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Abstract

We propose a test of hypothesis for the closeness of two distributions whose
test statistic is asymptotically normal. The divergent is based on the estimation
procedure developed in Dias (2000) using a proxy of symmetrized Kullback-
Leibler distance. Simulation results show that for mixture of normal distribu-
tions this test is more powerful than Kolmogorov-Smirnov test. As an appli-
cation we compare acoustic data from several languages in order to identify

rhythmic classes.
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1 Introduction

There are several situations where we have independent samples and wish to test
whether they come from the same distribution. If it is possible to conjecture a para-
metric family for the distribution, life is much easier and parametric tests can be used.

However, most of the time we cannot fit a parametric model and a nonparametric



test is necessary. (See for example Fan (1998) and Li (1996)). The same duality
appears in estimation problems. Dias (2000) proposed a nonparametric estimator for
densities based on a proxy of the symmetrized Kullback-Leibler distance which is con-
sistent (Section 2). Based on this estimator, in Section 3 we propose a test statistic
(henceforth called SKL test) which is asymptotically normal. Simulation results show
that for mixture of normal distributions SKL test is more powerful than Kolmogorov-
Smirnov (K-S) test (Section 4). Also, the normal approximation is achieved even for
small samples when the underlying distribution is normal.

As an application, in Section 5, we present an example that comes from linguistic
and deals with clustering the natural languages into rhythmic classes. In the linguistic
literature it has been conjectured that natural languages are divided into rhythmic
classes (cf. Abercrombie (1967), Pike 1945 among others). During half a century
no reliable phonetic evidence was presented to support this claim. Recently Ramus,
Nespor and Mehler (1999), gave evidence that simple statistical properties of the
speech signal could discriminate between different rhythmic classes. They analyzed
the acoustic signal of 20 sentences of each of the following languages: English, Polish,
Dutch, Catalan, Spanish, Italian, French and Japanese. They computed for each
sentence the standard deviation of the consonantal intervals (AC) and the proportion
of time spent in vocalic intervals (%V) and found that based on these statistics
the languages appear to cluster into three groups which correspond precisely to the
intuitive notion of rhythmic classes: English, Polish and Dutch represent the accentual
class, French, Spanish, Catalan and Italian represent the syllabic class and Japanese
represents the moraic class. In their work there is no study for Portuguese. In
Section 5, we apply the proposed nonparametric test to some of these languages and
find that there is no significant evidence of difference between European and Brazilian
Portuguese, English and Dutch and English and European Portuguese, while there
is significant difference between Brazilian Portuguese and Catalan and English and

Japanese.



2 Previous results

Suppose we have two independent random samples X = (X1, X, ..., X,,) with dis-

tribution F and Y = (Y1, Y5,...,Y,,) with distribution G and we would like to test

whether F' = (. First assume that both F' and G are absolutely continuous cumula-

tive distribution functions with F' < p and G < p for a Lebesgue dominant measure
dF d

1. Moreover, assume that f = an and g = ﬁ, the respective densities of F' and G,

have compact support X. Define F, be the class of density functions such that,
eS(:c)

[y 5@ dp(z)

where the function S is of the class C%(R). It is easy to see that the elements in

Fo={h:R—[0,00) : h(z) = and / S@du(z) < oo},

F, are not identifiable since for any function S; such that S; = S + ¢, we have
e51/([e) = e/([ e%). We are going to require, as Dias (1998), that [, S =0, to
ensure uniqueness of the elements in F,.

Assume further that for any density h € F,, there exists K and a vector § =
(61, ...,0k) € RF such that

K
Sp = (0, M)k =) 0,M;,

7j=1
where M;, j =1,..., K are normalized basis functions such that [ M; = 1. In order
to enforce one-to-one correspondence we restrict [ S, = 0 and then Y77, 0; = 0,

since [ M; =1. For any K > 0, let ©g = {§ € R¥ : Zfﬁj = 0}.
Assuming that the densities f and g belong to F,, we have that there exist K,
K, and vectors 6 = (01, ...,0k,), ¥ = (¢1,...,¥K,) such that the log-likelihood of X

and Y are given by

Ly, (01X) = %Z(G,M(X,)}Kl — log / el0:M)x, (2.1)
i=1
and
_ 1y : (M)
Li(0Y) = == 3 (0 M(¥)) s, — log [ c¥40xs. (2.2
=1



The next results (Lemma 2.3, Theorem 2.4, Lemma 2.10 and Proposition 2.12)
were proved by Dias (2000) in the case that functions M are the normalized B-splines.
We are going to enunciate the results for the (2.1) but obviously the results are also

valid for (2.2).

