DNA word X

(M)

is an unknown vetor of bases belonging to fA,C,G,Tg

M

.

The observed data is Y = (�

(1)

; : : : ; �

(K)

), i.e., the outome produed by K independent

realisations of the mehanism used to deode the prototype sequene X

(M)

. Assume that the

deoded sequenes Y are results of a hidden Markov hain denoted by s = fs

k

; k = 0; 1; 2; : : :g

where eah s

k

is of one of the following type of states: R-states, representing mutations (this

an be either a replaement of a base by a di�erent one or a replaement of a base by itself, and

therefore a orret opy); D-states, meaning that a deletion ourred; and I-states indiating

that an insertion has ourred. Besides the I, R, and D states, two spurious states are added

to the state spae of s. These states, denoted by B and E, are used to indiate the beginning

and the end of the deoding proess, respetively, (see Churhill (1995) and Churhill and

Lazareva (1999)). The spurious states are mute states, i.e., they do not produe an output.

The initial state of the sequene s is set to be B with probability one. Unless otherwise stated,

from now on the proedure will be desribed for the ase K = 1.

Eah base X

t

, t = 1; 2; : : : ;M will be assoiated to one of the R, I, or D states as follows.

X

t

is assoiated to the states I

t

, R

t

, D

t

in a way that if the value of the hidden Markov hain

is R

t

, that means that the base X

t

was either orretly opied or was replaed by another

base; if its value is I

t

, then that means that a base has been inserted before the base X

t

was proessed; if its value is D

t

then that means that the base X

t

was deleted during the

deoding proess. An additional state is also onsidered. The state I

M+1

will indiate the
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possible insertions that may our after the last base of X is proessed. Hene, given M ,

the state spae of the hidden Markov hain is S = fB;R

1

; I

1

; D

1

; : : : ; R

M

; I

M

; D

M

; I

M+1

; Eg

where l onseutive visits to state I

t

means that l insertions were made before base X

t

was

examined, t = 1; 2; : : : ;M ; and l onseutive visits to state I

M+1

implies that l insertions were

made after the base X

M

was proessed. Let n = minfk : s

k

= E; k � 2g � 1. Therefore,

the hidden Markov hain is given by s = s

1

; : : : ; s

n

. The deoded sequene � = �

1

; : : : ; �

n

produed as a realisation of the hain s has state spae R = fA;C;G; T; �;�g, where �

appears in a spei� position to indiate that at that position it was not possible to deide

what base was present, and \�" indiates that the base in the prototype sequene that would

oupy that position was deleted during the deoding proess. (The states B and E are

suppressed in s sine they produe no output and are used only to indiate the beginning and

the end of the deoding proess.) Hene, for a given DNA word X

(M)

= (X

1

; : : : ;X

M

) the

output data is f�

(i)

= �

i;1

; : : : ; �

i;n

i

; i = 1; 2; : : : ; Kg and the orresponding hidden states are

fs

(i)

= s

i;1

; : : : ; s

i;n

i

; i = 1; 2; : : : ; Kg.

For M = m given, let �

(m)

=

�

�

(m)

(i; j)

�

i;j2S

be the transition matrix for the hidden

Markov hain, i.e., �

(m)

(i; j) = P (s

k

= j j s

k�1

= i), 1 � k � n + 1, i; j 2 S; �

(m)

(i; B) =

�

(m)

(E; i) = 0, for all i 2 S and �

(m)

(E;E) = 1. Denote by �

(m)

=

�

�

(m)

(i; j)

�

i2S;j2R

the

distribution of the observed states given the hidden states, i.e., �

(m)

(i; j) = P (�

k

= j j s

k

= i),

1 � k � n, i 2 S; j 2 R. The matries �

(m)

and �

(m)

are stohasti and are (3m+2)�(3m+2)

and (3m)� 6 matries, respetively.

Remarks. 1. Sine homogeneity of the DNA sequene is assumed, then the redued state

spae S

0

= fB; I; R;D;Eg will be used for the hidden Markov hain. Therefore, the redued

transition matrix is onsidered, i.e., given that M = m,

�

(m)

=

0

B

B

B

B

B

�

�

(m)

(R;R) �

(m)

(R;D) �

(m)

(R; I)

�

(m)

(D;R) �

(m)

(D;D) �

(m)

(D; I)

�

(m)

(I; R) �

(m)

(I;D) �

(m)

(I; I)

1

C

C

C

C

C

A

:

That implies that the transition from any state I

t

is the same. Likewise for the states R

t

and

D

t

.
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2. Also due to homogeneity we may work with the redued observation matrix �, i. e.,

given that M = m we have

�

(m)

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�

(m)

(I; A) �

(m)

(I; C) �

(m)

(I; G) �

(m)

(I; T ) �

(m)

(I; �) 0

�

A

(m)

(R;A) �

A

(m)

(R;C) �

A

(m)

(R;G) �

A

(m)

(R; T ) �

A

(m)

(R; �) 0

�

C

(m)

(R;A) �

C

(m)

(R;C) �

C

(m)

(R;G) �

C

(m)

(R; T ) �

C

(m)

(R; �) 0

�

G

(m)

(R;A) �

G

(m)

(R;C) �

G

(m)

(R;G) �

G

(m)

(R; T ) �

G

(m)

(R; �) 0

�

T

(m)

(R;A) �

T

(m)

(R;C) �

T

(m)

(R;G) �

T

(m)

(R; T ) �

T

(m)

(R; �) 0

0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where �

A

(m)

(R; �), �

C

(m)

(R; �), �

G

(m)

(R; �), �

T

(m)

(R; �) indiate the observation probabilities when

the R state has ourred in the hidden Markov hain and this state orresponds to the letter

A, C, G, and T in the prototype sequene, respetively. The last line of �

(m)

, orresponds to

the possible observations from a D state and the last olumn of �

(m)

indiates the observation

produed by the output \�" (whih orresponds to a deletion). Therefore, if either I or R is

assoiated to X

t

, then the observation of a state \�" is not possible and if D is assoiated to

X

t

, then the only output allowed is the state \�".

