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Abstract

In this note we extend the results of our earlier work “Kaplansky’s radical and a recursive
description of pro-2 Galois groups” (Rel. Pesq. 23/01) to arbitrary prime numbers p. Although
we succeed in proving the same results, the methods used in the proofs are more conceptual.
To be precise, let Gp(F ) be the Galois group of the maximal Galois p-extension of a field F of
characteristic 6= p. Denote by R(F ) the radical of the skew-symmetric bilinear pairing which
associates to each pair a, b of non-zero elements of F the class of the cyclic algebra (a, b)F in
the Brauer group of F . We deduce from a condition connecting R(F ) with valuation rings of
F and also orderings of F when p = 2, that Gp(F ) can be obtained from some suitable closed
subgroups using free pro-2 products and semi-direct group extension operations a finite number
of times.

Key Words: K-theory; valuation; ordering; pro-p group; free pro-p product.

1 Introduction

Fix a prime number p and let F be a field of characteristic 6= p containing a primitive p-th root
of unity. Denote by Gp(F ) the Galois group of the maximal p-extension of F . It is conjectured
that if Gp(F ) is (topologically) finitely generated, then Gp(F ) can be built from some “basic” pro-p
groups by iterating two group theoretical operations (the so-called elementary type conjecture).
The basic groups are Zp, Demushkin pro-p groups and Z/2Z if p = 2. The operations used are free
products and certain semidirect products in the category of pro-p groups. We propose to deal with
a simplified version of this conjecture.

Before we state our results in more detail, let us fix some notations which are used throughout
the paper.

By a localizer of F we shall mean either a valuation ring of F with residue field of characteristic
6= p or, in the case p = 2, the positive cone of an ordering of F . A pair (F,A) is called locally
closed if either A is a p-henselian valuation ring of F or F is euclidean and A is the positive cone
of the ordering of F , when p = 2.
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Our aim is to show that Gp(F ) can be constructed following the process described in the first
paragraph where in addition to the listed basic groups we also consider Gp(L), for locally closed
extensions (L,A′) of F inside F (p).

A particular instance of our results is the following known theorem ([17, Theorem 4.3], [5,
Proposition 4.3]).

Theorem. Let A = {A1, . . . , An} be a family of localizers of F which induce different topologies on
F . Fix, for every 1 ≤ i ≤ n a locally closed extension (Hi, A

′
i) of (F,Ai) in F (p) and suppose that

H1∩· · ·∩Hn = F . Then Gp(F ) decomposes into a free pro-p product Gp(F ) = Gp(H1)∗· · ·∗Gp(Hn).

Observe now that the Galois group Gp(K) of every finite intermediate extension K ⊂ F (p) of F
inherits from Gp(F ) a similar decomposition. More precisely, by Kurosh’s subgroup theorem (see
for example [3]) Gp(K) = G0 ∗G1 ∗ · · ·Gm, where G0 is a free pro-p group and for every 1 ≤ j ≤ m,
Gj is the Galois group of an extension of some Hi inside F (p), a locally closed extension of K. If
G0 is non-trivial, then K is not the intersection of the fixed fields of G1, . . . , Gm. Therefore we
have to weaken the condition H1 ∩ · · · ∩Hn = F in order that our results remain true for the finite
subextensions of F (p)|F . This is done by the introduction of a subgroup R(F ), called the radical of
F as we explain in section 3. In fact R(F ) corresponds to the radical of the bilinear cup product.

Our results depend on a cohomological criterion, according to Neukirch, for a pro-p group to be
a free pro-p product of closed subgroups ([28]) and the results of Merkurjev and Suslin which state
the connection between Milnor’s K-theory of a field F with the cohomology of the Galois group
Gp(F ) [25]. These results are the subject of the next section.

In Section 3 we deal with the relationship between R(F ) and free products of subgroups of
Gp(F ). Section 4 is dedicated to study the connection between localizers and R(F ). In section 5
we prove the above theorem in a more general form (Proposition 5.4). This will be the first step
towards the main results which are in Section 6, where we also introduce the A-admissible groups
(Definition 3). In the last two sections we study properties of fields F for which Gp(F ) decomposes
into a free pro-p product.

Throughout the paper every subgroup of a pro-p group is supposed to be closed and every
homomorphism continuous.

We hope this paper will be a contribution to the study of the conjecture mentioned above.
Moreover our theorems generalize several known results about the decomposition of Gp(F ) as a
free pro-p product under heavier assumptions.

Finally, if F has characteristic p, then Gp(F ) is known to be a free pro-p group.

2 On free products

For any pro-p group G let H i(G) be the i-th continuous cohomology group of G with coefficients
in Z/pZ. Recall that a pro-p group admits a decomposition G = G1 ∗ · · · ∗ Gn into a free pro-
p product of closed subgroups G1, . . . , Gn if and only if the homomorphism Resi : H i(G) −→
H i(G1)× · · · ×H i(Gn) is an isomorphism for i = 1 and injective for i = 2 [28, Satz 4.3].

For a Galois pro-p group Gp(F ) we want to translate this cohomological criterion into arith-
metical conditions on F . This will be the subject of Proposition 2.1.

To be precise, assume that G = Gp(F ) for a field F and Gi = Gp(Hi) for some extensions
Hi ⊂ F (p) of F , for every i = 1, . . . ,m. Since the map Res is induced by inclusion, Res1 is an
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isomorphism (epimorphism) if and only if the homomorphism Ḟ /Ḟ p −→ Ḣ1/Ḣp
1 × · · · × Ḣn/Ḣp

n,
induced by inclusions, is an isomorphism (epimorphism) because of the following well known facts:

• For every pro-p group G, H1(G) is canonically isomorphic to the group of continuous homo-
morphisms Homc(G, 〈ξ〉), where ξ is a primitive p-th root of unity.

• For every field F , Kummer’s Theory implies that Ḟ /Ḟ p ∼= Homc(Gp(F ), 〈ξ〉).

The other condition requires more considerations. By the Merkurjev-Suslin theorem we have
an isomorphism k2F −→ H2(Gp(F ), 〈ξ〉), connecting Milnor K-theory and Galois cohomology.
Therefore, the injectivity of Res2 is equivalent to saying that inclusions F ⊂ Hi, i = 1, . . . , n induce
an injective homomorphism k2F −→ k2H1 × · · · × k2Hn.

Before we state our criterion for pro-p free products let us introduce some new conventions.
Write Ḟ and Ḟ p to represent the multiplicative groups of nonzero elements and nonzero p-th powers
of F , respectively. Let F̃ = Ḟ /Ḟ p and denote by ã the image of a ∈ Ḟ in F̃ . Observe that F̃ ∼= k1F
[26].

From now on H1, . . . ,Hn will always be extensions of F inside F (p). For every a ∈ F we
denote by DF (a) and Di(a) the image of the norm homomorphism NF

a : F ( p
√

a ) r {0} −→ Ḟ and
N i

a : Hi( p
√

a ) r {0} −→ Ḣi, respectively.

Proposition 2.1. For F and H1, . . . ,Hn as above we suppose the following conditions hold:

(I) The inclusions F ⊂ Hi induce an isomorphism ϕ1 : F̃ −→ H̃1 × · · · × H̃n.

(II) For a, b ∈ Ḟ , if b ∈ Di(a) for every i = 1, . . . , n, then b ∈ DF (a).

Then Gp(F ) = Gp(H1) ∗ · · · ∗Gp(Hn).
Conversely, if Gp(F ) admits the above decomposition, then conditions (I) and (II) are true.

Proof. According to the coments preceding the proposition, it is enough to prove that k2F −→
k2H1 × · · · × k2Hn is injective. As observed in the proof of Proposition 4 [24], k2F = F̃ ⊗ F̃ /A
and, for every 1 ≤ i ≤ n, k2Hi = H̃i ⊗ H̃i/Ai, where A and Ai are the subgroups generated by
{x̃ ⊗ ỹ | x, y ∈ Ḟ and y ∈ DF (x)} and {x̃ ⊗ ỹ | x, y ∈ Ḣi and y ∈ Di(x)}, respectively. Let
θ : F̃ ⊗ F̃ −→ k2F and θi : H̃i ⊗ H̃i −→ k2Hi be the canonical maps. Consider now the following
diagram,

0 →
n∏

j=1

Aj →
n∏

j=1

H̃j ⊗ H̃j

∏n
j=1 θj

−−−−−−−→
n∏

j=1

k2Hj → 0

x Φ0

x Φ
x ϕ2

0 → A −→ F̃ ⊗ F̃
θ−−−−−−−→ k2F −→ 0

where the vertical arrows are described as follows: Φ is the composition of the isomorphism

ϕ1 ⊗ ϕ1 : F̃ ⊗ F̃ −→

(
n∏

i=1

H̃i

)
⊗

(
n∏

i=1

H̃i

)
with the natural projection ∏

r,s

H̃r ⊗ H̃s −→
n∏

j=1

H̃j ⊗ H̃j .
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For x, y ∈ Ḟ such that y ∈ DF (x) it follows that y ∈ Dj(x), for every j = 1, . . . , n. Hence Φ(A) ⊂∏n
j=1 Aj and we call Φ0 the restriction of Φ to A and ϕ2 the induced quotient homomorphism.

Finally, observe that the squares are commutative.
We shall prove that ϕ2 is injective by diagram chasing. To this end we shall show that kernelΦ ⊂

A and Φ0 is surjective.
For every 1 ≤ i ≤ n let Si = Ḟ ∩ (

⋂
j 6=i Ḣ

p
j ) and denote S̃i = Si/Ḟ p the image of Si in F̃ . By

(I), ϕ1 maps S̃i isomorphicaly on H̃i, for every 1 ≤ i ≤ n. Consequently F̃ = S̃1 ⊕ · · · ⊕ S̃n. Hence
F̃ ⊗ F̃ =

⊕
r,s S̃r ⊗ S̃s and then kernelΦ =

⊕
r 6=s S̃r ⊗ S̃s. We now claim that kernelΦ ⊂ A. Indeed,

for x ∈ Sr and y ∈ Ss, since x ∈ Ḣp
j for every j 6= r, Dj(x) = Ḣj and so y ∈ Dj(x). For j = r 6= s,

y ∈ Ḣp
r ⊂ Dr(x). Thus, by (II), y ∈ DF (x) and so x̃⊗ ỹ ∈ A. Therefore, for every 1 ≤ r 6= s ≤ n,

S̃r ⊗ S̃s ⊂ A and the claim is proved.
Next, we prove that Φ0 is a surjective map. We have that

∏n
i=1 Ai is generated by the elements

(x̃1⊗ ỹ1, x̃2⊗ ỹ2, . . . , x̃n⊗ ỹn), such that yi ∈ Di(xi), for every i = 1, . . . , n. By (I) there are x, y ∈ Ḟ
satisfying ϕ1(x̃) = (x̃1, . . . , x̃n) and ϕ1(ỹ) = (ỹ1, . . . , ỹn). Hence xḢp

i = xiḢ
p
i and yḢp

i = yiḢ
p
i ,

for every i = 1, . . . , n. Consequently, Di(xi) = Di(x) and y ∈ Di(x), for every 1 ≤ i ≤ n.
Thus x̃ ⊗ ỹ ∈ A. In the other side, x̃ ⊗ ỹ = x̃i ⊗ ỹi in H̃i ⊗ H̃i, for every i = 1, . . . , n. So
Φ(x̃⊗ ỹ) = (x̃1 ⊗ ỹ1, . . . , x̃n ⊗ ỹn) and then Φ0 is surjective as required.

Once these two facts are established we can prove that ϕ2 is injective. For z ∈ k2F such that
ϕ2(z) = 0 take y ∈ F̃ ⊗ F̃ with θ(y) = z. Then

∏n
i=1 θi ◦ Φ(y) = 0. Thus Φ(y) ∈

∏n
i=1 Ai and by

the surjectivity of Φ0, there is y′ ∈ A such that Φ(y′) = Φ(y). As kernelΦ ⊂ A and y′ ∈ A it follows
that y ∈ A and so z = θ(y) = 0.

