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Abstra
t

We show how unitary fun
tions 
an simplify the analysis of some ellipti


integrals.

1. Introdu
tion

The Theory of Riemann Surfa
es is one of the main sour
es of ellipti


integrals. This theory is largely appli
able to Minimal Surfa
es, and their


onne
tion was �rst established by two important works from Osserman [2℄,

Meeks and Rosenberg [1℄. In the analysis of real fun
tions given by ellipti
 in-

tegrals, it happens frequently that the main purposes do not rely on a

urate

evaluations, but just on some general information about these fun
tions as

monotoni
ity, bounds and limits. In these 
ases, a subtable 
hoi
e of the inte-

gration path or 
hange of variables 
an greatly simplify the analysis. However,

these pro
edures are not general and depend on ea
h spe
i�
 
ase, without

guarantee of su

ess.

If it is possible to get an integrand 
ontaining unitary fun
tions, 
han
es

will then in
rease to simplify the integral analysis. A unitary fun
tion is the

exponential of a pure imaginary fun
tion, whi
h implies several properties ex-

plained in this paper. In fa
t, our present work is devoted to ellipti
 integrals

of this kind. We shall exemplify the use of unitary fun
tions in some spe
ial


ases, but the pro
edures explained herein are stru
turally general and likely

to be helpful in many other 
ir
umstan
es.
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2. Examples

In this se
tion we present a pra
ti
al appli
ation involving three ellipti


integrals. Their integrands 
ontain two free parameters, and so the related

to integrals are fun
tions of two variables. First of all, 
onsider a natural

n � 2, a positive real x > 1 and the 
omplex variable h in the �rst quadrant

Q := fz : 0 < Arg(z) <

�

2

g of C . The M�obius transformations

x� h

x+ h

,

1� h

1 + h

and their inverses are su
h that this quadrant is always brought to

open regions of C whi
h ex
lude the real negative semi-axis. Therefore, the

bran
h of the n-th root given by

n

p

e

it

:= e

it=n

is well de�ned and 
ontinuous

on these regions. We �x this bran
h and de�ne

F (x; h) :=

�

x� h

x+ h

�

1�

1

n

�

�

1� h

1 + h

�

1

n

: (1)

Let 
 be an integration path in Q 
onne
ting the segments ℄0; 1[ and ℄x;1[

(see Figure 1). The fun
tion F will turn out to be unitary on some spe
ial

paths homotopi
 to 
. They will be dis
ussed later.
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Figure 1: The �rst quadrant Q with the 
urve 
.

Now de�ne the following integrals:

a(n; x) := Re

Z




(F + F

�1

)dh

ih

2

(1� h

2

)

; (2)
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b(n; x) := 2Re

Z




(F � F

�1

)dh

ih(1� h

2

)

; and (3)


(n; x) := Re

Z




(F + F

�1

)dh

i(1� h

2

)

: (4)

We are going to prove Proposition 2.1, whi
h summarizes some important

information about the behaviour of the fun
tions a, b and 
:

PROPOSITION 2.1. The above de�ned fun
tions a, b and 
 satisfy the fol-

lowing properties:

a) b is negative and in
reasing with x;

b) 0 < �b < 2a, for every x > 1;


) a is positive and de
reasing with x;

d) 
 is positive and in
reasing with x;

e) a, b and 
 are 
ontinuous at x = 1. Moreover, 
j

x=1

= 1+

b+ 


a

j

x=1

= 0;

f) The fun
tion a+ b+ 
 is positive and in
reasing with x.

PROOF

(a) An easy 
al
ulation shows that

lim

h!0

F � F

�1

h

=

�F

�h

�

�

�

�

h=0

�

�F

�1

�h

�

�

�

�

h=0

:

Thus, the limit exists and is �nite. Therefore, the di�erential in the integrand

of (3) is holomorphi
 at the origin. This implies that b(n; x) will be the same

if we integrate this di�erential on the following 
urve: h(t) = it; 0 < t < 1.

A simple 
al
ulation leads to

b = 2

Z

1

0

((F � F

�1

) Æ h)(t)dt

it(1 + t

2

)

: (5)

Sin
e jF Æh(t)j � 1, in this 
ase we have F �F

�1

= 2iIm(F ). Let us anal-

yse the imaginary part of F Æ h(t). The M�obius transformation

x� h

x+ h

brings

the 
urve h(t) to the lower unitary semi-
ir
umferen
e in C . This implies that

�� < Arg(F Æ h(t)) < 0 and therefore, Im(F Æ h(t)) is negative. By applying

these 
on
lusions to (5), one has that b is negative.

