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Abstract

In this work, we study the equivalence between the solutions of variational-like
inequality problem and the solutions of some nonsmooth, non-convex vectorial op-
timization problem.
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1 INTRODUCTION

The connection between variational inequalities and optimization problems
have long been known (e.g. [14], [9], [1]). One the main work in this direction
was done by Gianessi [11]. The paper [11] was done in the finite-dimensional
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context. This problem has been extensively investigated in recent years. Var-
ious results on the existence of solutions have been obtained for much varia-
tional inequalities (e.g. [5], [17], [19], [20]). Also, connections between varia-
tional inequalities and vectorial optimization problems have been studied in
[12], [21] and [26], for instance.

By using a variational-like inequality, Lee et. al. [19] obtain some results of ex-
istence of solutions for nonsmooth invex problems, which are generalizations
those obtained by Chen and Craven [6] for differentiable convex problems.
Recently, Gianessi [12] showed the equivalence between efficient solutions of
differentiable, convex optimization problem and the solutions of a variational
inequality of Minty type. Also, he proved the equivalence between weak effi-
cient solutions of a differentiable, convex optimization problem and solutions
of a variational inequality of weak-Minty type.

Following this way, Lee [18] established the equivalence between the solu-
tions of the inequalities of Minty and Stampacchia type for subdifferential (in
the analysis convex sense) and the efficient solutions and weakly efficient so-
lutions, respectively, of vectorial, nonsmooth, convex optimization problems.
Moreover, using these characterizations, he proved a theorem on the existence
of the weakly efficient solutions of vectorial, nonsmooth, convex optimization
problem, under weak hypothesis of compactness.

In this work, we extend the results obtained early by Lee [18] for the nons-
mooth invex context.

This paper is divided as follows: In Section 2 we fix some basic notation
and terminology. In Section 3 we prove some connections between efficient
solutions and vectorial optimization problems. In Section 4, we consider the
case of weakly efficient solutions. Finally, in Section 5 we use the results of
the above sections to show a existence result of the weakly efficient solutions
of nonsmooth invex vectorial optimization problem, under weak hypothesis of
compactness.

2 PRELIMINARIES

In this section we recall some notions of nonsmooth analysis. For more details
see, for instance, Clarke [7]. Let Rn be the n-dimensional Euclidean space and
Rn

+ be its non-negative octant. In the sequel Ω will be a nonempty open subset
of Rn. A function f : Ω → R is said to be Lipschitz near x ∈ Ω if, for some
K > 0,

|f(y)− f(z)| ≤ K‖y − z‖,

2



for all y, z within a neighbourhood of x. We say that f is locally Lipschitz
on Ω if f is Lipschitz near any given point of Ω. The generalized directional
derivative of f at x in the direction v, denoted by f o(x; v), is defined as follows:

f o(x; v) = lim sup
y→x

t↓0

1

t
[f(y + tv)− f(y)].

The generalized gradient of f at x, denoted by ∂f(x), is the subset of Rn given
by

∂f(x) = {ξ ∈ Rn : f o(x; v) ≥ 〈ξ, v〉, ∀v ∈ Rn},

where 〈·, ·〉 is the usual scalar product in Rn. The set ∂f(x) is nonempty when
f is Lipschitz near x ∈ Ω.

Let X be a nonempty subset of Rn. The distance function related to X, is the
function dX(·) : Rn → R defined by

dX(x) := inf{‖x− c‖ : c ∈ X}.

The distance function is not everywhere differentiable but is globally Lipschitz.
Let x ∈ X. A vector v ∈ Rn is said to be tangent to X at x if do

X(x; v) = 0.
The set of tangent vectors to X at x is a closed convex cone in Rn, called
Clarke tangent cone and denoted by TX(x):

TX(x) = {v ∈ Rn : do
X(x, v) = 0}.

The Clarke normal cone to X at x can be defined by polarity with TX(x):

NX(x) = {ξ ∈ Rn : 〈ξ, v〉 ≤ 0,∀v ∈ TX(x)}.

Suppose that f is a locally Lipschitz function on Ω and attains a minimum
over X at x. Then

0 ∈ ∂f(x) + NX(x). (1)

We say that x ∈ X is a Clarke stationary point of f over X if (1) holds.
Hanson [15] considered differentiable functions, f : Rn → R for which, for all
x, y ∈ Rn, there exists η(y, x) ∈ Rn such that

f(y)− f(x) ≥ 〈∇f(x), η(y, x)〉.
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Nowadays, such functions are generally known as invex functions due to Craven
[8], who first called them by this term. This invexity notion for functions gen-
eralizes the concept of convexity and allows to extend sufficient conditions
of optimality and duality results to nonconvex optimization problems (see,
for instance, [2], [13], [24] ). Invexity has now been extended to nondifferen-
tiable locally Lipschitz functions, see, for example, Craven [8], Reiland [25]
and Phuong, Sach and Yen [23]. We use the definition provided in [23]: let X
be a nonempty subset of Ω and suppose that f : Ω → R is a locally Lipschitz
function on Ω. We say that f is invex on X if, for every x, y ∈ X, there is
η(y, x) ∈ TX(x), such that,

f(y)− f(x) ≥ f o(x; η(y, x)).

