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Abstract. In this paper we establish the existence of positive and multiple solutions for
the quasilinear elliptic problem

−∆pu = g(x, u) in Ω
u = 0 on ∂Ω,

where Ω ⊂ RN is an open bounded domain with smooth boundary ∂Ω, g : Ω × R → R
is a Carathéodory function such that g(x, 0) = 0 and which is asymptotically linear. We
suppose that g(x, t)/t tends to an Lr-function, r > N/p if 1 < p ≤ N and r = 1 if p > N ,
which can change sign. We consider both cases, resonant and nonresonant.

1. Introduction

Let us consider the problem

−∆pu = g(x, u) in Ω
u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is an open bounded domain with smooth boundary ∂Ω and g : Ω×R → R
is a Carathéodory function such that g(x, 0) = 0, which implies that (1) possesses the
trivial solution u = 0. We will be interested in nontrivial solutions. Here ∆p denotes the
p-Laplace operator, that is, ∆pu = div(|∇u|p−2∇u).

Assume that g have a subcritical growth, that is,

|g(x, t)| ≤ c(1 + |t|q−1), a.e in Ω, t ∈ R, (2)

where q ∈ [1, p∗[, where p∗ = pN/(N − p) if 1 < p < N and p∗ = ∞ if 1 < N ≤ p.
The classical solutions of the problem (1) correspond to critical points of the functional F
defined on W 1,p

0 (Ω), by

Φ(u) =
1

p

∫

Ω

|∇u|pdx−

∫

Ω

G(x, u)dx, u ∈W 1,p
0 (Ω), (3)

where G(x, t) =
∫ t

0
g(x, s)ds. Under the above assumptions Φ ∈ C1.
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Let m(x) be a function in Lr, r > N/p if 1 < p ≤ N and r = 1 if p > N , which can
change sign in Ω. Consider the eigenvalue problem

−∆pu = λm(x)|u|p−2u in Ω
u = 0 on ∂Ω.

(4)

It is well known (see [4]) that, ifm(x) > 0 on a subset of positive measure in Ω, the problem
has a first eigenvalue µ1(m) > 0 which is simple, isolated in the spectrum and admits an
eigenfunction ϕm which is positive in Ω. Moreover, µ1(m) has the following variational
characterization

µ1(m) = inf
{

∫

Ω

|∇u|pdx ; u ∈ W 1,p
0 (Ω) and

∫

Ω

m(x)|u|pdx = 1
}

. (5)

We define the second eigenvalue positive µ2(m) as

µ2(m) = min{λ ∈ R ; λ eigenvalue andλ > µ1(m)}.

We denote by λk = µk(1), i.e. m ≡ 1, k = 1, 2.
Moreover, we assume that the Lr-functions k± and L± defined by

k±(x) = lim inf
t→±∞

g(x, t)

|t|p−2t
and L±(x) = lim sup

t→±0

pG(x, t)

|t|p

have nontrivial positive parts, and the limits are uniformly in x ∈ Ω.

Theorem 1.1. Assume that there exists a constant c ∈ R such that |g(x, t)| ≤ c|t|p−1.
Suppose that either µ1(k+) < 1 < µ1(L+) or µ1(k−) < 1 < µ1(L−), then problem (1) has
at least one nontrivial solution which is positive in the first case and negative in the second

case.

Remark 1.1. The existence of positive solution for the problem (1) with asymptotically
linear nonlinearities has been studied by many authors. More recently, Zhou [13] studied
the case 0 ≤ L = L+ = l+, K = K+ = k+ ∈ L∞ with ||L||∞ < λ1. Magrone in her
doctorate thesis [10] has considered the case L++ and K+ are non trivial. The cited authors
used the Mountain Pass Theorem and where considered only the case p = 2. The case
p 6= 2 was studied by Zhou [14] with the assumption l = L+ = l+, k = K+ = k+ (l, k ∈ R)
and l < λ1 < k.

More generally consider the quasilinear eigenvalue problem

−∆pu = λ[m(x)(u+)p−1 − n(x)(u−)p−1] in Ω
u = 0 on ∂Ω.

