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Abstract

In this work, we will establish some relations between variational-like inequalities
and vectorial optimization problem between Banach spaces under invexity hypothe-
ses.
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1 INTRODUCTION

Variational inequalities appearing naturally in problems from Physics, Eco-
nomics, Optimization and Control, Elasticity and the Applied Sciences (see
for instance, [1], [2], [3]).
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In the scalar case, Mancino and Stampacchia [4] obtained the following result:
if F : S0 ⊂ Rn → Rn is the gradient of a convex function θ : S → Rn and

S is an open and convex set, then the variational inequality problem Ṽ IP is
equivalent to the optimization problem (MP ), where:

(Ṽ IP ) Find x ∈ S such that

(y − x)T F (x) ≥ 0,∀y ∈ S.

and the problem (M̃P ) is:

Minimize θ(x)

subject to x ∈ S





(MP)

An extension of the variational inequality problem is the variational like in-

equality problem (Ṽ LIP ).

Let S be a nonempty subset of Rn and we will consider two functions F : S →

R⋉ and η : S × S → R⋉. The variational like inequality problem (Ṽ LIP ) is:

(Ṽ LIP ): Find x ∈ S such that

η(y, x)T F (x) ≥ 0,∀y ∈ S.

Parida et. al. in [5] studied the existence of the solution of the variational like

inequality (Ṽ LIP ) y los problemas de programación convexa. Ruiz et. al en

[6] proved that the solutions of (Ṽ LIP ) are coincident with the solutions of a

certain mathematical programming problem (̃MP ) under certain hypotheses
of the generalized invexity and monotonicity.

In this work, we extend the above results for the case which the functions are
defined between infinite dimensional Banach spaces.

Let E1, E2 be two Banach spaces, f : E1 → E2 a given function and S
nonempty subset of E2. Let Q ⊂ E2 a pointed closed, convex cone with
nonempty interior and different of E2.

The notions of efficiency that we will consider are the following:

Definition 1.1 (a) We say that x ∈ S is efficient if no exists y ∈ S such
that

f(y) − f(x) ∈ −Q \ {0};
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(b) We say that x ∈ S is weakly efficient if no exist y ∈ S such that

f(y) − f(x) ∈ −intQ.

We denote by E(f ; S) the set of the efficient points and WE(f ; S) the set of
the weakly efficient points.

Obviously, we have : E(f ; S) ⊂ WE(f ; S).

We will consider the following vectorial optimization problems:

V-min f(x)

subject to x ∈ S





(V OP )

whose resolution consists of the determination of the set E(f, S) and the
problem

W-min f(x)

subject to x ∈ S





(WV OP )

whose resolution consists of the determination of the set WE(f ; S).

We will prove that under generalized invexity hypotheses is possible charac-
terize the solutions of the vectorial problems (VOP) and (WVOP) through of
the solutions of some variational inequalities, that we will define later.

Let S ⊂ E1 a nonempty, η : S × S → E1 and F : S → L(E1, E2) two given
functions (we denote by L(E1,E2) the space of the continuous linear operator
between the Banach spaces E1 and E2).

The Vectorial variational like inequality problem (VVLIP) is:

(VVLIP): Find a point x ∈ S such that

F (x)η(y, x) /∈ −Q \ {0},∀y ∈ S (1)

(where, we denote by F (x)η(y, x) the value of the function F (x) applied in
the vector η(y, x)).

The Weak vectorial variational like inequality problem (WVVLIP)
is:
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(WVVLIP): Find a point x ∈ S such that

F (x)η(y, x) /∈ −intQ,∀y ∈ S. (2)

We observe that the finite-dimensional case, i.e., E1 = Rn, E2 = Rm and
Q = Rm

+ ) was studied by Ruiz-Garzón et. al. [7] and we will generalize such
results for the infinite-dimensional case.

