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1 Introduction

In this paper we study nearly-Kähler invariant almost Hermitian structures
on the flag manifolds of a complex semi-simple Lie group G. The objective is
to identify those flag manifolds that admit invariant nearly-Kähler structures
which are not Kähler. Invariance here is taken with respect to a maximal
compact subgroup U of G, that is, a compact real form.

This problem was considered in the 1968 paper by Wolf-Gray [10], where
relationships are established between the geometric structures on the ho-
mogeneous spaces and the automorphisms fixing the isotropy subgroup or
subalgebra. In particular, in [10] it is given evidence to the following con-
jecture: Let U/K be a homogeneous space of a compact Lie group U , which
is not Hermitian symmetric and such that the isotropy K has maximal rank
in U . Then there are invariant almost Hermitian structures on U/K which
are nearly-Kähler but not Kähler if and only if the isotropy subalgebra is the
fixed point set of an automorphism of order three (see [10], Conjecture 9.28).

In this paper we confirm this conjecture for the class of homogeneous
spaces formed by the flag manifolds. This class covers most of the possible
homogeneous spaces, in such a way that it remains open only two exceptional
cases.

In order to explain the state of art let U/K be a homogeneous space with
U compact and K having the same rank as U . There are two possibilities,
namely K is the centralizer of a torus of U or not. In the former case U/K
is a flag manifold of some complex Lie group, and hence is covered by the
results of the present paper.

The second possibility occurs only in exceptional cases, classified by Wolf-
Gray [9]: There are only twelve homogeneous spaces U/K admitting invariant
almost complex structures and such that (i) U is compact; (ii)K is closed and
connected; (iii) K is of maximal rank in U and (iv) K is not the centralizer of
a torus (see [9], Theorem 4.11 and the table at pages 103-4). For the twelve
homogeneous spaces obtained, U is always an exceptional Lie group. We list
them below, indicating the conclusions of [10], concerning the existence of
nearly-Kähler metrics. We note that by Corollary 9.5 of [10] none of these
homogeneous spaces admit an invariant Kähler metric.

1. Every invariant metric is nearly-Kähler: G2/A2; F4/A2A2; E6/A2A2A2;
E7/A2A5; E8/A8; E8/A2A6 (see [10], page 157).

2. There are no nearly-Kähler invariant metrics: E8/A4A4; E7/A2A2A2T
1;
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E8/A2A2A2A2; E8/A2A5T
1 (see [10], Propositions 9.20, 9.21, 9.22 and

9.23, respectively).

3. Open: E8/A2A2A2A1T
1; E8/A2A2A2T

2.

Of course these homogeneous spaces confirm the conjecture stated above,
that is, only the isotropy of those spaces admitting nearly-Kähler metrics are
fixed points of order three automorphisms (see [10], page 157).

The invariant almost Hermitian structures on a maximal flag manifold
G/P , where P is a Borel subgroup, were studied recently in [8] (see also [1]
and [2]). In these works a key role is played by the class of (1, 2)-symplectic
structures, in which the nearly-Kähler ones are included. As shown in [8] we
can describe the (1, 2)-symplectic structures in terms of abelian ideals of a
Borel subalgebra (in the sense of Kostant [6]) as well as in terms of the alcoves
of the corresponding affine Lie algebras. These descriptions provide decisive
information on the (1, 2)-symplectic structures, so that they can be classified
up to equivalence under the Weyl group, paving the way to understand,
among the invariant ones, the sixteen classes of almost Hermitian structures
identified by Gray-Hervella [3]. In particular, it is proved in [8] that the
conjecture of Wolf-Gray holds for the maximal flag manifolds, since A2 (=
sl (3,C)) is the only Lie algebra whose maximal flag manifold admits invariant
nearly-Kähler structures that are not Kähler.

The result of this paper form a partial extension of those of [8], in the
sense that we consider here only nearly-Kähler structures and do not attempt
a classification like in [8]. The point is that when dealing with flag manifolds
apart from the maximal ones there are less room for equivalences, since we
must consider subgroups of the Weyl group leaving invariant the isotropy
subgroup. This makes the classifications less feasible then in maximal flag
manifold.

2 Flag manifolds

The purpose of this section is to fix notations and state general results related
to flag manifolds. We shall work with simple Lie algebras and groups only.
The results in the semi-simple case are easily obtained by piecing together
the simple components.