(6)

where u± = max{±u, 0} and m,n ∈ Lr with m+ and n+ nontrivial in Ω. Under this
hypothesis Arias et al. [2] studied the eigenvalue problem (6) (for more references to this
problem see [2]). In [2], it was proved that min{µ1(m), µ1(n)} and max{µ1(m), µ1(n)} are
the first two positive eigenvalues of (6). Now we remark the construction of a nontrivial
eigenvalue of (6) made in [2].
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We will use a variational approach and consider the functionals

A(u) =

∫

Ω

|∇u|pdx,

Bm,n(u) =

∫

Ω

(

m(u+)p + n(u−)p
)

dx,

which are C1-functionals on W 1,p
0 . We are interested in the critical points of the restriction

Ã of A to the manifold

Mm,n = {u ∈ W 1,p
o ; Bm,n(u) = 1}.

By Lagrange’s multiplier rule, u ∈ Mm,n is a critical point of Ã if and only if there exists
λ ∈ R such that A′(u) = λB′m,n(u), i.e.

∫

Ω

|∇u|p−2∇u∇vdx = λ

∫

Ω

(

m(u+)p−1 + n(u−)p−1
)

vdx, (7)

for all v ∈ W 1,p
0 . Taking v = u in (7), one sees that its Lagrange multiplier λ is equal to

the critical value Ã(u). By the Proposition 2 in [2], we have that ϕm and −ϕn are strict
local minima of Ã, with corresponding critical values µ1(m) and mu1(n). Consider

Γ = {γ ∈ C([−1, 1],Mm,n) ; γ(−1) = ϕm and γ(1) = −ϕn}.

Then, it was proved in [2] (Theorem 7)

c(m,n) = inf
γ∈Γ

max
u∈γ([−1,1])

Ã(u) (8)

is a critical value of Ã, with c(m,n) > max{µ1(m), µ1(n)}. Moreover, problem (6) does
not admit any eigenvalue in ]max{µ1(m), µ1(n)}, c(m,n)[ ([2] Theorem 11) and the eigen-
fuctions associated with c(m,n) change sign ([2] Corollary 19).

Now we start our results concerned with the multiplicity for the problems (1). We
assume that the Lr-functions l± and K± defined by

l±(x) = lim inf
t→±0

pG(x, t)

|t|p
and K±(x) = lim sup

t→±∞

pG(x, t)

|t|p
,

have nontrivial positive parts, and the limits are uniformly in x ∈ Ω.

Theorem 1.2. Assume that c(L+, L−) > 1 and µ1(K±) > 1 . Suppose that either

(H1) µ1(l±) < 1, or
(H2) there is η > 0 such that

l+(x)|t|
p ≤ pG(x, t) for 0 ≤ t < η, a.e. x ∈ Ω;

l−(x)|t|
p ≤ pG(x, t) for 0 ≤ −t < η, a.e. x ∈ Ω.

Then problem (1) has at least two nontrivial solutions.
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Theorem 1.3. Assume that c(L+, L−) > 1, min{µ1(K±)} = 1 and that

lim
|t|→∞

[tg(x, t)− pG(x, t)] =∞.

Suppose that either (H1) or (H2), then problem (1) has at least two nontrivial solutions.

Remark 1.2. i) De Figueiredo and Massabò [6] studied the problem of existence when
p = 2 and µ1(K±) > 1; in this case the functional Φ is coercive. In [6] the authors
also consider the resonant case and in this case they assume a kind of Landesmann-Lazer
condition. Moreover, in [6] the authors also considered the resonant case µ1(K±) = 1 using
a kind of Saddle Point Theorem and a Landesmann-Lazer condition.

ii) The multiple solutions for the problem (1) was studied by Liu and Su [9] in the case

K = K± < λ1 and λ1|t|
p ≤ pF (x, t) ≤ λ̂|t|p for t near 0, where λ̂ < λ ≤ λ2. Liu and Su [9]

considered the resonant case, with K ≡ λ1.
iii) Our results are new even for the case p = 2.

2. Proof of Theorem 1.1

We apply the Mountain Pass Theorem [1]. We proove the theorem for the case µ1(k+) <
1 < µ1(L+), the case µ1(k−) < 1 < µ1(L−) is analogous.

