Clifford Valued Differential Forms, Algebraic
Spinor Fields, Gravitation, Electromagnetism
and "Unified" Theories

E. Capelas de Oliveira and W. A. Rodrigues Jr.
Institute of Mathematics, Statistics and Scientific Computation
IMECC-UNICAMP CP 6065
13083-970 Campinas-SP, Brazil
walrod@ime.unicamp.br capelas@ime.unicamp.br

April 07 2004

Contents
1 Introduction 3
2 Spacetime, Pauli and Quaternion Algebras 6
2.1 Spacetime Algebra . . . . ... ... ... 6
2.2 Pauli Algebra . . . . . . ... ... 7
2.3 Quaternion Algebra . . . .. ... ... 8
2.4 Minimal left and right ideals in the Pauli Algebra and Spinors. . 9
3 Clifford and Spinor Bundles 12
3.1 Preliminaries . . . . . . . . . . ... 12
3.2 Covariant Derivatives of Spinor Fields . . . . ... .. ... ... 18
3.3 Geometrical Meaning of De,q, =I'7,qa - - - - . o o oo 20
3.4 Geometrical Meaning of D, ,0; = 0 in General Relativity . . . . . 22
3.5 Covariant Derivative of the Dirac Gamma Matrices . . . . . . . . 24
36 DSqu=0 ... ... ... ... ... 25
4 Clifford Valued Differential Forms and the Theory of Linear
Connections 26
4.1 Preliminaries . . . . . . . . . . ... 26
4.2 Exterior Covariant Differential . . . . . . . .. .. ... ... .. 27
4.3 Multivector Valued Differential Forms . . . .. .. ... ... .. 28
431 Case p=1 ... .. 32
432 Casep=2 . ... 32
4.4 Cartan Exterior Differential . . . . . . .. . .. .. ... .. ... 32



4.5 Torsion and Curvature

General Relativity as a Sl (2,C) Gauge Theory
5.1 The Nonhomogeneous Field Equations
5.2 A Set of Maxwell Like Nonhomogeneous Equations
5.3 SI1(2,C) Gauge Theory and Sachs Antisymmetric Equation

Energy-Momentum “Conservation” in General Relativity
6.1 Einstein’s Equations in terms of Superpotentials *S2

6.2 Is There Any Energy-Momentum Conservation Law in GR? . . .
6.3 “Explanation” of MEG according to AIAS . . . . . .. ... ...

Field Equations for the Tetrad Fields 02
A Short Comment on Recent Evans& AIAS Papers
Conclusions

Clifford Bundles C{(T*M) and C{(TM)

A.1 Clifford product, scalar contraction and exterior products

A.2 Some useful formulas . . . . . ... ... ... L.
A.3 Hodge star operator . . . . . ... .. ... ... ..
A.4 Action of De, on Sections of C{(T'M) and CU(T*M) . . . . . ...
A.5 Dirac Operator, Differential and Codifferential . . .. ... ...
A.6 Maxwell Equation . . .. ... ... ... ... L.

Abstract

In this paper we show how to describe the general theory of a linear
metric compatible connection with the theory of Clifford valued differen-
tial forms. This is done by realizing that for each spacetime point the
algebra of Clifford bivectors is isomorphic to the algebra of SI(2,C). In
that way the pullback of the linear connection under a trivialization of the
bundle is represented by a Clifford valued 1-form. That observation makes
it possible to realize Einstein’s gravitational theory can be formulated in
a way which is similar to a S1(2,C) gauge theory. Some aspects of such
approach is discussed. Also, the theory of the covariant spinor derivative
of spinor fields is introduced in a novel way, allowing for a physical in-
terpretation of some rules postulated for that covariant spinor derivative
in the standard theory of these objects. We use our methods to investi-
gate some polemical issues in gravitational theories and in particular we
scrutinize a supposedly "unified" field theory of gravitation and electro-
magnetism proposed by M. Sachs and recently used in a series of papers.
Our results show that Sachs did not attain his objective and that recent
papers based on that theory are ill conceived and completely invalid both
as Mathematics and Physics.

4.5.1 Some Useful Formulas . . ... .. ... .. ... .....
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1 Introduction

In this paper we introduce the concept of Clifford valued differential forms',
mathematical entities which are sections of C{(TM) ® /\T*M . We show how
with the aid of this concept we can produce a very beautiful description of the
theory of linear connections, where the representative of a given linear connec-
tion in a given gauge is represented by a bivector valued 1-form. The notion of
an exterior covariant differential and exterior covariant derivative of sections of
CUTM)® /\T*M is crucial for our program and is thus discussed in details.

Our natural definitions (to be compared with other approaches on related sub-
jects, as described, e.g., in [17, 18, 48, 50, 69, 70, 92]) parallel in a noticeable
way the formalism of the theory of connections in principal bundles and their
associated covariant derivative operators acting on associated vector bundles.
We identify Cartan curvature 2-forms and curvature bivectors. The curvature
2-forms satisfy Cartan’s second structure equation and the curvature bivectors
satisfy equations in complete analogy with equations of gauge theories. This im-
mediately suggests to write Einstein’s theory in that formalism, something that
has already been done and extensively studied in the past (see e.g., [21, 23]).
Our methodology suggest new ways of taking advantage of such a formulation,
but this is postpone for a later paper. Here, our investigation of the Si(2,C)
nonhomogeneous gauge equation for the curvature bivector is restricted to the
relationship between that equation and Sachs theory [85, 86, 87] and the shame-
ful problem of the energy-momentum ‘conservation’ in General Relativity.

We recall also the concept of covariant derivatives of (algebraic) spinor fields
in our formalism, where these objects are represented as sections of real spinor
bundles? and study how this theory has as matrix representative the standard
two components spinor fields (dotted and undotted) already introduced long
ago, see, e.g., [21, 71, 72, 73]. What is new here is that we identify that in
the theory of algebraic spinor fields the realization of some rules which used
in the standard formulation of the matrix spinor fields, e.g., why the covariant
derivative of the Pauli matrices must be null, imply some constraints, with admit
a very interesting geometrical interpretation. Indeed, a possible realization of
that rules in the Clifford bundle formalism is one where the vector fields defining
a global tetrad {e,} must be such that De,ep = 0, i.e., €g is geodesic reference
frame and along each one of its integral lines, say o, the eq (i = 1,2, 3) are Fermi
transported, i.e., they are not rotating relative to the local gyroscope axes. For
the best of our knowledge this important fact is here disclosed for the first time.

We use the Clifford bundle formalism and the theory of Clifford valued dif-
ferential forms to analyze some polemic issues in presentations of gravitational
theory and some other theories. In particular, we scrutinized Sachs "unified"
theory as described recently in [87] and originally introduced in [85]. We show

I Analogous, but non equivalent concepts have been introduced in [29, 96, 95]. In particular
[29] is a very complete paper using clifforms, i.e., forms with values in a abstract Clifford
algebra.

2Real Spinor fields have been introduced by Hestenes in [52], but a rigorous theory of that
objects in a Lorentzian spacetime has only recently been achieved [64, 79].



that unfortunately there are some serious mathematical errors in Sachs theory.
To start, he identified erroneously his basic variables g, as being quaternion
fields over a Lorentzian spacetime. Well, they are not. The real mathematical
structure of these objects is that they are matrix representations of particular
sections of the even Clifford bundle of multivectors C£(T'M) (called paravector
fields in mathematical literature) as we proved in section 2. Next we show that
the identification of a ‘new’ antisymmetric field in his theory is indeed nothing
more than the identification of some combinations of the curvature bivectors®, an
object that appears naturally when we try to formulate Einstein’s gravitational
theory as a S1(2,C) gauge theory. In that way, any tentative of identifying such
an object with any kind of electromagnetic field as did by Sachs in [85, 86, 87] is
clearly wrong. We note that recently in a series of papers, Evans&AIAS group
([1]-[15],[32]-[36],[26][37]-[41]) uses Sachs theory in order to justify some very
odd facts, which must be denounced. Indeed, we recall that:

(i) On March 26 2002, the United States Patent and Trademark Office
(USPTO) in Washington issued US Patent no. 6,362,718 for a Motionless Elec-
tromagnetic Generator (MEG). This would be ‘remarkable’ device has been
projected by retired lieutenant colonel Tom E. Bearden of Alabama and col-
laborators. They claimed MEG produces more output energy than the input
energy used for its functioning!

Of course, nobody could think that the officers at the US Patent office do
not know the law of energy-momentum conservation, which in general prevents
all Patent offices to veto all free energy machines, and indeed that energy mo-
mentum conservation law has been used since a long time ago as a golden rule.

So, affording a patent to that device must have a reason. A possible one is
that the patent officers must somehow been convinced that there are theoretical
reasons for the functioning of MEG. How, did the patent officers get convinced?

We think that the answer can be identified in a long list of papers pub-
lished in respectable (?) Physics journals signed by Evan&AIAS group and
quoted above!. There, they claimed that using Sachs theory there is a ‘nat-
ural’ justification for an entity that they called the Bgs field and that appears
(according to them) in their ‘new’ O(3) electrodynamics and ‘unified’ field
theory. According to them, the Bjs field is to be identified with Fi5, where
F,, = —F,, (see Eq.(70) below) is a mathematical object that Sachs identified
in [85, 86, 87] with an electromagnetic field after ‘taking the trace in the spinor
indices’. Evans&ATAS group claim to explain the operation of MEG. It simply

3The curvature bivectors are physically and mathematically equivalent to the Cartan cur-
vature 2-forms, since they carry the same information. This statement will become obvious
from our study in section 4.

4Note that Bearden is one of the members of the AIAS group. We mention also that
in the ATAS website the following people among others are listed as emeritus fellows of the
Foundation: Prof. Alwyn van der Merwe, Univ. of Denver, Colorado, USA, Prof. Mendel
Sachs, SUNY, Buffalo, USA, Prof. Jean Pierre Vigier, Institut Henri Poincare, France. Well,
van der Merwe is editor of Foundations of Physics and Foundations of Physics Letters, Sachs
is one of the authors we criticize here and Vigier is on the editorial board of Physics Letters
A for decades and is one of the ATAS authors. This eventually could explain how AIAS got
their papers published...



pumps energy from the Fi5 existing in spacetime. However, the Mathemat-
ics and Physics of Evans&AIAS used in their papers are unfortunately only a
pot pourri of nonsense as we already demonstrated elsewhere® and more below.
This, of course invalidate any theoretical justification for the patent.

It would be great if the officers of USPTO would know enough Mathematics
and Physics in order to reject immediately the theoretical explanations offered
by the MEG inventors. But that unfortunately was not the case, because it
seems that the knowledge of Mathematics and Physics of that officers was no
great than the knowledge of these disciplines by the referees of the Evans& ATAS
papers.

Of course, theoretical explanations apart and the authors prejudices it can
happen that MEG works. However, having followed with interest in the internet®
the work of supposedly MEG builders, we arrived at the conclusion that MEG
did not work until now, and all claims of its inventors and associates are simply
due to wrong experimental measurements. And, of course, that must also been
the case with the USPTO officers, if they did realize any single experiment on the
MEG device. And indeed, this may be really the case, for in a recent article [61]
we are informed that in August last year the Commissioner of Patents, Nicholas
P. Godici informed that it was a planned a re-examination of the MEG patent.
We do not know what happened since then.

(ii) Now, is energy-momentum conservation a trustworthy law of the phys-
ical world? To answer that question we discuss in this paper the shameful
problem of the energy-momentum ‘conservation’ in General Relativity.

Yes, in General Relativity there are no conservation laws of energy, momen-
tum and angular momentum in general, and this fact must be clear once and for
ever for all (even for school boys, that are in general fooled in reading science
books for laymen).

To show this result in an economic and transparent way a presentation of
Einstein’s gravitational theory is given in terms of tetrads fields, which has a
very elegant description in terms of the calculus in the Clifford bundle C£(T™* M)
described in Appendix. Using that toll, we recall also the correct wave like
equations solved by the tetrad fields” 62 in General Relativity. This has been
done here in order to complete the debunking of recent Evans&AIAS papers
([26],[37]-[41]) claiming to have achieved (yet) another ‘unified’ field theory.
Indeed, we show that, as it is the case with almost all other papers written by
those authors, these new ones are again a compendium of very bad Mathematics
and Physics.

2 Spacetime, Pauli and Quaternion Algebras

5For more details on the absurdities propagated by Evans&AIAS in ISI indexed journals
and books see [24, 81]. The second citation is a reply to Evans’ paper [37].

6See http://groups.yahoo.com/group/free energy/.

"The set {02} is the dual basis of {ea}.



In this section we recall very well known facts concerning three special real
Clifford algebras, namely, the spacetime algebra R; 3, the Pauli algebra Rz
and the quaternion algebra Ry > = H and the relation between them.®

2.1 Spacetime Algebra

We define the spacetime algebra R; 3 as being the Clifford algebra associated
with Minkowski vector space R3, which is a four dimensional real vector space,
equipped with a Lorentzian bilinear form

n:RY xRS SR, (1)
Let {mg, m;, my, m3} be an arbitrary orthonormal basis of R13, i.e.,

1 if p=v=20
n(muamy) =Ny = -1 if w=vrv= 17273 (2)

As usual we resume Eq.(2) writing 7,, = diag(1,—1,—1,—1). We denote by
{m° m?' m? m3} the reciprocal basis of {mg, m;, m,, m;}, i.e., n(m”, m,) =
0F. We have in obvious notation n(m*, m") = n*¥ = diag(1, -1, -1, —1).