Thus let g be a complex simple Lie algebra and G a connected Lie group
with Lie algebra g. Fix once and for all a Cartan subalgebra h of g and
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denote by Π the set of roots of the pair (g, h). Put

gα = {X ∈ g : ∀H ∈ h, [H,X] = α(H)X}

for the root space corresponding to α.
The Cartan-Killing form of g is denoted by 〈·, ·〉 and for a root α let

Hα ∈ h be defined by α (·) = 〈Hα, ·〉. In what follows we keep fixed a set of
Weyl elements Xα ∈ gα, α ∈ Π. These elements satisfy [Xα, X−α] = Hα (or
equivalently 〈Xα, X−α〉 = 1) and [Xα, Xβ] = mα,βXα+β with mα,β ∈ R and
mα,β = m−α,−β, so that mα,β = 0 if α+ β is not a root (see e.g. Helgason [4]
and [7]).

Let Π+ ⊂ Π be a choice of positive roots, denote by Σ the corresponding
simple system of roots and put Π− = −Π+.

Given a subset Θ ⊂ Σ let 〈Θ〉 be the set of roots spanned over Z by Θ and
put 〈Θ〉± = 〈Θ〉 ∩ Π±. The standard parabolic subalgebra of g determined
by Θ is defined by

pΘ = h⊕
∑

α∈〈Θ〉

gα ⊕
∑

β∈Π+\〈Θ〉+
gβ.

The corresponding parabolic subgroup PΘ is the normalizer of pΘ inG. Form-
ing the coset space we obtain the flag manifold defined by Θ:

FΘ = G/PΘ.

We take as compact real form of g the real subalgebra

u = spanR{ihR, Aα, iSα : α ∈ Π}

where Aα = Xα − X−α and Sα = Xα + X−α. Denote by U = exp u the
corresponding compact real form of G and write KΘ = PΘ ∩ U . It is well
known that KΘ ⊂ U is the centralizer of a torus and since U acts transitively
on each FΘ, it follows that

FΘ = G/PΘ = U/KΘ.

Let kΘ be the Lie algebra of KΘ and write kC
Θ for its complexification. We

have kΘ = u ∩ pΘ and

kC
Θ = h⊕

∑
α∈〈Θ〉

gα.
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Denote by xΘ the origin of FΘ. The tangent space TxΘ
FΘ can be identified

with the orthogonal complement of kΘ in u, namely

TxΘ
FΘ ≈ ηΘ = spanR{Aα, iSα : α /∈ 〈Θ〉} =

∑
α∈Π\〈Θ〉

uα,

where uα = (gα ⊕ g−α)∩u = spanR{Aα, iSα}. By complexifying ηΘ we obtain
the complex tangent space of TC

xΘ
FΘ, which can be identified with

qΘ =
∑

β∈Π\〈Θ〉

gβ.

The adjoint representations of kΘ and KΘ leave ηΘ invariant, so that we
get a well defined representation of both kΘ and KΘ in ηΘ. Analogously the
complex tangent space qΘ is invariant under the adjoint representation of
kC
Θ. This representation is semi-simple, so that we can decompose qΘ into

irreducible components
qΘ = V1 ⊕ · · · ⊕ Vs

Since the Cartan subalgebra h is contained in kΘ, it follows that each ir-
reducible component Vi is a direct sum of root spaces. Thus for each i =
1, . . . , s, there exists a subset A (i) ⊂ Π \ 〈Θ〉 such that

Vi =
∑

α∈A(i)

gα.

In the sequel we abuse notation and say that two roots α, β ∈ Π\〈Θ〉 belong
to the same irreducible component in case the corresponding root spaces gα

and gβ are contained in some component Vi.
It is a standard fact that the roots A (i) in an irreducible component are

either all positive or all negative, because both Π+ and Π− are invariant
under kC

Θ. We also note that if α ∈ 〈Θ〉 and β ∈ Π \ 〈Θ〉 are roots such that
α+β is also a root then β and α+β are in the same irreducible components.

We conclude this section with the statement of the following well known
facts (see e.g. [8], Lemma 4.11).

Lemma 2.1 Let α and β be positive roots that α+ β is a root.