The above notion of invexity is very powerful because it allows to treat smooth
and nonsmooth constrained optimization problems in the presence of an ab-
stract constraint set X. This is pursued in later sections. An important result
obtained by Phuong, Sach and Yen is the following invexity characterization:

Theorem 2.1 ([23], p. 590)Let X be a nonempty subset of Ω. A locally Lip-
schitz function f is invex on X if and only if every Clarke stationary point of
f over X is a global minimum.

3 RELATIONS BETWEEN EFFICIENT SOLUTIONS OF VEC-
TORIAL OPTIMIZATION PROBLEM AND VARIATIONAL-
LIKE INEQUALITIES

Let X be a nonempty subset of Rn and fi : Rn−→ R, i = 1, ..., p given
functions. We consider the following vectorial optimization problem:

minimize f(x) := (f1(x), ..., fp(x))

subject to: x ∈ X.





(P)

The following notions of efficiency are so known:

Definition 3.1 • y ∈ X is a efficient solution of (P ) if for each x ∈ X,

(f1(x)− f1(y), ..., fp(x)− fp(y)) /∈ −Rp
+ \ {0};

• y ∈ X is a property efficient solution of (P ) if y ∈ X is a efficient
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solution of (P ) and if there exists M > 0 such that for each i = 1, ..., p

fi(x)− fi(y)

fj(y)− fj(x)
≤ M

for some j such that fj(x) > fj(y), when fi(x) < fi(y) and x ∈ X;
• y ∈ X is a weakly efficient solution of (P ) if for each x ∈ X,

(f1(x)− f1(y), ..., fp(x)− fp(y)) /∈ −intRp
+.

Now, we assume that fi are locally Lipschitz and invex functions on X respect
to η. We consider in this Section the following variational-like inequalities:

Minty type vectorial variational-like inequality (MV LI)

(MV LI): To find y ∈ X such that, for each x ∈ X and any ξi ∈ ∂fi(x),
i = 1, ..., p

(ξT
1 η(x, y), ..., ξT

p η(x, y)) /∈ Rp
+ \ {0}

(where ∂fi(x) is the Clarke generalized gradient of fi at x).

Stampacchia type vectorial variational-like inequality (SV LI)

(SV LI) To find y ∈ Y such that for each x ∈ X, there exist ξi ∈ ∂fi(y),
i = 1, ..., p such that

(ξT
1 η(x, y), ..., ξT

p η(x, y)) /∈ Rp
+ \ {0}.

Proposition 3.2 Assume that X is a nonempty subset of Rn and fi : Rn−→ R,
i = 1, ..., p are locally Lipschitz functions and invex on X respect to η. If y ∈ X
is a weak efficient solution of (P ), then, is a solution of (MV LI).

PROOF. Let y ∈ X be a efficient solution of (P ). Then, for each x ∈ X, we
have

(f1(x)− f1(y), ..., fp(x)− fp(y)) /∈ −Rp
+ \ {0}. (2)

Since fi is invex respect to η, f 0
i (x; η(y, x)) ≤ fi(y)− fi(x) and, therefore

ξT
i η(y, x) ≤ f 0

i (x; η(y, x)) ≤ fi(y)− fi(x),∀ξi ∈ ∂fi(x). (3)

From (2) and (3), we obtain that y ∈ X is a solution of (MV LI). ¥
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Theorem 3.3 Let X be a nonempty subset of Rn and fi : Rn−→ R, i =
1, ..., p are invex locally Lipschitz functions on X respect to η. If y ∈ X is
solution of (SV LI), then y is a efficient solution of (P ).

PROOF. Let y ∈ X a solution of (SV LI). Then, for each x ∈ X, there exist
ξi ∈ ∂fi(y), i = 1, ..., p such that

(ξT
1 η(x, y), ..., ξT

p η(x, y)) /∈ −Rp
+ \ {0}. (4)

The functions fi are invex and, for each x ∈ X,

fi(x)− fi(y) ≥ f 0
i (y, η(x, y)) ≥ ξT

i η(x, y) (5)

so, from (4) and (5) we obtain:

(f1(x)− f1(y), ..., fp(x)− fp(y)) /∈ −Rp
+ \ {0}

and, therefore, y ∈ X is an efficient solution of (P ). ¥

Proposition 3.2 and Theorem 3.3 imply:

Corollary 3.4 We assume that X is a nonempty subset of Rn and fi :
Rn−→ R, i = 1, ..., p are invex locally Lipschitz functions on X with respect
to η. If y ∈ X is a solution of (SV LI), then y ∈ X is a solution of (MV LI).