The converse is seen by observing first that (I) follows from Neukirch’s criterion ([28, Satz 4.3]),
as we discussed at the beginning of this section. To prove (II), take a, b ∈ Ḟ such that b ∈ Di(a),
for every 1 ≤ i ≤ n. Then Φ(ã ⊗ b̃) ∈

∏n
i=1 Ai which implies that ϕ2(θ(ã ⊗ b̃) = 0. The results of

Neukirch and Merkurjev-Suslin imply that ϕ2 is injective. consequently θ(ã⊗ b̃) = 0. Thus, by [27,
Corollary 15.11], b ∈ DF (a), as desired.

3 On the p-radical of a field and free products

In this section we study a field F for which Gp(F ) has a decomposition as in Proposition 2.1 with
one of the factors a free pro-p group.

Definition 1. Let R(F ) =
⋂

a∈Ḟ DF (a).

According to [27, Corollary 15.11], R(F ) is the radical of the symbol {, } : Ḟ × Ḟ −→ k2F
which associates to x, y ∈ Ḟ 7−→ {x, y} = the image of x̃⊗ ỹ in k2F . In other words R(F ) = {r ∈
Ḟ | {r, x} = 0 for every x ∈ Ḟ}.

Since {x, y} = −{y, x} ([26, Lemma 1.1]), for every x, y ∈ Ḟ , the equivalence “x ∈ DF (y) if
and only if {x, y} = 0 in k2F ” implies that x ∈ DF (y) if and only if y ∈ DF (x). Thus we may also
describe R(F ) as R(F ) = {r ∈ Ḟ | DF (r) = Ḟ}.

The characterization of R(F ) can be made through a more concrete invariant of F if we look at
cyclic algebras (a, b)F , a, b ∈ Ḟ [31, §30]. Then R(F ) is the radical of the skew-symmetric paring
Ḟ × Ḟ → Brp(F ), where Brp(F ) is the elementary p-primary subgroup of the Brauer group of F .

In the case p = 2, R(F ) is known as the radical of Kaplansky ([18]). For p 6= 2, Koenigsmann
used R(F ) in the characterization of Gp(F ) for fields F such that Ḟ /R(F ) has order at most 16.
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Next we state three technical lemmas which connect R(F ) and a free pro-2 component in a free
product decomposition of Gp(F ).

Lemma 3.1. Let L ⊂ F (p) be an extension of F and let R ⊂ R(F ) be a subgroup of Ḟ .

(a) If L̇ = Ḟ L̇p, then R(F ) ⊂ R(L).

(b) If L̇ = RL̇p, then R(L) = L̇.

(c) There exists an extension F ⊂ E ⊂ F (p) such that the inclusion induces an isomorphism
R/Ḟ p −→ Ė/Ėp. Consequently Ė = RĖp.

Proof. (a) is immediate.
(b) Take x, y ∈ L̇ and let a, b ∈ R such that xa−1, yb−1 ∈ L̇p. Since R ⊂ R(F ), b ∈ DF (a).

As DF (a) ⊂ DL(a) = DL(x), it follows that y ∈ DL(x). Thus L̇ ⊂ DL(x) and x ∈ R(L). Hence
L̇ = R(L).

(c) Take an extension E of F inside F (2) such that the inclusion induces an injective map
R/Ḟ p −→ Ė/Ėp and E is maximal with this property. The maximality of E implies that R/Ḟ p −→
Ė/Ėp is an isomorphism, as required.

Lemma 3.2. Gp(F ) is a free pro-p group if and only if R(F ) = Ḟ .

Proof. By [33, Theorem 7.7.4] and [25, Theorem 11.5], Gp(F ) is a free pro-p group if and only if
k2F = 0. Since k2F = 0 if and only if {x, y} = 0, for every x, y ∈ Ḟ the statement follows from the
connection between {x, y} = 0 and x ∈ DF (y).

Lemma 3.3. Assume that the condition (II) of Proposition 2.1 holds for a field F and a family of
intermediate extensions F ⊂ H1, . . . ,Hn ⊂ F (p). Then Ḣp

1 ∩ . . . ∩ Ḣp
m ∩ F ⊂ R(F ).

Proof. For every r ∈ Ḣp
1 ∩ . . . ∩ Ḣp

m ∩ F and 1 ≤ i ≤ m, we have Di(r) = Ḣi. Thus by condition
(II) of Proposition 2.1, DF (r) = Ḟ and so r ∈ R(F ), showing the inclusion.

In [15] the authors generalize the earlier mentioned Neukirch’s criterion by taking Res1 surjective
instead of isomorphism (see also [23] and [6]). Regarding a pro-p group G and a family G1, . . . , Gm

of closed subgroups of G they state that there exists a free closed subgroup G0 of G such that
G = G0 ∗G1 · · · ∗Gm if and only if the homomorphism Resi : H i(G) −→ H i(G1)× · · · ×H i(Gm)
is surjective for i = 1 and injective for i = 2 [15, Theorem 2.1]. In our next result we shall see that
the free component G0 is associated with R(F ).

Proposition 3.4. For F and H1, . . . ,Hm as in Proposition 2.1 we suppose that:

(Ia) The inclusions F ⊂ Hi induce an epimorphism ϕ1 : F̃ −→ H̃1 × · · · × H̃n.

(II) For a, b ∈ Ḟ , if b ∈ Di(a) for every i = 1, . . . , n, then b ∈ DF (a).

Write R = Ḣp
1 ∩. . .∩Ḣp

m∩F for short. Then there exists another intermediate extension H0 ⊂ F (2)
such that Gp(H0) is a free pro-p group, the family H0,H1, . . . ,Hm satisfies conditions (I) and (II)
of Proposition 2.1 and R/Ḟ p ∼= Ḣ0/Ḣp

0 .
Moreover,

(a) if the homomorphism in (Ia) is not injective, then R(F ) 6= Ḟ p (R(F ) is non-trivial).

5



(b) If R(Hi) = Ḣp
i , for every i = 1, . . . ,m, then R(F ) = R.

Proof. Since by Lemma 3.3 R ⊂ R(F ) we get from Lemma 3.1 an extension H0 of F such that
R/Ḟ p ∼= Ḣ0/Ḣp

0 and R(H0) = Ḣ0. Hence Lemma 3.2 implies that Gp(H0) is a free pro-2 group.
Next, observe that R/Ḟ p is the kernel of the homomorphism ϕ1 (surjective by (Ia)). Therefore

the homomorphism Ḟ /Ḟ p −→ Ḣ0/Ḣp
0 × Ḣ1/Ḣp

1 × · · · × Ḣn/Ḣp
n is injective. It remains to show

that it is surjective. To prove this, take hi ∈ Ḣi for every 0 ≤ i ≤ n. From (Ia) there is x ∈ Ḟ
such that xḢp

i = hiḢ
p
i , for every i = 1, . . . , n. Since R/Ḟ p ∼= Ḣ0/Ḣp

0 , there is y ∈ R such
that yḢp

0 = x−1h0Ḣ
p
0 . Therefore, if we take z = xy ∈ Ḟ , it follows that zḢp

i = hiḢ
p
i , for

every i = 0, . . . , n and the surjectivity is established. Consequently the conditions (I) and (II) of
Proposition 2.1 hold for F and H0,H1, . . . ,Hm.

(a) The non-injectivity in condition (Ia) implies R 6= Ḟ p and a fortiori R(F ) 6= Ḟ p.
(b) It follows from (Ia) that Ḣi = Ḟ Ḣp

i , i = 1, . . . ,m. Therefore Lemma 3.1 implies that
R(F ) ⊂ Ḣp

i ∩ F , i = 1, . . . ,m, proving the equality.

The above result and Proposition 2.1 imply the truth of the following corollary.

Corollary 3.5. [15] For F and H1, . . . ,Hm satisfying conditions (Ia) and (II) of the last proposi-
tion, it follows that there is an extension H0, as in the previous proposition, such that

Gp(F ) = Gp(H0) ∗Gp(H1) ∗ · · · ∗Gp(Hm).

4 Localizers and radical

In this section we study the relationship between localizers of F and R(F ).
For every valuation ring A, denote by A∗, mA, kA = A/mA, πA, ΓA and vA the group of

units of A, the maximal ideal, the residue field, the canonical homomorphism, the value group
and a valuation corresponding to A, respectively. Recall that for every valuation ring A, kA has
characteristic 6= p by assumption.

For each localizer A we write <(A) = (1 + mA)Ḟ p for a valuation ring A and <(A) = A for a
positive cone.

We say that a locally closed pair (L,A′) is a local closure of (F,A) in F (p) if L ⊂ F (p),
A′ ∩ F = A and the pair (L,A′) is minimal with these properties, i.e. if (K, B) is locally closed,
F ⊂ K ⊂ L and B ∩F = A, then K = L and B = A′. A local closure (L,A′) of (F,A) in F (p) can
also be described as follows: for a valuation ring A let C be an extension of A to F (p). Then L is
the decomposition field of C over F and A′ = C ∩ L [9, p. 110]. If p = 2 and A is a positive cone,
from Zorn’s lemma there are maximal ordered extensions (L,A′) of (F,A) inside F (2). Due to the
maximality of (L,A′), A′ = L̇2. Therefore L̇ = L̇2∪−L̇2 and since F (2) | L is a Galois 2-extension,
it follows that F (2) = L(

√
−1 ). Thus |G2(F )| = 2 and G2(F ) is one of the groups listed as basic

at the beginning of the paper.
We shall need the following relative version of [9, Theorem 17.17] for valuation rings.

Theorem 4.1. For y ∈ F (p) denote by f(X) ∈ F [X] the minimal polynomial of y over F . Let A
be a valuation ring of F and let (H,A′) be a local closure of (F,A). Then, the number of irreducible
factors of a decomposition of f(X) in H[X] equals the number of extensions of A to F (y).
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Proof. Let (H̄, Ā) be a henselization of (F,A) [9, § 17]. By [9, 15.6 c)] H = H̄∩F (p) and A′ = Ā∩H.
Observe that (H̄, Ā) is also a henselization of (H,A′). Consider now a factorization f = g1 · · · gm

of f in irreducible polynomials in H[X]. Since A′ has only one extension to every intermediate
extension H ⊂ L ⊂ F (p), it follows from [9, Theorem 17.17] that each gi is irreducible in H̄[X].
Thus f = g1 · · · gm is also the factorization of f in H̄[X]. Therefore [9, Theorem 17.17] implies that
A has m extensions to F (y).

Lemma 4.2. Let (H,A′) be a local closure of (F,A) in F (p).

(a) Ḣ = Ḟ Ḣp.

(b) Ḣp ∩ F = <(A).

Proof. (a) In the case p = 2 if A is a cone, since Ḣ = Ḣ2 ∪ −Ḣ2, the statement is clearly true.
We now consider the case where A is a valuation ring. Denote by m′, π′ and v′, the maximal

ideal, the canonical homomorphism and a valuation corresponding to A′, respectively.
Recall first that (H,A′) is an immediate extension of (F,A) [9, Theorem 15.8, p. 112]. Hence, for

x ∈ Ḣ there is c ∈ Ḟ such that v′(x) = v′(c). We can now find u ∈ A∗ such that π′(xc−1) = π′(u).
Thus xc−1u−1 ∈ 1 + m′. By assumption kA has characteristic 6= p. Therefore, the p-henselianity of
A′ implies 1 + m′ ⊂ Ḣp. Thus x ∈ FḢp, as desired.

(b) The statement is trivially true in the case p = 2 and A a cone of an ordering of F .
For the valuation ring case, take z ∈ Ḣp∩F . Let x ∈ H such that z = xp. As we get in the proof

of item (a), there are c, u ∈ Ḟ such that x ∈ cu(1 + m′). Consequently, z(cu)−p ∈ F ∩ (1 + m′) =
1 + mA. Hence z ∈ (1 + mA)Ḟ p. The other inclusion follows form 1 + m′ ⊂ Ḣp.