1. Suppose that β = β1 + β2 with β1 and β2 roots. Then α+ β1 or α+ β2

is a root.

2. There are simple roots α1, . . . , αs such that β = α1 + · · · + αs and all
the intermediate sums α+ α1 + · · ·+ αk, k = 1, . . . , s, are roots.
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3 Invariant almost Hermitian structures

A U -invariant Riemannian metric on a flag manifold FΘ is completely deter-
mined by its value at origin xΘ, namely an inner product (·, ·) in ηΘ, which
is invariant under the adjoint action of KΘ. Such an inner product has the
form (X, Y )Λ = −〈Λ (X) , Y 〉 with Λ : ηΘ → ηΘ positive-definite with respect
to the Cartan-Killing form. The inner product (·, ·)Λ admits a natural exten-
sion to a symmetric bilinear form on the complexification qΘ of ηΘ. These
complexified objects are denoted by the same letters as the real ones.

TheKΘ-invariance of (·, ·)Λ implies that the elements of the standard basis
Aα, iSα, α ∈ Π \ 〈Θ〉, are eigenvectors of Λ, with the same eigenvalue. Thus,
in the complex tangent space we have Λ (Xα) = λαXα with λα = λ−α > 0.
Furthermore, λα is constant along the irreducible components of the adjoint
action of KΘ in ηΘ. In short:

• An invariant Riemannian metric in FΘ is given by a set Λ = {λα, α ∈
Π \ 〈Θ〉} such that (i) λα > 0; (ii) λ−α = λα and (iii) λα = λβ if α and
β are in the same irreducible component.

In the sequel we also denote by (·, ·)Λ the metric on FΘ associated to Λ
and abuse notation and say that a set of positive numbers Λ = {λα} is an
invariant metric in FΘ.

Regarding invariant almost complex structures, the situation is analogous.
In fact, such a structure is completely determined by its value J : ηΘ → ηΘ on
the tangent space at the origin. The map J satisfies J2 = −1 and commutes
with the adjoint action of KΘ on ηΘ. We denote by the same letter the real
valued structure J and its complexification to qC. The invariance of J entails
that J (gα) = gα for all α ∈ Π \ 〈Θ〉. The eigenvalues of J are ±i and the
eigenvectors in qΘ are Xα, α ∈ Π\〈Θ〉. Hence J (Xα) = iεαXα with εα = ±1
satisfying εα = −ε−α. As usual the eigenvectors associated to +i are said to
be of type (1, 0) while the −i-eigenvectors are of type (0, 1). Thus the (1, 0)
vectors are linear combinations of Xα, εα = +1, and the (0, 1) vectors are
spanned by Xα, εα = −1. It summarizes as follows:

• An invariant almost complex structure on FΘ is given by a set {εα, α ∈
Π \ 〈Θ〉} such that (i) εα = ±1; (ii) ε−α = −ε−α and (ii) εα = εβ if α
and β are in the same irreducible component.
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Again we abuse of notation and say that an invariant structure on FΘ

is the set J = {εα}. Accordingly we say that a pair (J,Λ) is an invariant
almost Hermitian structure on FΘ.

It is well known (and easy to prove) that any invariant metric (·, ·)Λ

is almost Hermitian with respect to an invariant J , that is, (JX, JY )Λ =
(X,Y )Λ. Let Ω = ΩJ,Λ be the corresponding Kähler form

Ω (X, Y ) = (X, JY )Λ = −〈ΛX, JY 〉.

It follows at once that Ω (Xα, Xβ) = −iλαεβ〈Xα, Xβ〉, so that Ω (Xα, Xβ) = 0
if α + β 6= 0 and Ω (Xα, X−α) = iλαεα. Also, an easy computation shows
that dΩ (Xα, Xβ, Xγ) = 0 unless α+ β + γ = 0, and in this case

3dΩ (Xα, Xβ, Xγ) = imα,β (εαλα + εβλβ + εγλγ) (1)

(cf. [8], Proposition 2.1).
Recall that an almost Hermitian structure is said to be (1, 2)-symplectic

(or quasi-Kähler) if its Kähler form, say ω, satisfies dω (u, v, w) = 0 if one of
the complex vectors u, v, w is a (1, 0)-vector while the other two are (0, 1)-
vectors. The nearly-Kähler structures form a subclass of the (1, 2)-symplectic
ones and is characterized by the condition ∇X (J) (X) = 0, where ∇ is Levi-
Civita connection of the metric (see Gray-Hervella [3]).