The spacetime algebra Ry 3 is generate by the following algebraic fundamen-
tal relation

m“m”+m”m* = 2nH. (3)

We observe that (as with the conventions fixed in the Appendix) in the above
formula and in all the text the Clifford product is denoted by juxtaposition
of symbols. ;3 as a vector space over the real field is isomorphic to the

4 A
exterior algebra /\Rl’3 = Z /\JRL?’ of R13. We code that information writing
§=0
0 1
/\Rlv3 — Ry3. Also, /\ R!¥ = R and /\ R13 = RY3 . We identify the
exterior product of vectors by

1
m”Am"== (m"m"—m"m"), (4)
and also, we identify the scalar product by
1
n(m”, m") =3 (m*m”+m"m*). (5)

Then we can write
m"m” = n(m", m") + m" Am". (6)

8 This material is treated in details e.g, in the books [53, 57, 74, 75]. See also [43, 44, 45,
46, 65, 66, 67].



From the observations given in the Appendix it follows that an arbitrary element
C € Ry 3 can be written as sum of nonhomogeneous multivectors, i.e.,

1 v 1 v
C=s+ cum“—i-icm,m“m + gcw,pm“m m” + pm”® (1)

where s, ¢y, Cuv; Cuvp, P € R and cup, cuwp are completely antisymmetric in all
indices. Also m°= m"m'm?m? is the generator of the pseudo scalars. As
matrix algebra we have that Ry 3 ~ H(2), the algebra of the 2 x 2 quaternionic

matrices.

2.2 Pauli Algebra

Now, the Pauli algebra Rj g is the Clifford algebra associated with the Euclidean
vector space R30, equipped as usual, with a positive definite bilinear form. As
a matrix algebra we have that Rz ~ C(2), the algebra of 2 x 2 complex
matrices. Moreover, we recall that R3¢ is isomorphic to the even subalgebra of

the spacetime algebra, i.e., writing R; 3 = Rg?%@ Rglg we have,

R0~ R (8)

The isomorphism is easily exhibited by putting ocl=m'm° i =1,2,3. In-
deed, with 0¥ = diag(1,1, 1), we have

olol+alal =20, 9)

which is the fundamental relation defining the algebra Rso. Elements of the

Pauli algebra will be called Pauli numbers’. As vector space we have that

/\R3’0 — R3 9 C Ry 3. So, any Pauli number can be written as

T
P =s+p'o’+opjotal +pl, (10)

where s,p;,pij,p € R and p;; = —p;; and also

1=olc?c?® = m°. (11)

Note that 1> = —1 and that I commutes with any Pauli number. We can
trivially verify that

oo’ = Isfcjo'k, (12)

o', 0/|=0'0!—0lo'=20"No? = 2ic} 0.

9Sometimes they are also called ‘complex quaternions’. This last terminology will be
obvious in a while.



In that way, writing Rz g = Rg?()) + Rg()), any Pauli number can be written as

P=Q,+1Q:, Qi €R}), 1Q;eR{), (13)
with
k 1
Q1 =ap+ax(1o”), ap=s, ar= 26k Pig» (14)

Q2 =1(bo +br(16")), bo=p, br=—ps.

2.3 Quaternion Algebra

Eqgs.(14) show that the quaternion algebra Rg 2 = H can be identified as the
even subalgebra of R3 o, i.e.,

Roz = H~R{). (15)
The statement is obvious once we identify the basis {1,7, 7, k} of H with
{110 10% 10%}, (16)

which are the generators of R ) . We observe moreover that the even subalgebra
of the quaternions can be 1dent1ﬁed (in an obvious way) with the complex field,

Le. Ré% o~
Returnlng to Eq.(10) we see that any P € R3 o can also be written as

P = P, +1L,, (17)
where
P, =(s+plo) e /\ORM ® /\1R3’0 = R@/\lRM,
Ly =1(p+1lfo) € /\R“@/\ R3O, (18)

with [, = —ak p” € R The 1mp0rtant fact that we want to recall here is that
the subspaces (R® /\ R39) and ( /\ R30@ /\ R39) do not close separately any

1
algebra. In general, if A, C € (REB/\ R39) then

1 2
ACecRp/\ R¥ o \ R (19)

To continue, we introduce

oi=m;my=—o', =123 (20)

Then, 1= —o 10203 and the basis {1,i ,7, k} of H can be identified with
{1, —loq, —los, 710’3}.



Now, we already said that Rz ~ C(2). This permit us to represent the
Pauli numbers by 2 X 2 complex matrices, in the usual way (i = v—1). We
write Rz o 3 P — P € C(2), with

o (1)

2.4 Minimal left and right ideals in the Pauli Algebra and
Spinors

It is not our intention to present the details of algebraic spinor theory here (see,
e.g., [47, 76, 57]). However, we will need to recall some facts. The elements ey =
11403 = 1(1+mamy) € Rg??)) ~ R30, €2 = ey are minimal idempotents.

They generate the minimal left and right ideals
L =R%es, Ri=eiR. (22)

From now on we write e = e,. It can be easily shown (see below) that,
e.g., I = I has the structure of a 2-dimensional vector space over the complex
field [47, 76], i.e., I ~C2. The elements of the vector space I are called alge-
braic contravariant undotted spinors and the elements of C? are the usual con-
travariant undotted spinors used in physics textbooks. They carry the D(z:0)
representation of SI(2,C) [60]. If ¢ € I we denote by ¢ € C? the usual matrix
representative!” of ¢ is

o' 1.2

so< 2>, ¢, ¢ €C. (23)
14

We denote by i= eRg(g the space of the algebraic covariant dotted spinors. We

have the isomorphism, I ~ (C2)! ~ Cy, where t denotes Hermitian conjugation.

The elements of (C?)' are the usual contravariant spinor fields used in physics

textbooks. They carry the D) representation of SI(2,C) [60]. If & e 1 its
matrix representation in (C?)! is a row matrix usually denoted by

E=(& &), &.&eC (24)

The following representation of £ el in (C?)T is extremely convenient. We
say that to a covariant undotted spinor § there corresponds a covariant dotted
spinor £ given by

. - . — 2 —_ —
Is¢—-é=Eec(C), &,&¢eC, (25)
10The matrix representation of elements of ideals are of course, 2 x 2 complex matrices (see,

[47], for details). It happens that both colums of that matrices have the same information
and the representation by column matrices is enough here for our purposes.




with
(%) (26)

We can easily find a basis for I and I. Indeed, since I = Rg??),e we have that
any @€ I can be written as

e=0'D1 4+,
where

’191:6, ’192 = o01€e
p'=a+ib, ¢*=c+id, a,b,c,dER. (27)

Analogously we find that any £ e I can be written as

g=¢'s' + g

st=e, s’=eo;. (28)
Defining the mapping
v: 101 —R) ~ Ry,
L(p2E) = pt (29)
we have
1=0g ZL(51®Si +sz®sé),
o1 =—t(s1 ® s 4 So ® si),
o2 = t[i(s; ® s? -5 ® si)],
o3=—1(s1® st — S2 ® SQ). (30)
From this it follows that we have the identification
Ry~ RY) ~ C(2) =L &c 1, (31)

from where it follows that each Pauli number can be written as an appropriate
Clifford product of sums of algebraic contravariant undotted spinors and alge-
braic covariant dotted spinors, and of course a representative of a Pauli number
in C? can be written as an appropriate Kronecker product of a complex column
vector by a complex row vector.

Take an arbitrary P €R3 o such that

1 kiko.. .k

P= ?p,u Okiks..k;» (32)

10



where p;,"*?*" € R and

o =0y,..0k;, andog=1€cR. (33)

kiko.. .k

With the identification Rg o ~~ Rg s~1®c 1, we can write also

P =P u(s4 ®s7) = P sps”, (34)

where the P4, = X4, +iY", X4, Y4, eR.
Finally, the matrix representative of the Pauli number P €R3 o is P € C(2)
given by '
P =PAsps8, (35)

(1) (1)

51:1 5—01)

with PAB € C and

It is convenient for our purposes to introduce also covariant undotted spinors
and contravariant dotted spinors. Let ¢ € C2 be given as in Eq.(23). We define
the covariant version of undotted spinor ¢ € C? as p* € (C?)! ~ Cy such that

@ = (p1,92) = pas™?,
oa=¢Pepa B =By,
=(10), &=(0 1), (37)

where!! ¢45 = 48 = adiag(1,—1). We can write due to the above identifi-

cations that there exists ¢ € C(2) given by Eq.(26) which can be written also
as

e=eBs, Rsg =eaps? KsP = ( Pl (1) ) = iog (38)

where X denote the Kronecker product of matrices. We have, e.g.,

am=(3)a(3)-(3)00 =(3 4),
s'Rs'=(1 0)R(0 1)= (é)(lO)(ég). (39)

We now introduce the contravariant version of the dotted spinor

£=(¢& & )eC

1 The symbol adiag means the antidiagonal matrix.

11



as being f* € C? such that

. i .
5* = ( 22 ) :gASA7

B BA B
€7 =774 Ci=epi&s

() (1)

where ¢ i = P = adiag(1, —1). We can write due to the above identifications
that there exists € € C(2) such that

é:aABsAmB:gABsAmB:<Ol é):g. (41)

Also, recall that even if {sa},{s;} and {s*},{s} are bases of distinct
spaces, we can identify their matrix representations, as it is obvious from the
above formulas. So, we have s4 = s, and also s4 = s4. This is the reason
for the representation of a dotted covariant spinor as in Eq.(25). Moreover, the
above identifications permit us to write the matriz representation of a Pauli
number P €R3 as, e.g.,

P =Paps*RsP (42)

besides the representation given by Eq.(35).

3 Clifford and Spinor Bundles

3.1 Preliminaries

To characterize in a rigorous mathematical way the basic field variables used in
Sachs ‘unified’ field theory [85, 86], we shall need to recall some results of the
theory of spinor fields on Lorentzian spacetimes. Here we follow the approach
given in [79, 64].12

Recall that a Lorentzian manifold is a pair (M, g), where g € secT*9M is a
Lorentzian metric of signature (1,3), i.e., for all z € M, T,M ~ T*M ~ R'3,
where R is the vector Minkowski space.

Recall that a Lorentzian spacetime is a pentuple (M, g, D, 7, T) where (M, g,
74, 1) is an oriented Lorentzian manifold'® which is also time oriented by an
appropriated equivalence relation'* (denoted T) for the timelike vectors at the
tangent space T, M, Vo € M. D is a linear connection for M such that Dg = 0,
©(D) =0, R(D) # 0, where ® and R are respectively the torsion and curvature
tensors of D.

12 Another important reference on the subject of spinor fields is [56], which however only
deals with the case of spinor fields on Riemannian manifolds.

4
13Oriented by the volume element Ty € sec/\ T*M.
14See [88] for details.

12



Now, Sachs theory uses spinor fields. These objects are sections of so-called
spinor bundles, which only exist in spin manifolds. The ones of interest in Sachs
theory are the matrix representation of the bundle of dotted spinor fields, i.e.,
S(M) = Psping ,(M) X 3.0 C? and the matrix representation of the bundle of

undotted spinor fields (here denoted by) S(M) = Psping , (M) X 04 C2 . In
the previous formula D39 and DOF are the two fundamental non equivalent
2-dimensional representations of SI(2, C) ~Spinj 5, the universal covering group
of SOT 3, the restrict orthochronous Lorentz group. PSPin‘f,g(M ) is a principal
bundle called the spin structure bundle'®. We recall that it is a classical result
(Geroch theorem [49]) that a 4-dimensional Lorentzian manifold is a spin man-
ifold if and only if PSO?,S(M) has a global section'S, i.e., if there exists a set!”
{eo0,e1,e2,e3} of orthonormal fields defined for all z € M. In other words,
in order for spinor fields to exist in a 4-dimensional spacetime the orthonormal
frame bundle must be trivial.

Now, the so-called tangent (T'M) and cotangent (7*M) bundles, the tensor
bundle (&, s ®; T'M) and the bundle of differential forms for the spacetime are
the bundles denoted by

TM = Psos (M) %,  RY, T*M = Psos (M) x,: [ RY, (43)
@rs @ TM = Pso; (M) Xy, , RY, AT*M = Pso: (M) x AL AR,
1,3

In Eqs.(43)

~—

prs:S073 — SO°(RM3) (44

is the standard vector representation of SOf 5 usually denoted by ' DG3) =
D39 g D(3)and pi 3 is the dual (vector) representation pj 5 (1) = p173(l’1)t.
Also ®§p, , and AI’}{ , are the induced tensor product and induced exterior power

product representations of 8033. We now briefly recall the definition and some
properties of Clifford bundle of multivector fields [79]. We have,

C((TM) = PSOT‘,?, (M) ><cgp1,:5 Rl,g
= PSpini:i (M) X Ad R173. (45)

Now, recall that [57] Spinj; C Rg?). Consider the 2-1 homomorphism h :
Spin{ 3 — SOf 3,h(+u) = [. Then cl, . is the following representation of

151t is a covering space of PSO?,S(M)‘ See, e.g., [64] for details. Sections of PSpini:i(M)
are the so-called spin frames, i.e., a pair (X, u) where for any x € M, X(x) is an othonormal
frame and u(z) belongs to the Spinf 3. For details see [64, 79, 82].

16T what follows PSO‘; 3(M) denotes the principal bundle of oriented Lorentz tetrads. We
presuppose that the reader is acquainted with the structure of PSO'{ g(M)7 whose sections are
the time oriented and oriented orthonormal frames, each one associated by a local trivializa-
tion to a unique element of SOF 3(M).

17Called vierbein.

18See, e.g., [60] if you need details.