Set

f(x, t) =
{

g(x, t), t ≥ 0,
0, t ≤ 0,

and consider the problem
−∆pu = f(x, u) in Ω

u = 0 on ∂Ω,
(9)

Define

Ψ(u) =
1

p

∫

Ω

|∇u|pdx−

∫

Ω

F (x, u)dx, u ∈ W 1,p
0 (Ω).

where F (x, u) =
∫ u

0
f(x, t)dt, and Ψ ∈ C1.

Lemma 2.1. Under the assumptions of Theorem 1.1 the functional Ψ satisfies the (PS)
condition.

Proof. Let {un} ⊂ W 1,p
0 be a sequence such that {Ψ(un)} is bounded, and ||Ψ′(un)|| → 0

as n→∞ (i.e. {un} is a (PS) sequence).
We need to show that {||un||} is bounded. Since Ω is bounded and f is subcritical, then

if {||un||} is bounded, by the compactness of Sobolev embedding and by standard processes
we know that there exists a subsequence of {un} in W 1,p

0 which converges strongly, hence
the Lemma will be proved.

Assume then by contradiction that ||un|| → ∞ as n → ∞. Let vn = un/||un||, then
||vn|| = 1. So we can assume that vn → v weakly in W 1,p

0 , strongly in Lp and a.e. in Ω.
Let us divide the proof in three steps.

Step 1) v 6= 0.
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Arguing by contradiction, if v = 0, then vn → 0 in Lp, and

Ψ′(un)(un)

||un||p
→ 0,

since ||Ψ′(un)|| → 0 and p > 1. This means
∫

Ω

|∇vn|
pdx−

∫

Ω

f(x, un)

|un|p−2un
|vn|

pdx→ 0,

i.e.,

1 = lim
n→∞

∫

Ω

f(x, un)

|un|p−2un
|vn|

pdx. (10)

Since f(x,un)
|un|p−2un

is bounded and vn → 0 in Lp, we have that the right side in (10) goes to 0,

a contradiction. Hence we have v 6= 0.

Step 2) v > 0.

For any ν ∈W 1,p
0 we have

Ψ′(un)(ν)

||un||p−1
→ 0.

So, since f(x, 0) = 0 for s ≤ 0,
∫

Ω

|∇vn|
p−2∇vn∇νdx−

∫

Ω

f(x, u+n )

(u+n )
p−1

(u+n )
p−1

||un||p−1
νdx→ 0. (11)

Since f(x,u+
n )

(u+
n )p−1

is bounded, by the Alaoglu’s Theorem wn = f(x,u+
n )

(u+
n )p−1

converges in L∞, in the

weak topology ∗ σ(L∞, L1), to some function ω ∈ L∞. Now (v+n )
p−1ν ∈ L1, by (11), we

have
∫

Ω

|∇v|p−2∇v∇νdx−

∫

Ω

ω(x)(v+)p−1νdx = 0, ∀ ν ∈W 1,p
0 .

Using ν = v−, one gets
∫

Ω

|∇v−|pdx = 0,

which implies that v ≥ 0 and satisfies the equation

−∆pv = ω(x)vp−2v in Ω. (12)

Then by a Harnack inequality proved in [12], we have that v > 0 in Ω. In particular
µ1(ω) = 1.

It is a contradiction with the hypotheses µ1(k+) < 1. In fact, since v > 0, we have
un →∞ a.e. in Ω, as n→∞. So

lim inf
n→∞

f(x, un)

un
= k+(x) a.e. in Ω, (13)

and

lim
n→∞

f(x, un)

un
= ω(x) in ∗ σ(L∞, L1). (14)
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Given a function u ∈W 1,p
0 , by (13), Fatou’s Lemma and (14), we have
∫

Ω

k+(x)|u|
pdx =

∫

Ω

lim inf
n→∞

f(x, un)

un
|u|pdx

≤ lim inf
n→∞

∫

Ω

f(x, un)

un
|u|pdx

=

∫

Ω

ω(x)|u|pdx.