For the invariant structures on the flag manifolds it can be proved that a
pair (J,Λ) is nearly-Kähler if and only if it is (1, 2)-symplectic and satisfies
(N (X, Y ) , X)Λ ≡ 0 for all X, Y ∈ ηΘ, where N is the Nijenhuis tensor of
J (this follows from the classification in [3]; see also [8], Section 7). In the
sequel we use these conditions expressed in terms of roots in Π \ 〈Θ〉. The
precise statement requires the following terminology.

Definition 3.1 Let J = {εα} be an invariant almost complex structure on
FΘ. The triple of roots α, β, γ ∈ Π \ 〈Θ〉 with α + β + γ = 0 is said to be of
J-type {0, 3} (or a {0, 3}-triple, for short) if εα = εβ = εγ. It is of J-type
{1, 2} (or a {1, 2}-triple) otherwise.

Note that the triples {α, β, γ} and {−α,−β,−γ} are of the same J-type,
that is, either both are {0, 3}-triples or both are {1, 2}-triples.

The next statement gives a characterization of nearly-Kähler pairs in
terms of triples of roots.
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Proposition 3.2 The invariant pair (J = {εα},Λ = {λα}) is nearly-Kähler
in FΘ if, and only if, the following two conditions hold:

1. λα = λβ = λγ if {α, β, γ} is a {0, 3}-triple, and

2. λα = λβ + λγ if {α, β, γ} is a {1, 2}-triple with εβ = εγ.

Proof: See [8], Section 7, and [10], Theorem 9.17 (iii).

We note that the first condition is equivalent to the annihilation of the
tensor (N (X, Y ) , X)Λ whereas the second one holds if and only if the pair
(J,Λ) is (1, 2)-symplectic, as follows by formula (1) for dΩ (see [8], Proposi-
tion 2.3, for details). That formula also shows that if a structure is Kähler
then there are no {0, 3}-triples, and conversely, if there no {0, 3}-triples and
the structure is (1, 2)-symplectic then it is Kähler. For later reference we
state this fact with nearly-Kähler in place of (1, 2)-symplectic.

Lemma 3.3 If J admits only {1, 2}-triples and (J,Λ) is nearly-Kähler then
the structure is Kähler.

4 Triples for nearly-Kähler structures

This section is devoted to the proof of the following theorem which shows
that the nearly-Kähler condition is very restrictive for the invariant struc-
tures on the flag manifolds. This theorem will be used in the next section
to relate invariant nearly-Kähler structures to fixed point sets of order three
automorphisms, obtaining a proof of the conjecture stated in the introduc-
tion.

Theorem 4.1 Let (J,Λ) be an invariant nearly-Kähler structure on a flag
manifold FΘ. Then the triples of roots are all of the same J-type, either
{1, 2} or {0, 3}.

The proof of this theorem will be accomplished in two steps, namely

1. if there are triples of both J-types, then there exists at least one root
β in the intersection of a {1, 2}-triple with a {0, 3}-triple.
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2. If (J,Λ) is nearly-Kähler then {1, 2}-triples cannot intercept {0, 3}-
triples.

The first step does not require the nearly-Kähler condition and uses only
general facts about root systems. On the other hand the second part uses
extensively Proposition 3.2, which characterize nearly-Kähler structures in
terms of roots.

We start by introducing the following useful notation.

Definition 4.2 Let Θ ⊂ Σ be a subset of the simple system of roots. Let
{a, b} be either {1, 2} or {0, 3} and denote by TΘ

{a,b} (or simply T{a,b}) the set

of the roots α ∈ Π \ 〈Θ〉 such that there are roots β, γ ∈ Π \ 〈Θ〉 such that
{α, β, γ} is a {a, b}-triple.

Note that we may have T{1,2} ∩ T{0,3} 6= ∅, that is, a root α may belong
to {1, 2}-triples as well as to {0, 3}-triples. In fact, we will show in the
next few lemmas that if J admits {1, 2}-triples as well as {0, 3}-triples then
T{1,2} ∩ T{0,3} 6= ∅.

