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Abstract

We characterize the f-structures F on the classical mazimal flag
manifold F(n) which admit (1,2)-symplectic metrics. This provides a
sufficient condition for the existence of F—harmonic maps from any
cosymplectic Riemannian manifold onto F(n).

In the special case of almost—complex structures, our analysis ex-
tends and unifies two previous approaches: a paper of A.E. Brouwer
1980 on locally transitive digraphs, involving unpublished work by P.J.
Cameron; and work by Mo, Paredes, Negreiros, Cohen and San Mar-
tin on cone—free digraphs. We also discuss the construction of (1,2)-
symplectic metrics and calculate their dimension. QOur approach is
entirely graph theoretic.
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1 Introduction

Gray [7] and Lichnerowicz [10] were among the first to observe the relevance
of (1,2)-symplectic structures, not necessarily invariant or Kahler, in Hermi-
tian geometry and harmonic maps, respectively. Originally, almost complex
structures were considered, but there is interest in studying the more general
case of f-structures [21], [1].

Here we consider the special case of the maximal flag manifold F(n) as-
sociated with sl(n, C), endowed with an invariant f-structure F. Following
Burstall and Salamon [3] and Black [1], there is interest in analyzing the
conditions under which F admits an invariant metric ds* on F(n) which is
(1,2)-symplectic. In this paper we discuss such a condition and describe the
set of (1,2)-symplectic metrics ds®> admitted by F.

The pair (F(n),F) defines in a natural way a digraph (oriented graph)
G = (V, E), while the metric ds* provides a weighting A\, > 0, e € E. The
(1,2)-symplectic conditions constitute a simple system of linear homogeneous
restrictions on the weights .. The issue is, therefore, finding a necessary and
sufficient condition for the consistency of this system.

A special case of interest is when the invariant structure F is almost
Hermitian. Here, the digraph G is complete, i.e. a tournament digraph.
It was suggested by Mo and Negreiros [11] that F admits (1,2)-symplectic
metrics if and only if G is cone—free, namely omits certain sub—graphs. This
has been verified in some cases by Paredes [14], [15], and demonstrated in the
general case by Cohen, Negreiros and San Martin [4],[5]. Up to permutation,
the incidence matrix of such a digraph has a stair-shaped form which is
preserved under the cyclic shift in n indices [4],[5].

Another class of digraphs, also preserved by the cyclic shift, called locally
transitive digraphs, has been studied earlier in A.E. Brouwer’s paper [2].
We show that the cone—free and locally—transitive conditions are, in fact,
equivalent and define the same family of digraphs. We thank Brendan McKay
(ANU Canberra, Australia) for bringing [2] to our attention.

For complete locally transitive digraphs, the following results are avail-
able: (i) the enumeration of essentially different graphs of this type with
n vertices [2], (ii) a description of the full set of (1,2)-symplectic metrics
associated with such a digraph [4],[5].

The last result is relevant for almost complex structures on the flag mani-
fold. Its extension to f-structures, which amounts to admitting non-complete
locally transitive digraphs, is performed in the present paper. The extension



of Brouwer’s enumeration in [2] remains an interesting open problem, and it
seems that his technique does not extend to the non-complete case. It would
also be interesting to connect the results obtain here with the existence of
harmonic maps into F(n).

2 Flag preliminaries

Consider the classical maximal flag manifold F(n) = U(n)/T, where U(n)
is a unitary group and 7' is a maximal torus in U(n) (we shall follow the
definitions and notation of [5]). If b stands for the origin in F(n), the tan-
gent space at b identifies naturally with the subspace q C u(n) spanned by
Ajr, 1Sk, where A, = Ej — Eyj and Sj, = Ej, + Eyj. Here Ejj, is the matrix
with 1 in entry jk and zeros otherwise.

By classical theory, an invariant metric ds? on F(n) can be identified with
an inner product in q of the form X,Y — tr((A o X)Y) where A = {\;;}
is a real symmetric matrix with positive off-diagonal entries and o is the
Hadamard (i.e. entrywise) product. As a special case, the Cartan—Killing
inner product ¢tr(Y X) is induced by the Cartan—Killing metric corresponding
to )\jk =1 (] < ]{7)

An f-structure (see [21]) on F(n) is a section F of the bundle End(TF(n))
which satisfies F2 + F = 0. We shall assume that F is invariant, namely,
commutes with the adjoint action of 7" on q. We call F almost complex if it
satisfies F2 + F = 0.