2 RELATIONSHIPS BETWEEN THE VARIATIONAL LIKE IN-
EQUALITIES AND THE VECTORIAL OPTIMIZATION PROB-
LEMS

In [8], Yang and Goh proved that, under convexity assumptions, if F = ∇f ,
then every solution of (VVLIP) is a weakly efficient solution of (VOP) and
reciprocally. Therefore, they proved that the resolution of (WVOP) is equiva-
lently to the resolution of (WVVLIP). Similar results can be find in Lee and
Kum [9].

We will generalize the results obtained by Lee and Kum [9] and Yang and Goh
[8] for the pseudoinvex functions defined between Banach spaces. We observe
that Ansari and Siddiqi [10], Kazmi [11] and Yang [12] the weakly efficient
points are identified with the solutions of the weak variational like inequalities
under the hypothesis of pre-invexity (a class more restrictive those of the
pseudoinvex functions, which we will define later).

The notions of the generalized invexity que will use were introduced by Osuna
et. al. [13] in finite-dimensional context and can be generalized as follows:

Definition 2.1 Let S be a nonempty subset of E1 and f : S → E2 a given
function, Fréchet differentiable (or, differentiable) at x ∈ intS.

(a) We say that f is invex (IX) at x ∈ S iff there exist a vectorial function
η : S × S → E1 such that

f(y) − f(x) + Df(x)η(y, x) ∈ Q,∀y ∈ S;

(b) The function f is called estrictly invex (SIX) at x ∈ S iff, there exists
a vectorial function η : S × S → E1 such that

f(y) − f(x) + Df(x)η(y, x) ∈ intQ,∀y ∈ S, y 6= x.

(c) The function f is called pseudoinvex (PIX) at x ∈ S iff, there exists a
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vectorial function η : S × S → E1 such that

f(y) − f(x) ∈ −intQ ⇒ Df(x)η(y, x) ∈ −intQ,∀y ∈ S.

(where Df ∈ L(E1, E2) is the Fréchet derivative of f)

Follows easily from definitions:

(SIX) ⇒ (IX) ⇒ (PIX)

It is well known that in the case E2 = R and Q = R+, the class of invex
functions is exactly equal to pseudoinvex functions, but it is possible to prove
that is false in the vectorial case (en [7]).

Theorem 2.2 Let f : S ⊂ E1 → E2 a differentiable function and invex at
x ∈ intS, respect to η. If F = ∇f and if x is a solution of the inequality
(VVLIP) respect to η, then x is a efficient solution of (VOP).

PROOF. We shall assume that x is a solution of the inequality (VVLIP) and
that it is not a efficient solution of (VOP). Then, there exists y ∈ S such that

f(y) − f(x) ∈ −Q \ {0}. (3)

¿From the invexity hypothesis on f we obtain

Df(x)η(y, x) ∈ f(y) − f(x) − Q. (4)

¿From (3) and (4) we have

Df(x)η(y, x) ∈ −Q \ {0}. (5)

Obviously, Df(x)η(y, x) ∈ −Q. If we shall have ∇f(x)η(y, x) = 0, from (4)
we shall obtain that−[f(y) − f(x)] ∈ −Q, but is a contradiction with (3),
because Q is a pointed cone. ¤

Consequently, under invexity hypothesis, the solutions of the variational like
inequality problem (VVLIP) are efficient solutions.

To show the reciprocal of the above theorem, we set some conditions more
strong. In fact, we have:

Theorem 2.3 Let f : S ⊂ E1 → E2 be a differentiable function at x ∈ intS.
Assume that F = Df and that −f is strictly invex respect to η. If x is a
solution of (WVOP), then x also is a solution of (VVLIP).
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PROOF. We will prove the Theorem by absurd. We shall assume that x is
solution of (WVOP) but that it is not a solution of the inequality (VVLIP).
Then, there exists y ∈ S such that

Df(x)η(y, x) ∈ −Q \ {0}. (6)

By other hand, −f is strictly invex, consequently

f(y) − f(x) ∈ −Df(x)η(y, x) + intQ ⊂ Q + intQ ⊂ intQ (7)

therefore x is not a weakly efficient solution of (WVOP). Thus, x is a solution
of the inequality (VVLIP).¤

Theorem 2.4 Let f : S ⊂ E1 → E2 be a differentiable function at x ∈ intS
and F = Df .

