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Abstract

We show how unitary functions can simplify the analysis of some elliptic
integrals.

1. Introduction

The Theory of Riemann Surfaces is one of the main sources of elliptic
integrals. This theory is largely applicable to Minimal Surfaces, and their
connection was first established by two important works from Osserman [2],
Meeks and Rosenberg [1]. In the analysis of real functions given by elliptic in-
tegrals, it happens frequently that the main purposes do not rely on accurate
evaluations, but just on some general information about these functions as
monotonicity, bounds and limits. In these cases, a subtable choice of the inte-
gration path or change of variables can greatly simplify the analysis. However,
these procedures are not general and depend on each specific case, without
guarantee of success.

If it is possible to get an integrand containing unitary functions, chances
will then increase to simplify the integral analysis. A unitary function is the
exponential of a pure imaginary function, which implies several properties ex-
plained in this paper. In fact, our present work is devoted to elliptic integrals
of this kind. We shall exemplify the use of unitary functions in some special
cases, but the procedures explained herein are structurally general and likely
to be helpful in many other circumstances.



2. Examples

In this section we present a practical application involving three elliptic
integrals. Their integrands contain two free parameters, and so the related
to integrals are functions of two variables. First of all, consider a natural
n > 2, a positive real > 1 and the complex variable A in the first quadrant

Q = {7z :0 < Arg(z) < %} of C. The Mobius transformations i_T_Z’,
1—h

15 and their inverses are such that this quadrant is always brought to
open regions of C which exclude the real negative semi-axis. Therefore, the
branch of the n-th root given by Veil := eit/™ is well defined and continuous
on these regions. We fix this branch and define

1 1
z—h\" " (1—h\"»
F(z,h) = — . 1
(1) <x+h> <1+h> W)
Let -y be an integration path in @ connecting the segments |0, 1[ and ]z, oo[

(see Figure 1). The function F' will turn out to be unitary on some special
paths homotopic to v. They will be discussed later.
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Figure 1: The first quadrant @ with the curve ~.

Now define the following integrals:

F+ F~Y)dh
a(n,z) = Re[/ ﬁ; (2)
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F — F Ydh
b(n,z) := 2Re/7ﬁ, and (3)
¢(n,x) := Re / (F —il_fh? . (4)

We are going to prove Proposition 2.1, which summarizes some important
information about the behaviour of the functions a, b and c:

PROPOSITION 2.1. The above defined functions a, b and c satisfy the fol-
lowing properties:

a) b is negative and increasing with x;

b) 0 < —b < 2a, for every x > 1;

¢) a is positive and decreasing with ;

d) c is positive and increasing with ;
b —Cib- c loe1 = 0;

e) a, b and c are continuous at z = 1. Moreover, c|,—1 = 1+
f) The function a + b+ c is positive and increasing with x.

PROOF

(a) An easy calculation shows that

. F—-F1!' OF OF 1
lim —— = — —
h—0 h oh h=0 Ooh
Thus, the limit exists and is finite. Therefore, the differential in the integrand
of (3) is holomorphic at the origin. This implies that b(n, z) will be the same
if we integrate this differential on the following curve: h(t) = it,0 < t < oo.
A simple calculation leads to

[P ((F = FTYoh)(t)dt
b= 2/0 it(1 4 t2) ' 5)

h=0

Since |Foh(t)| = 1, in this case we have F — F~! = 2iIm(F). Let us anal-

T 2 brings

the curve h(t) to the lower unitary semi-circumference in C. ThlS implies that
—7m < Arg(F o h(t)) < 0 and therefore, Im(F o h(t)) is negative. By applying
these conclusions to (5), one has that b is negative.

yse the imaginary part of F o h(t). The Mobius transformation £

To prove that b is increasing with z, it will be sufficient to show that
(g—g > 0. We are going to make use of the following formulas:

OF h



OF 1 h
- _9(1 -1 R
ox ( /) z2 — h? M

By applying (6) and (7) to (5) we get

o © ((F+ F~Y)oh)(t)dt
Pkt 1/")/0 Q1O 212

(8)

Since |F o h(t)| = 1, in this case we have F + F~! = 2Re(F). A sim-
T —it

T+t
Im(F') is negative, from (6) we conclude that 8_8:E(R8( )) > 0. Because of
that, Re(F') is also increasing with z. Using the same arguments which will

be discussed in item (e) of this proposition, one shows that the integrand in

(8) is uniformly continuous at x = 1. Then, if we show that gz >0, we

=1

ple calculation shows that the real part of

is increasing with z. Since

shall have % > 0 for every z > 1.

An easy calculation shows that

00 _ 42
—8(1—1/n)/0 ( (1 —t2)dt

L+ 82)2 (22 +t2)

@
ox =1

By splitting the integration interval into ]0,1] and [1, c0[, and using the
change ¢t — 1/t for the integral on [1, co[ we get:

(1 - 2)dt b (L =tP)at
81 =1/n) {/ +t2 (22 + 12) _/0 T+ P+ 17)

Since t €]0, 1] implies ¢ < 1/t, it follows %
=1

fact that Re(F') increases with z, we then have % > 0 for every z > 1. This
concludes item (a) of Proposition 2.1.

ob

or|,

> (0 and together with the

(b) A simple calculation leads to

+b / Fdh +/ F~'dh )
a+ == [ —5—F —.
2 J,ih2(1—h)  J,ih?(1+h)

For the integrals in (9) we can choose their integration path to be h(t) =
t,1 <t < z, instead of . In this case, we assert that

Foh(t) = (“; - t) o (Q) " pmintn, (10)

T+t t+1
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The reason for the choice {/—1 = e /" is due to Figure 1. To be com-
patible with this picture we must choose the value of /—1 which makes the
function continuous on Q.