13



SOT 3,
c, . : SO7 53 — Aut(Ry 3),

P

Cgpl 5 (L) = Adu : Rl,g — R173,
Ad,(m) = umyu~* (46)

i.e., it is the standard orthogonal transformation of R; 3 induced by an or-
thogonal transformation of R''3. Note that Ad, act on vectors as the D(:3)
representation of SOf 3 and on multivectors as the induced exterior power rep-
resentation of that group. Indeed, observe, e.g., that for v eR!3 C R; 5 we have
in standard notation

1 1

Lv =v'Lim, = vium,u™" = uvu .

The proof of the second line of Eq.(45) is as follows. Consider the represen-
tation
Ad : Spin{ 3 — Aut(Ry 3),
Ad, Ry 3 —Ry3, Ady,(m)= umu L. (47)
Since Ad_; = 1(= identity) the representation Ad descends to a representa-
tion of SO 5. This representation is just c{(p, ,), from where the desired result

follows.
Sections of C¢(T'M) can be called Clifford fields (of multivectors). The sec-

tions of the even subbundle C/(¥) (TM) = Pspini',g(M) X Ad Rg?% may be called
Pauli fields (of multivectors). Define the real spinor bundles

S(M) = Pspins ,(M) x; 1, S(M) = Psping (M) x, 1 (48)
where [ stands for a left modular representation of Spinj 5 in R; 3 that mimics the

D(:9) representation of Si (2,C) and r stands for a right modular representation
of Spin{ 5 in Ry 3 that mimics the D©:2) representation of Si(2,C).
Also recall that if S(M) is the bundle whose sections are the spinor fields

@ = (p1,p2) = pe = ((pi, (‘02)7 then it is isomorphic to the space of contravariant
dotted spinors. We have,

S(M)~PBspin , (M) X 3.0)C* S (M)~Psping ,(M)X 0.3,Co = S(M), (49)

and from our playing with the Pauli algebra and dotted and undotted spinors
in section 2 we have that:

S(M) ~ S(M), S(M)~S(M)~S(M). (50)
Then, we have the obvious isomorphism
CUO(TM) = Paping ,(M) xaa RS
= PSpiniB(M) Xi@r I®(CI
= S(M) ®c S(M). (51)
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Let us now introduce the following bundle,

CUO (M) = Psping , (M) X o0 C(2). (52)
It is clear that B
CLO(M) = S(M) ®c S(M) ~ L (M). (53)
Finally, we consider the bundle
el (M) \NT*M ~ e (M) @ \T*M. (54)

Sections of C¢(”) (TM)® /\T*M may be called Pauli valued differential forms

and sections of C/(O) (M) ® /\T*M may be called matriz Pauli valued differential
forms.

Denote by Cﬁ (TM ) the seven dimensional subbundle (R@ /\ ™ >

/\TM — (TM) C CU(TM). Now, let (x") be the coordinate functions
of a chart of the maximal atlas of M. The fundamental field variable of Sachs
theory can be described as

Q=q, ®dz" =q,dat'e secCﬁ(O 2) (TM /\T*M C secC0©) (TM)® /\T*

i.e., a Pauli valued 1-form obeying certain conditions to be presented below.
If we work (as Sachs did) with C¢©)(M) @ /\T*M a representative of Q is

Q € secClO (M) ® /\T*M such that'®
Q = qu(v)dz" = hf(v)dz" o, (55)

10
0 1
that the notation anticipates the fact that in Sachs theory the variables hf(z)
define the set {62} = {6°,01,62%, 03} with

where og = ) and o; (j=1,2,3) are the Pauli matrices. We observe

0% = hjdz" € sec /\T*M7 (56)

which is the dual basis of {ea} = {eo,e1,e2,e3}, ea € secTM. We denote
by {e.} = {eo,e1,e2,e3}, a coordinate basis associated with the local chart
(z#) covering U C M . We have e, = hije, € secTM, and the set {e,} is
the dual basis of {dz#} = {da°, dz?, da? dac?’} We Wlll also use the reciprocal
basis to a given basis {ea}, i.e., the set {e2} = {e% et e e3},e* € secTM,
with g(ea,eP) = 62 and the recipmcal basis to {93}, i.e., the set {6} =
{0o,01,02,03}, with 0,(eP) = 5P. Recall that since 7ap = g(€a,ep) , we have

19Note that a bold index (sub or superscript), say a take the values 0,1,2,3.
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Juv = g (euv e,,) = hzhtlj)nab- (57)

To continue, we define the

G0 = —op and §5 = 03,j = 1,2,3 (58)
and }
Q = qu(v)dz" = hf(x)dz" Ga. (59)
Also, note that
0alb + 0b0a = —2Nab- (60)

Readers of Sachs books [85, 87] will recall that he said that @ is a representa-
tive of a quaternion.?’ From our previous discussion we see that this statement
is wrong.?! Sachs identification is a dangerous one, because the quaternions are
a division algebra, also-called a noncommutative field or skew-field and objects
like Q = q,, ® da*€ sec Cégg?Q)(TM) ® NT*M C secCl®(TM) @ \T*M are
called paravector fields. As it is clear from our discussion they did not close a
division algebra.

Next we introduce a tensor product of sections A,B € secCl(” (M) ®

/\T*M . Before we do that we recall that from now on

{1,0k,0k,x,, 0123}, (61)

refers to a basis of C0( (M), i.e., they are fields.2?
Recalling Eq.(33) we introduce the (obvious) notation

1 kikso.. .k kikso...k
A = ﬁaﬂl 2 K O'klk2_”kjdl‘”, B = ﬁbﬂl 2 lO'kle.”klde‘H, (62)
kikso.. .k, kikso... .k . .
where the a;' 277 b, 2 are, in general, real scalar functions. Then, we
define
1 kiky..kj pips...p) I 7
ARB= Wa'u by Uk1k2---kj0-p1p2---pzdx ® dzt. (63)

Let us now compute the tensor product of Q® Q where Q € sec 0628)2) (M)®
/\T*M. We have,

20Note that Sachs represented @ by dS, which is a very dangerous notation, which we avoid.

2INevertheless the calculations done by Sachs in [85] are correct because he worked always
with the matrix representation of Q. However, his claim of having produce an unified field
theory of gravitation and electromagnetism is wrong as we shall prove in what follows.

22We hope that in using (for symbol economy) the same notation as in section 2 where the

{1,0k, 0k, ky,0123} is a basis of Rgo% ~ R3¢ will produce no confusion.
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Q® Q = q.(2)de" © G, (2)da” = ¢, (2) (2)da" © da”

1
= qu(ic)(lu($)§(dw“ ® dz¥ 4 dz” @ dxt)

(2)a, (z)(dz" ® dz” — dz¥ @ dat)

+
o]
S

(2)&, (7) + qu (2)q,(z))dat @ dz”

o
T

+
SN = o = N

qu(z)q, (x)dzt A dx” (64)

—guw00)dzt @ dz¥

+ = (qu(7)8y (z) — qu(2)8,(z))dz" A dz”

= =

1
= —gudrt @ dz” + EF;“,dx“ Adz".
In writing Eq.(64) we have used da* A dz¥ = dzt @ dz” — dz¥ @ dzt. Also,
using
Guv = nabhz(x)hltl)(x)7 g = g,uudx“ ® dz’ = Napt® ® oP

. 1 i ; . .
F;Ll/ - F:fl/lo-k: *§(Efjh#($)h{,(1’) )10-76; Z7.77k =1,2,3,

1 1 y 1
F = §F;de~ Adz® = §(F'i{yai0'j)dx“ Adz® = (§F;fl,i0'k)dx“ A dax®
_ k 11 j n v 2 * (0)
= —¢; ;b ()R] (z) da" A dx"ioy € sec/\ T"M ®Cl,) (M) (65)

we can write Eq.(64) as
Q®Q=QQ+QAQ
=—-g+F. (66)
We can also write
Q® Q= —napool® @ O° + e jiok0 NG (67)

The above formulas show very clearly the mathematical nature of F, it
is a 2-form with values on the subspace of multivector Clifford fields, i.e.,

2 N

F :/\ ™™ — Cﬁgg; (TM) c ¢ (TM). Now, we write the formula for Q ® Q
1

where Q € C(2) ® /\T*M given by Eq.(55) is the matrix representation of

1
Q € secCL)y (M) @ \T*M.
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We have,

QeQ=Q2Q0+QAQ
= (—gudz" @ dz")oo + ( € j M(x)vf,(x) da* A dz®)(—ioy)
= —goo + Fioy, (68)

with 1
F'* F'k dat A da® = e} b, (x)v] (z)dat A da . (69)

For future reference we also introduce

F,, =Fio. (70)

3.2 Covariant Derivatives of Spinor Fields

We now briefly recall the concept of covariant spinor derivatives [25, 56, 64, 79].
The idea is the following;:

(i) Every connection on the principal bundle of orthonormal frames Psoe (M)
determines in a canonical way a unique connection on the principal bundle
]DSme3 (M)

(ii) Let D be a covariant derivative operator acting on sections of an associate
vector bundle to Psoi3 (M), say, the tensor bundle 7M and let D® be the
corresponding covariant spinor derivative acting on sections of associate vector
bundles to Psping , (M), say, e.g., the spinor bundles where P(M) may be called

Pauli spinor bundle. Of course, P(M) ~ ce® (M). The matrix representations
of the above bundles are:

S (M) = Psping (M) X 30, C*,  S(M) = Psping (M) X 0.3, Ca

P(M) =S (M)® S(M) = Pspins , (M) X k0 g p©d) C? ® Cy, (71)

and P(M) may be called matriz Pauli spinor bundle. Of course, P(M) ~
CLO(M).

(iv) We have for T € sec/\TM — ClO(M) and ¢ € secS(M), E €
secS(M), P € sec P(M)and v € secTM . Then,

Di(T®€) = DyT ® ¢ + ToD3E,
Di(T®€) = DyT ® ¢ + TRD3E, (72)
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where

DT = 8,T + %[uv, T,
1

D\Srg = 8V£ + §WVE7

Dy = 0, — Séwn,

Ipwy =P+t P (73)

1
Dy P =0,P + éva ~3 5

(v) For T € sec/\TM — COO(TM) and ¢ € secS(M), € € secS(M),
P esec P(M)and v € secTM , we have

Dy (T®E) =D, T®E+TDIE, (74)
DT ®&) =D,T®E+TDE

and

1
D,T=0,T+ §[wv,T],

D\Sr£ = avg + §Qv§7
. .1
D\sr£ = avg - 559‘,7
1 1 1
DVP:8VP+§QVP— §P Qy =0, P+ é[QV,P]. (75)
In the above equations wy, € secC/(” (TM) and Qy € sec P(M). Writing
as usual, v = v2e,, De,e? = —wP.e® , wPl. = —wb, op = epeg and? i
= —010203, we have
1 1
We, = §wg’cebec = Ew;":eb Aec
1 e v
= §w§ Lo
1 . -
= 5(72w2‘0i + wlloioj)
1 o ,
= 5(—2wglai —1 d‘jw; ox) = QPoy,. (76)

Note that the Qg’ are ‘formally’ complex numbers. Also, observe that we
can write for the ‘formal’ Hermitian conjugate w{_ of we, of

wl =-—ewee’. (77)

23Have in mind that i is a Clifford field here.
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Also, write e, for the matrix representation of we_, i.e.,
b
Qea = Qaab,

where QP are complex numbers with the same coefficients as the ‘formally’
complex numbers Q2. We can easily verify that

Qe, = 59235. (78)
We can prove the third line of Eq.(75) as follows. First take the Hermitian
conjugation of the second line of Eq.(75), obtaining

DyE = 0,8 + 560,

Next multiply the above equation on the left by ¢ and recall that f = fe and
Eq.(78). We get

D€ = 0,6 — %ésQis
= Dvg = avg - %va
Note that this is compatible with the identification ClONTM) ~ S(M)R¢cS(M)
and C/O)(M) ~ S(M) ®@c S(M).

Note moreover that if q, = e,eo = hjjea€0 = hjjoa € Cé(o)(TM) ~
S(M) ®@¢ S(M) we have,

1 1
quu = avq,u + §qu,u + §quwi- (79)

For g, = hj,0a € sec CLO (M) ~ S(M) ®c S(M), the matrix representative of
the q,, we have for any vector field v € secTM

1 1
qu,u = Ovqu + §quu + §qﬂ QI/ (80)

which is the equation used by Sachs for the spinor covariant derivative of his
‘quaternion’ fields. Note that M. Sachs in [85] introduced also a kind of total
covariant derivative for his ‘quaternion’ fields. That ‘derivative’ denoted in
this text by DS will be discussed below.

3.3 Geometrical Meaning of D, q, = I qa

We recall that Sachs wrote 24 that

Dequ = FSMQOM (81)

2 See Eq.(3.69) in [85].
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where I'}, are the connection coefficients of the coordinate basis {e,}, i.e.,
De, e, =T7,ea (82)

How, can Eq.(81) be true? Well, let us calculate D, q, in C{(TM). We
have,

D.,q, = D.,(e,e0)
= (De,en)eo + eu(De,eo)
=1I7,da +eu(De,eo). (83)

So, Eq.(81) follows if, and only if
Deu eo = O. (84)

To understand the physical meaning of Eq.(84) let us recall the following. In

relativity theory reference frames are represented by time like vector fields Z €
1

sec TM pointing to the future [80, 88]. If we write the az = ¢g(Z,) E/\ M

for the physically equivalent 1-form field we have the well known decomposition

1
Daz = az ® az + wgz + oz + gEzp, (85)
where
P=g-az®az (86)
is called the projection tensor (and gives the metric of the rest space of an
instantaneous observer [88]), az = g(DzZ, ) is the (form) acceleration of Z, wz
is the rotation of Z, oz is the shear of Z and E is the expansion ratioof Z . In a
coordinate chart (U, z#), writing Z = Z#0/0z" and p = (9 — 2,2, )dzt @ dz”
we have

WZuv = Z[a,ﬁ]pngv
1
020 = [Z(uw) = 3EzhwlPapp,
Ez = 7Z";,. (87)
Now, in Special Relativity where the space time manifold is < M= R* g =
n, D", 7,,1>% an inertial reference frame (IRF) 1 € secTM is defined by
D" = 0. We can show very easily (see, e.g., [88]) that in General Relativ-

ity Theory (GRT) where each gravitational field is modelled by a spacetime?®
< M,g,D,74,1> there is in general no shear free frame (cq = 0) on any open

25y is a constant metric, i.e., there exists a chart (z*) of M = 7R* such that
n(0/0z#,0/0x") = mnuv, the numbers 7y, forming a diagonal matrix with entries
(1,-1,—1,-1). Also, D" is the Levi-Civita connection of 7.