To prove that b is in
reasing with x, it will be suÆ
ient to show that

�b

�x

> 0. We are going to make use of the following formulas:

�F

�x

= 2(1� 1=n) �

h

x

2

� h

2

� F and (6)
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�F

�1

�x

= �2(1� 1=n) �

h

x

2

� h

2

� F

�1

: (7)

By applying (6) and (7) to (5) we get

�b

�x

= 4(1� 1=n)

Z

1

0

((F + F

�1

) Æ h)(t)dt

(1 + t

2

)(x

2

+ t

2

)

: (8)

Sin
e jF Æ h(t)j � 1, in this 
ase we have F + F

�1

= 2Re(F ). A sim-

ple 
al
ulation shows that the real part of

x� it

x+ it

is in
reasing with x. Sin
e

Im(F ) is negative, from (6) we 
on
lude that

�

�x

(Re(F )) > 0. Be
ause of

that, Re(F ) is also in
reasing with x. Using the same arguments whi
h will

be dis
ussed in item (e) of this proposition, one shows that the integrand in

(8) is uniformly 
ontinuous at x = 1. Then, if we show that

�b

�x

�

�

�

�

x=1

> 0, we

shall have

�b

�x

> 0 for every x > 1.

An easy 
al
ulation shows that

�b

�x

�

�

�

�

x=1

= 8(1� 1=n)

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

(x

2

+ t

2

)

:

By splitting the integration interval into ℄0; 1℄ and [1;1[, and using the


hange t! 1=t for the integral on [1;1[ we get:

�b

�x

�

�

�

�

x=1

= 8(1� 1=n)f

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

(x

2

+ t

2

)

�

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

(x

2

+ 1=t

2

)

g:

Sin
e t 2℄0; 1[ implies t < 1=t, it follows

�b

�x

�

�

�

�

x=1

> 0 and together with the

fa
t that Re(F ) in
reases with x, we then have

�b

�x

> 0 for every x > 1. This


on
ludes item (a) of Proposition 2.1.

(b) A simple 
al
ulation leads to

a+

b

2

=

Z




Fdh

ih

2

(1� h)

+

Z




F

�1

dh

ih

2

(1 + h)

: (9)

For the integrals in (9) we 
an 
hoose their integration path to be h(t) =

t; 1 < t < x, instead of 
. In this 
ase, we assert that

F Æ h(t) =

�

x� t

x+ t

�

1�1=n

�

�

t� 1

t+ 1

�

1=n

�e

�i�=n

: (10)
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The reason for the 
hoi
e

n

p

�1 = e

�i�=n

is due to Figure 1. To be 
om-

patible with this pi
ture we must 
hoose the value of

n

p

�1 whi
h makes the

fun
tion 
ontinuous on

�

Q.

Now based on (10) we 
an easily rewrite (9) as follows:

a+

b

2

= sin

�

n

� f

Z

x

1

jF (h(t))jdt

t

2

(t� 1)

+

Z

x

1

jF (h(t))j

�1

dt

t

2

(t+ 1)

g: (11)

Clearly, the right-hand side of (11) is positive for every x > 1. Together

with item (a) we have 2a+ b� b > �b > 0. This 
on
ludes item (b) of Propo-

sition 2.1.

(
) We have just proved item (b), whi
h implies that a is positive. Let us

now analyse the derivative

�a

�x

. By applying (6) and (7) to (2) we obtain:

�a

�x

= 2(1 � 1=n)

Z




(F � F

�1

)dh

ih(1 � h

2

)(x

2

� h

2

)

: (12)

As we have mentioned before,
lim

h!0

F � F

�1

h

exists and is �nite. There-

fore, the integrand in (12) is holomorphi
 at h = 0 and the value of the

integral will be the same if we 
hoose the integration path to be h(t) = it, for

0 < t < +1, instead of 
. In the demonstration of item (a) we saw that, in

this 
ase F � F

�1

= 2iIm(F ) and Im(F ) is negative. Hen
e,

�a

�x

is positive

and this 
on
ludes item (
).

(d) The integrand in (12) is holomorphi
 at h = 0 and so the integral value

will be invariant if we take the integration path h(t) = it, 0 < t < +1,

instead of 
. In this 
ase we have:


 =

Z

1

0

((F + F

�1

) Æ h)(t)dt

1 + t

2

: (13)

As we said before, in this 
ase (F + F

�1

)(it) = 2Re(F (it)), whi
h is

in
reasing with x. In the next item we shall prove that 
 is 
ontinuous at

x = 1. Hen
e, if 
j

x=1

� 0, then 
 will be positive for every x > 1 and also

in
reasing with x. Let us analyse the 
ase x = 1. From (13) we shall have:


j

x=1

=

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

:
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By splitting the integration interval into ℄0; 1℄ and [1;1[, and using the


hange t! 1=t for the integral on [1;1[ we get:


j

x=1

=

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

�

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

= 0;

whi
h 
on
ludes item (d) of Proposition 2.1.