Lemma 2.3 Fora fired K, Lk, (0|X) is concave in 6. Moreover, Ly, (0|X) is strictly

concave for 8 € ©y. Hence there exists at most one mazrimizer on ©y.

It is not difficult to show that Ly, (6|X) is continuous and at least twice differentiable
in @ for a fixed K. Thus, restrict to ©y one may guarantee a unique density estimate.

The next theorem shows the relationship between the maximizers 6 in © and 6"

in @0.

Theorem 2.4 If the vector § mazimizes Ly, (0|X) then 6* = HA—% Z]K:ll 0, mazimizes

L, (0|1X) subject to Z]K:ll 0, = 0. Moreover, 0" is unique.
For fixed K, let éfffl) be defined as

0" = arg max L, (6]X). (2.5)

Notice that, in fact,
Ly, (0|X) = (0, M), — log/e<9’M>K1 :
then éy(ffl) is the unique solution of the equation
h(0, M (X)) =0, (2.6)

where M (X) is a K-dimensional vector with j-th components given by

1 & )
n—lz:Mj(Xi) =M;, je{l,...,K}. (2.7)
=1

Since Lx, (6]X) is at least twice differentiable we have 655" as the unique solution of
the equation,

aLK1(9|)() L * _
T = h(0, M*(X)) = 0, (2.8)
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where, M* = (1/K) Y"/_, M; and h : ©g x [0,00)K — RX with j-th entry,

_ Jexp({0, M(2))k,) M;(2)dz
J exp({0, M (2))k, )dz

for j € {1,..., K;}. Therefore, éﬁffl) is an M-estimator and since 6 — hy is continuous

hy(0,w) = u; (2.9)
we have the following result.

Lemma 2.10 Let 0y be the unique solution of

6, [ 1M @) = 0
i Oy, then for fized K, éfffl) — By almost surely as ny — o0.
Thus, the density estimate is, for fixed K;
fK1 = egflogfeg’
where S = (0, M), with 0 = i),
One may notice the density estimate le strongly depends on the number of basis
functions K; which regularizes the optimization problem (2.1). In order to provide

an appropriate K, one may want to compute the Kullback-Leibler distance between

the true f and the random function f,.

d(f, fre) = / (log f — log fix.)f (2.11)

Of course, we cannot, compute d( f, fKI) from the data, since it requires the knowledge
of f. But theoretically we can investigate this distance for the choice of an optimal

K in the sense of minimizing d(f, fx,). Then, one may define the best K; as

K, = i d(f, f
p=arg min (f, fx),

for K. < n. Observe that, in order to obtain K 1, it is sufficient to minimize

k)= [ o

Notice that D, (K) is a random function of K and also can be approximate by

Zn(K) = %Zlog Fre(X).
i=1



Proposition 2.12 For any fized K,
_ 0 ISy
Da(K) = Za(K) e ([ @M @nta) - doM() =0 @13
n — 0o almost surely.

Lemma 2.14 For K, K, fized the density estimates fx,(-) = fx,(-|0n,) and jx, () =
grc, (+|thn,) converge pointwise almost surely (a.s.) to fx,(-|0)and g, (-|1) respectively

as ni,ny go to infinity.

Proof. It is enough to show one of the statements above. For fixed z, it is not
difficult to check that the map 6 — f,,(z|@) is a continuous map in § € ©,, for any
m € N. By Lemma 2.10 we have 6, — 6(€ Op) a.s. and so fn(z]0) — fm(2|0)
almost surely as n — co. Notice that the null sets of the a.s. convergence do not

depend on z then f(-|f) converges pointwise to f(-) a.s.