26 More precisely, by a diffeomorphism equivalence class of Lorentzian spacetimes.
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neighborhood U of any given spacetime point. The reason is clear in local co-
ordinates (z*) covering U. Indeed, o = 0 implies five independent conditions
on the components of the frame £. Then, we arrive at the conclusion that in
a general spacetime model?” there is no frame Q € sec TU C sec T M satisfying
D =0, and in general there is no IRF in any model of GRT.

The following question arises naturally: which characteristics a reference
frame on a GRT spacetime model must have in order to reflect as much as
possible the properties of an IRF of SRT?

The answer to that question [80] is that there are two kind of frames in GRT
such that each frame in one of these classes share some important aspects of the
IRFs of SRT. Both concepts are important and it is important to distinguish
between them in order to avoid misunderstandings. These frames are the pseudo
inertial reference frame (PIRF') and the and the local Lorentz reference frames
(LLRF~s), but we don not need to enter the details here.

On the open set U C M covered by a coordinate chart (z*) of the maximal
atlas of M multiplying Eq.(84) by h% such that e, = h¥e,, we get

De eo =0; a=0,1,2,3. (88)
Then, it follows that
Dxeq =0, VX €secTM (89)

which characterizes eg as an inertial frame. This imposes several restrictions on
the spacetime described by the theory. Indeed, if Ric is the Ricci tensor of the
manifold modeling spacetime, we have®®

Ric(eg, X) = 0, VX € secTM. (90)

In particular, this condition cannot be realized in Einstein-de Sitter space-
time. This fact is completely hidden in the matrix formalism used in Sachs
theory, where no restriction on the spacetime manifold (besides the one of being
a spin manifold) need to be imposed.

3.4 Geometrical Meaning of D, 0; = 0 in General Relativ-
ity

We now discuss what happens in the usual theory of dotted and undotted

two component matriz spinor fields in general relativity, as described, e.g.,

in [21, 71, 72]. In that formulation it is postulated that the covariant spinor
derivative of Pauli matrices must satisfy

D, 01 =0, i=1,2,3 (91)

2TWe take the opprotunity to correct an statement in [80]. There it is stated that in General
Relativity there are no inertial frames. Of, course, the correct statement is that in a general
spacetime model there are in general no inertial frames. But, of course, there are spacetime
models where there exist frames Q € secTU C secT'M satisfying DQ = 0. See below.
28See, exercise 3.2.12 of [88].
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Eq.(91) translate in our formalism as
De#(fi = De# (eieo) =0. (92)
Differently from the case of Sachs theory, Eq.(92) can be satisfied if
D, e; = e;j(D.,eo)eo (93)

or, writing De, €5 = w}jaeb,
b _ b a .
wy; = e’ u(whpeieaeo). (94)

This certainly implies some restrictions on possible spacetime models, but
that is the price in order to have spinor fields. At least we do not need to
necessarily have Deg = 0.

We analyze some possibilities of satisfying Eq.(91)

(i) Suppose that eg satisfy D, eo =0, i.e., Deg = 0. Then, a necessary and
sufficient condition for the validity of Eq.(92) is that

De#ei = 0_ (95)
Multiplying Eq.(95) by h we get
Deyei =0, i=1,2,3; a=0,1,2,3 (96)

In particular,
Deye; =0, 1=1,2,3 (97)

Eq.(97) means that the fields e; following each integral line of eg are Fermi
transported?® [88]. Physicists interpret that equation saying that the e; are
physically realizable by gyroscopic axes, which gives the local standard of no
rotation.

The above conclusion sounds fine. However it follows from Eq.(89) and
Eq.(96) that

De e, =0, a=0,1,2,3; b=0,1,2,3. (98)

Recalling that existence of spinor fields implies that {ea} is a global tetrad
[49], Eq.(98) implies that the connection D must be teleparallel. Then, under
the above conditions the curvature tensor of a spacetime admitting spinor fields
must be null. This, is in particular, the case of special relativity.

(ii) Suppose now that eg is a geodesic frame, i.e., De,e9 = 0. Then,
h§De, €0 = 0 and Eq. (93) implies only that

Deye; =0; i=1,2,3 (99)

and we do not have any inconsistency. If we take an integral line of eq, say -,
then the set {ea| 7} may be called an inertial moving frame along ~. The set

29 An original approach to the Fermi transport using Clifford bundle methods has been given
in [78]. There an equivalent spinor equation to the famous Darboux equations of differential
geometry is derived.
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{eal 7} is also Fermi transported and since -y is a geodesic worldline they define
the standard of no rotation along ~.

In conclusion, a consistent definition of spinor fields in general relativity
using the Clifford and spin bundle formalism of this paper needs triviality of
the frame bundle, i.e., existence of a global tetrad, say {ea} and validity of
Eq.(93). A nice physical interpretation follows moreover if the tetrad satisfies

De,ea = 0; a=0,1,2,3. (100)

Of course, as it is the case in Sachs theory, the matrix formulation of spinor
fields do not impose any constrains in the possible spacetime models, besides
the one needed for the existence of a spinor structure. Saying that we have an
important comment.

3.5 Covariant Derivative of the Dirac Gamma Matrices

If we use a real spin bundle where we can formulate the Dirac equation, e.g.,
one where the typical fiber is the ideal of (algebraic) Dirac spinors, i.e., the ideal
generated by a idempotent %(1 + Ey), Ep € Ry 3, then no restriction is imposed
on the global tetrad field {e,} defining the spinor structure of spacetime (see
[79, 64]). In particular, since

De,ep = wipec, (101)
we have,
1
De,eb = 5 [we. en] (102)
Then,
. 1 1
Wep€e — iweaeb + §ebwea =0. (103)

The matrix representation of the real spinor bundle, of course, sends {e,} —
{7a}, where the 7,’s are the standard representation of the Dirac matrices.
Then, the matrix translation of Eq.(103) is

1 1
WabVe — §wea'7b + §'waea =0. (104)
For the matrix elements iz we have
1 1
Wi VeE — 5“330753 + 5’7540‘0533 =0. (105)

In [25] this last equation is confused with the covariant derivative of vZs.
Indeed in an exercise in problem 4, Chapter Vbis [25] ask one to prove that

A _— ¢ A I ,A C 1.4 ,.C _
| VeuVer = WanYer — 3Wa cVon + 37HcWe, 5 = 0- |
Of course, the first member of the above equation does not define any covari-
ant derivative operator. Confusions as that one appears over and over again in

the literature, and of course, is also present in Sachs theory in a small modified
form, as shown in the next subsubsection.
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3.6 D5q,=0
Now, taking into account Eq.(80) and Eq.(81) we can write:

1 1
0vq, + 5‘*’1/(1# + §q#wl, — 17,90 = 0. (106)
Sachs defined
S 1 1 «
Dg qu = 0dvq, + 2@rs T 5uws = 17,40 (107)
from where
DZ,qy = 0. (108)

Of course, the matrix representation of the last two equations are:

1 1
DeSVQM = Ouqu + équu + 5 du Qf - Iuda

Dg, g, = 0. (109)

Sachs call 39 Desu qu the covariant derivative of a g, field. The nomination is
an unfortunate one, since the equation Desu qu = 01is a trivial identity and do
not introduce any new connection in the game.?!

After this long exercise we can derive easily all formulas in chapters 3-6 of
[85] without using any matrix representation at all. In particular, for future
reference we collect some formulas,

q"q, = —4, ¢"q. = —4oy
Qﬁwqu =0, qNqu# =0,

1 ~ T
—54u(0pd" +T7:47) (110)

wy = *%qu(apq# +I%.d7), Q,=

Before we proceed, it is important to keep in mind that our ‘normalization’
of w, (and of Q,) here differs from Sachs one by a factor of 1/2. We prefer our
normalization, since it is more natural and avoid factors of 2 when we perform
contractions.

Before we discuss the equations of Sachs theory we think it is worth, using
Clifford algebra methods, to present a formulation of Einstein’s gravitational
theory which resembles a gauge theory with group Si(2,C) as the gauge group.
This formulation will then be compared with Sachs theory. Our formulation
permits to prove that contrary to his claims in [85, 86] he did not produce any
unified field theory of gravitation and electromagnetism.

30See Eq.(3.69) in [85].
31The equation quu = 0 (or its matrix representation) is a reminicescence of an analogous
equation for the components of tetrad fields often printed in physics textbooks and confused

with the metric compatibility condition of the connection. See,e.g., comments on page 76 of
[50].
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4 Clifford Valued Differential Forms and the The-
ory of Linear Connections

4.1 Preliminaries

In the general theory of connections [25, 54] a connection is a 1-form in the
cotangent space of a principal bundle, with values in the Lie algebra of a gauge
group. In order to develop a theory of a linear connection??

& € secT* Psog , (M) ®5l(2,C), (111)

with an exterior covariant derivative operator acting on sections of associated
vector bundles Psog (M) which reproduces moreover the well known results
obtained with the usual covariant derivative of tensor fields in the base manifold,
we need to introduce the concept of a soldering form

A
6 € secT* Psos , (M) @ RM. (112)

Let be U C M and 7y, o respectively the projections of T Psoe (M) ® RL:3
and Psoe , (M) to M, naturally associated to the projection 7 of Psoe , (M).

Let
q:U—m '(U) C T Psos , (M) @ RM?,
G2 : U —my ' (U) C T*Pso; (M) ®51(2,C), (113)

be two cross sections. We are interested in the study of the pullbacks w = ¢} &

A
and € = ¢5 0 once we give a local trivialization of the respective bundles. As it
is well known we have in a local chart (z#) covering U,

1
0 =c,@dr" =e,dxt € secTM ® /\ T*M. (114)

Now, we give the Clifford algebra structure to the tangent bundle, thus
generating the Clifford bundle CHTM) = | J CL(M), with Cl,(M) ~ Ry 4
introduced previously. ’

We recall a well known result [57] that for each € U C M the bivectors of
Cl, (M) generate under the product defined by the commutator, the Lie algebra

sl(2,C). We thus are lead to define the representatives in C4(TM) ® /\T*M
for @ and for the the pullback wof the connection in a given gauge (that we

A
32In words, € is a 1-form in the cotangent space of the bundle of ortonornal frames with
values in the Lie algebra sof 3 ~sl(2, C) of the group SO¢ ,(M).
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represent with the same symbols):

0 = e, dz" —eaHaesec/\TMQQ/\TM%CETM /\T*
1
wfgw Cepecf?

1 bc a 2 1 * 1 *
= Swa(ep Nec) ®0 € sec \ TM®/\TM<—>C€(TM)®/\TJE4. |
115

Before we continue we must recall that whereas 0 is a true tensor, w is
not a true tensor, since as it is well known, its ‘components’ do not have the
tensor transformation properties. Note that the wP® are the ‘components’ of
the connection defined by

b _ b c b _ b
Deae = TWacl, Wac = ~Weas (116)

where De, is the Levi-Civita covariant derivative operator acting on C{(T'M),
as defined in Appendix.

4.2 Exterior Covariant Differential

We want now to show how to describe, with our formalism the action of a exte-
rior covariant differential on sections of a Clifford valued differential forms (i.e.,
sections of secC{(T'M) ® /\T*M ) which mimics the action of the pullback of
covariant derivative operator acting on sections of a vector bundle associated to
the principal bundle Psoe (M ) once a linear metrical compatible connection is
given. We start by recalhng the well known definition of the covariant differ-
ential D acting on an arbitrary sections of a vector bundle E(M) associated

to Psos. ,(M), having as typical fiber a I-dimensional real vector space. Let
endE (M) =E (M) ® E*(M) the bundle of endomorphisms of E (M) we have

Definition 1 The covariant exterior differential operator D acting on sections
of endE (M) is the mapping

1
D :sec E (M) — sec E (M) @ /\ T*M, (117)

such that for any diﬁerentmble function f: M — R, A € secE(M) and F €
sec(endE (M) ® /\ T*M), G € sec(endE (M) ® /\ T*M) we have:

D(fA)=df ® A+ fDA,
D(F @5 A) = DF ®, A+ (—1)F @, DA,
D(F ©, G) = DF ®, G + (—1)’F @, DG. (118)
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In Eq.(118), writing F' = Feef? G= Gb®gl§q)where F* G* € sec(endE (M)),

£ € sec /\pT*M and g\ € sec /\qT*M we have

Fo A= (F“®fé”)> ®p A= (F1A) @ fP),

FonG = (F ® fgw) ©p P ® g\ = (FUG?) [ A g2, (119)

where?® F?A € sec E (M) and F*G'means the composition of the respective
endomorphisms.