The last lemma has the following immediate consequence.

Corollary 4.3. Given a valuation ring A of a field F such that <(A) = Ḟ it follows that a local
closure (H,A′) of (F,A) satisfies H = F (p).

In the next result we state the first connection between the radical R(F ) and localizers.

Lemma 4.4. Let F be a field and A a localizer of F . If there is r ∈ R(F ) such that r 6∈ <(A),
then A is a valuation ring and the following statements are true:

(a) (ΓA : pΓA) ≤ p.

(b) If (ΓA : pΓA) = p, then kA = kA(p) and (Ḟ : <(A)) = p.

(c) If vA(r) = 0, then πA(r) ∈ R(kA) \ k̇p
A.

Proof. To see the truth of the first statement observe that for every positive cone A of F , which may
happen only if p = 2, we have R(F ) ⊂ A = <(A) since R(F ) ⊂ DF (−1) = {x2 + y2 6= 0 | x, y ∈ F}.

(a) Let (H,A′) be a local closure of (F,A) in F (p). For r ∈ Ḟ r <(A), by Lemma 4.2 r 6∈ Ḣp.
Consequently, the polynomial Xp − r is irreducible in H[X] and so, by Theorem 4.1, A has only
one extension B to K = F ( p

√
r ). By [9, Theorem 16.2], for every y ∈ K̇, vA(NF

r (y)) = pvB(y).
Since r ∈ R(F ), the norm homomorphism NF

r is surjective, i.e. DF (r) = Ḟ . Hence ΓA = vA(Ḟ ) =
pvB(K̇) = pΓB. Since K | F is a Galois extension of degree p, it follows from [9, Theorem 20.21]
either ΓB = ΓA or (ΓB : ΓA) = p. Putting the things together we get (ΓB : pΓB) ≤ p and a simple
calculation completes the proof of (a).
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(b) Assume now (ΓA : pΓA) = p. We have seen above that ΓA = pΓB. Then ΓB 6= ΓA. By [9,
Theorem 20.21] it follows that kB = kA. From [9, Theorem 19.1] we get σ(y)− y ∈ mB, for every
σ ∈ G = Gal(K, F ) and every y ∈ K. Thus πB(σ(y)) = πB(y), for every y ∈ B.

Take now u ∈ A∗. By assumption, there is y ∈ K̇ such that u = NF
r (y). Recall that 0 =

vA(u) = pvB(y). Thus y ∈ B∗ and πA(u) = πA(
∏

σ∈G σ(y)) =
∏

σ∈G πB(σ(y)) = πB(y)p. Hence
k̇A = k̇p

A. Our condition about the characteristic of residue fields implies kA = kA(p).
Finally, (ΓA : pΓA) = p implies that Ḟ = A∗Ḟ p∪xA∗Ḟ p∪· · ·∪xp−1A∗Ḟ p, for every x ∈ Ḟ rA∗Ḟ p.

From kA = kA(p), we get A∗ = (1 + mA)(A∗)p. Hence A∗Ḟ p = <(A) and the result follows.
(c) Let K and B be as in the proof of (a). Observe that vB( p

√
r ) = 0 and πA(r) 6∈ k̇p

A. Thus the
polynomial Xp−πA(r) is irreducible in kA[X]. Since πB( p

√
r ) is a root of this polynomial, kB 6= kA.

Hence, by [9, Theorem 20.21], [kB : kA] = p and so kB = kA( p
√

πA(r) ) (K | F is a totally inertial
extension). By [9, 19.8 b], we have an isomorphism σ 7→ σ̄ from G = Gal(K, F ) −→ Gal(kB, kA),
where σ̄(πB(u)) = πB(σ(u)), for every u ∈ B∗.

Take now x ∈ A∗. There is u ∈ K̇ such that x = NF
r (u) =

∏
σ∈G σ(u). Since x ∈ A∗, it

follows that u ∈ B∗. Finally, πA(x) = πB(
∏

sg∈G σ(u)) =
∏

σ∈G σ̄(πB(u)). Therefore the norm
homomorphism from k̇B to k̇A is surjective and (c) is proved.

The last lemma shows that R(F ) 6⊂ <(A) occurs only for very particular valuation rings. Lemma
4.4 also has three consequences that we shall use later, the first one follows directly from item (c).

Corollary 4.5. For every valuation ring A of F , πA(R(F ) ∩A∗) ⊂ R(kA).

Corollary 4.6. Let A be a valuation of a field F such that R(F ) 6⊂ <(A) and ΓA 6= pΓA. Let C
be another valuation ring of F .

(a) If A ⊂ C, then either ΓC = pΓC or <(C) = <(A).

(b) If C ⊂ A, then <(C) = <(A).

Proof. (a) Since <(C) ⊂ <(A) we also have R(F ) 6⊂ <(C). If ΓC 6= pΓC , by Lemma 4.4, (Ḟ :
<(C)) = p. On the other hand (Ḟ : <(A)) = p, too. Thus <(C) = <(A).

(b) If C ⊂ A, then <(A) ⊂ <(C) and ΓC 6= pΓC , too. Going for a contradiction we assume that
there is x ∈ <(C)r<(A). It follows form Lemma 4.4 that Ḟ = <(A)∪x<(A) · · ·xp−1<(A) ⊂ <(C).
Since <(C) = Ḟ implies Ḟ = C∗Ḟ p, we get a contradiction with ΓC 6= pΓC .

Corollary 4.7. For a valuation ring A such that R(F ) 6⊂ <(A) and ΓA 6= pΓA, let (H,A′) be a
local closure of (F,A). Then Gp(H) ∼= Zp.

Proof. Take an extension B of A to F (p). Since the multiplicative group of F (p) is p-divisible
the same is true for k̇B and ΓB. It follows then from valuation theory that kB = kA(p) and ΓB

is the p-divisible closure of ΓA. By Lemma 4.4 kA = kB. Therefore the inertia group of B over
F equals Gp(H) (see [9, § 19]). Since kA has characteristic 6= p also the ramification group of B
over F is trivial [9, 20.18]. Hence, by [9, Theorem 20.12], Gp(H) ∼= the character group of ΓB/ΓA.
Since (ΓA : pΓA) = p, the torsion group ΓB/ΓA has only one subgroup of order p. Thus, by the
Pontryagin duality theorem, Gp(H) is the pro-p cyclic group as required.
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5 Localizers and free products

In this section we shall recall some more facts about localizer and then prove the first step of our
results on the decomposition of Gp(F ) (see Proposition 5.4 below).

Let A and B be localizers of a field F such that A is a valuation ring and B is the positive cone of
an ordering of F . We say that A is compatible with B if <(A) = (1+mA)Ḟ p ⊂ B = <(B). The set of
all valuation rings of F which are compatible with B forms a chain under inclusion and has a smallest
element given by the convex hull of Q in F : V (B) = {x ∈ F | there is q ∈ Q such that q± x ∈ B}
(see [20, Theorem 2.6]). The next proposition improves our knowledge of the connection between
these localizers A and B.

Proposition 5.1. Let p = 2, A be valuation ring of F and B be a cone of an ordering of F . Let
(H,A′) be a local closure of (F,A). The following conditions are equivalent:

(a) A is compatible with B.

(b) V (B) ⊂ A.

(c) πA(B ∩A∗) is a positive cone of an ordering of kA.

(d) There is a positive cone B′ of an ordering of H such that B′ ∩ F = B.

Proof. The equivalence between (a) and (b) follows from [20, Theorem 2.6] and (a) and (c) are
equivalent by [20, Theorem 2.1]. By [20, Proposition 3.14] and Lemma 4.2 (b), (d) implies (a).
Since A′ and A have the same residue field by [20, Corollary 3.11] (c) implies (d).

A positive cone B is called archimedean if and only if V (B) = F is the trivial valuation ring.
If F admits an archimedean ordering, it is well known that there is an order preserving injective
homomorphism from (F,B) into the reals R with its the unique ordering.

Localizers are compared as follows. We say that a localizer B is coarser than a localizer A (or
A is finer than B) if either: A ⊂ B, for valuation rings A and B, B is compatible with A if A is a
cone and B is a valuation ring or A = B if both A and B are cones.

Remark 1. The trivial valuation is coarser than any other localizer. Note also that B coarser than
A yields <(B) ⊂ <(A). The converse is not true for valuation rings. Consider, for example, the
case of a valuation ring B 6= F such that <(B) = Ḟ .

For an archimedean cone A there do not exist localizers different from A and F which are
coarser than A, since V (A) = F .

More generally two localizers A and B are called dependent if there is a localizer C simultane-
ously coarser than A and B (independent otherwise).

Remark 2. (1) Two non-trivial valuation rings A and B are dependent if and only if AB = {xy |
x ∈ A, y ∈ B} 6= F . If A is a valuation ring and B is a cone, dependence means that A and V (B)
are dependent valuation rings. Finally, two cones A and B, which correspond to non-archimedean
orderings, are dependent if and only if V (A) and V (B) are dependent valuation rings and two
archimedean orderings are dependent if and only if they coincide.

(2) Recall that every localizer A of F induces naturally a Hausdorff topology TA on F , which
is compatible with the field structure of F (see [30] for general facts about topological fields). It is
known that localizers A and B are dependent if and only if they induce the same topology on F (see
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[30]; Lemma 3.4 treats the case of valuation rings and at the beginning of §5 we find the connection
between valuation rings and orderings). Consequently, the relation, “A and B are dependent” is
an equivalence relation of the set of localizer of F .

Let us recall that a topology T , defined on a field F , is called V -topology if T is generated by
a localizer of F or by an archimedean valuation of F (see for example [9, §1]). For every finite
extension K of F and every localizer A we say that a topology T of K extends TA if T is a V -
topology whose restriction to F equals TA. The study of the extensions of TA to K is the subject
of the next lemma.

Lemma 5.2. Let K = F ( p
√

a ) be a non-trivial Galois extension of a field F with Galois group G.
Let A be a localizer of F and TA the topology induced by A in F . Denote O = {O | localizer of K
such that O ∩ F = A}.

(a) If A is a valuation ring, then O has 1 or p elements. If A is a cone, then either O = ∅ or O
has p elements. Moreover, O = {σ(O) | σ ∈ G}, for every O ∈ O.

(b) TA has either 1 or p extensions to K.

(c) If A is not the cone of an archimedean ordering and TA extends uniquely to K, then there is
a valuation ring B of K such that B ∩ F is coarser than A and σ(B) = B for every σ ∈ G
(TB is the extension of TA to K.).

(d) TA has p extensions to K if and only if A has p pairwise independent extensions to K.

Furthermore, in the case (c) suppose that A has p extensions to K. Then B can be chosen
such that for C = B ∩ F , [kB : kC ] = p and if we define Ā = πC(A ∩ C∗) when A is a cone (see
Proposition 5.1 (c)) and Ā = πC(A) for a valuation ring, then Ā is a localizer of kC which has p
pairwise independent extensions to kB.

Proof. (a) For a valuation ring A of F , by [9, Theorem 13.2], there is a valuation ring O of K
which lies over A. Moreover, either O = {O}, has just one element, or O = {σ(O) | σ ∈ G}, has p
elements [9, Theorem 20.21]. For a cone A, O = ∅, if a 6∈ A. If a ∈ A, then there is a cone O of K
such that O ∩ F = A and O = {σ(O) | σ ∈ G} has 2 elements, [1, Theorem 22, p.56].

(b) If the localizer A has an extension to K, then clearly any extension of A to K generates a
topology on K which extends TA. In the case where A is a cone and a 6∈, A, if A is not archimedean,
the extension of the topology is generated by a valuation ring of K which lies over V (A). If A
corresponds to an archimedean ordering, we can consider F as a subfield of R with its canonical
topology. Thus, the usual topology of C induces on K the required extension. Hence, TA has at
least one extension to K.