Lemma 4.3 Suppose that T{0,3}∩T{1,2} = ∅. Then either T{0,3}∩(Σ \Θ) = ∅
or T{1,2} ∩ (Σ \Θ) = ∅.

Proof: Take α, β ∈ Σ \Θ. We shall exhibit two triples of roots containing
respectively α and β and such that they have non-empty intersection. Clearly,
this implies the lemma.

Now, note that we can find a subdiagram γ1, . . . , γj of the Dynkin diagram
linking α to β:

. . . e
α

e
γ1

. . . e
γj

e
β

. . .

Since the sum of roots in any Dynkin diagram is also a root, it follows
that α+ γ1 + · · ·+ γj, γ1 + · · ·+ γj + β and α+ γ1 + · · ·+ γj + β are roots.
Therefore we have the following triples of roots outside 〈Θ〉:

{α, (γ1 + · · ·+ γj + β) ,− (α+ γ1 + · · ·+ γj + β)}
{(α+ γ1 + · · ·+ γj) , β,− (α+ γ1 + · · ·+ γj + β)},

which satisfy the desired conditions.
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Lemma 4.4 Let u, v be positive roots such that u+v is a root. Denote γ the
lowest root in the irreducible component of u+ v. Then there are roots α and
β in the irreducible components of u and v, respectively, such that α+β = γ.
The same result holds for the highest root in place of lowest one.

Proof: If u+ v is not the lowest root then there exists a simple root w ∈ Θ
such that u+ v − w is a root. This implies that [g−w, gu+v] 6= {0}. But

[g−w, gu+v] = [[g−w, gu], gv] + [gu, [g−w, gv]],

so that one of the terms in the right hand side is 6= 0. This implies that u−w
or v − w is a root. Hence, the smaller root (u+ v) − w can be written as a
sum of roots either as (u− w) + v or as u+ (v − w). Clearly, by subtracting
w we do not leave the irreducible components. Therefore, we can proceed by
induction until we reach γ, which is a sum of roots in the irreducible com-
ponents of u and v, respectively. The same argument holds for the highest
root in the irreducible components.

Corollary 4.5 Suppose that {u, v,− (u+ v)} is a triple of J-type {a, b} (=
{0, 3} or {1, 2}). Then there exists a triple {α, β, γ} of J-type {a, b} such
that γ is the lowest (respectively highest) root of its irreducible component.

Proof: Follows from the lemma after observing that triples having roots in
the same irreducible components have the same J-type, because εα is con-
stant along an irreducible component.

Now we can conclude the first part of the proof of Theorem 4.1.

Proposition 4.6 Suppose that T{0,3}∩T{1,2} = ∅. Then T{1,2} = ∅ or T{0,3} =
∅.

Proof: The assumption T{0,3} ∩ T{1,2} = ∅ combined with Lemma 4.3 en-
sures that all the triples containing simple roots are of the same J-type, say
{a, b}. Suppose that there exists a triple of J-type different from {a, b}. Then
by Corollary 4.5 there exists a triple {α, β, γ} of J-type different from {a, b}
such that γ > 0 is minimal in its irreducible component. If γ is a simple root
then γ /∈ Θ and there is nothing to prove. On the other hand, there exists
u ∈ Θ such that γ − u is a root. Then {u, γ − u, γ} is a triple that contains

10



the simple root u, so that it is of J-type {a, b}. Therefore γ ∈ T{0,3} ∩ T{1,2},
contradicting the assumption.

We turn now to the second part of the proof of Theorem 4.1. It will be a
consequence of the following lemmas.

Lemma 4.7 Let (J = {εα},Λ = {λα}) be a nearly-Kähler structure. Then
J does not admit a {0, 3}-triple {α, β,−(α+β)} together with a {1, 2}-triple
{β, γ1, γ2} such that εγ1 = εγ2.

