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Abstract

In this article we consider flows on locally compact manifolds and invariants sets which
need not be compact. We obtain a duality result which is used to generalize the Poincaré-Hopf
inequalities.

1 Introduction

In this paper we want to analyze the most general conditions under which the Poincaré-Hopf

inequalities hold. These inequalities were presented in [1], [2] and [3]. It was shown in [1] that

the Poincaré-Hopf inequalities hold for isolating blocks N with exit set N− and entering set N+

of a maximal isolated invariant set Λ of a continuous flow φt on a smooth compact manifold M .

These inequalities relate the Betti numbers of the components of N+ and N− to the ranks of the

Z2 Conley homology index of the isolated invariants sets of the flow.

The Conley index of (Λ, ϕt) is defined as the homotopy type of the space N/N− and we consider

∗Supported by FAPESP under grant 02/08400-3.
†Partially supported by FAPESP under grant 00/05385-8.
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its homology H∗(N/N−) which is isomorphic to H∗(N, N−).1 One can also consider the Conley

index for the reverse flow (Λ, ϕ−t) and its homology H∗(N/N+) which is isomorphic to H∗(N, N+).

One might ask how these homologies H∗(N, N−) and H∗(N, N+) are related in general?2 In [6]

a Poincaré-Lefschetz duality result for the homology Conley index is proven: for N an orientable

locally compact manifold with boundary. The Poincaré-Hopf inequalities for isolating blocks

depend on a specific duality of the Conley homology index which implies that rank Hj(N, N−) =

rank Hn−j(N, N+).

In this article we prove a duality result, Ȟp(N∗, (N+)∗; Z2) ' Hn−p(N, N−; Z2), in Theorem 2.3

for N a locally compact manifold and ∂N = N+ tN− disjoint union, where N , N+ and N− need

not be compact and N∗ represents the Alexandroff one-point compactification of N .

Using this duality result we also show in Theorem 3.1 a generalized version of the Poincaré-Hopf

inequalities which hold in a more general setting, we need only to assume that the phase space M be

a manifold with finitely generated homology and cohomology groups. We consider a pair of spaces

(N, N−) of a maximal isolated invariant set Λ, Λ = inv(N, ϕ) ⊂ intN . We may consider Λ a non

compact maximal isolated invariant set, where ∂N = N+
∐

N− where N+ and N− are the entering

and exit sets for the flow respectively and may be empty. These inequalities relate the Betti numbers

of the components of N+ and N− to the ranks of the Z2-homology of the pair, H∗(N, N−; Z2) as in

Section 3, which in the compact case is the rank of the classical Conley homology index.

2 Poincaré duality Results

In this section we prove a duality result Ȟp(N∗, (N+)∗; Z2) ' Hn−p(N, N−; Z2).

We begin by presenting a version of the classical Poincaré duality theorem considering homology

and cohomology with compact supports.

Theorem 2.1 (Poincaré duality for manifolds with boundary) Let N be an oriented n-

manifold with boundary ∂N . Then the homomorphisms Hq
c (N) → Hn−q(N, ∂N) and Hq

c (N −
∂N) → Hn−q(N) defined by x → µ ∩ x and y → i∗(µ ∩ y) respectively are isomorphisms (here

i∗ : Hn−q(N − ∂N) → Hn−q(N) is the homomorphism induced by inclusion).

For a connected nonorientable n-manifold, Hn(N, Z) = 0 hence these theorems can not be

1Namely for flows on locally compact manifolds M where neither M nor the maximal invariant sets need be
compact.

2Throughout this article we use Z2 coefficients.
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true as stated in the nonorientable case. However, by using homology and cohomology mod 2

it is possible to state a weaker form of Poincaré duality which is true for all manifolds, whether

orientable or not. For a manifold with boundary, the mod 2 fundamental class is defined to be that

of its interior. With this understanding, Theorem 2.1 remains true if the word “oriented” is deleted

from the hypothesis.

The following results will be used to prove Theorem 2.3.

Proposition 2.1 (Alexander duality) Let (X, A) a compact pair such that X−A is a topological

manifold. Then Ȟp(X,A) ' Hn−p(X − A), where Ȟ∗(·) represents the Čech homology.

