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Abstrat

We show how unitary funtions an simplify the analysis of some ellipti

integrals.

1. Introdution

The Theory of Riemann Surfaes is one of the main soures of ellipti

integrals. This theory is largely appliable to Minimal Surfaes, and their

onnetion was �rst established by two important works from Osserman [2℄,

Meeks and Rosenberg [1℄. In the analysis of real funtions given by ellipti in-

tegrals, it happens frequently that the main purposes do not rely on aurate

evaluations, but just on some general information about these funtions as

monotoniity, bounds and limits. In these ases, a subtable hoie of the inte-

gration path or hange of variables an greatly simplify the analysis. However,

these proedures are not general and depend on eah spei� ase, without

guarantee of suess.

If it is possible to get an integrand ontaining unitary funtions, hanes

will then inrease to simplify the integral analysis. A unitary funtion is the

exponential of a pure imaginary funtion, whih implies several properties ex-

plained in this paper. In fat, our present work is devoted to ellipti integrals

of this kind. We shall exemplify the use of unitary funtions in some speial

ases, but the proedures explained herein are struturally general and likely

to be helpful in many other irumstanes.
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2. Examples

In this setion we present a pratial appliation involving three ellipti

integrals. Their integrands ontain two free parameters, and so the related

to integrals are funtions of two variables. First of all, onsider a natural

n � 2, a positive real x > 1 and the omplex variable h in the �rst quadrant

Q := fz : 0 < Arg(z) <

�

2

g of C . The M�obius transformations

x� h

x+ h

,

1� h

1 + h

and their inverses are suh that this quadrant is always brought to

open regions of C whih exlude the real negative semi-axis. Therefore, the

branh of the n-th root given by

n

p

e

it

:= e

it=n

is well de�ned and ontinuous

on these regions. We �x this branh and de�ne

F (x; h) :=

�

x� h

x+ h

�

1�

1

n

�

�

1� h

1 + h

�

1

n

: (1)

Let  be an integration path in Q onneting the segments ℄0; 1[ and ℄x;1[

(see Figure 1). The funtion F will turn out to be unitary on some speial

paths homotopi to . They will be disussed later.
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Figure 1: The �rst quadrant Q with the urve .

Now de�ne the following integrals:

a(n; x) := Re

Z



(F + F

�1

)dh

ih

2

(1� h

2

)

; (2)
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b(n; x) := 2Re

Z



(F � F

�1

)dh

ih(1� h

2

)

; and (3)

(n; x) := Re

Z



(F + F

�1

)dh

i(1� h

2

)

: (4)

We are going to prove Proposition 2.1, whih summarizes some important

information about the behaviour of the funtions a, b and :

PROPOSITION 2.1. The above de�ned funtions a, b and  satisfy the fol-

lowing properties:

a) b is negative and inreasing with x;

b) 0 < �b < 2a, for every x > 1;

) a is positive and dereasing with x;

d)  is positive and inreasing with x;

e) a, b and  are ontinuous at x = 1. Moreover, j

x=1

= 1+

b+ 

a

j

x=1

= 0;

f) The funtion a+ b+  is positive and inreasing with x.

PROOF

(a) An easy alulation shows that

lim

h!0

F � F

�1

h

=

�F

�h

�

�

�

�

h=0

�

�F

�1

�h

�

�

�

�

h=0

:

Thus, the limit exists and is �nite. Therefore, the di�erential in the integrand

of (3) is holomorphi at the origin. This implies that b(n; x) will be the same

if we integrate this di�erential on the following urve: h(t) = it; 0 < t < 1.

A simple alulation leads to

b = 2

Z

1

0

((F � F

�1

) Æ h)(t)dt

it(1 + t

2

)

: (5)

Sine jF Æh(t)j � 1, in this ase we have F �F

�1

= 2iIm(F ). Let us anal-

yse the imaginary part of F Æ h(t). The M�obius transformation

x� h

x+ h

brings

the urve h(t) to the lower unitary semi-irumferene in C . This implies that

�� < Arg(F Æ h(t)) < 0 and therefore, Im(F Æ h(t)) is negative. By applying

these onlusions to (5), one has that b is negative.