3. Note that, when R is assoiated with the last base of X and the opied sequene still

has some bases to be aounted for, that means that the remaining bases of � are results of

insertions and we will have only transitions from I to I and from I to E. If R is assoiated

with a base in X (whih is not the last one) and in the next step there is no base to be

proessed in the observed sequene, then that means that the remaining bases of X have been

deleted during the deoding proedure.

4. Note if X

t

= C and if R is assoiated to X

t

, then the most likely output is C. Similar

situation ours if we have X

t

= A;G; T instead of X

t

= C.

Next the general Bayesian model is presented.
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3 A BAYESIAN MODEL

There is a natural hierarhial struture expressed by modelling the joint distribution of the

parameter � = (M;X

(M)

;�

(M)

; s;�

(M)

) and the output Y as

P (M;X

(M)

;�

(M)

; s;�

(M)

;Y) / L(YjM;X

(M)

;�

(M)

; s;�

(M)

)P (�

(M)

jM)P (sj�

(M)

;M)

P (�

(M)

jX

(M)

;M)P (X

(M)

jM)P (M); (1)

(see, for example, Rihardson and Green (1997) and Robert et al. (2000)). There are several

hoies for eah omponent of the above model (1). The ones onsidered here are:

1. The prior probability of M . The length M of the prototype sequene will have a

trunated Poisson distribution with parameter �, i.e.,

P (M) /

�

M

M !

I

fk

0

+1;:::;K

0

g

(M);

where I

A

(x) = 1, if x 2 A and it is zero otherwise. Other hoies for P (M) are possible.

Liu et al. (1999) suggested it to be uniform in a suitable range of possible lengths,

say l

0

+ 1 and L

0

, and Robert et al. (2000) onsider P (M) as the uniform distribution

on f1; 2; : : : ;M

max

g, where M

max

is some given number. The length M may also be

onsidered as a random variable with a geometri distribution with some parameter

0 < p < 1.

2. The prior probability of X

(M)

given its length M . Two ases will be onsidered:

(a) Independent ase. Churhill and Lazareva (1999) assume that, given M , the

sequene X

(M)

has independent and identially distributed omponents with known

letter frequenies �

i

, i 2 fA;C;G; Tg, that is

P (X

(M)

jM) =

M

Y

t=1

�

X

t

; X

t

2 fA;C;G; Tg: (2)

(b) Non-independent ase. In this work the independene assumption is dropped

and a spatial dependene among the sites is introdued. The dependene assumed
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here is that given the sequene length M the on�guration of the sequene X

(M)

follows a four olour Potts model, that is,

P (X

(M)

jM) =

1

Z

�;M

exp

0

�

X

ft;rg

�

tr

1

fX

t

=X

r

g

(X

(M)

)

1

A

; (3)

where the sum is over all unordered neighbours ft; rg (neighbourhood to be de-

�ned), with t; r 2 f1; 2; : : : ;Mg, and Z

�;M

is a normalising onstant. Boundary

onditions are free. The k-olour Potts model (k � 1) has been extensively used

in image reovery and reognition. (For more information on Potts model and its

appliations see, for example, Ferrari et al. (1995), Greig et al. (1989), Hebert and

Leahy (1992), Hurn and Jennison (1993), and Wu (1982), among others.) In the

present ase the neighbourhood onsidered is the nearest neighbour and we also

assume that �

tr

= �

rt

= � for all t; r 2 f1; 2; : : : ;Mg. Hene, the expression (3)

may be written as

P (X

(M)

jM) =

1

Z

�;M

exp

 

M � + 2 �

M

X

t=2

1

fX

t

=X

t�1

g

(X

(M)

)

!

: (4)

It is possible to onsider this partiular ase for �

tr

beause the sequene is onsid-

ered to be homogeneous. (For heterogeneous DNA sequenes one may use the ap-

proah proposed by Boys and Henderson (2003) to identify homogeneous segments

and then apply the hypothesis of the same value of �

tr

for eah of the segments.

Note that in this ase we may have distint values of � for distint homogeneous

segments.)

3. The prior distribution of the transition matrix �

(M)

given M . It seems rea-

sonable to assume that given M , the error proess is onditionally independent of the

prototype sequene X

(M)

. A natural hoie for the prior distribution of �

(M)

givenM , is

to assume that every row �

(M)

(k), k = 1; 2; 3 of the redued matrix �

(M)

is independently

distributed aording to a suitable Dirihlet distribution on the three dimensional sim-

plex �

3

. The hoie of the parameter of the Dirihlet distribution is arbitrary. Robert

et al. (2000) suggest using all parameters equal to one, while Churhill and Lazareva
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(1999) give some other values for the parameters. Hene, we use the Dirihlet distribu-

tions with parameters: (a

iR

; a

iD

; a

iI

), i = R;D; I to sample the �rst, the seond and the

third rows of �

(M)

, respetively. The partiular values for the parameters (a

iR

; a

iD

; a

iI

),

i = R;D; I of will be given in Setion 5.

4. Error proess. The prior distribution of the error sequene s given �

(M)

and M ,

follows a Markov hain with transition matrix �

(M)

as desribed in Setion 2.