Remark 2.2 If N is a manifold then Hp(N) ' Hp(N − ∂N).

Lemma 2.1 Let N be a manifold with boundary ∂N . Let N∗, (∂N)∗ be the Alexandroff one-point

compactification. Then Ȟp(N∗, (∂N)∗) is isomorphic to Hn−p(N).

Proof: By Proposition 2.1 Ȟp(N∗, (∂N)∗)) is isomorphic to Hn−p(N −∂N). Since N is a manifold,

Hn−p(N − ∂N) is isomorphic to Hn−p(N).

Lemma 2.2 Let N be a manifold with boundary ∂N = N+
∐

N− closed. Then Ȟp(N∗, (N+)∗ ∩
(N−)∗) is isomorphic to Hn−p(N, ∂N).

Proof: We have that Ȟp(N∗, (N+)∗ ∩ (N−)∗) is isomorphic to Ȟp(N∗, point). Also, since (X, A)

is a locally compact pair then Ȟp
c (X − A) is isomorphic to Ȟp

c (X, A). Hence, Ȟp(N∗, point) is

isomorphic to Hp
c (N) (Note that N∗ − point = N). Using Theorem 2.1 we have that Hp

c (N) is

isomorphic to Hn−p(N, ∂N).

Theorem 2.3 Suppose N is a connected manifold with ∂N = N+
∐

N−, the disjoint union of two

closed spaces. Then

Ȟp(N∗, (N+)∗)
≈−→ Hn−p(N, N−)

and

Ȟp(N∗, (N−)∗)
≈−→ Hn−p(N, N+).

Proof: Using Mayer-Vietoris we have:
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→ Ȟp(N∗, (N+)∗
∐

(N−)∗) → Ȟp(N∗, (N+)∗) ⊕ Ȟp(N∗, (N−)∗) → Ȟp(N∗, (N+)∗ ∩ (N−)∗) →
↓ ↓ ↓ ↓

→ Hn−p(N) → Hn−p(N, N−) ⊕ Hn−p(N, N+) → Hn−p(N, N+
∐

N−) →

Using Lemmas 2.1 and 2.2 the first and the last arrow are isomorphism.

By the Five Lemma we have that

Ȟp(N∗, (N+)∗)
≈−→ Hn−p(N, N−)

and

Ȟp(N∗, (N−)∗)
≈−→ Hn−p(N, N+)

are isomorphism.

Observe that the middle arrows are constructed in this way because of the naturality of the cap

product.

The following result is a simpler version of Theorem 2.1 and can be used to prove Corollary 2.1.

Proposition 2.2 Let (N, ∂N) be a compact orientable n-manifold with fundamental class µ ∈
Hn(N, ∂N). Then the duality maps

Hk(N, ∂N) → Hn−k(N) and Hk(N) → Hn−k(N, ∂N)

given by taking the cap product with µ, are both isomorphisms.

Corollary 2.1 Suppose N is a compact connected topological space with ∂N = N+ ∪ N−, the

disjoint union of two closed codimension one subspaces. If µ ∈ Hn(N, ∂N) is a fundamental class,

then there is a suitably defined cap product which yields an isomorphism

Hn−p(N, N+)
≈−→ Hp(N, N−)

given by capping with µ.

Proof: The proof is similar by considering Proposition 2.2.
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Theorem 2.4 Given a non compact manifold N with boundary ∂N = N+ tN− we have that

hn−p(N
∗, (N−)∗) = hn−p(N, N−)

and

hn−p(N
∗, (N+)∗) = hn−p(N, N+),

where N∗ is the Alexandroff one-point compactification of N and hn−p(N, N±) = rank H(N, N±).

Proof: By Theorem 2.3 we have that

Ȟp(N∗, (N+)∗)
≈−→ Hn−p(N, N−)

and

Ȟp(N∗, (N−)∗)
≈−→ Hn−p(N, N+)

are isomorphisms. Using the Universal Coefficient Theorem we have that

hp(N
∗, (N+)∗) = rank Ȟp(N∗, (N+)∗) ' rank Hn−p(N, N−) = hn−p(N, N−)

and

hp(N
∗, (N−)∗) = rank Ȟp(N∗, (N−)∗) ' rank Hn−p(N, N+) = hn−p(N, N+).