So,

1

µ1(ω)
= sup

u∈W
1,p
0

u6=0

∫

Ω
ω(x)|u|pdx
∫

Ω
|∇u|pdx

≥ sup
u∈W

1,p
0

u6=0

∫

Ω
k+(x)|u|

pdx
∫

Ω
|∇u|pdx

=
1

µ1(k+)
;

i.e., µ1(ω) ≤ µ1(k+) < 1. Thus we have the contradiction, then ||un|| is bounded. ¤

Now we prove that the functional Ψ has the mountain pass geometry.
We have, by the variational characterization of µ1(L+), see (5) ,

1

µ1(L+)
≥

∫

Ω
L+|u|

pdx
∫

Ω
|∇u|pdx

, ∀ u ∈W 1,p
0 \ {0}. (15)

Given ε > 0 there exists δ > 0 such that

pF (x, t) ≤ L+(x)t
p + εtp, for 0 ≤ t < δ.

By (2), we have, for a constant c,

|F (x, t)| ≤ c|t|q + c, p < q < p ∗ .

Then

F (x, t) ≤
1

p
L+(x)t

p +
ε

p
tp + c|t|q, ∀ t ∈ R.

Using this inequality, we have

Ψ(u) =
1

p

∫

Ω

|∇u|pdx−

∫

Ω

F (x, u)dx

≥
1

p

∫

Ω

|∇u|pdx−
1

p

∫

Ω

L+(x)|u|
p −

ε

p

∫

Ω

|u|p − c

∫

Ω

|u|q

≥
1

p

∫

Ω

|∇u|pdx−
1

pµ1(L+)

∫

Ω

|∇u|p −
ε

pλ1

∫

Ω

|∇u|p − c

∫

Ω

|u|q,

where the last inequality follows from (15). Using the Sobolev inequality, we obtain

Ψ(u) ≥
1

p

(

1−
1

µ1(L+)
−

ε

λ1

)

||u||p − c||u||q.

Now, since µ1(L+) > 1, we can choose ε small enough such that (1− 1
µ1(L+)

− ε
λ1
) > 0. So,

since p < q, there exist a > 0 and ρ > 0 such that if ||u|| = ρ then Ψ(u) ≥ a > 0.
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Let ϕk+
be the first eigenfunction associated to µ1(k+) such that ϕk+

> 0. We have,
using the Fatou’s Lemma,

lim inf
t→∞

Ψ(tϕk+
)

tp
≤

1

p

∫

Ω

|∇ϕk+
|pdx−

∫

Ω

lim inf
t→∞

F (x, tϕk+
)

(tϕk+
)p

ϕpk+

=
1

p

∫

Ω

|∇ϕk+
|pdx−

1

p

∫

Ω

k+(x)ϕ
p
k+
dx

=
1

p

∫

Ω

|∇ϕk+
|pdx−

1

pµ1(k+)

∫

Ω

|∇ϕk+
|pdx

=
1

p

(

1−
1

µk+

)

||ϕk+
||p < 0.

Then there exists t0 > 0 such that Ψ(t0ϕk+
) < 0. So Ψ satisfies the assumptions of

Mountain Pass Theorem, then there exists u ∈W 1,p
0 \ {0} such that

∫

Ω

|∇u|p−2∇u∇φdx =

∫

Ω

f(x, u)φdx, ∀ φ ∈W 1,p
0 .

Taking φ = u−, and since f(x, t) = 0 for t ≤ 0, we get
∫

Ω

|∇u−|p = 0.

Therefore u ≥ 0, so u is a solution of problem (1). ¤

3. Proofs of Theorems 1.2 and 1.3

Local linking. In this subsection we started some results that we will use in the proof of
Theorems 1.2 and 1.3; their proofs can be found in [11] and [9].

The next definition can be found in [11] and generalizes the notion of local linking
introduced by Li and Liu in [8].

Let J be a real C1-functional defined on a Banach space X.

Definition 3.1. Assume that 0 is an isolated critical point of J with J(0) = 0 and let n, β
be positives integers. We say that J has a local (n, β)-linking near the origin if there exist

a neighborhood U of 0 and subsets A, S, B of U with A∩S = ∅, 0 /∈ A, A ⊂ B such that

(1) 0 is the only critical point of J in U0 ∩ U , where J0 = {u ∈ X ; J(u) ≤ 0},
(2) denoting by i1 : Hn−1(A) → Hn−1(U \ S) and i2 : Hn−1(A) → Hq−1(B) the embed-

dings of the groups induced by inclusions,

ranki1 − ranki2 ≥ β,

(3) J ≤ 0 on B, and
(4) J > 0 on S \ {0}.