5. Distribution of �

(M)

given X

(M)

and M . Assume that the rows of �

(M)

are inde-

pendent and that given X

(M)

and M , its �rst row �

(M)

(1) has the non-zero probabil-

ities sampled from the �ve dimensional simplex �

5

using a Dirihlet distribution with

parameter (a

IA

; a

IC

; a

IG

; a

IT

; a

I�

). Rows �

M

(k), k = 2; 3; 4; 5, have non-zero prob-

abilities sampled from the simplex �

5

using a Dirihlet distribution with parameter

(a

XA

; a

XC

; a

XG

; a

XT

; a

X�

), where the X is to indiate the dependene on the value that

appears in the sequene X at a given position. So, if we are sampling the values related

to the �fth letter of the sequene X and this is an A (with R the orresponding state of

the hidden Markov hain), then we use the probabilities that appear on the seond row

of �

(M)

to obtain the respetive observation probability. For the last row of �

(M)

we

have that �

(M)

(6) = (0; 0; 0; 0; 0; 1) with probability one. Note that sine the parameter

spae is enlarged to inlude the prototype sequene X

(M)

, it is not neessary to deal

with a mixture of Dirihlet distributions as in Churhill and Lazareva (1999).

6. The likelihood funtion. Sine the output Y is produed through the hidden Markov

hain mehanism, the likelihood of Y given the parameter � = (M;X

(M)

;�

(M)

; s;�

(M)

)

depends only on M , �

(M)

and s. Therefore,

L(YjM;X

(M)

;�

(M)

; s;�

(M)

) =

K

Y

i=1

L(�

(i)

jM; s

(i)

;�

(i)

(M)

)

=

K

Y

i=1

�

(i)

(M)

(s

i;1

; �

i;1

)�

(i)

(M)

(s

i;2

; �

i;2

) : : : �

(i)

(M)

(s

i;n

i

; �

i;n

i

)
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where s

(i)

= (s

i;1

; : : : ; s

i;n

i

) is the error sequene that produed the observation �

(i)

(reall that �

(i)

has been extended to have the same length as s

(i)

by assigning �

i;j

= �

whenever s

i;j

= D) and �

(i)

(M)

is the observation matrix assoiated to the ith observation

and the Markov hain that produed it.

The main purpose of this work is to sample values of (M;X

(M)

;�

(M)

; s;�

(M)

) from their

joint posterior distribution P (M;X

(M)

;�

(M)

; s;�

(M)

jY) and use the sample for the Bayesian

model seletion. This will be done in Setion 4, when a reversible jump Markov hain Monte

Carlo method (Carlin and Chib (1995) and Green (1995)) is used to obtain a sample from

the joint posterior distribution. The joint posterior distribution, in the present ase, an be

written as

P (M;X

(M)

;�

(M)

; s;�

(M)

jY) = P (s j�

(M)

;M;Y)P (�

(M)

jM;Y)P (�

(M)

jX

(M)

;M;Y)

P (X

(M)

jM;Y)P (M jY)

/ L(YjM; s;�

(M)

)P (sj�

(M)

;M)P (�

(M)

jM) (5)

P (�

(M)

jX

(M)

;M)P (X

(M)

jM)P (M);

and the main task is to onstrut a Markov hain whose stationary distribution is P (M; X

(M)

;

�

(M)

; s;�

(M)

jY). This is done in the next setion.

4 MAXIMUM A POSTERIORI THROUGH

REVERSIBLE JUMP MCMC

Maximum a posteriori methods have been widely used for image restoration when the dimen-

sion (number of pixels) of the image is known (see the survey paper by Geman (1990) and

referenes therein, and also Ferrari et al. (1995), Greig et al. (1989), Hebert and Leahy (1992)

and Hurn and Jennison (1993), among others). However, the usual methodology is not appro-

priate when the dimension is unknown or random, as is the ase analysed here. Carlin and Chib

(1995) and Green (1995) introdued the onept of Bayesian model determination when the
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dimension of the model is unknown. Note that given M , the vetor (M;X

(M)

;�

(M)

; s;�

(M)

)

lies in

C

M

= fMg � fA,C,G,Tg

M

� (�

3

)

3

� fI; R;Dg

n

� (�

5

� f0g)

5

� (0; 0; 0; 0; 0; 1);

where �

5

� f0g is used to indiate the set of all six dimensional vetors whose �rst �ve

oordinates form a vetor in the simplex �

5

and the sixth oordinate is zero. In general,

(M;X

(M)

;�

(M)

; s;�

(M)

) lies in C = [

1

M=1

C

M

.

Bayesian inferene aboutM andX

(M)

will be done in two steps. A sample f(M;X

(M)

;�

(M)

;

s;�

(M)

)

j

; j = 1; 2; : : : ; Jg is drawn from the joint posterior distribution using a reversible

jump Markov hain Monte Carlo. The model M = m hosen is the one that maximises the

marginal posterior P (M jY) whih is estimated by the proportion of time that the parameter

(M; X

(M)

; �

(M)

; s;�

(M)

) stays in the dimension M = m. Among the sequenes that belong

to the model in dimension M = m, the one hosen to estimate the prototype sequene is the

sequene X

(m)

that maximises P (X

(m)

jM = m;Y).

The reversible jumpMarkov hain Monte Carlo used to obtain a sample f(M;X

(M)

;�

(M)

; s;

�

(M)

)

j

; j = 1; 2; : : : ; Jg is desribed as follows. (As usual, there is a ertain exibility in hoos-

ing onveniently the kernel of transition.) If the atual state of the hain is (M;X

(M)

;�

(M)

; s;

�

(M)

), at the time of a transition an independent random hoie is made among attempting

eah of the three moves:

(r) replaement of a base at a randomly hosen site by a randomly hosen base;

(b) birth of a randomly hosen base at a randomly hosen loation;

(d) death of a base at a randomly hosen site;

with probabilities r

M

, b

M

and d

M

, respetively, depending only on the dimension of X

(M)

and

satisfying

r

M

+ b

M

+ d

M

= 1:

These probabilities are hosen so that

b

M

=  min

n

1;

p(M + 1)

p(M)

o

11



and

d

M

=  min

n

1;

p(M � 1)

p(M)

o

;

with  > 0 a suitable onstant subjet to b

M

+ d

M

< 1, for all M � 1. Therefore, the

reversibility ondition p(M) b

M

= p(M + 1) d

M+1

is satis�ed.