Since N∗ is compact, we have that

hn−p(N
∗, (N−)∗) = hp(N

∗, (N+)∗)

and

hn−p(N
∗, (N+)∗) = hp(N

∗, (N−)∗).

Hence,

hn−p(N
∗, (N−)∗) = hp(N

∗, (N+)∗) = hn−p(N, N−)

and

hn−p(N
∗, (N+)∗) = hp(N

∗, (N−)∗) = hn−p(N, N+).

This means that given a non compact manifold N with boundary ∂N = N+tN−, we have that

hn−p(N
∗, (N−)∗) = hn−p(N, N−)

and

hn−p(N
∗, (N+)∗) = hn−p(N, N+).

where N∗ is the Alexandroff one-point compactification of N .
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3 Poincaré-Hopf inequalities

In this section we present the Poincaré-Hopf inequalities for a pair of spaces (N, N−) of a maximal

isolated invariant set Λ for a flow defined on a locally compact manifold M , where N may be a

non compact space, N− the exit set for the flow and N+ the exit set for the reverse flow are closed

spaces. These inequalities were discussed in [1] for isolating blocks which are compact manifolds

with boundary and were obtained for closed smooth manifolds M in [2] and [3].

By considering the duality results developed in the previous section we get the duality of the

relative homology even in the non compact case. This means that hj = rank Hj(N, N−) is the same

as hn−j = rank Hj(N, N+). Because of this duality the Poincaré-Hopf inequalities for non compact

manifolds with boundary contains the Poincaré-Hopf inequalities for compact manifolds (isolating

blocks). This can be easily seen by using the Poincaré duality of the Betti numbers of N+ and N−

in the compact case, i.e., B±
j = B±

n−j−1.

Theorem 3.1 (Poincaré-Hopf Inequalities) Let hj = rank Hj(N, N−), hn−j rank Hj(N, N+)

and rank(Hj(N
±)) = B±

j . The Poincaré-Hopf inequalities for a maximal invariant set Λ in N

with entering set for the flow N+ and exiting set for the flow N− are:
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Even case, n = 2i.

{
−(B+

n−1 −B−
n−1) + (B+

n−2 −B−
n−2)− . . .± (B+

i −B−
i )± . . .± (B+

0 −B−
0 ) = 0

{
h1 ≥ −(B+

n−1 −B−
n−1)− (hn − h0))

hn−1 ≥ −[−(B+
n−1 −B−

n−1)− (hn − h0)]{
h2 ≥ (B+

n−1 −B−
n−1)− (B+

n−2 −B−
n−2)− (hn−1 − h1) + (hn − h0)

hn−2 ≥ −[(B+
n−1 −B−

n−1)− (B+
n−2 −B−

n−2)− (hn−1 − h1) + (hn − h0)]

...



hi ≥ −(B+
i−1 −B−

i−1) + (B+
i−2 −B−

i−2) +− . . .± (B+
2 −B−

2 )± (B+
1 −B−

1 )± (B+
0 −B−

0 )

−(hi+1 − hi−1) + (hi+2 − hi−2) +− . . .± (h2i−2 − h2)± (h2i−1 − h1)± (h2i − h0)

hi ≥ −
[
−(B+

i−1 −B−
i−1) + (B+

i−2 −B−
i−2) +− . . .± (B+

2 −B−
2 )± (B+

1 −B−
1 )± (B+

0 −B−
0 )

−(hi+1 − hi−1) + (hi+2 − hi−2) +− . . . ±(h2i−2 − h2)± (h2i−1 − h1)± (h2i − h0)]

...



hj ≥ −(B+
j−1 −B−

j−1) + (B+
j−2 −B−

j−2) +− . . .± (B+
2 −B−

2 )± (B+
1 −B−

1 )± (B+
0 −B−

0 )

−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2) +− . . .± (hn−1 − h1)± (hn − h0)

hn−j ≥ −
[
−(B+

j−1 −B−
j−1) + (B+

j−2 −B−
j−2) +− . . .± (B+

2 −B−
2 )± (B+

1 −B−
1 )± (B+

0 −B−
0 )

−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2) +− . . . ±(hn−1 − h1)± (hn − h0)+]

...