Thus, (SV I) is a sufficient condition for the efficiency in (P ). However, this
condition is not necessary (see for example [18], p. 172). We will show that the
proper efficiency in (P ) is a necessary condition. To prove the last affirmation
we will make use the following result (see [16]).

Lemma 3.5 Let Γ be an arbitrary set, Y a Hausdorff vectorial space, D a
compact subset of Y , F : Γ×D −→ R a function such that F (x, ·) is concave
and upper semicontinuous on D for each x ∈ Γ fix and F (·, y) is convex, for
each y ∈ D fix. Then,

inf
x∈Γ

max
y∈D

F (x, y) ≥ 0 ⇔ sup
y∈D

inf
x∈Γ

F (x, y) ≥ 0.

Proposition 3.6 Let X be a compact subset of Rn and fi : Rn−→ R, i =
1, ..., p invex locally Lipschitz functions respect to η on X. We assume that for
each y ∈ X, the function η(·, y) is linear. Then, the following affirmations are
equivalent:

a) y ∈ X is a property efficient solution of (P ).
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b) There exist λi > 0, i = 1, ..., p such that y is solution of the following scalar
variational-like inequality: to find y ∈ X such that there exist ξi ∈ ∂fi(y),
i = 1, ..., p such that for each x ∈ X,

(λ1ξi + ... + λpξp)
T η(x, y) ≥ 0.

c) There exist λi > 0, i = 1, ..., p such that y is solution of the following scalar
variational-like inequality: to find y ∈ X such that for each x ∈ X, there
exist ξi ∈ ∂fi(y), i = 1, ..., p such that

(λ1ξ1 + ... + λpξp)
T η(x, y) ≥ 0.

PROOF. a) ⇒ b): If y ∈ X is a property efficient solution of (P ), since the
functions fi are invex and X is compact, we have ( see [3]) there exist λi > 0,
i = 1, ..., p such that y ∈ X is a solution of the scalar optimization problem:

minimize λ1f1(x) + ... + λpfp(x)

subject to: x ∈ X.





(SP)

We observe that, the function λ1f1 + ...+λpfp is invex and, by using Theorem
2.1, we obtain

0 ∈ ∂(
p∑

i=1

λifi)(y) + NX(y) ⊂
p∑

i=1

λi∂fi(y) + NX(y) (7)

Then, there exist µ ∈ NX(y) and ξi ∈ ∂fi(y), i = 1, ..., p such that

0 = µ +
p∑

i=1

λiξi. (8)

By other hand, η(x, y) ∈ TX(y),∀x ∈ X furthermore,

〈µ, η(x, y)〉 ≤ 0, ∀x ∈ X. (9)

From (8) and (9) follows
∑p

i=1 λi〈ξi, η(x, y)〉 ≥ 0,∀x ∈ X, that is,

(λ1ξ1 + ... + λpξp)
T η(x, y) ≥ 0

Hence, b) is proved.

b) ⇒ a): We assume that there exist y ∈ X such that ξi ∈ ∂fi(y), i = 1, ..., p
where for each x ∈ X, (λ1ξ1 + ... + λpξp)

T η(x, y) ≥ 0. We shall assume that y
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is not a properly efficient solution of (P ) and exhibit a contradiction. Then y
is not a solution of the following scalar minimization problem (see [10]):

minimize λ1f1(x) + ... + λpfp(x)

subject to: x ∈ X.
(10)

that is, there exists x ∈ X such that
∑p

i=1 λifi(x) <
∑p

i=1 λifi(y), and further-
more,

p∑

i=1

λi(fi(x)− fi(y)) < 0. (11)

By other hand, using the invexity of the functions fi, we obtain

p∑

i=1

λi(fi(x)− fi(y)) ≥
p∑

i=1

λif
0
i (y, η(x, y)) ≥

p∑

i=1

λiξ
T
i η(x, y) ≥ 0, (12)

which contradicts (11). Hence, y is properly efficient solution of (P ).

b)⇔ c): We suppose that y ∈ X and that there exist λi > 0 such that there are
ξi ∈ ∂fi(y), i = 1, ..., p such that, for each x ∈ X, (λ1ξ1+...+λpξp)

T η(x, y) ≥ 0.
Or equivalently,

max
ξi∈∂fi(y)

inf
x∈X

(λ1ξ1 + ... + λpξp)
T η(x, y) ≥ 0. (13)

Let

D :=
p∏

i=1
∂fi(y)

Γ := X

F (x, ξ) := (λ1ξ1 + ... + λpξp)
T η(x, y).