(c) If A is a valuation ring, let O be an extension of A to K. If A is a cone, then O denotes
an extension of V (A) to K. By (a), {σ(O) | σ ∈ G} is the set of all valuation rings of K which lie
either over A or V (A) according to the nature of A. Since there is just one topology on K whose
restriction to F is TA, for every λ 6= τ ∈ G, the valuation rings λ(O) and τ(O) are dependent,
Remark 2 (2). Then B = λ(O)τ(O) 6= K is a valuation ring of K which contains λ(O) and τ(O).
Hence τλ−1(B) also contains τ(O). Therefore, by [9, Theorem 6.6], B and τλ−1(B) are comparable.
As B and τλ−1(B) are extensions of C = B ∩ F to K, it follows that they are equal [9, 13.3 c].
Since τλ−1 6= 1, Theorem 6.6 of [9] implies that the number of extensions of C to K is not p.
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Consequently, by (a), B is the unique extension of C to K and so σ(B) = B for every σ ∈ G, as
required.

Assume now that A has p extensions to K. Then {σ(O) | σ ∈ G} has p elements. Since we took
arbitrary automorphisms λ 6= τ ∈ G in the construction of B, for every pair O′ 6= O′′ ∈ {σ(O) |
σ ∈ G} it follows that O′O′′ = B. Therefore, by [9, Theorem 8.7], the set {π(σ(O)) | σ ∈ G} has
p pairwise independent elements. This set is contained in the set of all extensions of πC(A), or
πC(V (A)), to kB, according to nature of A, a valuation ring or, respectively, a cone. Thus kB 6= kC .
Observe now that [kB : kC ] is either = 1 or = p, by [9, Theorem 20.21]. Hence [kB : kC ] = p and
the last statement of the lemma follows from [9, Theorem 13.7] applied to A or V (A).

(d) If A has p pairwise independent extensions to K, each one of these extensions generates a
topology of K which extends TA.

Conversely, assume that TA has p extensions to K. If any extension T of TA to K is generated
by an archimedean valuation of K, then TA is generated by the restriction to F of this valuation.
Thus, by [9, 1.10], A is an archimedean ordering of F . We claim that A extends to K. From
the claim and (a), it follows that A has 2 extensions to K. Each one of these extensions is an
archimedean ordering of K. Therefore the extensions of A to K are two independent localizers of
K, as desired (Naturally they induce different topologies on K.).

We now prove the claim. Assume it is not true. Then A is an archimedean ordering with no
extension to K (a 6∈ A). We may consider F as a ordered subfield of the real numbers R. Therefore
the topology induced by A on F is the topology generated by the usual archimedean valuation | |
of R. By [9, Corollary 2.13], the restriction of | | to F has just one extension to K. Consequently
TA extends uniquely to K, a contradiction.

Assume next that every extension of TA to K is generated by a localizer of K which is not an
archimedean ordering of K. If TB is one of these extensions, then B ∩ F and A are dependent
localizers of F , Remark 2 (2). Hence A is not the cone of an archimedean ordering of F , otherwise
B ∩ F = A and then B would be the cone of an archimedean ordering of K extending A.

Now, as in item (c), let O be an extension of A to K, if A is a valuation ring and let O be an
extension of V (A) to K, when A is a cone.

If, for some σ ∈ G, O and σ(O) are dependent, write C = Oσ(O). As C is coarser than O, C
and O induce the same topology on K as well as C ∩ F and A induce the same topology on F .
On the other hand, since C is simultaneously coarser than O and σ(O), it follows that σ(C) = C.
Therefore, (a) implies that C is the unique extension of C∩F to K. Consequently, TC is the unique
extension of TA to K, a contradiction.

The statement (c) of the lemma above does not remain true if we drop the assumption that A
is not the cone of an archimedean ordering of F . For example, take F = Q with the usual ordering
A and K = F (

√
−1 ). There is just one topology on K whose restriction to F is TA and for every

valuation ring B of K, B ∩ F is not coarser than A.
The next lemma is a rather technical result which will be crucial for handling a family of

independent localizer in Proposition 5.4.

Lemma 5.3. Let A be a localizer of F , (H,A′) a local closure of (F,A) and a ∈ Ḟ . If A is
a valuation ring, for every valuation ring B of F coarser than A, suppose either ΓB = pΓB or
<(B) = <(A). Then DH(a) = DF (a)Ḣp.

Proof. Consider first the case p = 2 and A is a cone. If a 6∈ A, then −a ∈ A ⊂ Ḣ2(= A′). Thus
H(

√
a ) = F (2) and DH(a) = Ḣ2. Since DF (a) = {x2 − ay2 6= 0 | x, y ∈ F} ⊂ A the result follows
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in this case. If a ∈ A, then a ∈ Ḣ2 and DH(a) = Ḣ. As −a ∈ DF (a) and Ḣ = Ḣ2 ∪ −Ḣ2, also
DF (a)Ḣ2 = Ḣ, as desired.

Assume now that A is a valuation ring. In the case a 6∈ <(A), by Theorem 4.1, A has just
one extension O to K = F ( p

√
a ), because Xp − a is irreducible in H[X]. Let O′ be the unique

extension of A′ to L = H( p
√

a ). From [9, 15.6 b], (L,O′) is a local closure of (K, O). Thus, Lemma
4.2 implies that L̇ = K̇L̇p. Consequently, DH(a) = NH

a (L̇) ⊂ DF (a)Ḣp. Since the other inclusion
is clearly true the statement is proved in this case.

It remains to be seen the case a ∈ <(A). Hence a ∈ Ḣp and so DH(a) = Ḣ. If we show that
Ḟ = DF (a)<(A), then the statement follows from Lemma 4.2.

Take x ∈ Ḟ .
Let K = F ( p

√
a ) and denote by G = Gal(K, F ) the Galois group. By Theorem 4.1 A has p

distinct extensions to K. Take an extension O of A to K. By Lemma 5.2 (a), {σ(O) | σ ∈ G} is
the set of all extensions of A to K.

Assume first the extensions of A to K are pairwise independent valuation rings. According
to Approximation Theorem [9, Theorem 11.16], there is z ∈ K̇ such that z ∈ x(1 + mO) and
for every σ ∈ G, σ 6= 1, z ∈ 1 + σ(mO). Recall that σ(mO) is the maximal ideal of σ(O).
Therefore σ−1(z) ∈ 1 + mO, for every σ 6= 1 which implies Na

F (z) =
∏

σ∈G σ(z) ∈ x(1 + mO). Since
(1+mO)∩F = 1+mA, it follows that Na

F (z) ∈ x<(A), or equivalently x ∈ DF (a)<(A), as desired.
We now consider the case where TA has only one extension to K. By Lemma 5.2 (c) there a

valuation ring B of K satisfying the following conditions: C = B ∩ F is coarser than A; B is the
unique extension of C to K; [kB : kC ] = p and Ā = πC(A) is a valuation ring of kC which has p
pairwise independent extensions to kB.

Moreover, since a ∈ <(A) ⊂ A∗Ḟ p we may assume without loss of generality that a ∈ C∗.
Hence ā = πC(a) ∈ <(Ā) and it is trivial to deduce kB = kC( p

√
ā ). Therefore, the previous case

applies to kC and kB. We next write the details of this fact.
Observe that kB | kC is a normal extension with Galois group Gal(kB, kC) = {σ̄ | σ ∈ G}, where

σ̄(πB(u)) = πB(σ(u)), for every u ∈ B∗ (see [9, §19]). Let us denote by N̄ the norm homomorphism
from k̇B to k̇C and by D̄ its image. For every u ∈ B∗, we have πC(Na

F (u)) = N̄(πB(u)).
According to the previous case, k̇C = D̄<(Ā). By the above calculation we lift this equality to

C∗ = DF (a)(1 + mA)(C∗)p.
Finally, since C contains A, either ΓC = pΓC or <(C) = <(A) by assumption. Observe that

a 6∈ <(C) since B is the unique extension of C to K. Thus ΓC = pΓC . Consequently, Ḟ = C∗Ḟ p

and so Ḟ = DF (a)<(A), completing the proof.

To prove our main results we shall follow an induction process. The first step corresponds to a
family of pairwise independent valuation rings. This is the subject of the next proposition, which
improves slightly the theorem quoted in the introduction.

Proposition 5.4. Let A1 . . . , An be a family of pairwise independent localizers of F and take for
each 1 ≤ i ≤ n a local closure (Hi, A

′
i) of (F,Ai). Assume that <(A1)∩ . . .∩<(An) ⊂ R(F ). Then

there is an extension H0 of F , as in Proposition 3.4, such that

Gp(F ) = Gp(H0) ∗Gp(H1) ∗ · · · ∗Gp(Hm).

To avoid double subscripts, we write N i
a and Di(a) to denote, respectively, the norm map and

the image of the norm map associated to the extension Hi( p
√

a ).
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To simplify the proof, we state first a lemma that will allow the use of Lemma 5.3. Note that
by Corollary 4.3 we may assume without loss of generality that <(Ai) 6= Ḟ , for every 1 ≤ i ≤ n.

Lemma 5.5. Let A1, . . . , An be a family of pairwise independent localizers of a field F such that
<(Ai) 6= Ḟ for every i = 1, . . . , n and <(A1)∩ · · · ∩<(An) ⊂ R(F ). Let C be a localizer of F which
is coarser than Ai, for some 1 ≤ i ≤ n. Then either ΓC = pΓC or <(C) = <(Ai).

Proof. Without loss of generality we assume that C is coarser than A1. Then <(C) ⊂ <(A1) and
so <(C) ∩ <(A2) · · · <(An) ⊂ R(F ), too.

Let us consider first the case R(F ) 6⊂ <(A1). Then A1 is a valuation ring, by Lemma 4.4 and if
ΓA1 6= pΓA1 the statement follows from Corollary 4.6. If A1 has p-divisible value group, the same
is true for ΓC since this group is a quotient of the value group of A1.

We now assume R(F ) ⊂ <(A1). In this case, when A1 is a cone, if R(F ) 6⊂ <(C) we claim that
ΓC = pΓC , as desired. Going for a contradiction we assume that ΓC 6= pΓC . Then Corollary 4.7
implies that Gp(H) ∼= Z2, for some local closure (H,C ′) of (F,C). On the other side, by Proposition
5.1, H has an ordering which extends A1. Hence Gp(H) has torsion, a contradiction.

For the case A1 a valuation ring and R(F ) 6⊂ <(C), by Lemma 4.4 either ΓC = pΓC or Corollary
4.6 (b) implies <(C) = <(A1), as desired.

It remains to be seen the case R(F ) ⊂ <(A1),<(C).
We permute the localizers A1, . . . , An, if necessary, in order to have 1 ≤ r ≤ n such that

R(F ) ⊂ <(Ai) for every 1 ≤ i ≤ r and if r < n, R(F ) 6⊂ <(Aj) for each r + 1 ≤ j ≤ n.
The assumption <(A1)∩· · ·∩<(An) ⊂ R(F ) implies that <(A1)∩· · ·∩<(An) = R(F )∩<(Ar+1)∩

· · · ∩ <(An). On the other hand it is also true <(C) ∩ <(A2) ∩ · · · ∩ <(An) = R(F ) ∩ <(Ar+1) ∩
· · · ∩ <(An), by the same argument. Therefore <(A1)∩ · · · ∩ <(An) = <(C)∩<(A2)∩ · · · ∩ <(An).

We now deduce from the hypothesis on the independence of A1, . . . , An that C,A2, . . . , An are
also independent. Therefore, for x ∈ <(A1) there is y ∈ Ḟ such that y ∈ x<(C) and y ∈ <(Aj) for
every j = 2, . . . , n. The inclusion <(C) ⊂ <(A1) implies y ∈ <(A1). Thus y ∈ <(A1)∩· · ·∩<(An) =
<(C)∩<(A2)∩· · ·∩<(An). Consequently, y ∈ <(C) which implies x ∈ <(C). Hence <(C) = <(A1)
as desired.

We now prove Proposition 5.4.