Every invariant almost complex structure F on the flag manifold as-
sumes in the canonical basis the form X — ieX where ¢ = {g;;} is an
anti-symmetric (1,-1)-matrix (we denote by i the complex unit /—1). As
a natural extension, every invariant f-structure F on the flag manifold is
represented by an anti-symmetric (0,1,-1)-matrix €. Every matrix in the
canonical basis Fj;, is an eigenvector, with eigenvalue 0,1 or —1, for the
Hadamard product X — €0 X. We may therefore split q as the direct sum
of three eigenspaces: qo,q+,q_.

In the sequel we shall allow some abuse of notation and identify the f-—
structure F and the metric ds? with the matrices ¢ and A.



3 Graph theoretic preliminaries

A digraph is a finite oriented graph G = (V, E) . If v,w € V' then an arrow
v — w indicates that vw € F; while v <> w indicates either vw € E or
wv € E . Furthermore, we define the v—loser and v—winner sets

Go(v) ={weV: wve F}, Gw(v)={weV: vweE},

considered as sub-digraphs of G. This is analogous to the concept of neighbor
set used in unoriented graphs. Finally, we say that v is a winner (resp. loser)
in G if Gr(v) or Gw(v) equals V \ {v}.

We now specialize to the problem at hand. Through the incidence matrix
e = {ejx} we may identify an f-structure F on F(n) with a digraph
G=(V,E) with V ={1,--- ,n}. Similarly, through the matrix A = {\;;}
we may identify an invariant metric ds?* on (F(n) ,F) with a positive
weighting on the edge set E of the digraph. Note that if ¢;; = 0 the
weight Aj; may be ignored since jk ¢ E. According to [1], the (1,2)-
symplecticity conditions imposed by & on the metric A amount to the
following three rules:

If k—3j, k—1, j¢ 1 then \j = A\ (1)
If j—k | —k pel then A=y (2)
If k—3j, j—1, k—1 then Ay = X+ \j. (3)

These restrictions apply to any 3-vertex sub-digraph of GG of the types given
in Figure 1.

4 Locally transitive f—structures

As stated in the introduction, our main problem is the characterization of f—
structures which admit (1,2)-symplectic metrics. In graph-theoretic terms,
we wish to characterize the digraphs G = (V, E') which admit positive weights
A which satisfy properties (1)-(3). It is this version of the problem which we
shall consider in the rest of the paper.

The following definitions will be crucial for our main result.
Definition 4.1. A digraph G' := (V', E') is called: (i) trivial if |E'| = 0;
(i) transitive if the relation ” — 7 is transitive (i.e. for i,j,k € V',
i — j — k implies i — k); (iii) relatively connected if for all i,j,k eV’
1 — j wmplies 1~k or j < k.
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Figure 1: 3-vertex sub-digraphs associated with local transitivity.

Transitivity for complete digraphs may be characterized by the absence of
cycles, and the incidence matrix of such digraphs is permutation—similar to
the canonical matrix €, = 1 (j < k) [12]. We shall be more interested in the
following local version of this property.

Definition 4.2. We call the digraph G = (V, E) locally transitive (in short,
LT) if for allv € V' each of the sub-digraphs Gr(v) and Gw(v) is transitive
and relatively connected.

Several remarks are in order:

(i) Local transitivity means that the digraphs Gy (v), Gy (v) omit certain
3—vertex sub-digraphs, namely the ones whose edges form a non-empty sub-
set of a 3—cycle (compare with Figure 2).

(ii) In case G is complete, local transitivity implies that both Gy (v), Gr.(v)
are (complete and) transitive. This way we recover the original definition
introduced for complete digraphs by P.J. Cameron and discussed in [2].

(iii) If Yo € V' max{|Gw (v)],|GL(v)|} <2 then G is LT.

(iv) All the digraphs of size < 3 are LT. As to n = 4, simple analysis shows
that up to digraph isomorphism there exist 42 digraphs with 4 vertices, six
of which are not LT (see Figure 2).

(v) According to (iv), a non—LT 4-vertex digraph must have a winner or
a loser, but not both. If v is the winner/loser then Viy (v) (resp. VL(v)) is a
non-trivial sub-digraph of a 3—cycle.

Lemma 4.3. G is LT if and only if every 4—vertex sub-digraph of G is LT.
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Figure 2: 4-vertex digraphs which are not LT

Proof: If G is LT then any sub-digraph of G, including all the 4—vertex
sub-digraphs, is LT. It remains to show the converse direction. Assume that
G is not LT. Then we have two cases, both leading to the existence of a
non-LT 4-vertex sub-digraph, completing the proof.