{
h2 ≥ −(B+

1 −B−
1 ) + (B+

0 −B−
0 )− (hn−1 − h1) + (hn − h0)+

hn−2 ≥ −
[
−(B+

1 −B−
1 ) + (B+

0 −B−
0 )− (hn−1 − h1) + (hn − h0)

]
{

h1 ≥ −(B+
0 −B−

0 )− (h6 − h0)

hn−1 ≥ −[−(B+
0 −B−

0 )− (h6 − h0)]

(1)
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Odd case, n = 2i + 1.

{
−(B+

n−1 −B−
n−1) + (B+

n−2 −B−
n−2)− . . .± (B+

i −B−
i )± . . .± (B+

0 −B−
0 ) = 2

2i+1∑
j=0

(−1)j+1hj

{
h1 ≥ −(B+

n−1 −B−
n−1)− (hn − h0))

hn−1 ≥ −[−(B+
n−1 −B−

n−1)− (hn − h0)]{
h2 ≥ (B+

n−1 −B−
n−1)− (B+

n−2 −B−
n−2)− (hn−1 − h1) + (hn − h0)

hn−2 ≥ −[(B+
n−1 −B−

n−1)− (B+
n−2 −B−

n−2)− (hn−1 − h1) + (hn − h0)]
...

hi ≥ −(B+
2i −B−

2i) + (B+
2i−1 −B−

2i−1) +− . . .± (B+
i+1 −B−

i+1)

− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2)± (h2i − h1)± (h2i+1 − h0)

hi+1 ≥ −
[
−(B+

2i −B−
2i) + (B+

2i−1 −B−
2i−1) +− . . .± (B+

i+1 −B−
i+1)

− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2) ±(h2i − h1)± (h2i+1 − h0)]

hi ≥ −(B+
i−1 −B−

i−1) + (B+
i−2 −B−

i−2) +− . . .± (B+
2 −B−

2 )± (B+
1 −B−

1 )± (B+
0 −B−

0 )

− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2)± (h2i − h1)± (h2i+1 − h0)

hi+1 ≥ −
[
−(B+

i−1 −B−
i−1) + (B+

i−2 −B−
i−2) +− . . .± (B+

2 −B−
2 )± (B+

1 −B−
1 )± (B+

0 −B−
0 )

− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2) ±(h2i − h1)± (h2i+1 − h0)]
...

hj ≥ −(B+
j−1 −B−

j−1) + (B+
j−2 −B−

j−2) +− . . .± (B+
2 −B−

2 )± (B+
1 −B−

1 )± (B+
0 −B−

0 )

−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2) +− . . .± (hn−1 − h1)± (hn − h0)

hn−j ≥ −
[
−(B+

j−1 −B−
j−1) + (B+

j−2 −B−
j−2) +− . . .± (B+

2 −B−
2 )± (B+

1 −B−
1 )± (B+

0 −B−
0 )

−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2) +− . . . ±(hn−1 − h1)± (hn − h0)+]
...{

h2 ≥ −(B+
1 −B−

1 ) + (B+
0 −B−

0 )− (hn−1 − h1) + (hn − h0)+

hn−2 ≥ −
[
−(B+

1 −B−
1 ) + (B+

0 −B−
0 )− (hn−1 − h1) + (hn − h0)

]
{

h1 ≥ −(B+
0 −B−

0 )− (h6 − h0)

hn−1 ≥ −[−(B+
0 −B−

0 )− (h6 − h0)]

(2)
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The Poincaré-Hopf inequality in the case n = 2 is

{
h1 − h2 − h0 + 2− (B+

0 + B−
0 ) ≥ 0 and even.3 (3)

Proof: Note that (N, N−) is a pair for Λ and (N, N+) is a pair for the isolated invariant set of the

reverse flow, Λ′ where N− and N+ are the exit sets for the flow ϕt and the reverse flow ϕ−t.

Consider the long exact sequences for the pairs (N, N−) and (N, N+):

0 → Hn(N−)
in−→ Hn(N)

pn−→ Hn(N, N−)
∂n−→ Hn−1(N

−)
in−1−−→ Hn−1(N)

pn−1−−−→

→ Hn−1(N, N−)
∂n−1−−−→ Hn−2(N

−)
in−2−−→ Hn−2(N)

pn−2−−−→ Hn−2(N, N−)
∂n−2−−−→ . . .