Remark. Note that (b) and (d) involve hanging the dimension of the parameter spae,

hene standard Markov hain Monte Carlo methods do not apply.

In order to desribe the steps of the Markov hain Monte Carlo, the dependene on M

is dropped from some of the notation. Therefore, from now on � is used to represent the

transition matrix of the hidden Markov hain that will possibly be updated and �

0

is the

updated matrix; � is the observation matrix that will possibly be updated and �

0

is the

updated matrix. The proposal distributions for the jumps of the reversible jump Markov

hain are given in the following way.

1. Replaement: If a replaement move is hosen, then,

(a) selet a position t uniformly in f1; 2; : : : ;Mg;

(b) replae X

t

by X

0

t

hosen uniformly from A (note that a base an be replaed by

itself and that some other distribution may be used to selet from A) and let

X

0(M)

= (X

1

; : : : ;X

t�1

;X

0

t

;X

t+1

; : : : ;X

M

) be the updated sequene;

() update the matrix � independently sampling its rows using their posterior distribu-

tion, i.e., if n

�

ij

, i; j = R;D; I ount the number of transitions in the hidden Markov

hain from the state i to state j, then sample sample rows 1, 2 and 3 of �

0

from a

Dirihlet distribution with parameter (a

iR

+ n

�

iR

; a

iD

+ n

�

iD

; a

iI

+ n

�

iI

), i = R;D; I,

respetively.

(d) Update the error sequene s using the updated matrix �

0

.

(e) The updating of the matrix � is made by independently sampling its rows using

the following mehanism. Let R

A

, R

C

, R

G

, R

T

mean that R is an output of the

hidden Markov hain and that it is assoiated to the letter A, C, G, T , respetively,

12



in the sequene X

(M)

, and let n

�

ij

, i = I; R

A

; R

C

; R

G

; R

T

, j = A;C;G; T; �, ount

the number of times that the hidden Markov hain produes the output i and

the harater observed is j. Then, the �rst �ve elements of the �rst �ve rows of

the matrix � will be sampled from a Dirihlet distribution with parameter (a

iA

+

n

�

iA

; a

iC

+ n

�

iC

; a

iG

+ n

�

iG

; a

i�

+ n

�

i�

), i = I; R

A

; R

C

; R

G

; R

T

, respetively. The last

element in eah of the �rst �ve rows of �

0

is zero with probability one. The row

orresponding to the observation from a D state is (0; 0; 0; 0; 0; 1) with probability

one.

The aeptane probability of this move is

min

(

1;

L(YjM;�

0

; s

0

)P (s

0

j�

0

;M)P (�

0

jX

0(M)

;M)P (�

0

jM)

L(YjM;�; s)P (sj�;M)P (�jX

(M)

;M)P (�jM)

P (X

0(M)

jM)Q(�

0

; �)

P (X

(M)

jM)Q(�; �

0

)

J

)

where Q(�; �

0

) is the proposal transition from � to �

0

and the ratio Q(�

0

; �)=Q(�; �

0

) is

given by

f(�) g(�)P (s j�

0

; M)

f(�

0

) g(�

0

)P (s

0

j�

0

; M)

;

where f(�) and g(�) are the produts of Dirihlet distributions used to update of the non-

zero probabilities of the rows of � and �, respetively, and P (� j�

0

; M) is the probability

of the error sequene when the updated matrix �

0

is onsidered. The transformation

from the spae where � belongs to the spae to whih �

0

= (M;X

0(M)

;�

0

; s

0

;�

0

) belongs

to is given by the transformations onsidered in items (a), (b), (), (d) and (e) above

and therefore the Jaobian, J , is equal to one. We also have, for the prior distribution

(4), that

p(X

0(M)

jM)

p(X

(M)

jM)

= exp

�

2�

h

1

fX

2

=X

0

1

g

(X

0(M)

)� 1

fX

2

=X

1

g

(X

(M)

)

i�

; if t = 1;

p(X

0(M)

jM)

p(X

(M)

jM)

= exp

�

2�

h

1

fX

0

M

=X

M�1

g

(X

0(M)

)� 1

fX

M

=X

M�1

g

(X

(M)

)

i�

; if t =M;

p(X

0(M)

jM)

p(X

(M)

jM)

= exp

 

2�

t+1

X

k=t

h

1

fX

0

k

=X

0

k�1

g

(X

0(M)

)� 1

fX

k

=X

k�1

g

(X

(M)

)

i

!

;

if 2 � t �M � 1:
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2. Birth: If a birth move is hosen, then,

(a) selet a position t uniformly in f1; : : : ;M + 1g;

(b) rename the basis in the following way:

i. if t = 1, then X

0

1

is hosen uniformly from A and X

0

r

= X

r�1

, for r =

2; 3; : : : ;M + 1;

ii. if t = M + 1, then X

0

M+1

is hosen uniformly from A and X

0

r

= X

r

, for

r = 1; 2; : : : ;M ;

iii. if 2 � t � M , then X

0

r

= X

r

, for 1 � r � t� 1, X

0

t

is hosen uniformly from

A and X

0

r

= X

r�1

for t + 1 � r �M + 1,

and let X

0(M+1)

= (X

0

1

; : : : ;X

0

M+1

) be the updated sequene.

() The updating of the matries � and �, and of the error sequene s is made in the

same manner as proposed in the replaement move.