Let U C M be an open subset of M, (z*) a coordinate functions of a maximal
atlas of M and {ek}, K =1,2,...1 a basis for any sec F (U) C sec E (M). Then,

1
a basis for any section of E (M) ®/\ T*M is given by {ex ®dz#}. By definition
DA = (D, A) ® da, (120)
where, writing A = AX ® ex we have

D, A=0,AX @ ex + A¥ @ D, ex. (121)

1
Now, let first E(M)=TM = /\ (TM) — Cl(TM) and as before let {e;},
be an orthonormal basis of T'M. Then,

De; = ex ®w}‘ = (Deypey) ® ok

Wi = wio", (122)

1
where the w}‘ € sec /\ T* M are the so-called connection 1-forms.

Also, for v =vie; € secT M, we have
Dv = Deiv®9i =e;® Dvi,
Dv' = do' + wivk. (123)
We want now to generalize the concept of covariant exterior differential for
the case where E (M) = C4(T'M). In order to do that in an appropriate way

for our purposes, we introduced the concept of multivector valued differential
forms and their algebra.

4.3 Multivector Valued Differential Forms

Definition: A homogeneous multivector valued differential form of type (I, p) is
l
a section of \ TM @ /\pT*M — CUTM) & \T*M, for 0<1<4,0<p<4.

33We eventully write (F®A) ® fép) = (F*A) ép) when there is no possibility of confusion.
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1
We recall, that any A € sec/\ TM ® /\pT*M — secClTM) ® /\pT*M
can always be written as

A=m@p @y = mi(i)'"ileil...eil ® @
1 ) ‘
- Hm(i) ® "/{j(f_)_,jplgh Ao NG
1 . ' ‘
— ijzi)‘"lleil-..eil ® 1/}j(f)jp9‘]1 AN eJP (124)
1

IR § SRS VRS . i i
= Ajy e ey @O A LLAGY.

Definition: The ®,product of A = A ® P € secCUTM) ® /\pT*M and
m

B=B®x"P €secClTM)® /\qT*M is the mapping;:

l
@ :secCUTM) @ \ T*M x secCUTM) © N T*M

l
—secCUTM) @ \ T M,

mm

A®\B=AB@¢p® Ax@, (125)

!
Definition: The commutator [A,B] of A € sec/\ ™ ® /\pT*M —

secCUTM)® \'T*M and Be \"TM @ N\'T*M — secct(TM) o \'T*M
is the mapping:

[ , ]:sec /\lTM ® /\pT*M X sec /\mTM® /\qT*M

|l4+m]|

e S Ny e N M)

k=|l—m]|
[A,B] =A@, B~ (—1)" Bon A (126)

Writing A = AJtdie;, ...e5,1P), B = Bitvime; ey (9, with ) € sec /\pT*M
and x(9 € sec /\qT*M, we have

[A, B] = Alv-diBlidm e es ey e [ ® A x (D) (127)

The definition of the commutator is extended by linearity to arbitrary sections
of CUTM) @ \T*M.

Now, we have the proposition

Proposition: Let A € secCUTM)® N\ T*M, B € secCUTM)® \"T*M,

C e A€secClTM)® /\ T*M. Then,
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[A7B] = (_1)1+pq[B7A]7 (128)
and
(=D [[4, B], €1 + (=1)"[[B,C], A] + (=)™ [[C, 4], B] = 0. (129)
Eq.(129) may be called the graded Jacobi identity [19].
2 r
Corollary: Let be A®) € sec /\ (TM) ®/\pT*M and B € sec /\ (TM)®
N'T* M. Then,
[A®),B] = C, (130)

- +
where C' € sec /\7 (TM)® /\p 7M.

The proofs of Eq.(128), Eq.(129) and Eq.(130) results from direct calculation
and can be obtained without any difficulty.
Definition: The action of the differential operator d acting on

l
Aesee NTM © N'T*M — secct(TM) © \'T"M,
is given by:
dA = ¢;,...e5, @ A3 (131)

1 .. .
= €j,--€j, ® dﬁA‘llmZ}Lell AN

11...1p

We have the important proposition.

Proposition: Let be A € sec CE(TM)@/\pT*M and let be B € secC¢(TM)®

N'T*M. Then,
d[A, B] = [dA, B] + (~1)P[A, dB]. (132)

The proof of that proposition is a very simple calculation.
Now, note that using the Clifford algebra structure of the space of multivec-
tors we can show very easily that Eq.(122) can be written as:

1
De;j = (Dey ;)0 = §[w,ej] = —ejuw

1
w = §wibea Aep @ 0K

1 2 1 L —
= éwﬁbeaeb ® 0k ¢ sec/\ TM®/\ T*M — secCl(TM) ®/\ T M,
(133)

where we recall once again that w is the representative of the connection in a

given gauge.
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Recalling the general theory of the exterior covariant derivative acting on a
vector bundle E(M), we see that the action of the covariant exterior differential

!
D on an arbitrary A € Sec/\ TM — secCl (TM) is the mapping
1 ! 1
D :sec \ TM — sec \ TM @ )\ T*M, (134)

such that for any differentiable function f : M — R, and differentiable A €
1
sec /\ TM we have

D(fA) =df ® A+ fDA. (135)
Writing as before and with obvious notation,
DA = (D, A) ® 6 (136)

!
where D,, A is the standard covariant derivative of A € sec /\ TM — secCl(TM),
we have the proposition.

Proposition:
1
DA =dA+ §[w,A]. (137)
The proof is a simple calculation.

Eq.(137) can now be extended by linearity for an arbitrary multivector A €
secCL(TM).

We are now read to investigate the general case, i.e., we want to give a
definition of the exterior differential operator acting on an arbitrary section

l
Ae Sec/\ TM ® /\pT*M — secCl(TM) ®/\pT*M in such a way as to be
compatible with the previous definitions.

1
Definition: Let A € sec \ TM @ \"T*M — secCt(TM) @ \'T*M, 1,
p > 1. The covariant exterior differential of A is:

DA = dA+ g[w, Al (138)

Writing )
DA = (D, A) @, 0" = (Dej A)&P (139)

we have
De, A(ex,; €k, €k,) = Oc, (Alex, , €kys -5 €k,))
+ Ail"'il (ekl 3 CKoy ooy ekp)l—; [wr, €i1€i2...€il]. (140)
Note that

-1
DerA(ekl 5 €y vee ekp) = De,A(ekl »Choy oery ekp) + pT [wr, A(ekl »Choy oeey ekp)]
(141)
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or
D. A=D., A+ p—;l[wr,A]. (142)

In view of Eq.(141) we call from now on D, as the exterior covariant deriv-
ative operator.

! 1
Note that only for A®) e sec/\ TM ® /\ T*M we have
D., AY = D, AW, (143)

We already know (see Eq. (137)) how to calculate the exterior covariant

) ) 1 1 0 )
differential of A € sec/\ ™M = Sec/\ ™™ ® /\ T*M, and now we write
explicitly the above formulas for two special important cases.

4.3.1 Case p=1

l 1 1
When A € Sec/\ TM ® /\ T*M — secCL(TM) ®/\ T*M, a simple calcula-
tion shows that

Do, Afer) = dA(er) + 5leon Ale)]

or
DA = dA+ 1w, A (144)

4.3.2 Casep=2
! 2
Let be F € Sec/\ TM®/\ T*M — secCL(TM) ®/\T*M. We have,

Der}"(ekl,ekw ceny ekp) = 8er(.7-"(ek1,ek2, ceny ekp))
A 1
4 Flh (ekl,ekQ, ety €kp)§[wr, eileiz...eil] (145)

and
DF =dF + [w, F]. (146)

4.4 Cartan Exterior Differential
Recall that [48] Cartan defined the covariant exterior differential of € = e;@€! €
Sec/\lTM ® /\pT*M as mapping
Do N rme N'ov — Nt N,
DC = D%e; ® €1) = ¢; @ d€! + D%; A €, (147)
D¢e; = Dej = (D, ¢;)0"
which in view of Eq.(131) and Eq.(133) can be written as

, , , 1
D°C = D(e; ® €') = d€ + S [w, €] (148)
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So, we have,
, -1
D¢ =D°¢ + pT[w, q. (149)
. 1 1
Note moreover that only when ¢(1) = ¢; @ ¢l € sec/\ TM ® /\ T*M we
have
DeM=Dcec®, (150)

Finally we have the proposition.

!
Proposition: If A e Sec/\ TM®/\pT*M — secCl(TM)® /\pT*M and
Be /\mTM ® /\qT*M — secClTM)® /\qT*M , p,q > 2 then

D(A®x B)=D(A) @, B+ (-1)’ Az, (DB). (151)

The proof follows at once with the use of the above formulas.

We note that Eq.(151) agrees with the third line of Eq.(118), as it may be.
We end this section with two observations:

(i) There are other approaches to the concept of exterior covariant differential

acting on sections of a vector bundle F ® /\pT*M and also in sections of?

end(F) ®/\pT*M, as e.g., in [17, 18, 48, 50, 69, 70, 92]. Not all are completely
equivalent among themselves and to the one presented above. Our definitions
have the merit of mimicking coherently the pullback under a local section of
the covariant differential acting on sections of vector bundles associated to a
given principal bundle as used in gauge theories. Indeed, this consistence will
be checked in several situations below.

(i) Some authors, e.g. [94] find convenient to introduce a notation (not a
definition) that they call the exterior covariant derivative of indexed p-forms,
which are objects like the curvature 2-forms (see below) or the connection 1-
forms introduced above. This is a very dangerous notation according to our
view and we avoid its use in this text.

4.5 Torsion and Curvature

2 1 1
The torsion of a connection w € Sec/\ M® /\ T*M — C{(TM) ® /\ M
on the basis manifold is defined by

1 2 2
©=DOcsec \ TM® \'T"M — CUTM)® \'T*M,  (152)

1 1 1
where 0 = e, dz" = e,0* € Sec/\ TM®/\ T*M — CUTM) ®/\ T*M is the
soldering form.

The curvature of the connection w is defined by

2 2 2
R =Dw e€sec \"M @ \'T"M — cuTM)® \ T°M, (153)

34end(F) means the bundle of endomorphisms of the bundle E.
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2
where the connection is w = 1 (wEep A ec) ® 62 = JwhCepech? € sec /\ M®

1 1
/\ T*M — CU(TM) ® /\ T*M . We now calculate @ and DR. We have,

1
DO = D(ea6?) = e,db® + §[wa, eql0® A 094 (154)
and since %[wa, ed] = —edwa = wSyec we have
D(e.0?) = e, [d6® + w2 40P A 0] = e,0?, (155)

and we recognize
02 = dh* + w2 40° A 69, (156)

as Cartan’s first structure equation.

For a torsion free connection, the torsion 2-forms ® = 0, and it follows that
® = 0. A metrical compatible connection (Dg = 0) satisfying @* = 0 is called
a Levi-Civita connection. In the remaining of this paper we restrict ourself to
that case.

Now, according to Eq.(146) we have,

DR = dR + [w, R]. (157)

Now, taking into account that
1
R:dw+§[w,w], (158)

and that from Eqs.(128).(129) and (132) it follows that

dw,w)] = [dw, w] — [w, dw],
[dw,w] = —|w, dw],
[[w,w],w] =0, (159)

we have immediately
DR =dR + [w,R] =0. (160)

Eq.(160) is known as the Bianchi identity.
Note that
1
R = ZRZBea Aep ® (dzt A dx)
1 1
= Z’Rgﬁ’eaeb ®0°NOd = ZRgfeaeﬁ ® daf A dz?
1

= ZRnge“e” ® dxP A dz?, (161)
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where R, o are the components of the curvature tensor, also known in differ-
ential geometry as the Riemann tensor. We recall the well known symmetries

R;Ll/po - 7Rl/;tp07
R;uzpa = 7Rp,uop7
R;uzpa = Rpop,z/- (162)

We also write Eq.(161) as

1 1
R = Rcdeaeb ® (0°A0Y) = SRuvda! A da”

= Rb eac’ (163)
with
ab al 2
R, = QRWeaeb §Rwea Aep € sec/\ TM — C{TM),
Reb — L pabgou p gov ‘M 164
= 5 Ruwdr x¥ € sec/\ , (164)

where R, will be called curvature bivectors and the R} are called after Cartan
the curvature 2-forms. The Rg satisfy Cartan’s second structure equation

= dwp + wi ANwyg, (165)
which follows trivially calculating dR from Eq.(158). Now, we can also write,
DR =dR + [w, R]

1 1
= §{d(2Rf£eaebdx“ Adx”) + 5 —[wp, Ry tda? A dat A dx”

1
= 5{8pRW + [w,, Ry da? Ada? A da?. (166)
In Physics textbooks on gauge theories (see, e.g., [69, 84]), physicists call

the operator
Dep = Dp = ap + [wm]? (167)

acting on the curvature bivectors, the ‘covariant derivative’. This is not a very
good name, since it is the exterior covariant derivative as defined in Eq.(141).
The covariant derivative operator acting on sections of C£(T* M) is as we already
know another operator. See, Eq.(142).
Note that writing:
D, R, =0, Ry + [wp, Ry ], (168)

we have from Bianchi identity that

D. R,, +D.R,,+D,R,, =0. (169)
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We write now the coordinate expression for the bivector valued 2-forms R, .
First recall that by definition

R, =R(ey,e,) = —R(ev,e,) = —Ryu. (170)
Now, observe that using Eqs.(128), (129) and (132) we can easily show that

[w,w](eu, ) = 2[w(e,), w(ey)]
= 2wy, w,]. (171)

Using Egs. (158), (170) and (171) we get
R, = 0wy — Opwy + [wp, wy . (172)

4.5.1 Some Useful Formulas

Proposition: Let A € sec /\pTM — secCl(T'M) and R the curvature of the
connection as defined in Eq.(153). Then,

D’A = %[R, Al. (173)
Proof:
D?4 = DDA =D(dA + %[w, Al
dzAJr%[w,dA] +%d[w,A] +;11[w, [w, Al (174)