∂4−→ H3(N
−)

i3−→ H3(N)
p3−→ H3(N, N−)

∂3−→ H2(N
−)

i2−→ H2(N)
p2−→ H2(N, N−)

∂2−→

→ H1(N
−)

i1−→ H1(N)
p1−→ H1(N, N−)

∂1−→ H0(N
−)

i0−→ H0(N)
p0−→ H0(N, N−) → 0 (4)

0 → Hn(N+)
i′n−→ Hn(N)

p′n−→ Hn(N, N+)
∂′n−→ Hn−1(N

+)
i′n−1−−→ Hn−1(N)

p′n−1−−−→

→ Hn−1(N, N+)
∂′n−1−−−→ Hn−2(N

+)
i′n−2−−→ Hn−2(N)

p′n−2−−−→ Hn−2(N, N+)
∂′n−2−−−→ . . .

∂′4−→ H3(N
+)

i′3−→ H3(N)
p′3−→ H3(N, N+)

∂′3−→ H2(N
+)

i′2−→ H2(N)
p′2−→ H2(N, N+)

∂′2−→

H1(N
+)

i′1−→ H1(N)
p′1−→ H1(N, N+)

∂′1−→ H0(N
+)

i′0−→ H0(N)
p′0−→ H0(N, N+) → 0 (5)

It is an elementary result that given a long exact sequence of vector spaces,

h−→ A
i−→ B

j−→ C
k−→ . . . . . . → D → 0

rank Im h + rank Im i = rank A. This follows from the fact that rank A = rank Im i + rank ker i

and from the exactness of the sequence ker i = Im h. Hence,

rank h = rank A− rank B + rank C −+ . . .± rank D ≥ 0.

3If M is non-orientable the Poincaré-Hopf inequality is the same, however the expression on the right hand side
of the inequality (3) need not be even.
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Applying these arguments to the long exact sequences of the pairs (N, N−) and (N, N+), and

considering that Hn(N) = Hn(N±) = 0, rank Hj(N, N−) = hj, rank Hj(N, N+) = hn−j and

rank(Hj(N
±)) = B±

j . Hence, the following equation is obtained:

rank pn = hn −B−
n−1 + rank(Hn−1(N))− hn−1 + B−

n−2 − rank(Hn−2(N)) + hn−2 . . .

±B−
3 ∓ rank(H3(N))± h3 ∓B−

2 ± rank(H2(N))∓ h2

±B−
1 ∓ rank(H1(N))± h1 ∓B−

0 ± rank(H0(N))∓ h0 (6)

The first equality is obtained by analyzing pn and p′n and we refer to it as the top equality.

Since rank pn = 0, it follows from (6) that:

B−
0 −B−

1 + B−
2 −+ . . .±B−

i−1 ±B−
i ± . . .±B−

n−1 − hn + hn−1 − hn−2 +− . . .− h3 + h2 − h1 + h0 =

=
n−1∑
j=0

(−1)j rank(Hj(N)) (7)

Similarly, using the long exact sequence of the pair (N, N+) and using the duality of the relative

homology, hj(Λ) = hn−j](Λ
′) the following equation holds:

B+
0 −B+

1 + B+
2 −+ . . .±B+

i−1 ±B+
i ± . . .±B+

n−1 − h0 + +h1 − h2 +− . . .− hn−2 + hn−1 − hn =

=
n−1∑
j=0

(−1)j rank(Hj(N)) (8)

Subtracting (7) from (8), the following equation holds when n = 2i + 1:

(B+
0 −B−

0 )− (B+
1 −B−

1 ) +− . . .± (B+
i−1 −B−

i−1)± (B+
i −B−

i )± . . . (B+
2i −B−

2i)

+2h2i+1 − 2h2i + 2h2i−1 −+ . . .± hi ± . . .− 2h2 + 2h1 − 2h0 = 0 (9)

Subtracting (7) from (8), the following equation holds when n = 2i:

−(B+
2i−1 −B−

2i−1) + (B+
2i−2 −B−

2i−2)− . . .± (B+
i −B−

i )± . . .± (B+
0 −B−

0 ) = 0,

since the hj’s cancel.
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The inequalities will be obtained by analyzing two pairs of maps of (4) and (5) at a time,{[(
pn−1, ∂

′
n−1

)
,
(
p′n−1, ∂n−1

)]
, . . . [(p1, ∂

′
1) , (p′1, ∂1)]

}
.