To prove that b is inreasing with x, it will be suÆient to show that

�b

�x

> 0. We are going to make use of the following formulas:

�F

�x

= 2(1� 1=n) �

h

x

2

� h

2

� F and (6)
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�F

�1

�x

= �2(1� 1=n) �

h

x

2

� h

2

� F

�1

: (7)

By applying (6) and (7) to (5) we get

�b

�x

= 4(1� 1=n)

Z

1

0

((F + F

�1

) Æ h)(t)dt

(1 + t

2

)(x

2

+ t

2

)

: (8)

Sine jF Æ h(t)j � 1, in this ase we have F + F

�1

= 2Re(F ). A sim-

ple alulation shows that the real part of

x� it

x+ it

is inreasing with x. Sine

Im(F ) is negative, from (6) we onlude that

�

�x

(Re(F )) > 0. Beause of

that, Re(F ) is also inreasing with x. Using the same arguments whih will

be disussed in item (e) of this proposition, one shows that the integrand in

(8) is uniformly ontinuous at x = 1. Then, if we show that

�b

�x

�

�

�

�

x=1

> 0, we

shall have

�b

�x

> 0 for every x > 1.

An easy alulation shows that

�b

�x

�

�

�

�

x=1

= 8(1� 1=n)

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

(x

2

+ t

2

)

:

By splitting the integration interval into ℄0; 1℄ and [1;1[, and using the

hange t! 1=t for the integral on [1;1[ we get:

�b

�x

�

�

�

�

x=1

= 8(1� 1=n)f

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

(x

2

+ t

2

)

�

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

(x

2

+ 1=t

2

)

g:

Sine t 2℄0; 1[ implies t < 1=t, it follows

�b

�x

�

�

�

�

x=1

> 0 and together with the

fat that Re(F ) inreases with x, we then have

�b

�x

> 0 for every x > 1. This

onludes item (a) of Proposition 2.1.

(b) A simple alulation leads to

a+

b

2

=

Z



Fdh

ih

2

(1� h)

+

Z



F

�1

dh

ih

2

(1 + h)

: (9)

For the integrals in (9) we an hoose their integration path to be h(t) =

t; 1 < t < x, instead of . In this ase, we assert that

F Æ h(t) =

�

x� t

x+ t

�

1�1=n

�

�

t� 1

t+ 1

�

1=n

�e

�i�=n

: (10)
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The reason for the hoie

n

p

�1 = e

�i�=n

is due to Figure 1. To be om-

patible with this piture we must hoose the value of

n

p

�1 whih makes the

funtion ontinuous on

�

Q.

Now based on (10) we an easily rewrite (9) as follows:

a+

b

2

= sin

�

n

� f

Z

x

1

jF (h(t))jdt

t

2

(t� 1)

+

Z

x

1

jF (h(t))j

�1

dt

t

2

(t+ 1)

g: (11)

Clearly, the right-hand side of (11) is positive for every x > 1. Together

with item (a) we have 2a+ b� b > �b > 0. This onludes item (b) of Propo-

sition 2.1.

() We have just proved item (b), whih implies that a is positive. Let us

now analyse the derivative

�a

�x

. By applying (6) and (7) to (2) we obtain:

�a

�x

= 2(1 � 1=n)

Z



(F � F

�1

)dh

ih(1 � h

2

)(x

2

� h

2

)

: (12)

As we have mentioned before,
lim

h!0

F � F

�1

h

exists and is �nite. There-

fore, the integrand in (12) is holomorphi at h = 0 and the value of the

integral will be the same if we hoose the integration path to be h(t) = it, for

0 < t < +1, instead of . In the demonstration of item (a) we saw that, in

this ase F � F

�1

= 2iIm(F ) and Im(F ) is negative. Hene,

�a

�x

is positive

and this onludes item ().

(d) The integrand in (12) is holomorphi at h = 0 and so the integral value

will be invariant if we take the integration path h(t) = it, 0 < t < +1,

instead of . In this ase we have:

 =

Z

1

0

((F + F

�1

) Æ h)(t)dt

1 + t

2

: (13)

As we said before, in this ase (F + F

�1

)(it) = 2Re(F (it)), whih is

inreasing with x. In the next item we shall prove that  is ontinuous at

x = 1. Hene, if j

x=1

� 0, then  will be positive for every x > 1 and also

inreasing with x. Let us analyse the ase x = 1. From (13) we shall have:

j

x=1

=

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

:
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By splitting the integration interval into ℄0; 1℄ and [1;1[, and using the

hange t! 1=t for the integral on [1;1[ we get:

j

x=1

=

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

�

Z

1

0

(1� t

2

)dt

(1 + t

2

)

2

= 0;

whih onludes item (d) of Proposition 2.1.