Now, as can be easily verified:

dlw, A] = [dw, 4] — [w, dA], (175)
[wv [wv A]] = [[wvw]vAL (176)

1 1
Z[“J7 [“Jv A]] = 5[“’ Qn W, A]]

Using these equations in Eq.(174) we have,

DA = L + w o w4 = (R AW

1
In particular, when a € Sec/\ TM — secCl(TM) we have
D%a = RLa (177)

Also, we can show using the previous result that if A € secClTM) ®
1
/\ T*M it holds

D?A = %[R, Al (178)
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It is a useful text of the consistence of our formalism to derive once again
"
that DR = 0, by calculating D3 A for A € sec /\ TM — secCl(TM). We have:

DA =D (D?A) = D*(DA). (179)
Now, using the above formulas and recalling Eq.(151), we can write:
D?A =D(D?A) = %D[R, A
= iD(R@, A~ A, R)

1
= 5(DR N A+RINDA-DAR\NR+(-1)"""Ax,DR) (180)

and
D3A = D?*(DA) = %[R, DA]
_ % (R @, DA— DA, R). (181)

Comparing Eqs.(180) and (181) we get that
DR &x A+ (-1)'T"A®, DR = [DR, A] =0, (182)

from where it follows that DR = 0, as it may be.
We end this section by collecting some formulas that will be need in the next
sections. First recall that?®

[De,, De,ley, = R nea = —Rappne™ = Ruapre”,
R;Lap)\ = R(eu70a7€p7e)\)' (183)

Then a simple calculation shows that
[De,, De,ley = euiRpx = —Rparey, (184)

1
R apre® = §(e#Rp>\ —-R,ep). (185)

Multiplying Eq.(185) on the left by ep we get, recalling that a paravector
field is defined as q* = e“e® and Eq.(77) we have

1
R,uozp)\qa = é(un:;)\ + Rp)\qu)- (186)

35In Sachs book he wrote: [Dep,DeA]eu = R}j‘pkea = +Ra#p>\ea. This produces some

changes in signals in relation to our formulas below. Our Eq.(183) agrees with the conventions
in [25].
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5 General Relativity as a S/ (2, C) Gauge Theory
5.1 The Nonhomogeneous Field Equations

The analogy of the fields R, = %Rﬁ'ﬁeaeb = %Rf}gea A ep € sec /\ZTM s
CU(TM) with the gauge fields of particle fields is so appealing that it is irre-
sistible to propose some kind of a SI(2, C) formulation for the gravitational field.
And indeed this has already been done, and the interested reader may consult,
e.g., [21, 62]. Here, we observe that despite the similarities, the gauge theories
of particle physics are in general formulated in flat Minkowski spacetime and
the theory here must be for a field on a general Lorentzian spacetime. This
introduces additional complications, but it is not our purpose to discuss that
issue with all attention it deserves here. Indeed, for our purposes in this paper
we will need only to recall some facts.

To start, recall that in gauge theories besides the homogenous field equations
given by Bianchi’s identities, we also have the nonhomogeneous field equation.
This equation, in analogy with the U(1) of the nonhomogeneous equation for
the electromagnetic field (see Eq.(258) in Appendix) is written

D*R = d*R—i—%[w,*R] —_— (187)

2 1 1 )
where the T € sec/\ T™™ ® /\ T*M — CUTM)® /\ T*M is a current, of
course, associated with the energy momentum tensor in Einstein theory. In
order to write this equation in components it is very useful to imagine that

/\T*M — CL(T*M), the Clifford bundle of differential forms, for in that case
the powerful calculus described in the Appendix can be used. So, we write:

2 1 1
w € sec — — ,
NTM e )\ T*M < ciTM)® \ T*M — C{TM) @ CL(T* M)

2 2 2
R=Dw e sec \ TM ® \ T*M — C{TM) ® /\ T*M — CUTM) ® C{(T*M)

2 1
T=T,0" € sec \'TM ® \ T*M — C{TM) @ C{(T*M). (188)
Now, using Eq.(247) for the Hodge star operator given in the Appendix and
the relation between the operators d = A and § = —9. we can write
dxR = —0°(—0.R) = — % (O_R) = — * ((9,R4)0"). (189)
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Also,

lw,*R ~1g JRos] @ 0% A (6% A 6OP)
2 2 1% B8

— L Ras] @ 08 A 07(6% A 6P
2 H B

= ——|w,,Rap| ® 9“95(9 /\95)+95(9 /\95)9“
| o 8
5

= o Ras] @ (04(0° n0%) — 0 1 07)0%)
= e Ras] & 0°(6° 1.0
= — % ([wy, RAIO%. (190)

Using Eqgs.(187-190) we get
ORL + [w,, RE=T,. (191)

Eq.(191) must, of course, be compatible with Einstein’s equations, which
may be eventually used to determine determines R%,w, and T,. In order to
find R# we recall that Einstein’s equations can be written in components in an
orthonormal basis as

1
Rab - énabR = Tab7 (192)

where Ran, = Rba are the components of the Ricci tensor (Rab = R he)s

Tap are the components of the energy-momentum tensor of matter fields and
R = nap R?P is the curvature scalar. We next define the Ricci I-vectors and the
energy-momentum 1-vectors by

Ra = Rape®, Ta= TapeP. (193)

We have that
R, = —¢®_Rap. (194)

Now, multiplying Eq.(192) on the right by P we get
1
R, - 5Req = Ta. (195)

Multiplying Eq.(195) first on the right by ey, and then on the left by e, and
making the difference of the resulting equations we get

1
(—€e°2Rac)ep — ep (—e°Rae) — éR(eaeb —epea) = (Taep —epTa). (196)
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5.2 A Set of Maxwell Like Nonhomogeneous Equations
Eq.(196) can be written as

Fab = (Taenb —epTa), (197)
with

1
Fab = (—€°2Rac) eb — ep (—€°Rac) — = R(€aep — €pea)

2

—~

1
= —(Race®ep + epeRac — €“Racep — epRace®) — §R(eaeb — epe,).
(198)
It is quite obvious that in a coordinate chart (xz*) covering an open set
U C M we can write

N —

Dep]:ff =Jy, (199)
with
Jy =D, (Tfe, —€e’T,). (200)

Remark 2 FEq.(199) is a set Mazwell like nonhomogeneous equations. It looks
like Maxwell equations when that equations are written in components, but
Eq.(199) is nothing more than a trivial consequence of the equation of the nonho-
mogeneous field equations in the SI(2,C) like gauge theory version of Einstein’s
theory, discussed in the previous section. In particular, keep in mind that any

2
one of the F¥ € sec/\ TM. Or, in words, each FL it is a bivector field, not a
set of scalars (which are components of a 2-form) as in Mazwell theory.

We immediately see that in vacuum Fup = 0, from where we get the identity
(valid only in vacuum)

(e°_Rac) eb = (e°2Rbe) €a- (201)

It is very important to realize that this equation does not imply that the cur-

vature bivector Rap, is null in vacuum. Indeed, recalling its definition (Eq.(164))
we have

Rab = Rabeac®e’, (202)

and we see that it is zero only if the Riemann tensor is null which is not the
case in any non trivial general relativistic model.

The important fact that we want to emphasize here is that Eq.(198) although
eventually interesting has nothing new in it, i.e., all information given by that
equation is already contained in the original Einstein’s equation, for indeed it
has been obtained from it by simple algebraic manipulations. The terms

1 1
fab = E(Raceceb + ebeCRac - ec]-:{a(:eb - ebRaCeC) - §R(eaeb - ebea)
1
Rab = (Taeb - eb':[‘a) - éR(eaeb - ebea)’
1
Fab = §R(eaeb —epea), (203)
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are pure gravitational objects, despite being antisymmetric in indices a, b. Note
that Fap, differs from a factor, namely R from the F. give by Eq.(70).

5.3 SI(2,C) Gauge Theory and Sachs Antisymmetric Equa-
tion

We discuss in this subsection yet another algebraic exercise. First recall that in

section 2 we define the paravector fields,

Ja = €a€0 = 0a, (a= (_007 o'i)a oo = 1.

To derive Sachs®*® Eq.(6.50a) all we need to do is to multiply Eq.(195) on
the right by e® and perform some algebraic manipulations. We then get (with
our normalization) for the equivalent of Einstein’s equations using paravector
fields and a coordinate chart (x*) covering an open set U C M, the following
equation

R,\q* +q*Rf, + Rq, = 2T,,. (204)

For the Hermitian conjugate we have
~R/,q" - &'R,» + Ra, = 2T,. (205)
where as above R, are the the curvature bivectors given by Eq.(172) and
T, =Tlq. (206)

After that, we multiply Eq.(204) on the right by @, and Eq.(205) on the left
by q, ending with two new equations. If we sum them, we get a ‘symmetric’
equation®” completely equivalent to Einstein’s equation (from where we started).
If we make the difference of the equations we get an antisymmetric equation.
The antisymmetric equation can be written, introducing

1 . . - -
F,, = 5(Rp,\Q’\qwJrquARp/\*qARL,\qurququ/\) (207)
1 . 3
+ §R(qpqrq7qp)
and .
Jy =D, (Tq, — q,T”), (208)
as
D, Ff = J,. (209)

This equation, of course, is completely equivalent to our Eq.(199). Its matrix
translation in C£(9) (M) ~ S(M) ®c S(M) gives Sachs equation (6.52-) in [85] if

36 Numeration is from Sachs’ book [85].
3TEq.(6.52) in Sachs’ book [85].
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we take into account his different ‘normalization’ of €2 and the ad hoc factor with
dimension of electric charge that he introduced. It has no new information.?®
Using Egs.(88), (108) and (169) we may verify that

D Fy + D} Fyp+ D2 Fpy =0, (210)

where DS is Sachs ‘covariant’ derivative that we mention in Eq.(108). In
[86] Sachs concludes that the last equation implies that there are no magnetic
monopoles in nature. Of course, this is equation is only a reflection of Bianchi’s
identity valid for the curvature bivectors. It has nothing to do with the magnetic
monopoles.

We thus conclude this section stating that Sachs claims in [85, 86] of having
produced an unified field theory of electricity and electromagnetism are wrong.

6 Energy-Momentum “Conservation” in Gen-
eral Relativity

6.1 Einstein’s Equations in terms of Superpotentials x5

From Eq.(187) it follows that

d(*T—%[w,*R]) =0, (211)
and we could think that we identified a conservation law for the energy momen-
tum of matter plus the gravitational field, with %[w,*R] describing the energy
momentum of the gravitational field. However, this is not the case, because this
term (due to the presence of w) is gauge dependent.

Now, suppose that somehow Eq.(196) can be solved for Rap. Then, the
corresponding equation can be used to determine the current term in Eq.(191).
We are nothing going to attempt this exercise here, because there is a more easy
way to find appropriate currents for Einstein’s theory that we discuss below
after recalling [77, 93] yet another formulation of Einstein’s equation where the
gravitational field is described by a set of 2-forms x52, a = 0,1,2,3 called
superpotentials. The calculations that follows are done in the Clifford algebra
of multiforms fields C¢ (T*M).

We start again with Einstein’s equations given by Eq.(192), but this time
we multiply on the left by 6P getting an equation relating the Ricci 1-forms
R2 = R2OP with the energy-momentum 1-forms T2 = T20P, i.e.,

Gr = RA - %Rea _ T2, (212)

381t is amusing to read Carmeli’s review([22]) of Sachs book, for he did not realize that Sachs
theory was simply a description in Pauli bundle of a SI(2, C) gauge formulation of Einstein’s
theory as described in his book [21] and as such, it could not be an unified field theory of
gravitation and electromagnetism.
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We take the dual of this equation,
*G& = xT2, (213)
Now, we observe that [77, 93] we can write
*G? = —dx 5 — xt?, (214)
where
S¢ = —%wab A*(0* A OP A 6°),
e — %wab AW % (02 A 6P A 0Y) £ wBx (05 A0S AGS).  (215)
The proof of Eq.(215) follows at once from the fact that

*xGd = %Rab A%(0* A 6OP A 69). (216)
Indeed, recalling the identities in Eq.(248) we can write
1 1
5 Rab A*(0% 1 6P A 6d) = —S* [Raba(62 A 6P A 69)]
= —%Rabcd *[(6° A 0N 1(62 A OP A 6]
= — % (R4 - %R&d). (217)
On the other hand we have,
2% G = dwap A*(02 A OP A OY) + Wae A WS Ax(62 AO° AGY)
= djwap A*(0* AOP A OY)] — wap A dx (02 AOP A GY)
+ Wae AW Ax(62 A 6OP A GY)
= d[wab A *(60% A O° A )] — wap A wd * (0P A A 6Y)
— wab AwP * (02 AP N OY) — wap A Wl * (62 A O A OP)]
+ Wae AWE A (62 A OP A GY)
= d[wab A *(02 A O° A OT)] — wap A [wWS* (62 A O° AOP) + wb * (02 AP A GT)]
= —2(dx S + «td). (218)
Now, we can then write Einstein’s equation in a very interesting, but dan-

gerous form, i.e.:
—d* 8% = *T? + *t2. (219)

In writing Einstein’s equations in that way, we have associated to the gravita-
tional field a set of 2-form fields 52 called superpotentials that have as sources
the currents (x*7® + xt?). However, superpotentials are not uniquely defined
since, e.g., superpotentials (*S? + xa?), with xa® closed, i.e., d x a® = 0 give
the same second member for Eq.(219).
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6.2 Is There Any Energy-Momentum Conservation Law
in GR?