Proof: Suppose by contradiction that there are triples as in the statement.
It will be convenient to take βi = −γi, so that {−β, β1, β2} is a {1, 2}-triple
with ε−β 6= εβ1 = εβ2 . Then by Proposition 3.2 we have λβ = λβ1 + λβ2 , so
that

λβ > λβ1 , λβ2 . (2)

Also by Proposition 3.2 and the fact that εα = εβ = ε−(α+β), it follows
that

λα = λβ = λ−(α+β). (3)

Now, since α+β is a root Lemma 2.1 implies that either α+β1 or α+β2

is root. We can assume without loss of generality that α+ β1 is root.
In this case we claim that {−(α+β1), α, β1} is a {1, 2}-triple with εα = εβ1

(that is, εα+β1 = εα = εβ1). To see this note first that εα = εβ1 because
{α, β,−(α+β)} is {0, 3}-triple (so that εα = εβ 6= ε−β) and ε−β 6= εβ1 , hence
εβ1 = εβ = εα. Now, suppose by contradiction that {−(α + β1), α, β1} is
{0, 3}-triple. Then, by Proposition 3.2, we would have λα = λβ1 = λ−(α+β1).
But λα = λβ (by (3)) and λβ > λβ1 (by (2)), so that λα > λβ1 which is a
contradiction, proving the claim.

Therefore, applying Proposition 3.2 to the {1, 2}-triple {−(α+β1), α, β1}
we have

λ−(α+β1) = λα + λβ1 . (4)

Combining the claim (that is, εα+β1 = εα = εβ1) with the assumptions
(ε−(α+β) = εα = εβ 6= ε−β 6= εβ2), we conclude that {α + β1, β2,−(α + β)} is
a {0, 3}-triple. Hence by Proposition 3.2 we have

λα+β1 = λβ2 = λ−(α+β). (5)

But this leads to a contradiction. In fact, λα = λβ (by (3)), λβ > λβ2 (by
(2)) and λα+β1 = λβ2 (by (5)). Therefore, λα > λβ2 = λα+β1 = λ−(α+β1)
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contradicting (4) and concluding the proof.

Lemma 4.8 If (J,Λ) is nearly-Kähler then J does not admit a {0, 3}-triple
{α, β,− (α+ β)} together with a {1, 2}-triple {−β, β1, β2} such that ε−β =
εβ1 6= εβ2.

Proof: First we have by Proposition 3.2 that

λα = λβ = λ−(α+β). (6)

Also, since {−β, β1, β2} is a {1, 2}-triple with ε−β = εβ1 , it follows by
Proposition 3.2 that λβ2 = λβ1 + λ−β, so that

λβ2 > λβ, λβ1 . (7)

Now, by Lemma 2.1 either α + β1 or α + β2 is root. In the rest of the
proof we consider these possibilities separately (note the lack of symmetry
between β1 and β2).

Suppose that α+β2 is root. We claim that {−(α+β2), α, β2} is a {1, 2}-
triple with εα = εβ2 (that is εα+β2 = εα = εβ2). In fact, we have first
εα = εβ2 because {α, β,− (α+ β)} is {0, 3}-triple, implying that εα = εβ 6=
ε−β. But ε−β 6= εβ2 , so that εβ2 = εβ = εα. Now, suppose to the contrary
that {− (α+ β2) , α, β2} is a {0, 3}-triple. Then λ−(α+β2) = λα = λβ2 (by
Proposition 3.2). However, λβ = λα (by (6)) and λβ2 > λβ (by (7)), so that
λβ2 > λα which is a contradiction, proving the claim.

Therefore, Proposition 3.2 implies that

λ−(α+β2) > λα, λβ2 . (8)

On the other hand {α + β2, β1,−(α + β)} is a {1, 2}-triple with εα+β2 =
ε−(α+β), because εα+β2 = εα = ε−(α+β) and εβ1 = ε−β 6= ε−(α+β). Hence,

λβ1 > λα+β2 , λ−(α+β). (9)

Thus we have got λβ2 > λβ1 (by (7)), λβ1 > λα+β2 (by (9)) and λα+β2 > λβ2

(by (8)). But this implies λβ2 > λβ1 > λα+β2 > λβ2 , which is absurd.
Assume now that α+β1 is a root. Then we claim that {−(α+β1), β1, α}

is a {0, 2}-triple with ε−(α+β1) = εβ1 (that is, εα+β1 = εα 6= εβ1). In fact,
note first that εα = εβ and ε−β = εβ1 , so that εα 6= εβ1 . Now, suppose by
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contradiction that {−(α + β1), β1, α} is a {0, 2}-triple with ε−(α+β1) = εα.
Then we would have εα+β1 6= εα = εβ = εβ2 and εα+β1 6= εα = ε−(α+β), so
that {α + β1, β2,−(α + β)} is a {1, 2}-triple with εβ2 = ε−(α+β). Applying
Proposition 3.2 to the triples {−(α + β1), β1, α} and {α + β1, β2,−(α + β)}
we get λβ1 = λα + λ−(α+β1) and λα+β1 = λβ2 + λ−(α+β). But this implies
λα+β1 < λβ1 and λβ2 < λα+β1 , that is, λβ2 < λβ1 which contradicts (7). Thus
the claim follows.

