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Abstract
We characterize the f-structures F on the classical maximal flag

manifold F(n) which admit (1,2)–symplectic metrics. This provides a
sufficient condition for the existence of F–harmonic maps from any
cosymplectic Riemannian manifold onto F(n).

In the special case of almost–complex structures, our analysis ex-
tends and unifies two previous approaches: a paper of A.E. Brouwer
1980 on locally transitive digraphs, involving unpublished work by P.J.
Cameron; and work by Mo, Paredes, Negreiros, Cohen and San Mar-
tin on cone–free digraphs. We also discuss the construction of (1,2)-
symplectic metrics and calculate their dimension. Our approach is
entirely graph theoretic.
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1 Introduction

Gray [7] and Lichnerowicz [10] were among the first to observe the relevance
of (1,2)–symplectic structures, not necessarily invariant or Kahler, in Hermi-
tian geometry and harmonic maps, respectively. Originally, almost complex
structures were considered, but there is interest in studying the more general
case of f–structures [21], [1].

Here we consider the special case of the maximal flag manifold F(n) as-
sociated with sl(n,C), endowed with an invariant f–structure F . Following
Burstall and Salamon [3] and Black [1], there is interest in analyzing the
conditions under which F admits an invariant metric ds2 on F(n) which is
(1,2)–symplectic. In this paper we discuss such a condition and describe the
set of (1,2)–symplectic metrics ds2 admitted by F .

The pair (F(n),F) defines in a natural way a digraph (oriented graph)
G = (V,E), while the metric ds2 provides a weighting λe > 0, e ∈ E. The
(1,2)–symplectic conditions constitute a simple system of linear homogeneous
restrictions on the weights λe. The issue is, therefore, finding a necessary and
sufficient condition for the consistency of this system.

A special case of interest is when the invariant structure F is almost
Hermitian. Here, the digraph G is complete, i.e. a tournament digraph.
It was suggested by Mo and Negreiros [11] that F admits (1,2)–symplectic
metrics if and only if G is cone–free, namely omits certain sub–graphs. This
has been verified in some cases by Paredes [14], [15], and demonstrated in the
general case by Cohen, Negreiros and San Martin [4],[5]. Up to permutation,
the incidence matrix of such a digraph has a stair–shaped form which is
preserved under the cyclic shift in n indices [4],[5].

Another class of digraphs, also preserved by the cyclic shift, called locally
transitive digraphs, has been studied earlier in A.E. Brouwer’s paper [2].
We show that the cone–free and locally–transitive conditions are, in fact,
equivalent and define the same family of digraphs. We thank Brendan McKay
(ANU Canberra, Australia) for bringing [2] to our attention.

For complete locally transitive digraphs, the following results are avail-
able: (i) the enumeration of essentially different graphs of this type with
n vertices [2], (ii) a description of the full set of (1,2)–symplectic metrics
associated with such a digraph [4],[5].

The last result is relevant for almost complex structures on the flag mani-
fold. Its extension to f -structures, which amounts to admitting non-complete
locally transitive digraphs, is performed in the present paper. The extension

2



of Brouwer’s enumeration in [2] remains an interesting open problem, and it
seems that his technique does not extend to the non-complete case. It would
also be interesting to connect the results obtain here with the existence of
harmonic maps into F(n).

2 Flag preliminaries

Consider the classical maximal flag manifold F(n) = U(n)/T , where U(n)
is a unitary group and T is a maximal torus in U(n) (we shall follow the
definitions and notation of [5]). If b stands for the origin in F(n), the tan-
gent space at b identifies naturally with the subspace q ⊂ u(n) spanned by
Ajk, iSjk, where Ajk = Ejk−Ekj and Sjk = Ejk +Ekj. Here Ejk is the matrix
with 1 in entry jk and zeros otherwise.

By classical theory, an invariant metric ds2 on F(n) can be identified with
an inner product in q of the form X, Y → tr((Λ ◦ X)Y ) where Λ = {λjk}
is a real symmetric matrix with positive off–diagonal entries and ◦ is the
Hadamard (i.e. entrywise) product. As a special case, the Cartan–Killing
inner product tr(Y X) is induced by the Cartan–Killing metric corresponding
to λjk ≡ 1 (j < k).

An f–structure (see [21]) on F(n) is a section F of the bundle End(TF(n))
which satisfies F3 + F = 0. We shall assume that F is invariant, namely,
commutes with the adjoint action of T on q. We call F almost complex if it
satisfies F2 + F = 0.