3 Hypothesis testing - SKL test statistic

In this section we propose a statistic to test: Hy : f = g almost surely p versus the
alternative hypothesis H; : f # g over a set of positive u-measure. Since this test
statistic is based on the symmetrized Kullback-Leibler distance we will call it SKL
test.

First we notice that the parameter space @y = {# € R : ZJK g; = 0} is not an
open set and it is a (K — 1)-dimensional manifold in RE. Therefore, in order to have
any kind of asymptotic normality results we need to reparametrize the problem to
01,...,0k_1) € O, such that (01,...,0K_1,—ZK '9;) € ©,. We will continue to

call the parameter . In this case, the density will be written as

£(0,31(z)
f(l'\g):WEfu (3.1)
where
Mj(x) = M;(z) — M (). (3-2)
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For fixed K; and K>, we have as a consequence of Cramér’s Theorem (see for
example, Ferguson (1996), p.121) the asymptotic normality of the consistent estimator

which solves the likelihood equation. For simplicity we will continue to denote

A A

Oy = (01,- ., 0k, 1) (3.3)
where 05 = (6,,...,0x,) is given by (2.5). Define similarly ¢,

Theorem 3.4 The estimators ém and ﬁnz are asymptotically normal distributed.

More specifically, there exists positive definite matrices X1 and ¥y such that

\/’I’L_l(énl — 9) — NKl—l(O, 21) (35)
\/n_2(¢n2 - w) - NKzfl(Oa E2) (3'6)

as ni,ng — 00.

Proof. We are going to prove (3.5), (3.6) is completely analogous. We need to show
that all f € F, satisfy the regularity conditions. First it is obvious that (:jo is an
open set and the model is identifiable.

Note that (@) is of the class C“(éo). It is easy to verify that [, e0M@) < 00,

since X is a compact set and f € F,. In addition,

O 01@) ()@@ (3.7)
90,

62 VI (z Y Y VI (z

g = W)W () (3.5)

which exist and are continuous functions for each (0, z) € ©¢ x X. Thus, f(z|6) is of
the class C“(éo) and the partial derivatives may be passed under the integral sign.

Let

{0, (2)) (3.9)

() M ()M @D, (3.11)

/.
Ci(o) = /X Ti(2)e @) (3.10)
/.



It is easy to verify that

log f(z | 0) _ Cy(0)C(0) — Ci(9)C;(0)
T S0k (3.12)

Since C(f), C;(#) and C;;(0) are continuous functions of 4, then in a closed neigh-

borhood N (6y) of the true parameter value 6, we have

C, = min C(#)>0
0eN (6o)

C; = max C;j(f) <oo
0eN (6p)

Cij = 9&%(0) Ci;(0) < 0.

Thus,

0*log f(z [ 0)| _ |Cy| | [CiC)] -
< =: . NI
96,0, <. + cz C(i,j) < o0 (3.13)

In a completely analogous way, the third partial derivatives can be bounded.

Let Z(#) the Hessian matrix of log f(x|f) with entries

8210gf(ﬂ?|9)] _

Lix(0) = —E [ 80,0,

Then Z(6) is positive definite matrix. To see this, observe that

T 1 (0) = Cov(M;(X), M;(X)) = Cov(M(X) — Mg (z), Mj(X) — Mg(X)),

)

which is nonnegative definite. But M;’s form a basis for the finite dimensional ap-
proximant space (e.g., natural cubic spline space) and so the columns of Z(f) are

linear independent. Consequently, Z(6) is a positive definite matrix. O

To measure the distance between the two distributions F' and G we can use the

divergent given by:

I5(F.G) = / (log /() — log g()) f (x)dpu(x) + / (log 9(y) — log £ (4))g(y)du(y).
(3.14)



Define the following estimator for Is(F,G),

~

I5(7,9) = [ (o8 fus (0) = W8 (@) aF (o) + [ (0831, (5) ~ 108 Fi )G

(3.15)
where F,,, and G,, are the empirical distribution of F' and G respectively. In fact,
if we have the random samples X = (X, Xy, ..., X,,) with distribution F' and Y =
(Y1,Ys, ..., Y,,) with distribution G, this estimator is of the form

Is(f,9) = n1 (Zlogfm Zlogng ) (3.16)

+ (Zloggz@ Zlog fr (¥3))

= Il,nl (X) + 12,712 (Y)

Lemma 3.17 For fized Ky and Ky, (I n,(X) + Iy, (Y)) — (I + L) = Ig almost

surely as ny,ny — 0.