Now based on (10) we can easily rewrite (9) as follows:

|dt T\F(h(t)| tdt
ot {/ 2 —1) t—l /1 241 (11)

Clearly, the right-hand side of (11) is positive for every z > 1. Together
with item (a) we have 2a+b—b > —b > 0. This concludes item (b) of Propo-
sition 2.1.

(c) We have just proved item (b), which implies that a is positive. Let us

now analyse the derivative %. By applying (6) and (7) to (2) we obtain:

da (F — F~Y)dh
21— 1/n) / . (12)
or - th(1 — h?)(z% — h?)
-1
As we have mentioned before, lim % exists and is finite. There-

h—0
fore, the integrand in (12) is holomorphic at h = 0 and the value of the
integral will be the same if we choose the integration path to be h(t) = it, for

0 <t < 400, instead of . In the demonstration of item (a) we saw that, in

this case F — F~! = 2iIm(F) and Im(F) is negative. Hence, % is positive

and this concludes item (c).

(d) The integrand in (12) is holomorphic at ~ = 0 and so the integral value
will be invariant if we take the integration path h(t) = it, 0 < t < +oo,
instead of . In this case we have:

[ ((F+F Yo h) (Bt
c_/0 e mnd,

(13)

As we said before, in this case (F + F~1)(it) = 2Re(F(it)), which is
increasing with . In the next item we shall prove that c is continuous at
x = 1. Hence, if ¢|[;—1 > 0, then ¢ will be positive for every z > 1 and also
increasing with z. Let us analyse the case x = 1. From (13) we shall have:

c| _/00 (1 —t?)dt
T )



By splitting the integration interval into ]0,1] and [1,c0], and using the
change t — 1/t for the integral on [1, co[ we get:

P =)dt L1 —)dt
Cla=1 _/0 (1 +2)2 _/0 aree 0

which concludes item (d) of Proposition 2.1.

(e) Consider the quadrant @ = {z : 0 < Arg(z) < %} of C := C U {oo}
and a compact subset X C Q. Moreover, suppose that X N {0,1,z} = (. In
this case, if h € K, then

r—h z+h _ 2@-1h
r+h x—h (v+h)(1-h)

which shows that the convergence lim F™(z,h) = 1-h
z—1 1 +'
K. In the demonstration of item (b) we took {/—1 = e~"/, Therefore, the
convergence lim F(z,h) = % _T_ Z is also uniform on K. We can choose K such
T—1

that {7} C K. Hence, the functions a, b and ¢, defined by (2-4) are continuous
b+c
<,

n
) is uniform on

at x = 1. We have just seen that c|;=; = 0. Let us analyse

Given a real variable y € [0, 1] we can define the parabola P := ay?+by+c
and rewrite it as

dh
P= h+y)?F + (h—y)?F ' . 14
[{oevro-pr it (19
in the special case x = 1, we apply the following simplifications:
(h+y)?F _ 1 (h+y\°_a, b o &
= v @ = Y _ - 7+ 1
h2(1—h?) h2\h+1 h+1+h+h2+(1+h)2 (15)
and . )
h—y)*F~ 1 (h-— b d
(h—y) " 1 (h=y\" _ay b e _dp (16)
h2(1 — h?) h2\h—-1 h  1—h h? (1—h)?
where
=y e =y’
di = (1 -y)? dy = (1 —y)?
and
a=21-y) ay = ~2y(1 - y)
by = —-2y(1 —y) by = —2y(1 —y).
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Therefore,

1 1 dh
Pl._4 = N I
|ar;_1 Relbl(l—l—h_‘_l—h)z

—Jefil-(c+ )b —di(1+h)7 +da(1-h) TN

Let us consider h oy(t) =y + it,0 <t < co. Then

o 1+y 1—vy
Pl =b + dt
=1 1/0 [(1+y)2+t2 (1—y)2+t2]

o
=2y(y — 1)m.
1—y]0 ( )

This means, we have the explicit equation of the parabola in this case. It
confirms that ¢|,—; = 0. Moreover, one has (a + b + ¢)|z=1 = 0 as well, with
a|lg—1 = —blz—1 = 2m. Thus, 1+ b ?IL €|;=1 = 0 and the item (e) of Proposition
2.1 is concluded.

t
=2 — 1) |arctan + arctan
y(y )[ Ty

(f) We have just seen that (a + b + ¢)|z=1 = 0. By calculating y = 1 in
(14) we get

dh

- —=, where
ih?’

P|y:1=a+b+c:Re/(ﬁ'+ﬁ'_1)
g

1—1 1—-1
1—h x+h 1—h

Regarding the derivative with respect to z, the functions F and F~ follow
the same rules as in (6) and (7). Therefore,

0 ~ dh

%(a+b+c):2(1—1/n)R6[/(F—F1)'m-

(17)

Now we proceed with the same arguments used in item (c) to prove that

-1
% is negative. Namely, the limit lim % exists and is finite. Then,
0

h—
the integration (17) can be done on the path h(t) = it,0 < t < oo, instead of
v. Hence,

3(a+b+c):2(1—1/n)Re/OOF_F1 dt (18)

oz o it x4t
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Similarly to F, one easily verifies that Im(F) is positive on h(t), for any
z > 1. Since F — F~' = 2iIm(F), from (18) it follows that a + b + c is
increasing with . Together with the fact that (a + b + ¢)|z=1 = 0, we finally
conclude the last item of Proposition 2.1.

q.e.d.
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