Proof. By Corollary 3.5 the result will be true if F and H1, . . . ,Hn satisfy (Ia) and (II).
Let T1, . . . , Tn be the topologies induced by A1, . . . , An on F . By assumption they are different

topologies.
From Lemma 4.2 (a) and Approximation Theorem for different topologies ([30, Theorem 4.1])

it follows that the homomorphism Ḟ /Ḟ p −→ Ḣ1/Ḣp
1 × · · · × Ḣn/Ḣp

n is surjective, or equivalently,
(Ia) holds.

We now prove (II) by means of Lemma 5.3. To this end, for an extension K = F ( p
√

a ),
a ∈ Ḟ r Ḟ p, we will organize the extensions to K, of the localizers Ai, in a suitable way. Denote
G = Gal(K, F ). We will consider three types of localizers:

(i) For each localizer Ai ∈ A which is not archimedean and such that Ti has just one extension
to K, by Lemma 5.2 (c), there is a valuation ring Bi of K such that Bi ∩ F is coarser than Ai and
σ(Bi) = Bi for every σ ∈ G.

(ii) For every localizer Ai such that Ti has p distinct extensions to K, by Lemma 5.2 (d) we
know that Ai has p pairwise independent extensions to K. We then choose a localizer Bi of K
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which lies over Ai. In this case, each topology of K extending Ti is generated by σ−1(Bi), for some
σ ∈ G.

(iii) If p = 2, we possibly have localizers Ai which are cones of archimedean orderings of F such
that a 6∈ Ai.

We are now going to sort the localizers Bi as follows: we first enumerate localizers of type (i),
B1, . . . , Br, if any. Next, we also take localizers of type (ii), Br+1, . . . , Bs, if they occur. We then
consider the set

B = {B1, . . . , Br} ∪ {σ−1(Br+1) | σ ∈ G} ∪ . . . ∪ {σ−1(Bs) | σ ∈ G}.

By construction, this is a set of pairwise independent localizers of K.
Back to the proof of the proposition, take a, b ∈ Ḟ such that b ∈ Di(a) for every 1 ≤ i ≤ n and

assume that a 6∈ Ḟ p. By Lemma 5.3 for every i = 1, . . . , n there is bi ∈ DF (a) such that bb−1
i ∈ Ḣp

i .
Let K = F ( p

√
a ) and for every i choose zi ∈ K̇ such that NF

a (zi) = bi.
Next, we make use of the Approximation Theorem for the different topologies generated by the

localizers of the set B constructed as above. Let z ∈ K such that:

for every 1 ≤ i ≤ r, z ∈ zi(1 + mi), where mi is the maximal ideal of Bi;

for every r + 1 ≤ i ≤ s, z ∈ zi<(σ−1(Bi)), for every σ ∈ G.

Consequently, for every 1 ≤ i ≤ r, σ(z) ∈ σ(zi)(1 + mi) for each σ ∈ G, because σ(Bi) = Bi.
Thus NF

a (z−1
i z) ∈ (1+mi)∩F . Since Bi∩F is coarser than Ai, it follows that NF

a (z) ∈ NF
a (zi)<(Ai),

for every 1 ≤ i ≤ r.
On the other hand, for every r + 1 ≤ i ≤ s we also have σ(z) ∈ σ(zi)<(Bi), for each σ ∈ G.

Hence NF
a (z−1

i z) ∈ <(Bi) ∩ F . Now, note that (Hi, A
′
i) is also a local closure of (K, Bi), for every

r + 1 ≤ i ≤ s, by Theorem 4.1. Thus, by Lemma 4.2, <(Bi) ∩ F = <(Ai), for every r + 1 ≤ i ≤ s.
Putting the things together NF

a (z) ∈ NF
a (zi)<(Ai), for every r + 1 ≤ i ≤ s, too.

If p = 2 and the case (iii) occur, then NF
a (K) ⊂ Ai, for every localizer Ai of this type. Hence

NF
a (z) ∈ NF

a (zi)<(Ai) also in this case.
Consequently, there is z ∈ K̇ such that NF

a (z) ∈ NF
a (zi)<(Ai), for every 1 ≤ i ≤ n. Hence, for

c = NF
a (z) ∈ DF (a), bic

−1 ∈ <(Ai), for every 1 ≤ i ≤ n. By Lemma 4.2, bic
−1 ∈ Ḣp

i , for every
1 ≤ i ≤ n. Therefore, bc−1 ∈ <(A1) ∩ · · · ∩ <(An). Thus bc−1 ∈ R(F ), by assumption. Since
R(F ) ⊂ DF (a) it follows that b ∈ DF (a).
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6 Main Results

The natural generalization of Proposition 5.4 corresponds to a family of pairwise non-comparable
localizers.

Definition 2. We say that a family A = {A1, . . . , An} of distinct localizers of F is allowable if Ai

coarser than Aj implies i = j.

Next we characterize the pro-p groups which will be suitable for this work. Fix an allowable
family A = {A1, . . . , Am} of localizer of F .

Definition 3. We first define the basic groups. We say that a pro-p group G is A-basic if one of
the following conditions holds:

• G is a free group or an abelian torsion free group.

• G ∼= Gp(L) for some extension L of F inside F (p) which is locally closed for a localizer A′

that extends Ai for some 1 ≤ i ≤ n.

We now define A-admissible groups recursively:

(i) Every A-basic group G is A-admissible.

(ii) If G1, . . . ,Gm are A-admissible groups, then so is G1 ∗ · · · ∗ Gm.

(iii) If G = G1oG2, where G1 is abelian and torsion free closed subgroup of G and G2 isA-admissible,
then G is an A-admissible group.

Therefore the class of A-admissible groups is the class of all pro-p groups which can be obtained
from A-basic groups by repeating the process of taking free pro-p products and semi-direct group
extensions a finite number of times.

It is worth mentioning that a group G of the above type (iii) is realizable as Gp(F ), for some
field F , only if G2 is realizable as Galois group and the action of G2 on G1 is of “cyclotomic”
nature (see [8, § 1] or [10, Proposition 1.1]). In this case G is realizable for some p-henselian field
F . Furthermore, since A-basic groups are realizable as Galois groups and free pro-p products of
realizable groups are also realizable, we can conclude that A-admissible groups are realizable as
Galois groups, under the above assumptions on groups of type (iii).

Next, we state the general case.

Theorem 6.1. Let A = {A1 . . . , An} be an allowable family of localizers of F . If <(A1) ∩ . . . ∩
<(An) ⊂ R(F ), then Gp(F ) is A-admissible.

For the proof of this theorem we need some preparatory results about families of localizers.
We shall first rank allowable families A according to the dependent relations among some suitable
localizers which contain an element of A. Let us identify them.

Definition 4. For any allowable family A = {A1, . . . , An} we consider the set L of all valuation
rings B for which there are 1 ≤ i 6= j ≤ n such that Ai and Aj are dependent and

B =


AiAj , if Ai and Aj are valuation rings;
V (Ai)Aj , if Ai is a cone and Aj is a valuation ring;
V (Ai)V (Aj), if Ai and Aj are cones.
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Observe that if i 6= j and Ai, Aj are cones such that V (Ai) = V (Aj), then V (Ai) =
V (Ai)V (Aj) ∈ L. On the other side A ∩ L = ∅.

Note that L is a finite set.

Definition 5. The complexity of A = {A1, . . . , An}, denoted by cp(A), is defined as follows:
cp(A) = 0 if L = ∅, otherwise cp(A) = max { t | there exists a chain B1 ⊂ · · · ⊂ Bt of distinct
valuation rings from L}.

We shall next state preparatory results in order that we can prove Theorem 6.1 by induction
on cp(A).

Lemma 6.2. cp(A) = 0 if and only if A1, . . . , An are pairwise independent localizers.

Proof. Immediate (see Remark 1).

Next we construct some elements that we need for the proofs.
Recall from Remark 2 (2) that dependence is an equivalence relation on the set of localizer of

F and let A = A1∪̇ · · · ∪̇Am be the partition of A corresponding to this relation. We shall use this
decomposition to construct a new family B of localizers of F .

For every 1 ≤ j ≤ m let Bj be the smallest valuation ring of F which is coarser than each
element of Aj . Let B = {B1, . . . , Bm}. Note that Bj 6= F , for every j, since Aj is a finite set.

Lemma 6.3. For every j = 1, . . . ,m, either Bj ∈ A or Bj ∈ L. The first case occurs if and only
if Aj is a singleton set. Furthermore, cp(B) = 0.

Proof. If Aj has exactly one element, then Bj = Ar ∈ Aj . If Aj has at least 2 elements, then
Lj = {B ∈ L | there are Ar, As ∈ Aj such that B is the finest localizer of F which is simultaneously
coarser than Ar and As} is non empty. Note that Lj ⊂ L.

We claim that there is B ∈ Lj which is coarser than every element of Aj . Take then Bj = B
and the first statement is proved. To prove the claim, take B ∈ Lj which is coarser than t elements
of Aj where t is as big as possible. Going for a contradiction we assume that Aj has more than t
elements.

Therefore, B is coarser than some Ar and not coarser than As, where Ar, As ∈ Aj . The
definition of Lj implies that there is B′ ∈ Lj which is the finest valuation ring simultaneously
coarser than Ar and As. Since B and B′ are coarser than Ar they are comparable. As B′ is coarser
than As, the unique possibility is B ⊂ B′. Thus B′ ∈ Lj is coarser than t + 1 elements of Aj , a
contradiction.

We now prove that cp(B) = 0. Take Ar ∈ Aj . Since Aj is the equivalence class of Ar with
respect to the dependence relation, for t 6= j and As ∈ At, Ar and As are not dependent. As Ar

and Bj , respectively As and Bt, are dependent, it follows that Bj and Bt have to be independent.
Thus the statement follows from Lemma 6.2.

Next, for 1 ≤ j ≤ m such that Bj ∈ B is a valuation ring let Fj and πj be respectively a residue
field of Bj and the canonical homomorphism corresponding to Bj and Fj . For every Ar ∈ Aj , since
Bj is coarser than Ar, it follows that Ār = πj(Ar ∩ B∗

j ) is a cone, if Ar is a cone (see Proposition
5.1). If Ar is a valuation ring, then Ar ⊂ Bj and Ār = πj(Ar) is a valuation ring of Fj . Denote by
Āj the set of distinct and non-trivial Ār, for Ar ∈ Aj .
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Lemma 6.4. Keep the notation introduced above. If Aj is not a singleton set, then Āj is an
allowable family and cp(Āt) < cp(A).

Proof. The proof depends on Theorem 8.7 of [9, p. 58], which states that πj induces an inclusion
preserving bijective correspondence between the set of all valuation rings A of F finer than Bj and
the set of all valuation rings Ā of Fj .

Observe first that if Ār and Ās are cones and Ār is coarser than Ās, they coincide by definition.
Take now Ār and Ās that are not both cones. We claim that if Ār is coarser than Ās, then Ar is
also coarser than As. Since A is allowable, it follows from the claim that Ar = As and so Ār = Ās.
Thus Āj is allowable.

If Ār and Ās are valuation rings, the claim follows directly from the result quoted above. If Ār

is a valuation ring and Ās is a cone, from Proposition 5.1 V (Ās) ⊂ Ār. Since πj(V (As)) = V (Ās)
the quoted result implies that V (As) ⊂ Ar and the claim is also stated.

For the second statement, observe that the result mentioned at the first paragraph of the
proof implies that every chain O1 ⊂ · · · ⊂ O` of valuation rings of Fj can be lift to the chain
π−1

j (O1) ⊂ · · · ⊂ π−1
j (O`) ⊂ Bj , which has ` + 1 elements. Hence the statement is true.

Lemma 6.5. Keep the elements A, B, Aj, Fj, πj and Āj as above. For 1 ≤ j ≤ m such that Bj

is a valuation ring, let Mj be the maximal ideal of Bj and write Rj =
⋂
<(Ai), where Ai ranges

over Aj. Assume that <(A1) ∩ · · · ∩ <(An) ⊂ R(F ). Then:

(a) <(B1) ∩ . . . ∩ <(Bm) ⊂ R(F ).