We say that Eq.(219) is a dangerous one. The reason is that (as in the case of
Eq.(211)) we can be led to think that we have discovered a conservation law for
the energy momentum of matter plus gravitational field, since

d(*T? + %) = 0. (220)

This thought however is only an example of wishful thinking, because xt* de-
pends on the connection (see Eq.(215)) and thus are gauge dependent. They do
not have the same tensor transformation law as the x¥7. So, Stokes theorem
cannot be used to derive from Eq.(220) conserved quantities that are indepen-
dent of the gauge and the local coordinate chart used to perform calculations. In
fact, the currents xt? are nothing more than the old pseudo energy momentum
tensor of Einstein in a new dress. Non recognition of this fact can lead to many
misunderstandings. We present some of them in what follows.
First, it is easy to see that from Eq.(213) it follows that [63]

D+G=DxT =0, (221)

where xG = e, ® G* and *7 = e, ® ¥72. Now, in [63] it is written a ‘Stokes

theorem’
/ Dx7T= / *T

4-cube 3 boundary
of this 4-cube

This equation which appears also in many other texts and scientific papers,
as e.g., in [28, 97] is completely misleading and indeed it is a non sense, since
we cannot sum tensors at different spacetime points.

In Einstein theory possible superpotentias are, of course, the xS? that we
found above (Eq.(215)), with

%S, = [_%wabJ(ea AOP A 6)]65. (222)

Then, if we integrate Eq.(219) over a ‘certain finite 3-dimensional volume’,
say a ball B, and use Stokes theorem we have

po— /*(Ta+ta) _ —/*Sa. (223)
B oB
In particular the energy or (inertial mass) of the gravitational field plus

matter generating the field is defined by

P°=E= lim [ x8° (224)
R—o0
OB
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Now, a frequent misunderstanding is the following. Suppose that in a given
gravitational theory there exists an energy-momentum conservation law for mat-
ter plus the gravitational field expressed in the form of Eq.(220), where T are
the energy-momentum 1-forms of matter and t® are true®” energy-momentum
1-forms of the gravitational field. This means that the 3-forms (¥ + t?) are
closed, i.e., they satisfy Eq.(220). Is this enough to warrant that the energy of
a closed universe is zero? Well, that would be the case if starting from Eq.(220)
we could jump to Eq.(219) and then to Eq.(224) (as done in [94]). But that
inference is not correct, for indeed, it is not the case that closed three forms
are always exact. Take a closed universe with topology, say RxS%. In this case
B = 83 and we have B = 952 = @. Now, as it is well known (see, e.g., [68]),
the third de Rham cohomology group of Rx.S3 is H3 (RXS3) = H3 (53) =R.
Since this group is non trivial it follows that from Eq.(220) it did not follow the
validity of Eq.(219). So, in that case an equation like Eq.(223) cannot even be
written. However, in Einstein’s theory the energy of a closed universe?? if it is
given by Eq.(224) is indeed zero, since in that theory the 3-forms (¥7 +t?) are
indeed exact (see Eq.(219)).

But, is the above formalism consistent? Given a coordinate chart (z*) of the
maximal atlas of M | with some algebra we can show that for a gravitational
model represented by a diagonal asymptotic flat metrict!, the inertial mass
E =m, is given by

. -1 0 oB
m; = B}Enoo ﬁ/w(gllgzz%?ﬂ )dam (225)
OB

where B = S?(R) is a 2-sphere of radius R, (—n,) is the outward unit normal
and do, = —R*n,dA. 1If we apply Eq.(225) to calculate, e.g., the energy of
the Schwarzschild space time*? generate by a gravitational mass m, we expect
to have one unique and unambiguous result, namely m; = m.

However, as showed in details, e.g., in [20] the calculation of F depends on
the spatial coordinate system naturally adapted to the reference frame Z =
ﬁ% , even if these coordinates produce asymptotically flat metrics.
Then, even if in one given chart we may obtain m; = m there are others where
m; # m! This according to our view shows that all discourse concerning pseudo-
energy momentum tensors is nonsense.

The fact is: there are no conservation laws of energy-momentum in Gen-
eral Relativity in general. And, at this point it is better to quote page 98 of
Sachs&Wu [88]:

39This means that the t® are not pseudo 1-forms, as in Einstein’s theory.

40Note that if we suppose that the universe contains spinor fields, then it must be a spin
manifold, i.e., it is parallezible according to Geroch’s theorem [49].

41 A metric is said to be asymptotically flat in given coordinates, if g, = nuw(14+0 (r’k)),
with kK = 2 or k = 1 depending on the author. See, eg., [89, 90, 98].

42For a Scharzschild spacetime we have g = (1 — 27’") dt@dt— (1 — 27)71 dr@dr—r2(df®
df + sin? 8dy @ dyp).
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" As mentioned in section 3.8, conservation laws have a great predictive power. It
is a shame to lose the special relativistic total energy conservation law (Section 3.10.2) in
general relativity. Many of the attempts to resurrect it are quite interesting; many are simply
garbage."

In General Relativity, every gravitational field is modelled (module diffeo-
morphisms) by a Lorentzian spacetime. In the particular case, when this space-
time admits a timelike Killing vector, we can formulated a law of energy con-
servation. If the spacetime admits three linearly independent spacelike Killing
vectors, we have a law of conservation of momentum. The crucial fact to have in
mind here is that a general Lorentzian spacetime, does not admits such Killing
vectors in general. As one example, we quote that the popular Friedmann-
Robertson-Walker expanding universes models do not admit timelike Killing
vectors, in general.

The only possibility of resurrecting a trustworthy conservation law of energy-
momentum valid in all circumstances in a theory of the gravitational field that
resembles general relativity (in the sense of keeping Einstein’s equation) is to
reinterpret that theory as a field theory in flat Minkowski spacetime. Such
a theory has been extensively studied by Logunov and collaborators [58, 59].
Another presentation of the theory is one where the gravitational field is repre-
sented by a distortion field in Minkowski spacetime. A first attempt to such a
theory using Clifford bundles has been given in [77]. Another presentation has
been developed in [55], but that work contains some very wrong statements that
make (in our opinion) the theory invalid. This has been discussed with details
in [42].

We quote here the problem associated with the energy momentum tensor
in general relativity for two reasons. The first is that recently people think to
have solved this problem in the so-called teleparallel version of general relativity
[30]. However, such a hope unfortunately has not been realized, as we show in a
sequel paper [83], which discuss conservation laws in a general Riemann-Cartan
spacetime, using Clifford bundle methods.

The second reason was to leave the reader aware of the shameful fact of
non energy-momentum conservation in General Relativity when we comment
in the next section some papers by Evans&AIAS where they try to explain the
functioning of MEG, a ‘motionless electric generator’ that according to those
authors pumps energy from the vacuum.

6.3 “Explanation” of MEG according to ATAS

Our comments on AIAS papers dealing with MEG are the following:

(i) ATAS claim®? that the B3 electromagnetic field of their new "O(3) elec-
trodynamics" is to be identified with F15 (giving by Eq.(203)).

Well, this is a nonsequitur because we already showed above that F15 has
nothing to do with electromagnetic fields, it is only a combination of the curva-
ture bivectors, which is a pure gravitational object.

43Gee the list of their papers related to the subject in the bibliography.
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(ii) With that identification ATAS claims that it is the energy of the "elec-
tromagnetic" field F12 that makes MEG to work. In that way MEG must be
understood as motionless electromagnetic generator that (according to AIAS)
pumps energy from the ‘vacuum’ defined by the Bg field.

Well, Eq.(203) shows that F12 = 0 on the vacuum. It follows that if MEG
really works, then it is pumping energy from another source, or it is violating
the law of energy-momentum conservation. So, it is unbelievable how Physics
journals have published ATAS papers on MEG using arguments as the one just
discussed, that are completely wrong.

(iii) We would like to leave it clear here that it is our my opinion that MEG
does not work, even if the USPTO granted a patent for that invention, what we
considered a very sad and dangerous fact. We already elaborated on this point
in the introduction and more discussion on the subject of MEG can be found**
at http://groups.yahoo.com/group/free_energy/.

(iv) And what to say about the new electrodynamics of the AIAS group and
its Bg field?

Well, in [24, 81] we analyzed in deep all known presentations of the "new O(3)
electrodynamics" of the ATAS group. It has been proved beyond any doubt that
almost all ATAS papers are simply a pot pourri of non sequitur Mathematics
and Physics. That is not only our opinion, and the reader is invited (if he
become interested on that issue) to read a review of [24] in [16].

Recently ([37]-[40]) Evans is claiming to have produced an unified theory
and succeeded in publishing his odd ideas in ISI indexed Physical journals. In
the next section we discuss his ‘unified’ theory, showing that it is again, as it
is the case of the old Evans&ATAS papers, simply a compendium of nonsense
Mathematics and Physics.

(v) And if we are wrong concerning our opinion that MEG does not work?

Well, in that (improbable) case that MEG works, someone can claim that
its functioning vindicates the General Theory of Relativity, since as proved in
the last section in that theory there is no trustworthy law of energy-momentum
conservation. That would be really amazing...

7 Field Equations for the Tetrad Fields 6

In the previous section we gave a Clifford bundle formulation of the field equa-
tions of general relativity in a form that resembles a Si(2,C) gauge theory and
also a formulation in terms of a set of 2-form fields xS®. We are not going to
discuss in this paper if the SI (2, C) nonhomogeneous field equation can be of
some utility. This will be done in another paper. Here we want to recall how
to write field equations directly for the tetrad fields 62 in such a way that the
obtained equations are equivalent to Einstein’s field equations. Of course, we

44The reader must be aware that there are many nonsequitur posts in this yahoo group,
but there are also many serious papers written by serious and competent people.
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could write analogous (and equivalent) equations for the dual tetrads e,.*

As shown in details in papers [77, 91] the correct wave like equations
satisfied by the 62 are!®:

—(0-8)0*+ON(D-0%)+0(DNO) =T — %T@a. (226)

When 62 is an exact differential, and in this case we write 62 — 0* = dz*
and if the coordinate functions are harmonic, i.e., 60* = —96* = 0, Eq.(226)
becomes

1
0o + 5R9“ =-T", (227)
where we have written as defined in the Appendix
(@-8) = g""De,De, =0 (228)

i.e., @- 9 is the (covariant) D’ Alembertian operator.
In Eq.(226) @ = 62D, = O A+ 81 = d — ¢ is the Dirac (like) operator
acting on sections of the Clifford bundle C¢(T*M) defined in the Appendix.
With these formulas we can write

?=0-0+0N8,

ONOD=—-0-0+0 N0+ 00N, (229)
with
0-0= nab(DeaDeb — wapDe.),
OND =02N0°(De, Do, —wSDe,). (230)
Note that D, 0° = —wP.0° and a somewhat long, but simple calculation 47
shows that
(OND)0* =R?, (231)
where, as already defined, R® = R20P are the Ricci 1-forms. Also 72 = T2
are the energy momentum 1-forms and R = R3 = —T = T2. We also observe

(that for the best of our knowledge) @ A @ that has been named the Ricci
operator in [91] has no analogue in classical differential geometry.
Note that Eq. (226) can be written after some algebra as

RH — %T&“ _ T, (232)

with R¥ = REdx” and TH = THdz", 0% = da* in a coordinate chart of the
maximal atlas of M covering an open set U C M.

45Incidentally, our exercise will show that all recent Evans papers ([26, 37, 38, 39, 40])
describing his new ‘unified’ theory are sheer nonsense.

460f course, there are analogous equations for the ea [51], where in that case, the Dirac
operator must be defined (in an obvious way) as acting on sections of the Clifford bundle of
multivectors, that has been introduced in section 3.

47The calculation is done in detail in [77, 91].
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8 A Short Comment on Recent Evans& AIAS
Papers

We are now prepared to make some crucial comments concerning some recent
papers by Evans&AIAS ([26],[37]-[41]).
(i) Evans wrote that the e,, a =0, 1,2, 3 satisfy the equations

[ (O+T)ea=0. |

He thought to have produced a valid derivation for that equations. I will
not comment on his derivation here. Enough is to say that if that equation was
true it would imply that (O + T7)6* = 0, which is not the case, since the true
equation satisfied by any one of the 2 is Eq.(226).

(ii) We note that Eq.(232) looks like an equation written several times by
Evans in [38, 39, 40, 41], but Evans equation is a non sequitur because in place
of the coframe 1-forms he uses scalar functions !

(iii) We quote that Evans explicitly wrote several times in [38, 39, 40] that
the "electromagnetic potential"*® A of his theory (a 1-form with values in a
vector space) satisfies the following wave equation,

| (@+TA=0. |

Now, this equation is incorrect even for the usual U(1) gauge potential of

1
classical electrodynamics A € sec /\ T*M C secCl(T*M). Indeed, in vacuum

Maxwell equation reads,
oF =0, (233)

where F' = 0A = & N A = dA, if we work in the Lorenz gauge 8 - A = 1A =
—0A =0. Now, since we can also write

9® = —(ds + dd) (234)

and we have that
9*A=0. (235)

Now, a simple calculation shows that in the coordinate basis introduced
above we have,
(8*A)o = g™ D,D, Ay + R A, (236)

and we see that Eq.(235) reads in components

DA, — R\A, = 0. (237)

48 What Evans did was to identify his "electromagnetic potential" with the bivector valued
connection 1-form w that we introduced in section above. As we explained with details this
is a nonsequitur because that quantity is related to gravitation, not electromagnetism.
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Eq.(237) can be found, e.g., in Eddington’s book [31] on page 175.