Case 1: There exists v € V' such that one of the sets G (v), Gw(v) is
not transitive. Namely, in this set there exist 7, k,[ such that jk,kl € FE
but jl € E. It can be checked against Figure 2 that whether [j € E or
not, the sub-digraph of G supported on {v,j, k,1} is not LT.

Case 2: There exists v € V' such that one of the sets Gr(v),Gw(v) is
neither trivial nor relatively connected. Namely, this set contains j, k,[ such
that jk € E but jl,kl,1j Ik & E. Here too, the sub-digraph supported on
{v,7,k,1} is not LT. ]

The case of complete digraphs is of special interest as it corresponds to
almost—complex structures. Exactly two of the six 4-vertex digraphs in Fig-
ure 2 are complete: those which contain a winner/loser and a 3-cycle. In
[11] these two digraphs were called ”cones”, and in [4],[5] a complete digraph
G which omitted them was called ”cone—free”. Lemma 4.3 states, therefore,



that G is LT if and only if it is cone—free. As a result, the two families
of complete digraphs studied separately in [11],[4],[5],[15] (coneless digraphs)
and in [2] (LT digraphs) are one and the same.

5 Completely Non—Transitive Digraphs

Here we study the structure of (1,2)-symplectic metrics on a special class of
LT digraphs, namely the completely non-transitive digraphs.

Definition 5.1. (i) A transitive triangle is a transitive digraph G, = (V;, E})
with |Vi| = 3. Assuming V; = {u,v,w} and E = {uv,vw,uw}, we shall refer
to uv,vw as sides and to uw as basis.

(i) We shall call a digraph G' = (V', E') completely non-transitive if it
does not contain any transitive triangle.

A completely non-transitive digraph is LT. Indeed, the sets G (v) and
G (v) are trivial in the sense of Definition 4.1 (also, the digraph is cone free
since every cone contains a transitive triangle).

At the same time, a completely non-transitive digraph admits (1,2)-
symplectic metrics, namely positive weightings {\. > 0, e € E’} which re-
spect the identities (1-3). Indeed, due to the absence of transitive triangles,
system (1-3) has no identities of type (3); hence the Cartan-Killing metric
A = 1, which automatically satisfies (1-2), is (1,2)-symplectic (in general, G’
admits non-constant (1,2)-symplectic metrics along with the Cartan-Killing
metric).

We observe that the Cartan—Killing metric A = 1 on a digraph G’ is (1,2)—
symplectic if and only if G’ is completely non-transitive. In the special case
of complete digraphs, this implies that the Cartan—Killing metric is (1,2)—
symplectic only if |V| < 3, as observed in [4].

Define the following equivalence relation between edges in E': e ~ €’ if for
some v,v",u € V we have either e = vu and €’ = v'u, or e = uv and ¢ = uv’.
A metric on G’ is (1,2)-symplectic if and only if it is constant on every
equivalence class in E’. Thus, the dimension of the space of (1,2)-symplectic
metrics is equal to 3, the number of equivalence classes in E.

How can ( be calculated from G’ directly? We do not know the answer,
but a promising observation is that 3 is the number of connected components



in a "spanning forest” for G’, assuming every vertex in the forest is a winner
or a loser.

6 The General Case

In studying (1,2)-symplectic metrics on a general LT digraph G, our approach
will be reduction to an associated completely non-transitive digraph G’ with
the same vertex set, based on the following ”"edge deletion lemma”.

Lemma 6.1. Let G = (V, E) be a LT digraph which is not completely non-
transitive (see definition 5.1). Then E contains an edge e which is a base
but not a side. In this case, the sub-digraph G := (V,E\ {e}) is LT.

Proof: Let G, = (Vi, E,) be a maximal subgrah of G which is complete
and transitive, and |V,| > 3. The assumption guarantees the existence of at
least one such a sub-digraph. Then G, has a single base e € F, which is
not a side, namely the arrow e which connects the winner and loser in G,.

The edge e is therefore a base in G. We claim that e cannot be a
side in some transitive triangle in G. Assume to the contrary that such a
triangle G, = (V;, E;) does exist. Note that V;, ¢ V. since e is not a side
in G,. Therefore, the sub-digraph G* of G supported on V, UV, strictly
contains G*. Local transitivity of G implies that G* is again complete
and transitive, contradicting the maximality of G,.