The aeptane probability of this move is

min

(

1;

L(YjM + 1;�

0

; s

0

)P (s

0

j�

0

;M + 1)P (�

0

jX

0(M+1)

;M + 1)P (�

0

jM + 1)

L(YjM;�; s)P (sj�;M)P (�jX

(M)

;M)P (�jM)

P (X

0(M+1)

jM + 1)Q(�

0

; �)

P (X

(M)

jM)Q(�; �

0

)

J

)

where Q(�; �

0

) is the proposal transition from � to �

0

and the ratio Q(�

0

; �)=Q(�; �

0

) is

given by

f(�) g(�)P (s j�

0

; M)M + 1

f(�

0

) g(�

0

)P (s

0

j�

0

; M + 1)M

:

where f(�), g(�) are the produts of the Dirihlet distributions used to update the matri-

es � and �, respetively, and P (� j�

0

; M) is the probability of the error sequene when

the updated matrix �

0

is onsidered. The Jaobian, J , of the transformation from the

spae where � belongs to the spae whih �

0

= (M + 1;X

(M+1)

;�

0

; s

0

;�

0

) belongs to is

obtained from the transformations given in items (a), (b) and () above and therefore,

J = 1. Furthermore,
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P (X

0(M+1)

jM + 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M+1

e

�

exp

�

2� 1

fX

1

=X

0

1

g

(X

0(M+1)

)

�

; if t = 1;

P (X

0(M+1)

jM + 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M+1

e

�

exp

�

2� 1

fX

0

M+1

=X

M

g

(X

0(M+1)

)

�

; if t =M + 1;

P (X

0(M+1)

jM + 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M+1

e

�

exp

 

2 �

t+1

X

k=t

1

fX

0

k

=X

0

k�1

g

(X

0(M+1)

)

!

; if 2 � t �M;

3. Death: If a death move is hosen, then,

(a) selet a position t uniformly in f1; : : : ;Mg, delete the base X

t

and rename the

remaining basis in the following way: X

0

r

= X

r

, for 1 � r � t� 1, X

0

r

= X

r+1

for

t � r � M � 1.

(b) The updating of the matries � and � and the error sequene s is made using the

proedure desribed when the replaement move is hosen.

The aeptane probability of this move is

min

(

1;

L(YjM � 1;�

0

; s

0

)P (s

0

j�

0

;M � 1)P (�

0

jX

0(M�1)

;M � 1)P (�

0

jM � 1)

L(YjM;�; s)P (sj�;M)P (�jX

(M)

;M)P (�jM)

P (X

0(M�1)

jM � 1)Q(�

0

; �)

P (X

(M)

jM)Q(�; �

0

)

J

)

where

P (X

0(M�1)

jM � 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M�1

e

��

exp

�

�2�1

fX

2

=X

1

g

(X

(M)

)

�

if t = 1

P (X

0(M�1)

jM � 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M�1

e

��

exp

�

�2�1

fX

M

=X

M�1

g

(X

(M)

)

�

if t =M

P (X

0(M�1)

jM � 1)

P (X

(M)

jM)

=

Z

�;M

Z

�;M�1

e

��

exp

 

�2�

t+1

X

k=t

1

fX

k

=X

k�1

g

(X

(M)

)

!

if 2 � t �M � 1;

and the ratio Q(�

0

; �)=Q(�; �

0

) is given by

f(�) g(�)P (s j�

0

; M)M � 1

f(�

0

) g(�

0

)P (s

0

j�

0

; M � 1)M

;
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where f(�), g(�) and P (� j�

0

; M � 1) are given in a similar way as they were given when

onsidering the replaement and birth moves. The Jaobian J of the transformation

from the model where � belongs to the model that �

0

= (M � 1;X

0(M�1)

;�

0

; s

0

;�

0

)

belongs to is given by the transformations presented in (a) and (b) above and therefore

is equal to one.

The problem now is to run this Markov hain for a suÆiently large number of steps and

when the stationary state is attained the atual state of the hain (X

(M)

;M;�

(M)

; s;�

(M)

)

gives us a sample of the posterior distribution (5) and the usual measures may be used to

deide about the Bayesian model. One the model is hosen, the sequene within this model

that has the largest marginal posterior is the one hosen to represent the prototype sequene.

5 SIMULATION

In this setion some details about the implementation of the algorithm proposed in this paper

are given. Besides the values for the various variables used in the programme, some graphis

and omments about the results obtained are presented.

5.1 Setting the parameters

In order to perform the simulation of the algorithm some of the parameters presented in a

more general framework during Setions 2, 3 and 4 must be spei�ed. Therefore, the following

is onsidered.

1. The hoie of the hyperparameter � is left to the researher to hoose. One suggestion is

to take � approximately the mean size of the sequenes the researher has as data (i.e.,

the mean length of K deoded sequenes that the researher is using as observed data).

In the present ase we take � = 53. Several values of  (appearing in the reversible jump

Monte Carlo) are taken in order to ompare the performane of the algorithm depending

on what prior distribution of the sequene X and the length M were onsidered. The
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values used in the simulations were basially  = 0:001; 0:01; 0:1; 0:33333; 0:35. The �rst

three values were hosen to make birth and death moves with low probability and the

other two values were hosen to have  as lose as possible to the maximum value of 

suh that d

M

+ b

M

< 1.

2. The prior distribution for the sequene length M is a trunated Poisson distribution

on f49; 50; : : : ; 57g whose mean is 53. This distribution will be referred to as the Pois-

son(53, f49; 50; : : : ; 57g). Besides this prior two others are taken into aount. They are

the trunated Poisson(53) with mean 53, taking values on f1; 2; : : :g and the Uniform

distribution on f49; 50; : : : ; 57g whih will be referred to as Poisson(53, f1; 2; : : :g) and

Uniformf49; 50; : : : ; 57g, respetively.