Therefore, α+ β1 = εα = ε−(α+β) = εβ2 , so that {α+ β1, β2,−(α+ β)} is
a {0, 3}-triple. Hence, by Proposition 3.2 we get

λα+β1 = λβ2 = λ−(α+β). (10)

Finally we have by (7) that λβ2 > λβ and by (6) that λβ = λ−(α+β). But
this contradicts (10), showing that there are not triples as in the statement.

End of the proof of Theorem 4.1: Suppose by contradiction that the
nearly-Kähler structure (J = {εα},Λ = {λα}) has {0, 3}-triples as well as
{1, 2}-triples. By Proposition 4.6 we can find a {0, 3}-triple {α, β,− (α+ β)}
and a {1, 2}-triple {β, γ1, γ2}, having in common the root β. For the {1, 2}-
triple there are two possibilities:

1. εγ1 = εγ2 6= εβ, and

2. εβ = εγ1 or εβ = εγ2 (and hence εγ1 6= εγ2).

The first possibility is ruled out by Lemma 4.7 while the second one is
not possible by Lemma 4.8. Since both possibilities lead to a contradiction,
this concludes the proof.

5 Order 3 automorphisms

In this section we apply Theorem 4.1 to get conditions in terms of order
three automorphisms for an invariant pair (J,Λ) to be nearly-Kähler. This
discussion requires the height of a root with respect to Θ in the following
sense:

Definition 5.1 The height hΘ (α) of α ∈ Π\〈Θ〉 with respect to Θ is given
by

∑
|ai| with ai running through the coefficients of α with respect to the
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simple roots in Σ\Θ. The height of Π\〈Θ〉 is hΘ = maxα∈Π\〈Θ〉 hΘ(α) or
equivalently hΘ = hΘ (µ) where µ is the highest root.

We shall prove below that nearly-Kähler invariant structures on FΘ are
Kähler if hΘ ≥ 3. On the other hand hΘ < 3 is a necessary condition for the
isotropy subalgebra of FΘ to be the fixed point set of an automorphism of
order 3.

Lemma 5.2 Let Θ be such that hΘ ≥ 3. Then there are positive roots
α, β, γ, β1 and β2 outside 〈Θ〉 such that γ = α+ β and β = β1 + β2.

Proof: Let β be a root such that hΘ (β) = 2 and β is the highest root in its
irreducible component. Since hΘ (β) < hΘ, it follows that β is not the highest
root of Π. Hence there exists a simple root α such that γ = α+ β is a root.
We have α /∈ Θ because β is the highest root of its irreducible component.
Hence to conclude the proof it remains to write β as a sum of two roots.
This follows by Lemma 4.4 as soon as we decompose some root in the same
irreducible component as β. Thus let βl be the lowest root in the irreducible
component of β. Clearly, hΘ (βl) = hΘ (β) = 2, so that there exists a simple
root u /∈ 〈Θ〉 such that βl − u is a root. Hence, βl = (βl − u) + u implying
that β is a sum of roots outside 〈Θ〉 as well.

Lemma 5.3 Let J be an almost complex structure on the flag manifold FΘ

with hΘ ≥ 3. Then J admits {1, 2}-triples.

Proof: Suppose by contradiction that all triples are {0, 3} and let γ = α+β
and β = β1 + β2 be the roots given by the above lemma. Since {−γ, α, β}
and {−β, β1, β2} are {0, 3}-triples, it follows that εβ1 = εβ2 = ε−β 6= εβ =
εα = ε−γ. On the other hand, by Lemma 2.1, we can assume that α + β1

is root. Then {α + β1, β2,−γ} is a {0, 3}-triple, so that εβ2 = ε−γ, which is
contradiction.