(e) Consider the quadrant Q = fz : 0 < Arg(z) <

�

2

g of

^

C := C [ f1g

and a ompat subset K �

�

Q. Moreover, suppose that K \ f0; 1; xg = ;. In

this ase, if h 2 K, then

x� h

x+ h

�

x+ h

x� h

=

2(x� 1)h

(x+ h)(1 � h)

;

whih shows that the onvergene
lim

x!1

F

n

(x; h) =

�

1� h

1 + h

�

n

is uniform on

K. In the demonstration of item (b) we took

n

p

�1 = e

�i�=n

. Therefore, the

onvergene
lim

x!1

F (x; h) =

1� h

1 + h

is also uniform on K. We an hoose K suh

that fg � K. Hene, the funtions a; b and , de�ned by (2-4) are ontinuous

at x = 1. We have just seen that j

x=1

= 0. Let us analyse

b+ 

a

.

Given a real variable y 2 [0; 1℄ we an de�ne the parabola P := ay

2

+by+

and rewrite it as

P =

Z



�

(h+ y)

2

F + (h� y)

2

F

�1

�

dh

ih

2

(1� h

2

)

: (14)

in the speial ase x = 1, we apply the following simpli�ations:

(h+ y)

2

F

h

2

(1� h

2

)

=

1

h

2

�

h+ y

h+ 1

�

2

=

a

1

h

+

b

1

1 + h

+



1

h

2

+

d

1

(1 + h)

2

(15)

and

(h� y)

2

F

�1

h

2

(1� h

2

)

=

1

h

2

�

h� y

h� 1

�

2

=

a

2

h

+

b

2

1� h

+



2

h

2

+

d

2

(1� h)

2

: (16)

where

8

>

>

<

>

>

:



1

= y

2

d

1

= (1� y)

2

a

1

= 2y(1� y)

b

1

= �2y(1� y)

and

8

>

>

<

>

>

:



2

= y

2

d

2

= (1� y)

2

a

2

= �2y(1� y)

b

2

= �2y(1� y):
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Therefore,

P j

x=1

= Re

Z



b

1

�

1

1 + h

+

1

1� h

�

dh

i

� Re

|{z}

=0

fi[�(

1

+ 

2

)h

�1

� d

1

(1 + h)

�1

+ d

2

(1� h)

�1

℄

1

y

g:

Let us onsider h Æ(t) = y + it; 0 � t � 1. Then

P j

x=1

= b

1

Z

1

0

�

1 + y

(1 + y)

2

+ t

2

+

1� y

(1� y)

2

+ t

2

�

dt

= 2y(y � 1)

�

artan

t

1 + y

+ artan

t

1� y

�

1

0

= 2y(y � 1)�:

This means, we have the expliit equation of the parabola in this ase. It

on�rms that j

x=1

= 0. Moreover, one has (a+ b + )j

x=1

= 0 as well, with

aj

x=1

= �bj

x=1

= 2�. Thus, 1+

b+ 

a

j

x=1

= 0 and the item (e) of Proposition

2.1 is onluded.

(f) We have just seen that (a + b + )j

x=1

= 0. By alulating y = 1 in

(14) we get

P j

y=1

= a+ b+  = Re

Z



(

~

F +

~

F

�1

) �

dh

ih

2

; where

~

F :=

1 + h

1� h

� F =

�

x� h

x+ h

�

1�

1

n

�

�

1 + h

1� h

�

1�

1

n

:

Regarding the derivative with respet to x, the funtions

~

F and

~

F

�1

follow

the same rules as in (6) and (7). Therefore,

�

�x

(a+ b+ ) = 2(1 � 1=n)Re

Z



(

~

F �

~

F

�1

) �

dh

ih(x

2

� h

2

)

: (17)

Now we proeed with the same arguments used in item () to prove that

�a

�x

is negative. Namely, the limit
lim

h!0

~

F �

~

F

�1

h

exists and is �nite. Then,

the integration (17) an be done on the path h(t) = it; 0 < t <1, instead of

. Hene,

�

�x

(a+ b+ ) = 2(1� 1=n)Re

Z

1

0

~

F �

~

F

�1

it

�

dt

x

2

+ t

2

: (18)
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Similarly to F , one easily veri�es that Im(

~

F ) is positive on h(t), for any

x > 1. Sine

~

F �

~

F

�1

= 2iIm(

~

F ), from (18) it follows that a + b +  is

inreasing with x. Together with the fat that (a+ b+ )j

x=1

= 0, we �nally

onlude the last item of Proposition 2.1.

q.e.d.
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