Let u ∈ X be an isolated critical point of J with J(u) = c ∈ R, the group

Ck(J, u) = Hk(J
c, J c \ {u}), k = 0, 1, 2, ...,
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is called the k-th critical group of J at u, where J c = {u ∈ X ; J(u) ≤ c} and Hk(., .) is
the k-th singular relative group with integer coefficients. We say that u is an homological
nontrivial critical point of J if at least one of its critical points is nontrivial.

Example 3.1. If u is a strict local minimum of J , then

Ck(J, u) =

{

Z if k = 0,
0 if k 6= 0.

Theorem 3.1. (Theorem 3.1 [11]) If F has a local (n, β)-linking near the origin, then

rank Cn(F, 0) ≥ β.

Theorem 3.2. (Theorem 2.1 [9]) Suppose that F satisfy the (PS) condition and be bounded
from below. If J has a critical point which is homological nontrivial and is not a minimizer

of J , then J has at least three critical points.

Some Lemmata. In this subsection we show that the functional Φ satisfies the hypotheses
of Theorem 3.2.

Lemma 3.1. Suppose that either

(i) µ1(K±) > 1, or
(ii) min{µ1(K±)} = 1 and

lim
|t|→∞

[tg(x, t)− pG(x, t)] =∞.

Then the functional Φ is coercive.

Proof. (i): Given ε > 0, we have, for a constant c = c(ε),

pG(x, t) ≤

{

(K+(x) + ε)|t|p + c for t > 0
(K−(x) + ε)|t|p + c for t < 0

So we can estimate

Φ(u) ≥
1

p

∫

Ω

|∇u|pdx−
1

p

∫

Ω

K+(x)|u
+|pdx

−
1

p

∫

Ω

K−(x)|u
−|pdx−

ε

p

∫

Ω

|u|pdx− c|Ω|

By the variational characterization of the first eigenvalue we obtain

Φ(u) ≥
1

p

∫

Ω

|∇u|pdx−
1

pµ1(K+)

∫

Ω

|∇u+|pdx

−
1

pµ1(K−)

∫

Ω

|∇u−|pdx−
ε

pλ1

∫

Ω

|∇u|pdx− c|Ω|

≥
1

p

(

1−
1

µ1(K+)
−

ε

λ1

)

∫

Ω

|∇u+|pdx

+
1

p

(

1−
1

µ1(K−)
−

ε

λ1

)

∫

Ω

|∇u−|pdx− c|Ω|
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Since µ1(K±) > 1 we can get ε > 0 such that min{(1− 1
µ1(K±)

− ε
λ1
)} > 0. Therefore Φ is

coercive.
(ii): For that matter we introduce the functions F : Ω × R → R and f : Ω × R → R
defined by

G(x, t) =
1

p
K±(x)|t|

p + F (x, t), for t > 0, (t < 0),

and
g(x, t) = k±(x)|t|

p−2t+ f(x, t), for t > 0, (t < 0).

Then

lim sup
t→±∞

pF (x, t)

|t|p
= 0 and lim inf

t→±∞

f(x, t)

|t|p−2t
= 0.

And since k±(x) ≤ K±(x) a.e. x ∈ Ω (it is clear), we get

lim
|t|→∞

[tf(x, t)− pF (x, t)] =∞.

It follows that for every M > 0, there exists RM > 0 such that

tf(x, t)− pF (x, t) ≥M, ∀ |t| ≥ RM , a.e. x ∈ Ω.

Now consider t > 0

d

dt

[

F (x, t)

|t|p

]

=

(

g(x, t)−K±(x)|t|
p−2t

)

|t|p − pF (x, t)|t|p−2t

|t|2p

=
tg(x, t)− pF (x, t)−K±(x)|t|

p

|t|pt

=
tf(x, t)− pF (x, t) +

(

k±(x)−K±(x)
)

|t|p

|t|pt

≥
tf(x, t)− pF (x, t)

|t|pt
.