(b) If Bj is a valuation ring, then Rj ⊂ (1 + Mj)R(F ).

(c) If Aj is not a singleton set, then
⋂
<(Āi) ⊂ R(Fj), where Āi ranges over Āj.

Proof. (a) For singleton sets Aj = {At}, we have Bj = At and <(Bj) = <(At). In the other case
Bj is a valuation ring coarser than every Ai ∈ Aj . Therefore <(Bj) ⊂ <(Ai), for every Ai ∈ Aj .
Hence <(B1) ∩ . . . ∩ <(Bm) ⊂ <(A1) ∩ . . . ∩ <(An) and (a) is proved.

(b) For j such that Bj is a valuation ring we fix r ∈ Rj and consider x1, . . . , xm ∈ F , where
xj = r and xt = 1, for t 6= j. Since the localizers B1, . . . , Bm are pairwise independent by lemmas
6.2 and 6.3, we can approximate x1, . . . , xm simultaneously by s ∈ F , sufficiently close to every xt,
in order that s−1xt ∈ <(Bt), for every t 6= j, and s−1r ∈ 1 + Mj . Since xt = 1 ∈ <(Bt), for every
t 6= j, it follows that s ∈ <(Bt), for every t 6= j.

Observe now that 1 + Mj ⊂ Rj . Thus s ∈ Rj and then

s ∈

⋂
t6=j

<(Bt)

 ∩Rj ⊂
n⋂

i=1

<(Ai).

Hence s ∈ R(F ). Finally, for y = s−1r ∈ 1 + Mj , we get r = sy ∈ R(F )(1 + Mt), as desired.
(c) Since 1 + Mj ⊂ <(Ai), for every Ai ∈ Aj , it follows that πj induces a surjective homomor-

phism from <(Ai)∩B∗
j onto <(Āi) and <(Ai)∩B∗

j is also the inverse image π−1
j (<(Āi)), for every

Ai ∈ Aj .
Moreover, Bj 6∈ Aj , by Lemma 6.3, since we have assumed that Aj is not a singleton set. Thus

Āi 6= Fj for every Ai ∈ Aj .
Therefore, if u ∈ B∗

j is such that πj(u) ∈
⋂
<(Āi), Āi ∈ Āt, then u ∈ Rj . Hence item (b) yields

πj(u) ∈ πj(R(F ) ∩B∗
j ) ⊂ R(Fj), where the last inclusion is the content of Corollary 4.5.
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Next we prove Theorem 6.1

Proof. By Lemma 6.2 and Proposition 5.4 the result is true if cp(A) = 0. Assume now cp(A) > 0
and keep the elements B, Aj , Fj , πj and Āj with the meaning introduced above.

Lemmas 6.2, 6.3 and 6.5 show that Proposition 5.4 applies to F and {B1, . . . , Bm}. For every
1 ≤ t ≤ m let (Lt, B

′
t) be a local closure of (F,Bt). Then, there exists a free pro-p group G0 such

that Gp(F ) = G0 ∗Gp(L1) ∗ · · · ∗Gp(Lm).
Next, we shall show that Gp(Lt) is A-admissible for every t = 1, . . . ,m. If for some t, At = {Aj},

then Bt = Aj and Gp(Lt) = Gp(Hj) is A-admissible.
In the other case Bt is a valuation ring and we shall need some facts from valuation theory.

We first recall from [9, Theorem 15.8] that the residue field of B′
t equals Ft, the residue field of Bt.

We also know that the canonical projection B′
t −→ Ft gives rise to a canonical split short exact

sequence
1 −→ Tt −→ Gp(Lt) −→ Gp(Ft) −→ 1,

where Tt is the inertia group over F of Dt, the unique prolongation of B′
t to F (p). Thus Gp(Lt) ∼=

Tt o Gp(Ft). Let us analyze the groups Tt and Gp(Ft).
Since by our general assumption charFt 6= p, the ramification group of Dt over F is trivial [9,

Theorem 20.18]. Hence [9, Theorem 20.12] implies that Tt is abelian. Let Kt be the fixed field of
Tt. If p 6= 2, Kt is not formally real because of our assumption on the existence of a primitive p-th
root of unity in F . If p = 2, recall from [9, Theorem 19.11] that Dt ∩ Kt has residue field Ft(2).
Since Dt is 2-henselinan, Kt is also not formally real, [20, Theorem 3.16]. Thus Tt is torsion free in
any case and then it is an A-admissible group. Therefore, to show that Gp(Lt) is A-admissible, it
remains to be seen that Gp(Ft) is A-admissible.

Now, by Lemma 6.4, cp(Āt) < cp(A). By Lemma 6.5 we can apply the induction hypothesis
to Ft and Āt. Therefore Gp(Ft) is an Āt-admissible group. We shall next show that we may lift
this property to A-admissibility.

The decomposition Gp(Lt) ∼= Tt o Gp(Ft) and Galois Theory guarantee the existence of an
extension E ⊂ F (p) of Lt such that Kt ∩ E = Lt and KtLt = F (p). For this extension E, the
following statements are true:

(1) Dt ∩ E is a p-henselian valuation ring with residue field Ft.

(2) The inertia group of Dt over E is trivial (follows from [9, 19.10 (b)]).

(3) There is a canonical isomorphism Gp(E) ∼= Gp(Ft) [9, Theorem 19.6].

(4) There is a bijective and inclusion-preserving correspondence between the set of all extensions
of E inside F (p) and the set of all extensions of Ft inside Ft(p) [9, Theorem 19.13]. Moreover,
fields which are in correspondence have isomorphic Galois groups where the isomorphism is
induced by the isomorphism of item (3).

(5) For every locally closed extension (H̄i, Ā
′
i) of (Ft, Āi), item (4) above yields a locally closed

extension (Hi, A
′
i) of (F,Ai) [2, Lemma 1.3].

Therefore, as Gp(Ft) is Āt-admissible, the above remarks imply that Gp(E) is At-admissible
and then also A-admissible.

18



If we look for admissible groups which are just free pro-p products we have to impose one more
condition on the localizer of A. To be precise, the next result generalizes Proposition 5.4.

We shall call a valuation ring B of F exceptional if there are distinct cones Ai, Aj ∈ A such
that V (Ai) = V (Aj) = B.

Theorem 6.6. Let A = {A1, . . . , An} be an allowable family of localizers of F and for every
1 ≤ i ≤ n let (Hi, A

′
i) be a local closure of (F,Ai). Assume that A satisfies the conditions:

(P1) <(A1) ∩ . . . ∩ <(An) ⊂ R(F ).

(P2) For every B ∈ L, we have (ΓB : pΓB) ≤ p and if (ΓB : pΓB) = p, then p = 2, B is exceptional
and kB is euclidean.

Then there is an extension H0 of F , as in Proposition 3.4, such that Gp(F ) = Gp(H0) ∗Gp(H1) ∗
· · · ∗Gp(Hn).

Proof. The proof follows in the same lines as the proof of the last theorem. If cp(A) = 0 the
statement was proved in Proposition 5.4. For cp(A) > 0 we prove by induction that each Gp(Lt)
decomposes into a free pro-p product (notations as in Theorem 6.1).

Consider first the case where Bt 6∈ A has non-p-divisible value group.
By assumption p = 2 and Bt is exceptional. As in the proof of Theorem 6.1, Gp(Lt) ∼=

Tt o Gp(Ft). Now, the restrictions imposed by (P2) on the value group and the residue field of Bt

imply that Tt
∼= Z2 and Gp(Ft) ∼= Z/2Z ∼= Z/2Z ∗ Z/2Z. Therefore Gp(Lt) is the pro-2 dihedral

group. For the cones Ai, Aj such that V (Ai) = V (Aj) = Bt, since (Lt, B
′
t) is an immediate

extension of (F,Bt), they have distinct prolongations to Lt. Consequently, it is well known that
Gp(Lt) = Gp(Hi) ∗Gp(Hj).

If Bt 6∈ A has p-divisible value group, then the inertia group Tt is trivial and so Gp(Lt) ∼= Gp(Ft).
Construct L̄ from Āt as L was constructed from A. Now, we only need to modify the argument
in the proof of Theorem 6.1 by showing that the valuation rings in L̄ satisfies condition (P2), in
addition to (P1), in order to use induction.

It follows from [9, Theorem 8.7] that any valuation ring Ō ∈ L̄ corresponds to a valuation ring
O ∈ L such that O ⊂ Bt. Let us denote by Γ and ∆ the value groups of O and Ō, respectively.
From valuation theory we know that Bt has value group order isomorphic to the quotient group
Γ/∆. Since Bt has p-divisible value group it follows that (∆ : p∆) = (Γ : pΓ). On the other side,
by [9, 8.3], O and Ō have the same residue field. Therefore, every Ō ∈ L̄ satisfies (P2).

As in the proof of the previous theorem (P1) follows from lemmas 6.2 and 6.5. Consequently, by
repeating the arguments (1) to (5) in the end of the proof of Theorem 6.1 with E and Dt replaced
by Lt and Bt we see that Gp(Lt) also decomposes into a free pro-p product of the desired type.

Observe that in the last result each (Hi, A
′
i) is a local closure of (F,Ai) instead of just a locally

closed extension.

19



7 The free pro-p product case

In this section we study fields for which Gp(F ) admits a decomposition into a free pro-p product
of finite family of subgoups. Our aim is to show the converse of Theorem 6.6.

For the reader’s convenience we recall a few facts concerning free pro-p products.

Remark 3. Let G be a pro-p group and G1, . . . , Gn be a family of subgroups such that G =
G1 ∗ · · · ∗Gn.

(1) If g ∈ G has finite order, then there are 1 ≤ i ≤ n and σ ∈ G such that σ−1gσ ∈ Gi [12,
Theorem A’].

(2) If there are g ∈ G and 1 ≤ i, j ≤ n such that g−1Gig ⊂ Gj , then i = j and g ∈ Gi [12,
Theorma B’].

(3) Let G′ be a subgroup of G generated by a family of subgroups G′
i ⊂ Gi, 1 ≤ i ≤ n. Then

G′ = G′
1 ∗ · · · ∗G′

n and G′ ∩Gi = G′
i. The statement follows from [13, Corollary 5.4] by induction

on n.

We shall next consider some natural restrictions on the family of subgroups considered in The-
orem 6.6.

Definition 6. For a field F , let Gp(H0), Gp(H1), . . . , Gp(Hn) be a family of closed subgroups of
Gp(F ) where Gp(H0) is a free pro-p group and for each 1 ≤ i ≤ n, (Hi, A

′
i) is a locally closed

extension of (F,A′
i ∩ F ) inside F (p).

We say that this family is reduced if for every 1 ≤ i ≤ n Gp(Hi) is non-trivial, non-isomorphic
to Zp, nor Z/2Z ∗ Z/2Z, when p = 2 and if Gp(Hi) ∼= Z/2Z, then Ai is a cone.

Lemma 7.1. Let F be a field such that Gp(F ) = Gp(H0)∗Gp(H1)∗ · · ·∗Gp(Hn) is a decomposition
as in the last definition. Then there exist a family of localizer {B1, . . . , Br} of F and an extension
L0 of F inside F (p) which meet the following conditions:

(i) Gp(L0) is a free pro-p group;

(ii) the family of subgroups Gp(L0), Gp(L1), . . . , Gp(Lr) is reduced, where (Lt, B
′
t) is a locally

closed extension of (F,Bt) inside F (p), for each 1 ≤ t ≤ r;

(iii) Gp(F ) = Gp(L0) ∗Gp(L1) ∗ · · · ∗Gp(Lr).

Proof. For every 1 ≤ i ≤ n, let Ai = A′
i ∩ F .