The first half of the set of inequalities are further simplified by using the top equality. Note that

the analysis of these pairs provide the inequalities in both the odd-dimensional case, n = 2i + 1,

as well as the even dimensional case, n = 2i. The analysis of these pairs of maps in the long exact

sequence is always the same and for clarity we will describe it in the middle dimensional cases. In

the mid-dimension the analysis should be divided in two cases, n = 2i + 1 and n = 2i.

Middle dimensional analysis, n = 2i + 1

We analyze the middle dimensional inequalities by considering the ranks of pi in (4). The

following holds:

rank pi = hi −B−
i−1 + rank Hi−1(N)− hi−1 + B−

i−2 − rank Hi−2(N) + hi−2 −+ . . .

±B−
2 ∓ rank H2(N)± h2 ∓B−

1 ± rank H1(N)∓ h1 ±B−
0 ∓ rank H0(N)± h0 ≥ 0

⇒ hi ≥ B−
i−1 −B−

i−2 +− . . .±B−
2 ∓B−

1 ±B−
0 + hi−1 − hi−2 +− . . .± h2 ∓ h1 ± h0

− rank Hi−1(N) + rank Hi−2(N)−+ . . .± rank H2(N)∓ rank H1(N)± rank H0(N) (10)

Similarly, by considering rank ∂′i in (5), the following inequality holds:

− rank Hi−1(N) + rank Hi−2(N)−+ . . .± rank H2(N)∓ rank H1(N)± rank H0(N) ≥

−B+
i−1 + B+

i−2 −+ . . .±B+
2 ∓B+

1 ±B+
0 − hi+2 −+ . . .∓ h2i−1 ± h2i ∓ h2i+1 (11)

Substituting (11) in (10) the following inequality holds:

hi ≥ −
(
B+

i−1 −B−
i−1

)
+

(
B+

i−2 −B−
i−2

)
+− . . .± (B+

2 −B−
2 )∓ (B+

1 −B−
1 )± (B+

0 −B−
0 )

− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2)∓ (h2i − h1)± (h2i+1 − h0) (12)

Analogously analyzing p′i and ∂i as above and using the duality of the indices, the following

inequality is obtained:

hi+1 ≥ −
[
−

(
B+

i−1 −B−
i−1

)
+

(
B+

i−2 −B−
i−2

)
+− . . .± (B+

2 −B−
2 )∓ (B+

1 −B−
1 )± (B+

0 −B−
0 )
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− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2)∓ (h2i − h1)± (h2i+1 − h0)] (13)

Note that in equation (12) hi is greater than or equal to an integer number and in equation

(13), hi+1 is greater than or equal to the opposite of that number. Obviously, since hi and hi+1 are

non-negative integers, one of the inequalities is redundant.

Middle dimensional analysis, n = 2i.

In this section, the inequalities are obtained in the same fashion, that is by analyzing the long

exact sequences of the pairs (N, N±) where dim N = 2i. Hence we obtained



hi ≥ −(B+
i−1 −B−

i−1) + (B+
i−2 −B−

i−2) +− . . .± (B+
2 −B−

2 )± (B+
1 −B−

1 )± (B+
0 −B−

0 )

−(hi+1 − hi−1) + (hi+2 − hi−2) +− . . .± (h2i−2 − h2)± (h2i−1 − h1)± (h2i − h0)

hi ≥ −
[
−(B+

i−1 −B−
i−1) + (B+

i−2 −B−
i−2) +− . . .± (B+

2 −B−
2 )± (B+

1 −B−
1 )± (B+

0 −B−
0 )

−(hi+1 − hi−1) + (hi+2 − hi−2) +− . . .± (h2i−2 − h2)± (h2i−1 − h1)± (h2i − h0)]

(14)

Similarly one of these inequalities is redundant.

In the case n = 2 the Poincaré-Hopf inequality (3) in the case n = 2 appears in [1] and [5].
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