Next we show that G is LT. By Lemma 4.3 it suffices to show that every
4—subdigraph Q C é is LT. As long as e is not in Q there is nothing to prove
since Q is a subdigraph of G. Otherwise, if e = uw then u, w are vertices in g
Suppose G is not LT. According to 4 G contains a winner or a loser, namely,
v. Since e is not in g v # u,w. Whether v is a winner or a loser e is a side in
the transitive triangle {u,v,w}, which is impossible by the first part of the
lemma. O]

The following central result follows.

Theorem 6.2. The digraph G = (V, E) admits (1,2)-symplectic metrics if
and only if it ws LT.

Proof: For n < 4, G is always LT, and verification of the Theorem is an easy
exercise. For n = 4, verification is easy, based on the digraphs in Figure 2.
So, assume n > 4.



If G admits (1,2)-symplectic metrics then by restriction every 4—vertex
sub-digraph of G admits (1,2)-symplectic metrics, hence (as just observed)
is LT. But then by Lemma 4.3 G is LT.

Conversely, assume that G is LT. We argue by induction: If G is
completely non-transitive then the existence of (1,2)-symplectic metrics was
guaranteed in the previous section. Otherwise, by Lemma 6.1 we may delete
an edge e from G = (V, E), obtaining another LT digraph G = (V, E). By
the induction argument, G has (1,2)-symplectic metrics. We extend each
such metric to a metric on G by defining A\, = Ao/ + Aor, where €/, €” are the
sides corresponding to the base e. This is the only extension for which A is
(1,2)-symplectic on the triangle in question, hence the only extension which
might be (1,2)-symplectic for the whole digraph. We want to show that, in
fact, it is.

Step 1. We show that the extension is well defined. Namely, as-
sume that e = ww is simultaneously basis for two transitive triangles, say
{uv,vw,uw} and {uz, zw,uvw} with {u,v,w,z} C V. We need to show
that a priori

Auz + Ao = A + A (4)

There are two cases to consider. If v < z, we may assume for definiteness
that v — z. In this case, by (3) we have a priori \,, = A, — Ay and
Aoz = Apw — Azw, implying (4). Otherwise, by (1-2) we have a priori Ay, = Ay
Avw = Azw, again implying (4).

Step 2. We show that the extended metric is (1,2)-symplectic. Every
conflict within the constraint system (1)-(3) should involve the deleted edge
e, since G is assumed to satisfy these restrictions. By Lemma 6.1, e is not a
side in G, hence any conflict with (3) is of the type already discussed in Step
1.

A conflict with (1) implies that A, # A, where, say, e = uw and €’ = tw.
This can occur only if t <% u. Now it can be easily seen that independently
of the relation between v and t, G and G cannot both be LT since one of the
two contains one of the non-LT digraphs of Figure 2. This is a contradiction
to our assumptions.

A conflict with (2) leads to a similar contradiction, and so the proof is
complete. Il

Assume that the LT digraph is reduced, via edge deletion, to a completely
non-transitive digraph G’. Theorem 6.2 shows that every (1,2)-symplectic



metric on G’ extends uniquely to a (1,2)-symplectic metric on G. Thus, the
dimension of the cone of (1,2)-symplectic metrics is equal in both digraphs
(in the previous section it was denoted by ). It is not clear how to calculate
B directly from the original digraph G. One approach is to represent (1-3) as
a homogeneous linear system and calculate the dimension of its kernel.

We end this section with several remarks.
(i) The completely non-transitive digraph G’ obtained by edge deletion from
G does not depend on the order of the edges deleted;
(ii) A completely non-transitive digraph G’ can be the outcome of a non-void
edge deletion of a L'T digraph if and only if the union of all the sub-digraphs of
G’ of type {uv, vw, zw} and {wz, wv,vu} does not contain every sub-digraph
of type {uv,vw};
(iii) It seems that a completely non-transitive digraph is the result of a edge
deletion of a transitive digraph if and only if it is a union of open directed
paths whose terminal vertices are exclusively winners or losers.

In [2] the author applied a nice counting argument in order to enumerate
the complete LT digraphs with n vertices. On first reading it appears that
his method is not adequate for the enumeration of all the LT digraphs with n
vertices. One possible attack on the problem would be to enumerate first the
completely non-transitive ones, and then to figure out how many LT digraphs
edge-delete into a given completely non-transitive digraph.
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