3. The parameters of the Dirihlet distribution used to sample values for the rows of �

are given by (a

iI

; a

iR

; a

iD

) = (1; 6; 1), i = R;D; I. The parameters of the Dirih-

let distribution used to sample values for the rows of the matrix � are given by,

(a

XA

; a

XC

; a

XG

; a

XT

; a

X�

) = (6; 1; 1; 1; 1) if X = A and for X = C;G; T , similar sets of

parameters are onsidered (i.e., ifX = C then (a

XA

; a

XC

; a

XG

; a

XT

; a

X�

) = (1; 6; 1; 1; 1)).

Additionally, the Dirihlet distribution used to sample the row orresponding to the in-

sertion state has parameter (a

IA

; a

IC

; a

IG

; a

IT

; a

I�

) = (1; 1; 1; 1; 1).

4. When using the assumption of independene for the bases in the prototype sequene

(i.e., the prior distribution of X is given by (2)), from Churhill and Lazareva (1999) we

use the values �

i

= 0:25 for all i 2 fA;C;G; Tg and when the Potts distribution (given

by (4)) is onsidered, we take � = 1.

5. The sequene X used to initialise the algorithm was the sequene

TAGACAGGGGCCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAACTT

whih is the sequene 1 given, as observed data, by Churhill and Lazareva (1999) where

we write the letter G in plae of the unknown letter in position 9. Only one sequene

was used as observed data. This sequene is the �rst sequene onsidered by Churhill
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and Lazareva (1999) as observed data, and was obtained from Seto et. al. (1993) and it is

TAGACAGG*GCCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAACTT.

5.2 Computational details

The programming of the algorithmwas made in FORTRAN and implemented on a IBM SP3 at

the Instituto de Matem�atias, UNAM. In order to ompare the performane of the algorithm,

several runs were made. A typial run of two million steps takes around �ve minutes of CPU

time whih, in the tests performed, orresponds to ten minutes in real time. When a Silion

Graphis mahine is used the time may inrease to forty �ve minutes in real time.

The �rst step taken was to diagnose the speed of onvergene when taking as a measure of

referene the onvergene of the sample mean of the sequene length M . Before onsidering

the several possibilities for the prior distributions of M and X a preliminary test was made.

Figure 1 shows the plots obtained. In that ase, we assume that M and X have as prior

distributions a Poisson(54, f1; 2; : : :g) and the Potts distribution (4) with � = 1, respetively.

The values of  onsidered were 0:1; 0:01; 0:001; 0:0065 and 0:0085 and initially runs of 10

6

steps were performed. It is possible to observe that by step 4 � 10

5

stationarity is ahieved

when  = 0:1; 0:01; 0:0065. When using  = 0:001 and  = 0:0085 it is possible to observe that

apparently, stationarity is ahieved at steps 6�10

5

and 5�10

5

, respetively. However, sine the

ergodi means where di�erent of the one obtained when onsidering the other values of , we

have deided to run the algorithm for  = 0:001 and  = 0:0085 again, but now an additional

10

6

steps were performed. What is observable from Figure 1 is that for  = 0:001 stationarity

is ahieved when we reah step 14 � 10

5

and for  = 0:0085 we have that stationarity is

ahieved when step 5 � 10

5

is reahed. It is worth alling attention to the fat that when

 = 0:0085 in the �rst run (when only 10

6

steps were performed) the sample mean stays more

or less the same for around 4� 10

5

steps, giving the idea that stationarity had already been

reahed, and then starts inreasing its value.
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Figure 1: Initial onvergene diagnose for the sample mean of M when M has as prior a

Poisson(54, f1; 2; : : :g) distribution and X has prior distribution the Potts distribution with

� = 1.

After the preliminary onvergene diagnose was made, we have deided to perform 2� 10

6

iterations of the algorithm in order to verify the onvergene of the empirial mean of M in

eah of the ases onsidered. One onvergene had been attained, a sample of size 6 � 10

4

was taken, using every �fth value generated, to perform inferenes. Inferenes were performed

for the hoie of model made by the reversible jump Markov hain Monte Carlo algorithm,

for the behaviour of the probabilities b

M

, r

M

and d

M

, as well as, for the sample of M . From
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now on, the possible values of  used are the ones given in Setion 5.1.

Let the DNA sequene have as prior distribution the Potts distribution with parameter

� = 1. When M has prior distribution the Poisson(53,f1; 2; : : :g), then it is possible to see

from Figure 2(a) that for  = 0:01 two million steps were not enough to make the sample

mean ofM to onverge, whereas for all other values around 5�10

5

iterations were enough. In

partiular, for  = 0:33333 and  = 0:35, 1� 10

5

iterations are enough to ahieve onvergene

and for  = 0:1 onvergene is reahed around iteration 4� 10

5

. Having performed this test

we have deided not to onsider the ase in whih  = 0:01. If M has as prior distribution

the Poisson(53, f49; 50; : : : ; 57g), we have by observing Figure 2(b), that for all values of 

onvergene is attained around iteration number 2 � 10

5

. In the ase where M has as prior

distribution the Uniformf49; 50; : : : ; 57g, from Figure 2() we have that onvergene is attained

around iteration number 60�10

3

exept for  = 0:01. Therefore, using the same proedure as

for the Poisson(53, f1; 2; : : :g) prior distribution the statistis were made using the remaining

values of . When the bases forming X are independent and identially distributed and M

has as prior distribution the Poisson(53, f49; 50; : : : ; 57g) and the Uniformf49; 50; : : : ; 57g

the behaviour of the sample mean is similar to those shown in Figure 2(b) and 2() with

onvergene attained around iteration number 2 � 10

5

and 3 � 10

5

, respetively. The ase

where M has as prior distribution the Poisson(53, f1; 2; : : :g) is not onsidered here beause

of the slowness of the onvergene.