It follows that (see the proof of Lemma 3.2 in [9])

lim
|t|→∞

F (x, t) = −∞ a.e x ∈ Ω. (16)

Let {un} ⊂ W p
0 be such that ||un|| → ∞. Assume by contradiction that Φ(un) ≤ C for

some constant C. Taking vn = un/||un||, we may assume that there is some v0 ∈ W p
0 such

that vn ⇀ v0 in W p
0 , vn → v0 in Lp, and vn(x)→ v0(x) a.e. on Ω. Now

pC

||un||p
≥
pΦ(un)

||un||p
=

∫

Ω

|∇vn|
pdx−

∫

Ω

pG(x, un)

||un||p
dx

=

∫

Ω

|∇vn|
pdx−

∫

Ω

K+(v
+
n )

pdx−

∫

Ω

K−(v
−
n )

pdx−

∫

Ω

pF (x, un)

||un||p
dx

≥

∫

Ω

|∇vn|
pdx−

∫

Ω

K+(v
+
n )

pdx−

∫

Ω

K−(v
−
n )

pdx−
C1
||u1||p

.
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So

1 = lim sup
n→∞

∫

Ω

|∇vn| ≤

∫

Ω

K+(v
+
0 )

pdx+

∫

Ω

K−(v
−
0 )

pdx. (17)

If max{µ1(K±)} > 1, we have

1 ≤

∫

Ω

K+(v
+
0 )

pdx+

∫

Ω

K−(v
−
0 )

pdx ≤
1

µ1(K+)

∫

Ω

|∇v+0 |
pdx+

1

µ1(K−)

∫

Ω

|∇v−0 |
pdx

<

∫

Ω

|∇v+0 |
pdx+

∫

Ω

|∇v−0 |
pdx =

∫

Ω

|∇v0|
pdx

≤ lim
n→∞

∫

Ω

|∇vn|
pdx = 1,

a contradiction. If µ1(K±) = 1, it follows that

1 ≤

∫

Ω

K+(v
+
0 )

pdx+

∫

Ω

K−(v
−
0 )

pdx ≤

∫

Ω

|∇v+0 |
pdx+

∫

Ω

|∇v−0 |
pdx

≤

∫

Ω

|∇v0|
pdx ≤ lim

n→∞

∫

Ω

|∇vn|
pdx = 1.

This implies that ||v0|| = 1 and so vn → v0 in W p
0 . By (17), we have that

∫

Ω

K+(v
+
0 )

pdx+

∫

Ω

K−(v
−
0 )

pdx =

∫

Ω

|∇v0|
pdx.

Hence either v0 = ϕK+
or v0 = −ϕK− . Take v0 = ϕK+

, then un(x)→∞ a.e. on Ω. So by
(16) we have F (x, un)→ −∞ a.e. in Ω. Therefore,

C ≥ −

∫

Ω

F (x, un)dx→∞ as n→∞.

This is a contradiction. Hence Φ is coercive on W p
0 . ¤

Remark 3.1. The coercivity of the functional Φ implies that it satisfies the (PS) condition.
Since the (PS) sequences should be bounded and the nonlinearity g is subcritical.

Now we show that the hypotheses (H1) and (H2) imply that the functional Φ has a
homological local (1, 1)-linking at origin.

Let c(L+, L−) be defined by (8), and Z defined by

Z =
{

u ∈ W 1,p
0 ;

∫

Ω

|∇u|pdx ≥ c(L+, L−)

∫

Ω

(

L+(u
+)p + L−(u

−)p
)

dx
}

. (18)

Lemma 3.2. There exists ρ > 0 such that Φ(u) > 0 if u ∈ Z and ||u|| ≤ ρ.

Proof. Given ε > 0 there exists δ > 0 such that

pG(x, t) ≤

{

(K+(x) + ε)|t|p for 0 < t < δ
(K−(x) + ε)|t|p for 0 < −t < δ.
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And by (2), we have, for p < q < p∗,

G(x, t) ≤
1

p
L(x)|t|p +

ε

p
|t|p + C|u|q, ∀ t ∈ R.