Every invariant almost complex structure F on the flag manifold as-
sumes in the canonical basis the form X → iεX where ε = {εjk} is an
anti–symmetric (1,-1)–matrix (we denote by i the complex unit

√−1). As
a natural extension, every invariant f–structure F on the flag manifold is
represented by an anti–symmetric (0,1,-1)–matrix ε. Every matrix in the
canonical basis Ejk is an eigenvector, with eigenvalue 0, 1 or −1, for the
Hadamard product X → ε ◦X. We may therefore split q as the direct sum
of three eigenspaces: q0, q+, q−.

In the sequel we shall allow some abuse of notation and identify the f–
structure F and the metric ds2 with the matrices ε and Λ.
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3 Graph theoretic preliminaries

A digraph is a finite oriented graph G = (V,E) . If v, w ∈ V then an arrow
v → w indicates that vw ∈ E; while v ↔ w indicates either vw ∈ E or
wv ∈ E . Furthermore, we define the v–loser and v–winner sets

GL(v) = {w ∈ V : wv ∈ E}, GW (v) = {w ∈ V : vw ∈ E},
considered as sub-digraphs of G. This is analogous to the concept of neighbor
set used in unoriented graphs. Finally, we say that v is a winner (resp. loser)
in G if GL(v) or GW (v) equals V \ {v}.

We now specialize to the problem at hand. Through the incidence matrix
ε = {εjk} we may identify an f–structure F on F(n) with a digraph
G = (V, E) with V = {1, · · · , n}. Similarly, through the matrix Λ = {λjk}
we may identify an invariant metric ds2 on (F(n) ,F) with a positive
weighting on the edge set E of the digraph. Note that if εjk = 0 the
weight λjk may be ignored since jk 6∈ E. According to [1], the (1,2)–
symplecticity conditions imposed by ε on the metric Λ amount to the
following three rules:

If k → j, k → l, j 6↔ l then λjk = λkl; (1)

If j → k, l → k, p 6↔ l then λjk = λkl; (2)

If k → j, j → l, k → l then λkl = λjk + λjl. (3)

These restrictions apply to any 3-vertex sub-digraph of G of the types given
in Figure 1.

4 Locally transitive f–structures

As stated in the introduction, our main problem is the characterization of f–
structures which admit (1,2)–symplectic metrics. In graph–theoretic terms,
we wish to characterize the digraphs G = (V, E) which admit positive weights
Λ which satisfy properties (1)-(3). It is this version of the problem which we
shall consider in the rest of the paper.

The following definitions will be crucial for our main result.

Definition 4.1. A digraph G ′ := (V ′, E ′) is called: (i) trivial if |E ′| = 0;
(ii) transitive if the relation ” → ” is transitive (i.e. for i, j, k ∈ V ′,
i → j → k implies i → k); (iii) relatively connected if for all i, j, k ∈ V ′

i → j implies i ↔ k or j ↔ k.
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Figure 1: 3–vertex sub–digraphs associated with local transitivity.

Transitivity for complete digraphs may be characterized by the absence of
cycles, and the incidence matrix of such digraphs is permutation–similar to
the canonical matrix εjk = 1 (j < k) [12]. We shall be more interested in the
following local version of this property.

Definition 4.2. We call the digraph G = (V, E) locally transitive (in short,
LT) if for all v ∈ V each of the sub-digraphs GL(v) and GW (v) is transitive
and relatively connected.

Several remarks are in order:
(i) Local transitivity means that the digraphs GL(v),GW (v) omit certain

3–vertex sub-digraphs, namely the ones whose edges form a non–empty sub-
set of a 3–cycle (compare with Figure 2).

(ii) In case G is complete, local transitivity implies that both GW (v),GL(v)
are (complete and) transitive. This way we recover the original definition
introduced for complete digraphs by P.J. Cameron and discussed in [2].

(iii) If ∀v ∈ V max{|GW (v)|, |GL(v)|} ≤ 2 then G is LT.
(iv) All the digraphs of size ≤ 3 are LT. As to n = 4, simple analysis shows

that up to digraph isomorphism there exist 42 digraphs with 4 vertices, six
of which are not LT (see Figure 2).

(v) According to (iv), a non–LT 4–vertex digraph must have a winner or
a loser, but not both. If v is the winner/loser then VW (v) (resp. VL(v)) is a
non–trivial sub-digraph of a 3–cycle.

Lemma 4.3. G is LT if and only if every 4–vertex sub-digraph of G is LT.
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(0, 2,2,2)

(0, 1,2,2) (0,0,1,3) (0, 1,1,2)

(0,1,1,3)(1, 1,1,3)

Figure 2: 4–vertex digraphs which are not LT

Proof: If G is LT then any sub-digraph of G, including all the 4–vertex
sub-digraphs, is LT. It remains to show the converse direction. Assume that
G is not LT. Then we have two cases, both leading to the existence of a
non–LT 4–vertex sub-digraph, completing the proof.