If Gp(Hj) ∼= Zp for some j, then Gp(H0) ∗ Gp(Hj) is a free pro-p group. Therefore we can
remove Aj from the family {A1, . . . , An} and replace H0 by H ′

0 = H0∩Hj and we still get Gp(F ) ∼=
Gp(H ′

0) ∗ · · · ∗Gp(Hj−1) ∗Gp(Hj+1) ∗ · · · ∗Gp(Hn).
In the case p = 2 and Gp(Hj) ∼= Z/2Z ∗ Z/2Z, if we denote by R1 and R2, respectively,

the fixed fields of the components of Gp(Hj), then R1 and R2 are ordered fields and Gp(Hj) =
Gp(R1)∗Gp(R2). Since Gp(Rt) has order 2, Rt is euclidean t = 1, 2. If there is σ ∈ Gp(F ) such that
σGp(R1)σ−1 = Gp(R2), then σGp(Hj)σ−1 = Gp(Hj) and by Remark 3 (2), σ ∈ Gp(Hj). Applying
now Remark 3 (2) to σ, Gp(R1), Gp(R2) we get a contradiction. Consequently, R1 and R2 induce
different orderings on F . Let Aj1, Aj2 be these orderings. Then, for each t = 1, 2, (Rt, Ṙ

2
t ) is a

local closure of (F,Ajt). In this case we replace Aj in the original family by Aj1 and Aj2 and again
we get Gp(F ) ∼= Gp(H0) ∗ · · · ∗Gp(Hj−1) ∗Gp(R1) ∗Gp(R2) ∗Gp(Hj+1) ∗ · · · ∗Gp(Hn).
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Finally, in case p = 2 and Gp(Hj) an order 2 group, we have that Hj is euclidean. Therefore,
denoting by B′ = Ḣ2

j the unique ordering of Hj we have that (Hj , B
′) is also the local closure of

(F,B′ ∩ F ). We then replace Aj by B = B′ ∩ F .
By repeating the above operations finitely many times, we find a decomposition of Gp(F ) of

the desired type.

Note that Gp(H0) is a subgroup of Gp(L0) and for each 1 ≤ t ≤ r Gp(Lt) is a subgoup of some
Gp(Hi).

The lemma above shows that we may choose reduced families of subgroups without loss of
generality. We shall next see that the choice of these families gives us a result similar to Lemma
5.5 which will be crucial to prove the converse of Theorem 6.6.

Proposition 7.2. For a field F such that Gp(F ) = Gp(H0)∗Gp(H1)∗· · ·∗Gp(Hn) is a decomposition
as we described in Definition 6 we suppose that Gp(H0), Gp(H1), . . . , Gp(Hn) is a reduced family of
subgroups. Let B be a localizer of F and write Ai = A′

i ∩ F , for every i = 1, . . . , n.

(a) If B is the cone of an ordering, then there exists 1 ≤ i ≤ n such that Ai is coarser than B.

(b) If B is a valuation ring which is coarser than Aj, for some 1 ≤ j ≤ n, one of the following
conditions hold:

(b1) ΓB = pΓB;

(b2) (Hj , A
′
j) is a local closure of (F,Aj) and there is a local closure (L,B′) of (F,B) such

that Hi = L.

(b3) p = 2, Aj is a cone, (ΓB : 2ΓB) = 2 and kB is euclidean. Moreover, there is some
1 ≤ t 6= j ≤ n such that At is also a cone and V (At) = V (Aj).

For the proof of the statement (b) we recall a result on the subgroups of the pro-2 dihedral
group Z2 o Z/2Z ∼= Z/2Z ∗ Z/2Z.

Lemma 7.3. If G ∼= Z2 o Z/2Z is the pro-2 dihedral group, then every subgroup G′ of G is either
cyclic or dihedral.

Proof. Recall that the action of an order 2 element σ ∈ G on the Z2 component is given by
σ−1τσ = τ−1, for every τ . Therefore every element of G which is not in the Z2 component has
order 2.

Take a subgroup G′ 6= 1 of G. If G′ is contained in Z2, then G′ is cyclic and torsion free.
Thus G′ ∼= Z2. If G′ 6⊂ Z2, then G = Z2G

′ and so Z2 ∩ G′ is a normal subroup of G′ of index 2
which is either isomorphic to Z2 or trivial. Observe next that every σ ∈ G′ r G′ ∩ Z2 has order 2.
Consequently G′ = (G′ ∩ Z2)o < σ > is also a dihedral group if G′ ∩ Z2 6= 1. It follows also that
G′ has order 2 if G′ ∩ Z2 = 1.

Proof. (Proposition 7.2) (a) Let (L,B′) be a local closure of (F,B) and take σ ∈ Gp(L), σ 6= 1. Then
Gp(L) = {1, σ}. By Remark 3 (a), there are g ∈ Gp(F ) and 1 ≤ i ≤ n such that σ ∈ gGp(Hi)g−1.
If Ai is a cone, then gGp(Hi)g−1 = Gp(L), which implies that B = Ai. If Ai is a valuation ring,
then (gHi, gA′

i) is also a local closure of (F,Ai) which is contained in L. By [20, Theorem 3.16]
gA′

i is coarser than the restriction of B′ to gHi. Consequently, Ai coarser than B. ((a) is also
consequence of [5, Proposition 5.4]).
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(b) Since B is coarser than Aj , Hj contains a local closure (L1, B
′
1) of (F,B). From valuation

theory L1 is F -isomorphic to L. Therefore, we may assume without loss of generality that L ⊂ Hj

and so Gp(Hj) ⊂ Gp(L) (∗).
On the other side, by [5, Proposition 5.4], one of the following cases occur: B′ has p-divisible

value group, there is 1 ≤ i ≤ n such that Gp(L) ⊂ Gp(Hi), Gp(L) ∼= Zp, Z/2Z ∗ Z/2Z.
Recall from [9, Theorem 15.8] that B′ and B have the same value group and the same residue

field. Thus, if the value group of B′ is p-divisible so is ΓB, and (b1) occurs.
Assume now the second case: Gp(L) ⊂ Gp(Hi) for some i = 1, . . . , n. This inclusion together

with the above inclusion (∗) yields Gp(Hj) ⊂ Gp(Hi). Thus j = i, by Remark 3 (2). Hence
Gp(L) = Gp(Hj) and so L = Hj which implies that (Hj , A

′
j) is a local closure of (F,Aj) and so

(b2) holds.
In the other cases, the first possibility Gp(L) ∼= Zp cannot occur, because if Gp(L) ∼= Zp, as

a subgroup of the procyclic group, Gp(Hj) is also procyclic, contrary to the assumption that the
family of subgroups is reduced.

In the last case Gp(L) = Z/2Z∗Z/2Z (p = 2) we apply Lemma 7.3. Since by hypothesis Gp(Hj)
is not isomorphic to Z2 nor a dihedral group, Gp(Hj) has order 2. Then, as the family of subgroups
is reduced, Aj is a cone.

For future use we observe that if there is and extension L of F , inside F (2), such that L ⊂ Hj,
for some 1 ≤ j ≤ n, and Gp(L) ∼= Z/2Z ∗ Z/2Z, then Gp(Hj) ∼= Z/2Z and Aj is a cone (†).

Next, note that Gp(L) has 2 conjugacy classes of elements of order 2 (follows from the description
of Gp(L) as a dihedral pro-2 group, since (Z2 : 2Z2) = 2). For a subgroup G′ of order 2, different
form Gp(Hj), we have Gp(L) = Gp(Hj) ∗G′.

The fixed field H of G′ is euclidean. Let A′ = Ḣ2 be the unique ordering of H. Then L has
exactly 2 orderings which are induced by A′

j and A′, respectively (because Gp(L) has 2 conjugacy
classes of elements or order 2). Since B′ is 2-henselian with a non-2-divisible value group it follows
from [20, Corollary 3.11] that kB, the residue field of B′, has just one ordering and the value group
ΓB satisfies (ΓB : 2ΓB) = 2.

Let A = A′∩F be the restriction of A′ to F . The last discussion implies that V (Aj) = V (A) ⊂ B.
By item (a) there is 1 ≤ t ≤ n such that At is coarser than A. If At is a cone, then A = At and

the proof is complete. Heading for a contradiction we assume that At is a valuation ring. Since
B and At are coarser than A, they have to be comparable. If B is coarser than At, by valuation
theory, there is some g ∈ Gp(F ) such that Gp(Ht) ⊂ g−1Gp(L)g. Therefore, by the our previous
remark (†), At is a cone, a contradiction. On the other side, since B is coarser than Aj , if At is
coarser than B, it follows that At is coarser than Aj . Therefore, there is g ∈ Gp(F ) such that
g−1Gp(Hj)g ⊂ Gp(Ht), which is not possible by Remark 3 (2).

We shall see next that a decomposition of Gp(F ) as in the last proposition imposes some
restrictions on the localizers A1, . . . , An.

Corollary 7.4. Keeping the condition of Proposition 7.2 we have that:

(a) For any cone Ai, if B = V (Ai), then (ΓB : 2ΓB) ≤ 2 and the equality happens only if kB is
euclidean and B is exceptional.

(b) For every valuation ring Ai it follows either: (Hi, A
′
i) is a local closure closure of (F,Ai) or

Ai has p-divisible value group.
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(c) If A is not allowable and 1 ≤ i 6= j ≤ n are such that Aj is coarser than Ai, then Aj has
p-divisible value group.

Proof. If (b1) or (b3) occurs, (a) is proved. In the case (b2), there is a local closure (L,B′) of
(F,B) such that L = Hi is euclidean. Then L̇ = L̇2 ∪ (−1)L̇2. Consequently, the value group of
B′ is 2-divisible. As B′ and B have the same value group, [9, Theorem 15.8], the prove of (a) is
complete.

Statement (b) follows form (b1) and (b2) of the above proposition taking B = Ai, because (b3)
cannot occur.

(c) Observe first that if Ai is a cone and we are in the case (b3), the restrictions on the value
group and on the residue field of Aj implies for a local closure (H,A) of (F,Aj) that Gp(H) is
the dihedral group. Recall that we can choose H in order that Gp(Hi) ⊂ Gp(H). This inclu-
sion together with Lemma 7.3 lead to a contradiction because we have assumed that the family
Gp(H0), Gp(H1), . . . , Gp(Hn) is a reduced.

Case (b2) cannot happens either, otherwise Gp(Hi) = g−1Gp(Hj)g for some g ∈ Gp(F ). Hence
(c) follows from (a) of Proposition 7.2.

Now we can prove the converse of Theorem 6.6.

Theorem 7.5. Consider a field F and a family of locally closed extensions (Hi, A
′
i), 1 ≤ i ≤ n, of

F inside F (2). Assume that there is another intermediate extension H0 ⊂ F (p) such that Gp(H0) is
a free pro-2 group and Gp(H0), Gp(H1), . . . , Gp(Hn) is reduced. For every 1 ≤ i ≤ n let Ai = A′

i∩F
and write A = {Ai, . . . , An}.

If Gp(F ) = Gp(H0)∗Gp(H1)∗ · · · ∗Gp(Hn), then there is a family A1 ⊂ A which is an allowable
family of localizers of F and satisfies the conditions (P1) and (P2) of Theorem 6.6.
Moreover, if A is allowable, then A1 = A.

Proof. Let us first prove that A satisfies (P1).
Since (Hi, A

′
i) is locally closed, it follows that <(Ai) ⊂ Ḣp

i , for every 1 ≤ i ≤ n. Therefore, if
r ∈ <(A1) ∩ . . . ∩ <(An), then Di(r) = Ḣi, for every i = 1, . . . , n. Since Gp(H0) is a free pro-p
group, by Lemma 3.2, D0(r) = Ḣ0, too. Hence, for any b ∈ Ḟ , it follows that b ∈ Di(r), for
every i = 0, . . . , n. Therefore, Proposition 2.1 implies that every b ∈ Ḟ satisfies b ∈ DF (r) for
r ∈ <(A1) ∩ . . . ∩ <(An). Hence r ∈ R(F ) and the condition (P1) is proved.