Proof. It is enough to show that IAl,m(X) — I, almost surely as ny,ny — o0, the

result for Iy, (Y) is done similarly. Let

DL () = / F (1) log fr, (1) dp(n),
D2, . (Ky) = / £ () Jog ey (1) dpa(),

ni
Zp, (K1) =ny" Zlongl (X1,0),
=1
and

ni
Zil 2 (KQ) = 77,1_1 Z log ng (Xl,i)-
i=1
To simplify the notation we will write f1,n1 (X) = I, IAQ,n2 (Y) = L, D} (K:) =D,
Dy oy (K2) = D%, 7, (Ky) = 27, 25, (Ks) = 22,

Note that, I; = Z' — Z2. Notice that it is sufficient to show that,
(D' - ZYY + (D* - Z%) — 0,
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almost surely as ny,ny — oco. For this, observe that,

1— ni

GRS SN | N AETHERE) SE ey

and

(D* - 27%) = Ki__:l Uny,j (/f(ﬂ?) jo(x)du(z) — n”' iMjﬂ(Xi))

Following Dias (2000), we have, if 6,, and t,, are the maximum likelihood es-
timators then 9n1 — 6y and ,, — 1 almost surely as ni,n, — 0, where 6,
and vy are the true parameter values. Moreover, by the strong law of large num-
bers, ny! 3" My ;(X;) — [ f(z)M;1(z)dp(z) almost surely as n; — oo, for

j=1,...,K, — 1. Thus, I; —> I, almost surely as n1, no goes to infinity. 0
Theorem 3.18 For all f, g € F,, we have a positive constant or such that

V(I (X) = I) + v/na(Inn, (Y) — I;) — N(0,07)

as ni,nyg — oo. Note that under Hy we have Iy = I = 0 and the result turns to be

Vit T, (X) + /72 Iy, (Y) — N(0,07)

where oy = oy, + o1, with

K_IZ_IO?VM(M )+222K12199z00v( 2 (X0, M (X))
+K§¢§.Var(M X)) + 2%2%1¢]¢500v( 2(X0), Mip(Xy))

Ki—1K>—1

+2 Z 2_: 03¢ COV( 1(X4), ~l,2(Xz')> (3.19)

with a completely analogous expression for o, substituting accordingly.
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Proof.

vinth~1) = i [ f(x){iél 0,1, (s) — KZ Ui (2) ()
- ni{z KZ 0,1134(X;) - KZ YT (X)
+ vt f(fv){iij(% — 0T (s) - KZ(w () ()
. ni{z:: Ij;l(e, 0L (X)) 112;(1/11 — ) WX}

Observe that, as ny — oo we have

Ki—-1
> V(s - 0)( [ £ Ma(addu(e) - - 3 N3a(X)) —0,
j=1 ]

in probability since

and

in probability. Also, by the Central Limit Theorem for i.i.d. random variables

v ( [ 1Y @t - >0 Y- ﬁij,l(Xz-)}> — N(0.05),
and
v ( [0 it @int) - >3 wlMl,z(X»}) — N(0.05)

where og, = Var (25(211—1 HijJ(X,-)) and og, = Var (Z]K:zl_l z/Jij,l(Xi)). Hence,

\/n_l(jl - Il) — N(07UI1)1
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where oy, is given by (3.19). The result
\/n_Q(jQ - I2) — N(07 012)1

is proved analogously and noticing that I, and I, are independent random variables

we have the desired result. O

Extensions. This procedure can be extended to test closeness of multivariate dis-
tribution functions by using tensor product among the B-spline basis. Also, one might
consider the dimension of the approximant spaces (K; and K3) to be unknown and
estimated from the data using either an adaptive procedure similar to H-splines (Dias
(1998)) or a Bayesian approach similar to the one proposed by Dias and Gamerman

(2002) for nonparametric regression.