Case 1: There exists v ∈ V such that one of the sets GL(v),GW (v) is
not transitive. Namely, in this set there exist j, k, l such that jk, kl ∈ E
but jl 6∈ E. It can be checked against Figure 2 that whether lj ∈ E or
not, the sub-digraph of G supported on {v, j, k, l} is not LT.

Case 2: There exists v ∈ V such that one of the sets GL(v),GW (v) is
neither trivial nor relatively connected. Namely, this set contains j, k, l such
that jk ∈ E but jl, kl, lj, lk 6∈ E. Here too, the sub-digraph supported on
{v, j, k, l} is not LT.

The case of complete digraphs is of special interest as it corresponds to
almost–complex structures. Exactly two of the six 4–vertex digraphs in Fig-
ure 2 are complete: those which contain a winner/loser and a 3–cycle. In
[11] these two digraphs were called ”cones”, and in [4],[5] a complete digraph
G which omitted them was called ”cone–free”. Lemma 4.3 states, therefore,
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that G is LT if and only if it is cone–free. As a result, the two families
of complete digraphs studied separately in [11],[4],[5],[15] (coneless digraphs)
and in [2] (LT digraphs) are one and the same.

5 Completely Non–Transitive Digraphs

Here we study the structure of (1,2)-symplectic metrics on a special class of
LT digraphs, namely the completely non-transitive digraphs.

Definition 5.1. (i) A transitive triangle is a transitive digraph Gt = (Vt, Et)
with |Vt| = 3. Assuming Vt = {u, v, w} and E = {uv, vw, uw}, we shall refer
to uv, vw as sides and to uw as basis.

(ii) We shall call a digraph G ′ = (V ′, E ′) completely non-transitive if it
does not contain any transitive triangle.

A completely non-transitive digraph is LT. Indeed, the sets G ′W (v) and
G ′L(v) are trivial in the sense of Definition 4.1 (also, the digraph is cone free
since every cone contains a transitive triangle).

At the same time, a completely non-transitive digraph admits (1,2)-
symplectic metrics, namely positive weightings {λe > 0, e ∈ E ′} which re-
spect the identities (1-3). Indeed, due to the absence of transitive triangles,
system (1-3) has no identities of type (3); hence the Cartan-Killing metric
λ ≡ 1, which automatically satisfies (1-2), is (1,2)–symplectic (in general, G ′
admits non-constant (1,2)–symplectic metrics along with the Cartan-Killing
metric).

We observe that the Cartan–Killing metric λ ≡ 1 on a digraph G ′ is (1,2)–
symplectic if and only if G ′ is completely non-transitive. In the special case
of complete digraphs, this implies that the Cartan–Killing metric is (1,2)–
symplectic only if |V | < 3, as observed in [4].

Define the following equivalence relation between edges in E ′: e ∼ e′ if for
some v, v′, u ∈ V we have either e = vu and e′ = v′u, or e = uv and e′ = uv′.
A metric on G ′ is (1,2)–symplectic if and only if it is constant on every
equivalence class in E ′. Thus, the dimension of the space of (1,2)–symplectic
metrics is equal to β, the number of equivalence classes in E ′.

How can β be calculated from G ′ directly? We do not know the answer,
but a promising observation is that β is the number of connected components
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in a ”spanning forest” for G ′, assuming every vertex in the forest is a winner
or a loser.

6 The General Case

In studying (1,2)–symplectic metrics on a general LT digraph G, our approach
will be reduction to an associated completely non-transitive digraph G ′ with
the same vertex set, based on the following ”edge deletion lemma”.

Lemma 6.1. Let G = (V, E) be a LT digraph which is not completely non-
transitive (see definition 5.1). Then E contains an edge e which is a base
but not a side. In this case, the sub-digraph G̃ := (V,E \ {e}) is LT.

Proof: Let G∗ = (V∗, E∗) be a maximal subgrah of G which is complete
and transitive, and |V∗| ≥ 3. The assumption guarantees the existence of at
least one such a sub-digraph. Then G∗ has a single base e ∈ E∗ which is
not a side, namely the arrow e which connects the winner and loser in G∗.

The edge e is therefore a base in G. We claim that e cannot be a
side in some transitive triangle in G. Assume to the contrary that such a
triangle Gt = (Vt, Et) does exist. Note that Vt 6⊂ V∗ since e is not a side
in G∗. Therefore, the sub-digraph G∗ of G supported on V∗ ∪ Vt strictly
contains G∗. Local transitivity of G implies that G∗ is again complete
and transitive, contradicting the maximality of G∗.