Figure 3 illustrates the histograms of the values of M that are aepted by the reversible

jump Markov hain Monte Carlo. Figure 3(a), 3(b) and 3() represent the ase where X

has prior distribution the Potts distribution and M has as prior distribution the Poisson(53,

f1; 2; : : :g), Poisson(53, f49; 50; : : : ; 57g) and the Uniformf49; 50; : : : ; 57g, respetively. Figure

3(d) is a typial example for the ase where X is formed by independent and identially

distributed bases and M has prior distribution the Poisson(53, f49; 50; : : : ; 57g). The value

of  used to produe the graphis is  = 0:35.

The relationship among the probabilities of the ourrene of the events of birth, death

and replaement in the reversible jump Markov hain Monte Carlo algorithm is shown in
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Figure 2: Convergene diagnose, for di�erent values of , of the sample mean of the sequene

length M for the various prior distributions of X and M .
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Figure 3: Histograms of values of M produed by the reversible jump Markov hain Monte

Carlo algorithm using  = 0:35 when di�erent prior distributions for X and M are onsidered.

the plots of Figure 4, where a portion of the values produed by the algorithm for the ase

where  = 0:35 was used. The lighter solid line on these plots is the probability of ourrene

of a death event (d

M

); the dashed line is the probability of a birth event (b

M

); and the

remaining line orresponds to the probability of a replaement (r

M

). Figures 4(a) and 4(b)

represent the ase where X has prior distribution the Potts distribution and M has the

Poisson(53, f1; 2; : : :g) and the Poisson(53, f49; 50; : : : ; 57g), respetively, as prior distribution.

In Figure 4() we have that X has independent and identially distributed bases and M has

the Poisson(53, f49; 50; : : : ; 57g) distribution as its prior. Note that when omparing the
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behaviour of d

M

, r

M

, and b

M

in the ases of Figure 4(a) and 4(b) the algorithm produes a

more mixed behaviour in the ase where X has as prior the Potts distribution and M has

the Poisson(53, f49; 50; : : : ; 57g), than in the ase where M has the Poisson(53, f1; 2; : : :g) as

its prior distribution. The ase where M has prior distribution the Uniformf49; 50; : : : ; 57g

distribution is not presented here beause the probabilities d

M

, r

M

, and b

M

are onstant.

Figure 4: Probabilities of ourrene of birth, death and replaement events using  = 0:35

for a ertain number of steps after the burn-in period for the several prior distributions of X

and M .
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Even though the onvergene of the sample mean of M when X has independent and

identially distributed bases is fast, the value of M that has the largest probability is not

52 (whih orresponds to the length of the sampled DNA analysed). Instead the one with

the largest probability is 49 with over than four times more weight than the one given to

M = 52 (see Figure 3(d)). Note that when X has as prior distribution the Potts distribution,

then the fastest onvergene of the sample mean of M is when M has prior distribution the

Uniformf49; 50; : : : ; 57g, seond fastest is when the prior is the Poisson(53, f49; 50; : : : ; 57g)

and the slowest is when M has as prior distribution the Poisson(53, f1; 2; : : :g) (Figure 2).

We also have that in the latter ase the mode of the marginal posterior is around 44 whih is

way o� the length of the sampled DNA sequene.

6 CONCLUSION

In this work our attention was foused on the presentation of an algorithm to �nd a Bayes

estimate of a prototype DNA sequene, its length and the alignment of the opies of this

prototype sequene. The novelties of our approah are: in the Bayes method we use a prior

distribution for the DNA sequene that inorporates the spatial orrelation among the bases

given by a four olour Potts model; the length of the prototype sequene (and the length of

the alignment) is onsidered a random variable; a sample from the joint posterior distribution

is obtained from a Monte Carlo proedure based on a Markov hain with reversible jumps;

during the generation of a sample from the joint distribution of the prototype sequene and

its length, the length of the sequene is allowed to hange.
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24



em Probabilidade e Proessos Esto�astios", PRONEX-177/96). E.R.R. thanks IME-USP

and IMECC-UNICAMP for �nanial support and hospitality.

REFERENCES

1. Apostolio, A. and Gianarlo, R. (1999). Sequene alignment in moleular biology. In:

Mathematial Support for Moleular Biology. DIMACS Series in Disrete Mathemat-

is and Theoretial Computer Sienes 47, eds., M. Farah-Colton, F. S. Roberts, M.

Vingron, M. Waterman, 85{115.

2. Bishop, M. J. and Thompson, E. A. (1986). Maximum likelihood alignment of DNA

sequenes. Journal of Moleular Biology, 190, 159{165.

3. Blakwell, T. (1993). Estimating onsensus DNA sequenes. Preprint.

4. Boys, R. J. and Henderson, D. A. (2003). Bayesian approah to DNA sequene segmen-

tation. To appear in Biometris.

5. Carlin, B. P. and Chib, S. (1995). Bayesian model hoie via Markov hain Monte Carlo

methods. Journal of the Royal Statistial Soiety. SER. B, 57, 473{484.

6. Casella, G. and Robert, C. (1995). Disussion: \Aurate restoration of DNA sequenes"

by G. A. Churhill. In: Case studies in Bayesian Statistis, Vol. II, eds., C. Gatsaris,

J. S. Hodges, R. E. Kass, N. D. Sigpur-Walla, Springer-Verlag, New York, 126-138.

7. Churhill, G. A. (1989). Stohasti models for heterogeneous DNA sequenes. Bulletin

of Mathematial Biology, 51, 79{94.

8. Churhill, G. A. (1992). Hidden Markov hains and the analysis of genome struture.

Computers and Chemistry, 16, 107{115.