Let be u ∈ Z, using the estimate above, we have

Φ(u) =
1

p

∫

Ω

|∇u|pdx−

∫

Ω

G(x, u)dx

≥
1

p

∫

Ω

|∇u|pdx−
1

p

∫

Ω

(

L+(x)|u
+|p + L−(x)|u

−|p
)

dx−
ε

p

∫

Ω

|u|p − C

∫

Ω

|u|q

≥
1

p

∫

Ω

|∇u|pdx−
1

pc(L+, L−)

∫

Ω

|∇u|pdx−
ε

pλ1

∫

Ω

|∇u|p − C||u||q

=
1

p

(

1−
1

c(L+, L−)
+

ε

λ1

)

||u||p − C||u||q

Since c(L+, L−) > 1 we can get ε > 0 such that (1 − 1
c(L+,L−)

+ ε
λ1
) > 0, so there exists

ρ > 0 such that Φ(u) > 0 if u ∈ ZL and ||u|| ≤ ρ, since p < q. ¤

Now assume that (H1) holds. Given ε > 0, there exists δ > 0 such that

pG(x, t) ≥ l−(x)|t|
p − ε|t|p, for − δ < t ≤ 0.

Let ϕl± > 0 be the eigenfunction associated to µ1(l±), such that ||ϕl± || = 1. Since ϕl± ∈
L∞, consider t− < 0 so that −δ < tϕl− ≤ 0 for all t− < t ≤ 0. Then for t− < t < 0, we
have

Φ(tϕl−) ≤
|t|p

p

∫

Ω

|∇ϕl− |
p −

|t|p

p

∫

Ω

l−(x)ϕ
p
l−

+
ε|t|p

p

∫

Ω

|∇ϕl− |
pdx

≤
|t|p

p

∫

Ω

|∇ϕl− |
p −

|t|p

pµ1(l−)

∫

Ω

|∇ϕl− |
p +

ε|t|p

pλ1

∫

Ω

|∇ϕl− |
p

=
|t|p

p

(

1−
1

µ1(l−)
+

ε

λ1

)

||ϕl− ||
p

Since µ1(l−) < 1 we can get ε > 0 such that (1− 1
µ1(l−)

+ ε
λ1
) < 0. Therefore Φ(tϕl−) < 0

for t− < t < 0 (and so u = 0 is not a minimizer). Analogously , there exists t+ > 0 such
that Φ(tϕl+) < 0 for 0 < t < t+.

Now let r > 0 be defined by r = min{ρ, t+,−t−}, and consider U = Br(0), A = {rϕl±},
S = U ∩Z and B = {tϕl+ ; 0 ≤ t ≤ r} ∪ {tϕl− ; 0 ≤ −t ≤ r}. It is easy to see that U , A,
S and B satisfy the Definition 3.1, i.e., Φ has a (1, 1)-linking near the origin (observe that
ϕl± /∈ Z) . Thus, by the Theorem 3.1, we have

C1(Φ, 0) 6= 0. (19)

In particular 0 is not a minimizing of Φ.



12 FRANCISCO O. V. DE PAIVA

Assume that (H2) holds, and let t+ > 0 be such that tϕl+ < η for 0 ≤ t < t+, then we
have

pG(x, tϕl+) ≥ (tϕl+)
pl+(x), ∀ 0 ≤ t < t+.

Thus for 0 ≤ t < t+,

Φ(tϕl+) =
|t|p

p

∫

Ω

|∇ϕl+ |
pdx−

∫

Ω

G(x, tϕl+)dx

=
|t|p

p

∫

Ω

l+(x)ϕ
p
l+
dx−

∫

Ω

G(x, tϕl+)dx

=

∫

Ω

(

l+(x)
(tϕl+)

p

p
−G(x, tϕl+)

)

dx

≤ 0.

Analogously, there exists t− < 0 such that Φ(tϕl−) ≤ 0 for t− < t ≤ 0. Like in the case
(H1), Φ has a (1, 1)-linking near origin, 0 is not a minimizing of Φ, and we have that

C1(Φ, 0) 6= 0. (20)

Proofs of Theorems 1.2 and 1.3. By Lemma 3.1 the functional Φ is coercive, hence Φ is
bounded below and satisfies the (PS) condition (Remark 3.1). Since Φ has a (1, 1)-linking
near the origin, u = 0 is homological nontrivial and is not a minimizing (it follows from
(19) and (20)). The conclusion follows from Theorem 3.2.
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