Finally we make a single comment on reference [26]. There we can read at
the beginning of section 1.1:

“The antisymmetrized form of special relativity [1] has spacetime metric
given by the enlarged structure

1
nt = 3 (cta”* + o¥ch"), (1.1.)

where o# are the Pauli matrices satisfying a clifford (sic) algebra
{o*,o"} = 26",

which are represented by

(3 )= (2 )= (0 )= (3 ) o

The * operatorion denotes quaternion conjugation, which translates to a spatial
parity transformation.”

Well, the * is not really defined anywhere in [26]. If it refers to a spatial
parity operation, we infer that 0°* = o%and o = —o?. Also, n*¥ is not defined,
but Eq.(3.5) of [26] make us to infers that n*¥ =diag(1,—1,—1,1). In that case
Eq.(1.1) above is true but the equation {o#,0"} = 20" is false. Enough is to
see that {00, 0%} = 20% # 26%. Any school boy would detect immediately this
error, and any competent mathematical physicist would immediately recognize
the statement that that the equation {o*, 0"} = 26 defines a Clifford algebra
as false.What were the referees doing when they read that paper and the others
by Evans&AIAS?

9 Conclusions

In this paper we introduced the concept of Clifford valued differential forms,
which are sections of C4(TM)® /\T*M . We showed how this theory can be used
to produce a very elegant description the theory of linear connections, where a
given linear connection is represented by a bivector valued 1-form. Crucial to
the program was the introduction the notion of the exterior covariant derivative
of sections of C4(TM) ® /\T*M . Our natural definitions parallel in a notice-
able way the formalism of the theory of connections in a principal bundle and
the covariant derivative operators acting on associate bundles to that principal
bundle. We identified Cartan curvature 2-forms and curvature bivectors. The
curvature 2-forms satisfy Cartan’s second structure equation and the curvature
bivectors satisfy equations in analogy with equations of gauge theories. This
immediately suggest to write Einstein’s theory in that formalism, something
that has already been done and extensively studied in the past. However, we
did not enter into the details of that theory in this paper. We only discussed the
relation between the nonhomogeneous SI(2,C) gauge equation satisfied by the
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curvature bivector and the shameful problem of the energy-momentum ‘con-
servation’ in General Relativity, and also between that theory and M. Sachs
‘unified’ field theory as described in [85, 86].

We also recalled the concept of covariant derivatives of spinor fields, when
these objects are represented as sections of real spinor bundles ([56, 64, 79]) and
study how this theory has as matrix representative the standard spinor fields
(dotted and undotted) already introduced long ago, see, e.g., [21, 71, 72, 73].
What was new in our approach is that we identify a possible profound physical
meaning concerning some of the rules used in the standard formulation of the
(matrix) formulation of spinor fields, e.g., why the covariant derivative of the
Pauli matrices must be null. Those rules implies in constraints for the geometry
of the spacetime manifold. A possible realization of that constraints is one where
the fields defining a global tetrad must be such that eg is a geodesic field and
the e; are Fermi transported (i.e., are not rotating relative to the "fixed stars")
along each integral line of eg. For the best of our knowledge this important fact
is here disclosed for the first time.

We use our formalism to discuss several issues in presentations of gravita-
tional theory and other theories. In particular, we scrutinized Sachs "unified"
the theory as discussed recently in [86, 87] and as originally introduced in [85].
It is really difficult to believe that after that more than 40 years Sachs suc-
ceeded in publishing his wrong results without anyone denouncing his errors.
The case is worth to have in mind when we realized that Sachs has more than
900 citations in the Science citation Index. Some one may say how cares? Well, I
cared, for reasons mainly described in the introduction, and here we showed that
there are some crucial mathematical errors in that theory. To start, [85, 86, 87]
identified erroneously his basic variables ¢, as being (matrix representations)
of quaternion fields. Well, they are not. The real mathematical structure of
these objects is that they are matrix representations of particular sections of
the even Clifford bundle of multivectors C4(T'M) as we proved in section 2.
Next we show that the identification of a ‘new’ antisymmetric field F,z in his
theory is indeed nothing more than the identification of some combinations of
the curvature bivectors??, an object that appears naturally when we try to for-
mulate Einstein’s gravitational theory as a SI(2,C) gauge theory. In that way,
any tentative of identifying F,5 with any kind of electromagnetic field as did
by Sachs in [85, 86] is clearly wrong. We also present the wave like equations
solved by the (co)tetrad fields®® §2. Equipped with the correct mathematical
formulation of some sophisticated notions of modern Physics theories we identi-
fied fatal mathematical flaws in several papers by Evans&AIAS®! that use Sachs
‘unified’ theory. In a series of papers, quoted in the bibliography Evans&AIAS
claims that MEG works with the energy of the B field that they identified with
the field F12 (given by Eq.(203)) that appears in Sachs theory. They thought,

49The curvature bivectors are physically and mathematically equivalent to the Cartan cur-
vature 2-forms, since they carry the same information. This statement is obvious from our
study in section 4.

50The set {2} is the dual basis of {ea}.

5IRecall that Evans is as quoted as Sachs, according to the Sceience Citation Index...
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following Sachs, that that field represents an electromagnetic field. It is amaz-
ing how referees of that papers could accept that argument, for in vacuum
Fi2 = 0 (see Eq.(203)). Also, as already said F12 is not an electromagnetic
field. However, since there are no conservation laws of energy-momentum in
general relativity, if MEG works®?, maybe it is only demonstrating this aspect
of General Relativity, that may authors on the subject try (hard) to hide under
the carpet.

Acknowledgement 3 Authors are grateful to Ricardo A. Mosna for very use-
ful observations.

A Clifford Bundles C/(T*M) and C{(TM)

Let £ = (M,g,D) be a Lorentzian spacetime. This means that (M, g) is a
four dimensional time oriented and space oriented Lorentzian manifold, with
M ~ R* and g € sec(T*M x T*M) being a Lorentzian metric of signature
(1,3). T*M [TM] is the cotangent [tangent] bundle. T*M = UzepnTiM,
TM = UgemTeM, and TyM ~ TIM ~ R'3, where R"3 is the Minkowski
vector space [88]. D is the Levi-Civita connection of g, i.e., Dg = 0, R(D) = 0.
Also ©(D) = 0, R and © being respectively the torsion and curvature ten-
sors. Now, the Clifford bundle of differential forms C¢(T*M) is the bundle of
algebras® CU(T*M) = UyeCU(T; M) , where Vo € M,CUT; M) = Ry 3, the
so-called spacetime algebra [57]. Locally as a linear space over the real field R,
CL(T M) is isomorphic to the Cartan algebra /\(T;M ) of the cotangent space

k
and /\T;M = Zi:o /\kT;M, where /\ T*M is the (i)—dimensional space of

k-forms. The Cartan bundle /\T*M = UzeMm /\T;M can then be thought [56]

as “imbedded” in C4(T*M). In this way sections of C4(T*M) can be repre-

sented as a sum of nonhomogeneous differential forms. Let {ea} € secTM, (a =

0,1,2,3) be an orthonormal basis g(ea,en) = 7ap = diag(1l, —1, -1, —1) and let
1

{02} € Sec/\ T*M — secCL(T*M) be the dual basis. Moreover, we denote by

g~ ! the metric in the cotangent bundle.

An analogous construction can be done for the tangent space. The corre-
sponding Clifford bundle is denoted C/(TM) and their sections are called mul-
tivector fields. All formulas presented below for C4(T* M) have a corresponding
in C(TM) and this fact has been used in the text.

52We stated above our opinion that despite MEG is a patented device it does not work.

53We can show using the definitions of section 5 that C£(T* M) is a vector bundle associated
with the orthonormal frame bundle, i.e., CO(M) = PSO+(1 ) Xad Cly,3. Details about this
construction can be found, e.g., in [64].
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A.1 Clifford product, scalar contraction and exterior prod-
ucts

The fundamental Clifford product (in what follows to be denoted by juxtaposi-

tion of symbols) is generated by y#4¥ + 4¥~y* = 2np*” and if C € secCl(T*M)
we have

C =5+ va0* + %bcdeced + %aabceaebec + pb® (238)

where 6% = 0°9162603 is the volume element and s, va, bed, Gabe, P € S€C /\OT*M C
secCl(T*M). »

Let A,, € sec /\7T*M — secCl(T*M), Bs € sec /\ST*M — secCl(T*M).
For r = s = 1, we define the scalar product as follows:

For a,b € sec /\lT*M — secCl(T*M),

a-b==(ab+ba) =g *(a,b). (239)

N | =

We also define the exterior product (Vr,s =0,1,2,3) by

Ar NBs = <A7‘Bs>r+57
Ay A By = (—1)°B, A A, (240)

k
where (), is the component in the subspace /\ T*M of the Clifford field. The

exterior product is extended by linearity to all sections of C4(T*M).
For A, = a1 A... Na,, B, = by A ... A\ b, the scalar product is defined as

Ay Br=(a1 Ao Nap) - (by Ao ADy)

a1-b1 a1'bk
=det | ... ... ... |. (241)
ak.-bl ak.-bk

We agree that if r = s = 0, the scalar product is simple the ordinary product
in the real field.

Also, if r,s # 0 and A, - B =0 if r or s is zero.

For r <s,A. =ai A...\Na,, Bs = by A... AN bs we define the left contraction
by

i1<---<ir
(242)
where ~ denotes the reverse mapping (reversion)
~: sec/\pT*Maal Ao Nap—apA...Nay, (243)
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and extended by linearity to all sections of C4(T*M). We agree that for «, 8 €
0
sec /\ T*M the contraction is the ordinary (pointwise) product in the real
0 r s
field and that if o € sec/\ M, A,, € sec/\ T*M, B, € sec/\ T*M then

(aA,)1Bs = A, (aBs). Left contraction is extended by linearity to all pairs of
elements of sections of C£(T*M), i.e., for A, B € secCL(T*M)

AB =) (A),x(B)s,r < s. (244)

It is also necessary to introduce in C{(T* M) the operator of right contrac-
tion denoted by L. The definition is obtained from the one presenting the left
contraction with the imposition that » > s and taking into account that now if

A, € sec /\TT*M, B, € sec /\ST*M then A,_(aBs) = (aA,)LBs.

A.2 Some useful formulas

The main formulas used in the Clifford calclilus in the main text can be obtained
from the following ones, where a € sec /\ T*M and A, € sec /\ T*M, B, €

sec /\ST*M:

aBs = a.Bs; +a A B, Bsa = BsLa+ Bs Aa, (245)

1
a N By = i(aBs + (—)°Bsa),
ApBs = <ATBS>|7-—s| + <Ar—'Bs>|r—s—2\ + o+ <ATBS>\7'+3|
= 1
= Z<A7'Bs>\r—s|+2kv m = 5(7" +s—|r—s|). (246)
k=0

A.3 Hodge star operator

k 4—k
Let * be the usual Hodge star operator * : /\ ™M — /\ M. If B €

k 4—k 4
sec /\ "M, A € Sec/\ T*M and T € sec /\ T* M is the volume form, then

*B is defined by
AANxB = (A-B)r.

Then we can show that if A, € sec /\pT*M — secCl(T = M) we have

*xA, = A,0°. (247)
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This equation is enough to prove very easily the following identities (which are
used in the main text):

A AN*Bs = Bs ANxA,; r=s,

A,axB,=B,a%xA,; r+s5=4,

A A*Bg = (=167 5 (4,.B,); r<s,

Apax By = (1) % (A, ABy); r+s<4 (248)
Let d and § be respectively the differential and Hodge codifferential operators

acting on sections of /\T*M. If w, € sec /\pT*M — secCl(T* M), then dw, =
(—)P =1 d xwy, with x~1x = identity, where when applied to a p-form

I (71)p(4*p)+1 *

A.4 Action of D,, on Sections of C/(TM) and C/(T*M)

Let Do, be the Levi-Civita covariant derivative operator acting on sections of
the tensor bundle. It can be easily shown (see, e.g., [27]) that De, is also a
covariant derivative operator on the Clifford bundles C¢(T'M) and CO(T*M).

Now, if A, € sec /\pT*M — secC(M) we can show, very easily by explic-
itly performing the calculations® that
1
De, Ap = 0e, Ap + 3 [Wens Ap], (249)

2
where the we, € sec /\ T*M — secCl(M) may be called Clifford connection
2-forms. They are given by:

1
We, = wPOp0, = §w:‘:9b A B, (250)

where (in standard notation)
De,0p = wiple, De 0P = —whe0°, wh® = —wsP (251)

An analogous formula to Eq.(249) is valid for the covariant derivative of
sections of C/(T'M) and they are used in several places in the main text.

A.5 Dirac Operator, Differential and Codifferential

The Dirac operator acting on sections of C/(T*M) is the invariant first order
differential operator

8 =02D,,, (252)
and we can show(see, e.g., [77]) the very important result:
0=0N+01=d-6. (253)

54 A derivation of this formula from the genral theory of connections can be found in [64].
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The square of the Dirac operator 8 is called the Hodge Laplacian. It is not
to be confused with the standard Laplacian which is given by (1 = 8- 8. The
following identities are used in the text

dd =66 =0,
do* = 8%d; 68° = 8?6,
Sx = (=P xd; 6 = (—1)? xd,
dox = +dd;  *dd = ddx; *0* = 8% (254)

A.6 Maxwell Equation

Maxwell equations in the Clifford bundle of differential forms resume in one sin-
2
gle equation. Indeed, if F' € sec /\ T*M C secCL(T*M) is the electromagnetic

1
field and J. € sec /\ T*M C secCl(T*M) is the electromagnetic current, we
have Maxwell equation®’:
OF = J.. (255)

Eq.(255) is equivalent to the pair of equations

dF =0, (256)
§F = —J,. (257)

Eq.(256) is called the homogenous equation and Eq.(257) is called the non-
homogeneous equation. Note that it can be written also as:

d«F =—xJ.. (258)
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