(i) If x is a weakly efficient solution of (WVOP), then x is a solution of the
weak variational like inequality (WVVLIP).

(ii) If f is a pseudoinvex function respect to η at x and if x is a solution
of the weak variational like inequality (WVVLIP) respect to η, then x is a
weakly efficient solution of (WVOP).

PROOF.

(i) Assume that x is a weakly efficient solution of (WVOP). Let y ∈ S. Since
x ∈ intS, then, for each t > 0 sufficiently small, the point x + tη(y, x) belongs
to S. By other hand, being x a weakly efficient point of (WVOP), follows that

f(x + tη(y, x)) − f(x) /∈ −intQ (8)

and, since −intQ, is a cone, for such t, we have

1

t
[f(x + tη(y, x)) − f(x)] /∈ −intQ. (9)

Taking in (9) t ↓ 0 and recalling that (−intQ)c is closed, follows that

D∇f(x)η(y, x) /∈ −intQ,∀y ∈ S (10)

and x is solution of the inequality (WVVLIP).
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(ii) We shall assume that x ∈ S is a solution of the inequality (WVVLIP)
but that it is not a weakly efficient solution of (WVOP). Consequently, there
exists y ∈ S such that

f(y) − f(x) ∈ −intQ (11)

and, since f is pseudoinvex, we have

Df(x)η(y, x) ∈ −intQ (12)

which contradicts the optimality of x of the problem (WVVLIP). ¤

Theorem 2.5 Let f : S ⊂ E1 → E2 be a differentiable function at point x.
Assume that F = Df and that f is strictly invex respect to η at x. If x is a
solution of (WVOP), then is also solution of (VOP).

PROOF. We shall assume that x is a weakly efficient solution of(WOP) and
it is not a solution of (VOP) and we will exhibit a contradiction. Consequently,
there exists y ∈ S such that

f(y) − f(x) ∈ −Q \ {0}. (13)

and, by other hand, being f strictly invex at x, we have

f(y) − f(x) −∇f(x)η(y, x) ∈ intQ. (14)

Then, from (13) and (14), we obtain

Df(x)η(y, x) ∈ f(y) − f(x) − intQ ⊂ −Q \ {0} − intQ ⊂ intQ. (15)

So, from the last equation follows that x is not a solution of (WVVLIP) and,
by using Theorem 2.4, we obtain that x is not a weakly efficient solution,
which contradicts the hypothesis. ¤

When C ⊂ E2 is a cone, we define the dual cone of C as follows

C∗ := {ξ ∈ E∗

2 : 〈ξ, x〉 ≥ 0,∀x ∈ C} (16)
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where E∗

2 denote the topological dual of E2 and 〈·, ·〉 is the canonical pairing
duality betweenE∗

2 and E2.

Definition 2.6 We say that x ∈ S is a vectorial critical point (VCP) if
there exists a functional λ∗ ∈ C∗ \ {0} such that λ∗ ◦ ∇f(x) = 0.

In [14], Craven proved that every vectorial critical point is a necessary condi-
tion for the weak efficiency of (WVOP). Next, we will proved, under hypothe-
ses, the inverse affirmation. Before, we recall some necessary results.

Lemma 2.7 Let F be a Banach space and C ⊂ F a closed, convex cone with
C and intC 6= ∅. If x ∈ intC and ξ ∈ C∗ \ {0}, then 〈ξ, x〉 > 0.

The following result is a generalization of the classical alternative Farkas’theorem
for the infinite-dimensional spaces, see [15].