Combining this lemma with Theorem 4.1 we conclude that if (J,Λ) is
nearly-Kähler in FΘ with hΘ ≥ 3 then J admits only {1, 2}-triples. A fortiori
Lemma 3.3 implies that the structure is Kähler. Thus we get our main
result regarding the relationship between the height hΘ and nearly-Kähler
structures on FΘ.
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Theorem 5.4 The flag manifold FΘ admits an invariant structure (J,Λ)
which is nearly-Kähler but not Kähler if and only if hΘ = 2.

Proof: If (J,Λ) is nearly-Kähler and hΘ ≥ 3 then J has only {1, 2}-triples,
so that (J,Λ) is Kähler. On the other hand if hΘ = 1 then there are no triples
at all, so that any invariant structure is Kähler. Now suppose that hΘ = 2
and define J = {εα} by εα = +1 if hΘ (α) = 1 and εα = −1 if hΘ (α) = 2.
Then there are only {0, 3}-triples, so that if we take Λ = {λα} with λα > 0
independent of α, it follows that (J,Λ) is nearly-Kähler. Also, (J,Λ) is not
Kähler because there are {0, 3}-triples.

Now we shall rephrase the above theorem in terms of order three auto-
morphisms of g. This yields the result conjectured by Wolf-Gray [10]. The
key point is the following lemma which relates the height hΘ of FΘ with order
three automorphisms.

Lemma 5.5 Let FΘ be a flag manifold such that the isotropy subalgebra kΘ

is the fixed point set of an automorphism of order three. Then hΘ < 3.

Proof: Let φ be as in the statement. The eigenvalues of φ have the form
ζ i, i = 0, 1, 2, where ζ is a primitive third root of unity. Since the Cartan
subalgebra h is pointwise fixed by φ, it follows that the eigenspaces of φ are
sums of root spaces. Hence we can write

g = h⊕
∑
α∈Π0

gα ⊕
∑
β∈Π1

gβ ⊕
∑
γ∈Π2

gγ,

where Πi = {α : φ (Xα) = ζ iXα}, i = 0, 1, 2. Note that the assumption that
the isotropy is the fixed point set of φ amounts to Π0 = 〈Θ〉. Also, if α ∈ Πζi

and β ∈ Πζj are roots such that α+ β is a root then

mα,βφ (Xα+β) = φ[Xα, Xβ] = [φXα, φXβ] = [ζ iXα, ζ
jXβ] = mα,βζ

i+jXα+β

that is, α + β ∈ Πk with i+ j = k ( mod 3). Combining this with the fact
that Π0 = 〈Θ〉 we see that if hΘ (α) > 0 and hΘ (β) > 0 then i = j, for
otherwise we would have hΘ (α+ β) = 0.

Now, suppose by contradiction that hΘ ≥ 3 and let α, β, γ, β1 and β2 be
roots outside 〈Θ〉 with γ = α+β and β = β1 +β2, as ensured by Lemma 5.2.
Then gβ1 and gβ2 are contained in the same φ-eigenspace, say β1, β2 ∈ Πi.
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This implies that β ∈ Πj with j = 2i ( mod 3) and hence j 6= i. Since α+ β
is a root, it follows that α ∈ Πj. But by Lemma 2.1, α + β1 or α + β2 is a
root, yielding to a contradiction because the sum of positive roots in different
φ-eigenspaces is not a root.

Theorem 5.6 The flag manifold FΘ admits an invariant structure (J,Λ)
which is nearly-Kähler but not Kähler if and only if

1. the isotropy subalgebra kΘ is the fixed point set of an automorphism φ
of order three and

2. FΘ is not Hermitian symmetric.

Proof: In view of Theorem 5.4 it must be checked that the two conditions
together are equivalent to hΘ = 2. By the above lemma the first condition
implies that hΘ = 1 or 2. But if hΘ = 1 then kΘ is the fixed point of the
order two automorphism ψ which is the identity in h and ψ (Xα) = ihΘ(α)Xα.
This implies that FΘ is Hermitian symmetric. Thus hΘ = 2.

Conversely, let hΘ = 2 and ζ a primitive third root of unity. Then the
automorphism η which is the identity in h and η (Xα) = ζhΘ(α)Xα has order
three and has kΘ as fixed point set.
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