Next we show that G̃ is LT. By Lemma 4.3 it suffices to show that every
4-subdigraph Ĝ ⊂ G̃ is LT. As long as e is not in Ĝ there is nothing to prove
since Ĝ is a subdigraph of G. Otherwise, if e = uw then u,w are vertices in Ĝ.
Suppose Ĝ is not LT. According to 4 Ĝ contains a winner or a loser, namely,
v. Since e is not in Ĝ, v 6= u, w. Whether v is a winner or a loser e is a side in
the transitive triangle {u, v, w}, which is impossible by the first part of the
lemma.

The following central result follows.

Theorem 6.2. The digraph G = (V,E) admits (1,2)–symplectic metrics if
and only if it is LT.

Proof: For n < 4, G is always LT, and verification of the Theorem is an easy
exercise. For n = 4, verification is easy, based on the digraphs in Figure 2.
So, assume n > 4.
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If G admits (1,2)–symplectic metrics then by restriction every 4–vertex
sub-digraph of G admits (1,2)–symplectic metrics, hence (as just observed)
is LT. But then by Lemma 4.3 G is LT.

Conversely, assume that G is LT. We argue by induction: If G is
completely non-transitive then the existence of (1,2)–symplectic metrics was
guaranteed in the previous section. Otherwise, by Lemma 6.1 we may delete
an edge e from G = (V, E), obtaining another LT digraph G̃ = (V, Ẽ). By
the induction argument, G̃ has (1,2)–symplectic metrics. We extend each
such metric to a metric on G by defining λe = λe′ + λe′′ , where e′, e′′ are the
sides corresponding to the base e. This is the only extension for which Λ is
(1,2)–symplectic on the triangle in question, hence the only extension which
might be (1,2)–symplectic for the whole digraph. We want to show that, in
fact, it is.

Step 1. We show that the extension is well defined. Namely, as-
sume that e = uw is simultaneously basis for two transitive triangles, say
{uv, vw, uw} and {uz, zw, uw} with {u, v, w, z} ⊂ V. We need to show
that a priori

λuz + λzw = λuv + λvw. (4)

There are two cases to consider. If v ↔ z, we may assume for definiteness
that v → z. In this case, by (3) we have a priori λvz = λuz − λuv and
λvz = λvw−λzw, implying (4). Otherwise, by (1-2) we have a priori λuv = λuz

λvw = λzw, again implying (4).
Step 2. We show that the extended metric is (1,2)–symplectic. Every

conflict within the constraint system (1)-(3) should involve the deleted edge
e, since G̃ is assumed to satisfy these restrictions. By Lemma 6.1, e is not a
side in G, hence any conflict with (3) is of the type already discussed in Step
1.

A conflict with (1) implies that λe 6= λ′e where, say, e = uw and e′ = tw.
This can occur only if t 6↔ u. Now it can be easily seen that independently
of the relation between v and t, G and G̃ cannot both be LT since one of the
two contains one of the non-LT digraphs of Figure 2. This is a contradiction
to our assumptions.

A conflict with (2) leads to a similar contradiction, and so the proof is
complete.

Assume that the LT digraph is reduced, via edge deletion, to a completely
non-transitive digraph G ′. Theorem 6.2 shows that every (1,2)–symplectic
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metric on G ′ extends uniquely to a (1,2)–symplectic metric on G. Thus, the
dimension of the cone of (1,2)–symplectic metrics is equal in both digraphs
(in the previous section it was denoted by β). It is not clear how to calculate
β directly from the original digraph G. One approach is to represent (1-3) as
a homogeneous linear system and calculate the dimension of its kernel.

We end this section with several remarks.
(i) The completely non-transitive digraph G ′ obtained by edge deletion from
G does not depend on the order of the edges deleted;
(ii) A completely non-transitive digraph G ′ can be the outcome of a non-void
edge deletion of a LT digraph if and only if the union of all the sub-digraphs of
G ′ of type {uv, vw, zw} and {wz, wv, vu} does not contain every sub-digraph
of type {uv, vw};
(iii) It seems that a completely non-transitive digraph is the result of a edge
deletion of a transitive digraph if and only if it is a union of open directed
paths whose terminal vertices are exclusively winners or losers.

In [2] the author applied a nice counting argument in order to enumerate
the complete LT digraphs with n vertices. On first reading it appears that
his method is not adequate for the enumeration of all the LT digraphs with n
vertices. One possible attack on the problem would be to enumerate first the
completely non-transitive ones, and then to figure out how many LT digraphs
edge-delete into a given completely non-transitive digraph.
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