4 Simulation results

In order to assess the range of applicability we performed some simulation for small
samples using several known distributions. Figure 4.1 shows that the normal distri-
bution for the test statistic holds even for samples of size 30 when the underlying true
distribution is normal. This result was verified using 1000 bootstrap resampling of
the original data and 1000 independent replications of the sampling distribution. For
non-symmetric distributions such as gamma distributions we have a small skewness
to the right.

Moreover, we compare SKL test with Kolmogorov-Smirnov (K-S) test which is
the most used nonparametric test for comparing continuous distributions. It is well-
known that K-S test presents problems in heavy-tailed distributions (see, Mason and
Schuenemeyer (1983) and Mason and Schuenemeyer (1992)). Therefore, we chose to

make this comparison in terms of power using using 2000 bootstrap replications of
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Figure 4.1: Parametric and kernel estimate for the distribution of SKL

mixture of normal distributions. The sampling distribution is given by

f(z) = 8¢((z +.5)/.6) + .26((x — 1)/.6) (4.1)

where ¢ is the standard normal density and p is the mean of the contaminating dis-

tribution. Table 4.1 and Figure 4.2 show that SKL is consistently more powerful than

K-S in this case.

I ) 0 ) 7 9 1.0 | 1.1 | 1.2 | 1.5
SKL | .045 | .099 | .161 | .256 | .384 | .541 | .663 | .782 | .991
K-S | .045 | .098 | .124 | .233 | .356 | .444 | .500 | .616 | .885

Table 4.1: Power function for SKL and K-S for mixture of normal distributions
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Figure 4.2: Power function for SKL and K-S for mixture of normal distributions
5 Numerical example

In this section we use data from two sources. One of them is the data from Ramus et
al. (1999). The other consists of 20 sentences from Portuguese read by two speakers of
Modern European Portuguese and Brazilian Portuguese ( EP and BP respectively).
These sentences were designed by Sonia Frota and Charlotte Galves to study several
characteristics of Portuguese, not only consonantal and vocalic intervals, but also
stressed syllables, secondary stressed syllables among others. These sentences were
recorded at 16 kHz and 11kHz and then segmented by hand by two persons. They
used both audio and visual clues to identify consonantal and vocalic intervals and
used Multi Speech 3700 software to analyze the acoustic signal. The same procedure
was used by Ramus et al. (1999) to record and segment the other acoustic data as

well.
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For each sentence the duration of the consonantal intervals were computed, call
this variable C'. This variable is important in view of the work of Ramus et al. (1999)
which could cluster 8 languages into into three groups which correspond precisely
to the intuitive notion of rhythmic classes: English, Polish and Dutch represent the
accentual class, French, Spanish, Catalan and Italian represent the syllabic class and
Japanese represents the moraic class. The same variable was used by Duarte, Galves,
Garcia and Maronna (2001) using a parametric approach adjusting a gamma model
to fit the data from all languages. Maximum likelihood ratio tests seems to confirm
Ramus et al. classification and placed European Portuguese among the accentual
languages and Brazilian Portuguese among the syllabic ones. Using SKL and K-S
to compare the distribution of C' for some of the languages we obtained somehow
different results. First of all, we cannot distinguish between Brazilian and European
Portuguese (p-values: SKL=.69 and K-S=.66). Also, at a 5% significance level there is
evidence of difference between Brazilian Portuguese and Catalan (p-values: SKL=.02
and K-S=.02). Figure 5.3 presents density estimates by kernel and by SKL (Dias2000)
suggesting that Catalan is bimodal, maybe a mixture of two gammas and this causes
the tests to reject the equality of the distributions.

As conjectured there is significant evidence for difference between English and
Japanese (p-values: SKL=.01 and K-S < 107?) and no evidence of difference between
English and Dutch (p-values: SKL=.59 and K-S=.18) and English and European
Portuguese (p-values: SKL=.15 and K-S=.05).
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