(e) Consider the quadrant Q = fz : 0 < Arg(z) <

�

2

g of

^

C := C [ f1g

and a 
ompa
t subset K �

�

Q. Moreover, suppose that K \ f0; 1; xg = ;. In

this 
ase, if h 2 K, then

x� h

x+ h

�

x+ h

x� h

=

2(x� 1)h

(x+ h)(1 � h)

;

whi
h shows that the 
onvergen
e
lim

x!1

F

n

(x; h) =

�

1� h

1 + h

�

n

is uniform on

K. In the demonstration of item (b) we took

n

p

�1 = e

�i�=n

. Therefore, the


onvergen
e
lim

x!1

F (x; h) =

1� h

1 + h

is also uniform on K. We 
an 
hoose K su
h

that f
g � K. Hen
e, the fun
tions a; b and 
, de�ned by (2-4) are 
ontinuous

at x = 1. We have just seen that 
j

x=1

= 0. Let us analyse

b+ 


a

.

Given a real variable y 2 [0; 1℄ we 
an de�ne the parabola P := ay

2

+by+


and rewrite it as

P =

Z




�

(h+ y)

2

F + (h� y)

2

F

�1

�

dh

ih

2

(1� h

2

)

: (14)

in the spe
ial 
ase x = 1, we apply the following simpli�
ations:

(h+ y)

2

F

h

2

(1� h

2

)

=

1

h

2

�

h+ y

h+ 1

�

2

=

a

1

h

+

b

1

1 + h

+




1

h

2

+

d

1

(1 + h)

2

(15)

and

(h� y)

2

F

�1

h

2

(1� h

2

)

=

1

h

2

�

h� y

h� 1

�

2

=

a

2

h

+

b

2

1� h

+




2

h

2

+

d

2

(1� h)

2

: (16)

where

8

>

>

<

>

>

:




1

= y

2

d

1

= (1� y)

2

a

1

= 2y(1� y)

b

1

= �2y(1� y)

and

8

>

>

<

>

>

:




2

= y

2

d

2

= (1� y)

2

a

2

= �2y(1� y)

b

2

= �2y(1� y):
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Therefore,

P j

x=1

= Re

Z




b

1

�

1

1 + h

+

1

1� h

�

dh

i

� Re

|{z}

=0

fi[�(


1

+ 


2

)h

�1

� d

1

(1 + h)

�1

+ d

2

(1� h)

�1

℄

1

y

g:

Let us 
onsider h Æ
(t) = y + it; 0 � t � 1. Then

P j

x=1

= b

1

Z

1

0

�

1 + y

(1 + y)

2

+ t

2

+

1� y

(1� y)

2

+ t

2

�

dt

= 2y(y � 1)

�

ar
tan

t

1 + y

+ ar
tan

t

1� y

�

1

0

= 2y(y � 1)�:

This means, we have the expli
it equation of the parabola in this 
ase. It


on�rms that 
j

x=1

= 0. Moreover, one has (a+ b + 
)j

x=1

= 0 as well, with

aj

x=1

= �bj

x=1

= 2�. Thus, 1+

b+ 


a

j

x=1

= 0 and the item (e) of Proposition

2.1 is 
on
luded.

(f) We have just seen that (a + b + 
)j

x=1

= 0. By 
al
ulating y = 1 in

(14) we get

P j

y=1

= a+ b+ 
 = Re

Z




(

~

F +

~

F

�1

) �

dh

ih

2

; where

~

F :=

1 + h

1� h

� F =

�

x� h

x+ h

�

1�

1

n

�

�

1 + h

1� h

�

1�

1

n

:

Regarding the derivative with respe
t to x, the fun
tions

~

F and

~

F

�1

follow

the same rules as in (6) and (7). Therefore,

�

�x

(a+ b+ 
) = 2(1 � 1=n)Re

Z




(

~

F �

~

F

�1

) �

dh

ih(x

2

� h

2

)

: (17)

Now we pro
eed with the same arguments used in item (
) to prove that

�a

�x

is negative. Namely, the limit
lim

h!0

~

F �

~

F

�1

h

exists and is �nite. Then,

the integration (17) 
an be done on the path h(t) = it; 0 < t <1, instead of


. Hen
e,

�

�x

(a+ b+ 
) = 2(1� 1=n)Re

Z

1

0

~

F �

~

F

�1

it

�

dt

x

2

+ t

2

: (18)
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Similarly to F , one easily veri�es that Im(

~

F ) is positive on h(t), for any

x > 1. Sin
e

~

F �

~

F

�1

= 2iIm(

~

F ), from (18) it follows that a + b + 
 is

in
reasing with x. Together with the fa
t that (a+ b+ 
)j

x=1

= 0, we �nally


on
lude the last item of Proposition 2.1.

q.e.d.
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