Next let A1 = {Ai ∈ A | Ai is not finer than any Aj ∈ A, j 6= i}. Clearly A1 is allowable.
We claim that A1 satisfies (P1) and (P2). If At 6∈ A1, there is As ∈ A1 such that As is coarser

than At. Thus <(As) ⊂ <(At). Consequently, the intersection of all <(Ai), where Ai ranges over
A1, satisfies ⋂

<(Ai) =
n⋂

i=1

<(Aj) ⊂ R(F ).

Hence A1 has the property (P1).
We now prove A1 has (P2). Construct L from the family A1 as in Definition 4. For B ∈ L, by

the very definition of L, B is coarser than 2 distinct localizers Ai, Aj of A1 and is the finest with
this property. We shall apply Proposition 7.2 to B.

It is enough to show that case (b2) cannot occur. Assume this is not so. Then (Hi, A
′
i) and

(Hj , A
′
j) are local closures of (F,Ai) and (F,Aj), respectively, and there are local closure (L1, B

′
1),

(L2, B
′
2) of (F,B) such that L1 = Hi and L2 = Hj . By valuation theory there is g ∈ Gp(F ) such

that g−1Gp(L1)g = Gp(L2), contrary to Remark 3 (2).
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In case (b1) we are done. In case (b3), since V (Ai) = V (Aj) is coarser than both Ai and Aj , it
follows that B = V (Ai). Therefore B is exceptional and (P2) holds for A1 as claimed.

Observe now that if A is allowable, then A1 = A.

8 The localizer in the free product decomposition case

In this section we suppose that F is a field admitting an allowable family of localizers A =
{Ai, . . . , An} which satisfies the conditions of (P1) and (P2) of Theorem 6.6. Let Gp(F ) =
Gp(H0) ∗ Gp(H1) ∗ · · · ∗ Gp(Hn) be the decomposition of the Galois group where, Gp(H0) is a
free pro-p group and for every 1 ≤ i ≤ n, (Hi, A

′
i) is a local closure of (F,Ai). Suppose further the

family of subgroups Gp(H0), Gp(H1), . . . , Gp(Hn) is reduced.
We shall now discuss the localizers B 6∈ A. In Proposition 7.2 we learned about the cones of

orderings of F and also about valuation rings which are coarser than some Ai ∈ A. We shall now
refine this knowledge by considering valuation rings which are not comparable to any element of
A.

Proposition 8.1. For a field F satisfying the above conditions let B be a valuation ring of F which
is not comparable to Ai, for every 1 ≤ i ≤ n. If (L,B′) is a local closure of (F,B), then Gp(L) is
a either a free pro-p group or there are 1 ≤ i ≤ n and g ∈ Gp(F ) such that g−1Gp(L)g ⊂ Gp(Hi)
and it is abelian and torsion free.

Particularly, if B is independent of every Ai ∈ A, then Gp(L) is a free pro-p group.

Proof. Take a local closure (L,B′) of (F,B). As in the proof of Proposition 7.2, by [5, Proposi-
tion 5.4], we have to consider 3 cases:

(1) there are 0 ≤ i ≤ n and g ∈ Gp(F ) such that g−1Gp(L)g ⊂ Gp(Hi);
(2) Gp(L) ∼= Zp, Z/2Z ∗ Z/2Z;
(3) B′ has p-divisible value group.
In the first case we may choose L in order that Hi ⊂ L. If i = 0, then Gp(L) is free as a

subgroup of a free pro-p group. For 1 ≤ i ≤ n let A be the unique extension of A′
i to L. Then A

is also p-henselian [9, Theorem 15.7] and since B and Ai are not comparable, by assumption, A
and B′ are not comparable, too. Denote D = AB′ the finest valuation ring of L which is coarser
than A and B′ simultaneously and let D̃ be its unique extension to F (p). Note that the valuation
rings πD(A) and πD(B′) are independent valuation rings of kD. By [2, Lemma 1.3], πD(A) and
πD(B′) are p-henselian and then, by [2, Proposition 1.4], the residue field kD = kD(p) is p-closed.
Hence Gp(L) is the inertia group of D̃ over L [9, Theorem 19.6]. Since kB has characteristic 6= p
(our general assumption on localizers), the same is true for kD. Consequently, the ramification
group of D̃ over F is trivial [9, Theorem 20.18]. By [9, Theorem 20.12] Gp(L) is abelian. Finally,
if Gp(L) has torsion, then L is an ordered field [1, Theorem 3, p. 73]. It follows then from [20,
Theorem 3.16] that B′ is coarser than every ordering of L and has residue field k formally real. On
the other side, B′ and its image πD(B′) in kD have the same residue field. Since kD is p-closed, so
is k, contradicting k to be a formally real field. Thus Gp(L) is torsion free as desired.

In the case (2) if Gp(L) ∼= Zp, then Gp(L) is free (also abelian and torsion free) and we are
done.

We claim that Gp(L) = Z/2Z ∗ Z/2Z cannot happen. Assume, by contrary, that Gp(L) is
the dihedral group. Then L is an ordered field, since Z/2Z is a subgroup of Gp(L). By [20,
Theorem 3.16], B′ is coarser than every ordering of L. Then B is coarser than an ordering P of
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F which corresponds to the restriction to F of an ordering of L. By Proposition 7.2 (a), there is
1 ≤ i ≤ n such that Ai is coarser than P . Consequently, B and Ai are comparable, a contradiction.

Finally, in the third case, let us first show that A1 = A∪{B} is an allowable family that satisfies
(P1) and (P2) of Theorem 6.6.

In fact, since A ⊂ A1, (P1) also holds for A1. In order to prove that (P2) holds, let L and L1

be the sets constructed form A and A1, respectively, as the description in Definition 4. Clearly
L ⊂ L1. We know from Theorem 6.1 that condition (P2) holds for every C ∈ L. Moreover, if
C ∈ L1 r L, then B ⊂ C has to occur. Therefore, since ΓB is p-divisible so is ΓC and so A1 has
the property (P2), as required.

Consequently, by Theorem 6.6, Gp(F ) = G0 ∗Gp(H1) ∗ · · · ∗Gp(Hn) ∗Gp(L), for some subgroup
G0 of Gp(F ) which is free. Hence F and H1, . . . ,Hn, L satisfy conditions (I) and (II) of Proposition
2.1. For x ∈ L̇ there is y ∈ Ḟ such that y ∈ Ḣp

i , for every i = 0, . . . , n and yL̇p = xL̇p. Hence,
y ∈ Ḣp

0 ∩ · · · ∩ Ḣp
n ∩ F ⊂ R(F ), by Lemma 3.3. Consequently x ∈ R(F )L̇p. Thus L̇ = R(F )L̇p and

then, by Lemma 3.1 (b), R(L) = L̇. Finally, by Lemma 3.2, Gp(L) is a free pro-p group.

Continuing with the study of localizers of a field as proposed at the beginning of this section,
note that we can reduce the study of the localizers which are finer than some Ai to the study of
the localizers of the residue field of Ai. In particular, we know from Proposition 7.2 (a) that every
cone Q of F is finer than some Ai ∈ A. The set of orderings of F which is finer than some Ai is
well known (see for example [1], [20], or [29]).Hence, the set of orderings present in A remains to
be considered.

For the rest of this section we fix p = 2.
Let us denote by XF the space of orderings of F . Write Y = {A1, . . . , Ar}, r ≤ n, for the set of

all orderings in A. We shall see below that Y is constituted by independent orderings.
Generalizing the notion of a positive cone of an ordering, we have a preordering T of F , char-

acterized as a subgroup of Ḟ such that Ḟ p ⊂ T and T + T ⊂ T . For a preordering T of F let
X(T ) = {P ∈ XF | T ⊂ P}. It is well known that T =

⋂
P where P ranges over X(T ) [20,

Theorem 1.6].
We shall also need the notion of connected orders introduced by Marshall (see [21, § 6, p. 159] or

[22, § 2]). Two orderings P1 and P2 are called connected if either P1 = P2 or there is a preordering T
such that (Ḟ : T ) = 8 and there are 2 more orderings P3 and P4 for which X(T ) = {P1, P2, P3, P4}.
Such a preordering T is called a 4-element fan. We write P1 ∼ P2 to say these orderings are
connected. Observe that ∼ is an equivalence relation on XF [22, Theorem 2.3].

The next lemma, according to Efrat [4, Lemma 2.2], gives a characterization of connected
orderings by means of valuation rings.

Lemma 8.2. For P1 6= P2 ∈ XF , P1 ∼ P2, if and only if there is a valuation ring A of F coarser
than both P1 and P2 such that (ΓA : 2ΓA) ≥ 4 and kA has just one ordering or (ΓA : 2ΓA) ≥ 2 and
kA has exactly two orderings.

We shall also need the following technical lemma.

Lemma 8.3. For Y = {P1, . . . , Pm} ⊂ XF let T = P1 ∩ · · · ∩ Pm. For every Q ∈ XF such that
T ⊂ Q there is 1 ≤ i ≤ m such that Q ∼ Pi.

Proof. For every 1 ≤ i ≤ m let χi : Ḟ /T −→ {±1} be the character on Ḟ /T associated with Pi as
well as χQ is associated with Q. Since χ1, . . . , χm generated the character group Hom(Ḟ /T, {±1}),
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by a suitable change in notation, we may assume that χQ = χ1χ2 · · ·χs, s ≤ m, and χ1, . . . , χs are
F2-independent in Hom(Ḟ /T, {±1}) (This group is also the F2-dual of Ḟ /T ). From [21, Lemma 6.22,
p. 162] Q ∼ Pi for every i = 1, . . . , s.

We shall also need the notion of a SAP preordering T as in [20, § 17].

Proposition 8.4. Let F be a field as it was fixed at the begining of this section. Let Y =
{A1, . . . , Ar}, r ≤ n be the set of all cones of orderings in A and write T = A1 ∩ · · · ∩ Ar.
Then T is a SAP preordering and X(T ) = Y .

Proof. We shall first apply Proposition 7.2 (b) to a valuation ring B which is finer than some
Ai ∈ Y to get either ΓB = 2ΓB or (ΓB : 2ΓB) = 2 and kB with a unique ordering. Next, we show
that X(T ) = {A1, . . . , Ar}. Then it follows from [20, Theorem 16.3 and 17.12 and Theorem 16.3]
that T is SAP, as desired.

For a valuation ring B, coarser than Ai ∈ Y , if (b1) or (b3) holds, we are done. In case (b2) there
is a local closure (L,B′) of (F,B) such that Hi = L. Thus L is euclidean and so L̇ = L̇2 ∪ (−1)L̇2.
Consequently, ΓB = 2ΓB and the first claim is stated.

Next, as a contradiction, we assume that there is Q ∈ XF such that Q 6∈ {A1, . . . , Ar} and
T ⊂ Q. By Lemma 8.3, Q ∼ Ai, for some 1 ≤ i ≤ r. Since Q 6= Ai, there is a valuation ring
B of F coarser than Q and Ai as in Lemma 8.2, which contradicts what was proved in the last
paragraph.

We end this section considering a few examples. Some application of our results will appear in
a forthcoming paper.

Example 1. We can find enough examples of fields F such that Gp(F ) is A-admissible, for some
family A of localizers. For example, let F be a formally real field with finitely many orderings
A = {A1, . . . , An}. Denote by ΣḞ 2 the set of non-trivial sums of squares. If R(F ) = ΣḞ 2, then
Gp(F ) is A-admissible. Fields verifying this condition are well-known. They can be characterized
as those for which the 2-primary component of the Brauer group of F is an elementary abelian
2-group [6, Theorem 3.1]. Example of these fields include pythagorean fields, generalized Hilbert
fields [18] and fields with Hasse invariant ũ ≤ 2 [11].

Another class of examples is provided by algebraic extensions of global fields [7, Main Theorem].
For some other examples see § 1.2 of [16].

ACKNOWLEDGMENT: The author is greatly indebted to an anonymous referee. The first
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