Lemma 2.8 Let X,Y, V be three normed spaces, A ∈ L(X,V ),M ∈ L(X,Y )
two continuous linear operators, T ⊂ V,Q ⊂ Y convex cones, b ∈ −T , s ∈
−Q. Assume that the set [A b]T (T ∗) is w∗−closed.Then, thefollowingsystem





Ax + b ∈ −T

Mx + s ∈ −intQ
(17)

has not solution x ∈ X, iff there exist τ ∈ Q∗ \ {0} y λ ∈ T ∗ such that





τM + λA = 0

〈λ, b〉 = 0

〈τ, s〉 = 0.

(18)

Proposition 2.9 All the vectorial points critical are solution of (WVOP) iff
the function f is pseudoinvex.

PROOF. Let f be a pseudoinvex function and x ∈ S a vectorial critical
point. We assume that x is not a weakly efficient solution of (WVOP) and
exhibit a contradiction. Then, there exists x ∈ S such that

f(x) − f(x) ∈ −intQ (19)

and, by other hand, there exists λ∗ ∈ Q∗ \ {0} such that

λ∗ ◦ Df(x) = 0. (20)
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Since f is pseudoinvex follows from (19)

Df(x)η(x, x) ∈ −intQ (21)

and, by using Lemma 2.7,

λ∗ ◦ Df(x)η(x, x) < 0 (22)

which contradicts (20).

Now, we will prove the other implication. We assume that all vectorial point
critical is a weakly efficient solution of (WVOP). We fix x ∈ S and we consider
the systems:

f(x) − f(x) ∈ −intQ (23)

and

Df(x)u ∈ −intQ. (24)

We will prove that the system (24) has a solution u ∈ E1 when the system
(23) has a solution x ∈ S.

In fact, if the system (23) has a solution x ∈ S, then x is not a weakly efficient
solution of (WVOP) and, by hypotheses, is not a vectorial critical point, i.e.,
does not exist λ∗ ∈ Q∗ \ {0} such that λ∗ ◦ Df(x) = 0.

Since x is not a vectorial critical point, we have that not exist τ ∈ Q∗ \ {0},
λ ∈ Q∗ such that

τM + λA = 0

〈λ, b〉 = 0

〈τ, s〉 = 0.

(25)

where:

A := 0 ∈ L(E1, E2)

M := Df(x) ∈ L(E1, E2)

b := 0 ∈ E1

s := 0 ∈ E2.

(26)
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From Lemma 2.8, there exists u ∈ E1 such that





Au + b = 0 ∈ −T

Mu + s = Df(x)u ∈ −intQ
(27)

and, in particular, the system (24) has solution u ∈ E1.

It is sufficient put η(x, x) := u and we obtain that f is pseudoinvex. ¤

From Theorem 2.4 and Proposition 2.9, we can to relate the vectorial critical
points, the weakly efficient solutions of (WVOP) and the solutions of the
variational like inequality problem (WVVLIP). Saying it in a more precise
form:

Corollary 2.10 Assume that S is an open subset and F = Df . If f is pseu-
doinvex respect to η, then the vectorial critical points, the weakly efficient
points of (WVOP) and the solutions of (WVVLIP) are coincident.

The results obtained in this paper can be described in the following diagram:

(VVLIP) ⇒ f(IX), F = Df (VOP)

⇐ −f(SIX), F = Df

⇓ ⇓⇑ f(SIX)

(WVVLIP) ⇒ f(PIX), F = Df (WVOP) ⇐ f(PIX), F = Df (VCP)

⇐ F = Df ⇒

3 CONCLUSIONS

In Ruiz et. al. [6] it is proved that the solutions of the variational-like in-
equality problem (VLIP) in the scalar case are equivalent to the ninima of
the mathematical programming problem in invex environments. In [7] it is
proved that these results can be generalized to the vectorial problem between
Euclidian spaces. In this work, we have extend these results to the vectorial op-
timization problems between Banach spaces, when the domination structure
is defined by convex cones. Under the condition of pseudoinvexity, we have
seen the relationship that exists between vector variational-like problems and
vector optimization problems and managed to identify the weakly efficient
points, the solutions of the weak vector variational-like inequality problems
(WVVLIP) and the vector critical points.
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