9. Churhill, G. A. (1995). Aurate restoration of DNA sequenes (with disussion). In:

Case studies in Bayesian Statistis, Vol. II, eds., C. Gatsaris, J. S. Hodges, R. E. Kass,

N. D. Sigpur-Walla, Springer-Verlag, New York, 89-148.

25



10. Churhill, G. A. and Lazareva, B. (1999). Bayesian restoration of a hidden Markov hain

with appliations to DNA sequening. Journal of Computational Biology, 6, 261{277.

11. Drasdo, D., Hwa, T. and L�assig, M. (1998). A statistial theory of sequene alignment

with gap. In: Proeedings of the 6th International Conferene on Intelligent Systems

for Moleular Biology, 52{58.

12. Ferrari, P. A., Frigessi, A. and Gonzaga de S�a, P. G. (1995). Fast approximate maximum

a posteriori restoration of multiolour images. Journal of the Royal Statististial Soiety.

SER. B, 57, 485{500.

13. Garia, N. L. and Rodrigues, E. R. (1999). Bayesian inferene for onsensus DNA se-

quene using reversible jump MCMC. Publiai�on Preliminar 646. Instituto de Matem�a

tias { Universidad Naional Aut�onoma de M�exio.

14. Garia, N. L. and Rodrigues, E. R. (2001). Restoring DNA sequenes using a hidden

Markov model and reversible jump Markov Chain Monte Carlo. Publiai�on Preliminar

698. Instituto de Matem�atias { Universidad Naional Aut�onoma de M�exio.

15. Geman, D. (1990). Random �elds and inverse problems in imaging. Leture Notes in

Mathematis, 1427, Springer-Verlag, 113{193.

16. Green, P. J. (1995). Reversible jump Markov hain Monte Carlo omputation and

Bayesian model determination. Biometrika, 82, 711{732.

17. Greig, D. M., Porteous, B. T. and Seheult, A. H. (1989). Exat maximum a posteriori

estimation for binary images. Journal of the Royal Statististial Soiety. SER. B, 51,

271{279.

18. Hebert, T. J. and Leahy, R. (1992). Statisti-based MAP image reonstrution from

Poisson data using Gibbs priors. IEEE Transations on Signal Proessing, 40, 2290{

2303.

26



19. Hurn, M. and Jennison, C. (1993). Multiple-site updates in maximum a posteriori

(MAP) and marginal posterior modes (MPM) image estimation. In: Statistis and

Images: 1, eds., K. V. Mardia, G. K. Kanji. Oxford, Carfax Publishing Company,

155{186.

20. Krogh, A., Brown, M., Mian, I. S., Sjolander, K. and Haussler, D. (1994). Protein

modelling using hidden Markov models. Journal of Moleular Biology, 235, 1501{1531.

21. Liu, J. S. and Lawrene, C. E. (1995). Statistial models for multiple sequene alignment:

uni�ations and generalizations. Proeedings of the Amerian Statistial Assoiation:

Statistial Computing Setion, 1{8.

22. Liu, J. S., Neuwald, A. F. and Lawrene, C. E. (1995). Bayesian models for multiple

loal sequene alignment and the Gibbs sampling strategies. Journal of the Amerian

Statistial Assoiation, 90, 1156{1170.

23. Liu, J. S., Neuwald, A. F. and Lawrene, C. E. (1999). Markovian strutures in biologial

sequene alignments. Journal of the Amerian Statistial Assoiation, 94, 1{15.

24. Meidanis, J. and Setubal, J. C. (1995). Multiple alignment of biologial sequenes with

gap exibility. Leture Notes in Computer Sienes, 911, Springer-Verlag, 411{426.

25. Milanesi, L., Marselli, M., Mauri, G., Rol�, C. and Uboldi, L. (1999). Fragment assembly

system for DNA sequening projets. In: Mathematial Support for Moleular Biology.

DIMACS Series in Disrete Mathematis and Theoretial Computer Sienes 47, eds.,

M. Farah-Colton, F. S. Roberts, M. Vingron, M. Waterman, 241{258.

26. Rihardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an

unknown number of omponents (with disussion). Journal of the Royal Statistial

Soiety. SER. B, 59, 731{792.

27



27. Robert, C. P., Ryd�en, T. and Titterington, D. M. (2000). Bayesian inferene in hidden

Markov models through the reversible jump Markov hain Monte Carlo method. Journal

of the Royal Statistial Soiety. SER. B, 62, 57{75.

28. Shleif, R. (1993). Genetis and moleular biology. Seond edition. The Johns Hopkins

University Press. USA.

29. Seto, D., Koop, B. F. and Hood, L. (1993). An experimentally derived data set on-

struted for testing large-sale DNA sequene assembly algorithms. Genomis, 15, 673{

676.

30. Thorne, J. L. and Churhill, G. A. (1995). Estimation and reliability of moleular

sequene alignments. Biometris, 51, 100{113.

31. Thorne, J. L., Kishino, H. and Felsenstein, J. (1991). An evolutionary model for max-

imum likelihood alignment of DNA sequenes. Journal of Moleular Evolution, 33,

114{124.

32. Waterman, M. S. (1989a). Sequene alignment. Mathematial Methods for DNA se-

quenes, ed., M. S. Waterman, CRC Press, USA, 53{92.

33. Waterman, M. S. (1989b). Consensus patterns in sequenes. Mathematial Methods for

DNA sequenes, ed., M. S. Waterman, CRC Press, USA, 93{157.

34. Weir, B. S. (1985). Statistial Analysis of Moleular Geneti Data. Journal of Mathe-

matis Applied in Mediine and Biology, 2, 1{39.

35. Wu, F. Y. (1982). The Potts model. Reviews of Modern Physis, 54, 235{268.

28