(14)

The function F holds the hypotheses of Lemma 3.5. In fact, for x ∈ Γ fix,
F (x, ·) is continuous on D (because is a form linear define between finite-
dimensional spaces and, in particular, is upper semicontinuous). Moreover,
F (x, ·) is simultaneously concave and convex. Consequently, (13) is equiva-
lently to

inf
x∈X

max
ξi∈∂fi(y)

(λ1ξ1 + ... + λpξp)
T η(x, y) ≥ 0 (15)
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and this last inequality is exactly the statement b). Furthermore, b) and c)
are equivalently. ¥

Remark 3.7 We observe that in the proof of the Proposition 3.6, we not use
the fact that η(·, y) is linear for the la equivalence between a) and b).

From Proposition 3.6 and Remark 3.7, it follows easily the following theorem:

Theorem 3.8 Let X a compact, nonempty subset of Rn and fi : Rn−→ R,
i = 1, ..., p invex locally Lipschitz functions on X respect to η. If y is a properly
efficient solution of (P ), then y is solution of (SV LI).

PROOF. If y is a properly efficient solution of (P ), then using Proposition
3.6, there exist λi > 0, ξi ∈ ∂fi(y), ∀i = 1, ..., p such that

(λ1ξ1 + ... + λpξp)
T η(x, y) ≥ 0, ∀x ∈ X. (16)

We shall assume that exists x ∈ X such that for each ξi ∈ ∂fi(y) holds

(ξT
1 η(x, y), ..., ξT

p η(x, y)) ∈ −Rp
+ \ {0}

and exhibit a contradiction. Since, λi are all strictly positives we have

p∑

i=1

(λiξi)
T η(x, y) < 0,

which contradicts (16). Therefore, y is solution of (SV LI). ¥

4 RELATIONS BETWEEN WEAKLY EFFICIENT SOLUTIONS
OF VECTORIAL OPTIMIZATION PROBLEM AND VARIATIONAL-
LIKE INEQUALITIES

In this Section, we will consider variational-like vectorial inequalities of weak-
Minty and weak-Stampacchia type, which we formulate as follows:

Weak-Minty variational-like inequality (WMV LI):

(WMV LI): To find y ∈ X such that, for each x ∈ X and each ξi ∈ ∂fi(x),
i = 1, ..., p,

(ξT
1 η(x, y), ..., ξT

p η(x, y)) /∈ −intRp
+.
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Weak-Stampacchia variational-like inequality (WSV LI)

(WSV LI): To find y ∈ X such that for each x ∈ X, there exist ξi ∈ ∂fi(y),
i = 1, ..., p such that

(ξT
1 η(x, y), ..., ξT

p η(x, y)) /∈ −intRp
+.

Under some hypotheses, it is possible to show that the solutions of (WMV LI)
and (WSV LI) are coincident. This will be done now. Before, we will recall
the following definition: Given the function η : S × S −→ Rn where S is a
nonempty subset of Rn, we say that a set S is invex respect to η at x ∈ S
if for each y ∈ S and each t ∈ [0, 1], x + tη(y, x) ∈ S. also, we say that S is
invex, if it is invex for each x ∈ S.

Theorem 4.1 Let X be a nonempty subset of Rn, invex respect to η and
fi : Rn−→ R, i = 1, ..., p invex locally Lipschitz functions respect to η.

(1) If y is a solution of (WMV LI). Then, y is a solution of (WSV LI).
(2) We assume that the function η is anti-symmetric (i.e., η(x, y) = −η(y, x),∀x, y ∈

X) and that y ∈ X is a solution of (WSV LI). Then y is a solution of
(WMV LI).

PROOF. (1). We suppose that y ∈ X is solution of (WSV LI). Then, for
each x ∈ X, there exist ξi ∈ ∂fi(y), i = 1, ..., p and such that

(ξT
1 η(x, y), ..., ξT

p η(x, y)) /∈ −intRp
+.

Let ξ̂i ∈ ∂fi(x), i = 1, ..., p. We claim that (ξi − ξ̂i)
T η(x, y) ≤ 0, i = 1, ..., p. In

fact, from the anti-symmetry of η and (17), we have

(ξi − ξ̂i)
T η(x, y) = ξiη(x, y)− ξ̂iη(x, y) = ξiη(x, y) + ξ̂iη(y, x) (17)

Also, since fi is invex,

ξT
i η(x, y) ≤ f 0

i (y, η(x, y)) ≤ fi(x)− fi(y), i = 1, ..., p (18)

and, moreover,

ξ̂T
i η(y, x) ≤ f 0

i (x, η(y, x)) ≤ fi(y)− fi(x), i = 1, ..., p (19)

and, adding (18)-(19), we obtain

(ξi − ξ̂i)
T η(x, y) ≤ 0, i = 1, ..., p
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that is, for each x ∈ X and each ξ̂i ∈ ∂fi(x), i = 1, ..., p, we have

(ξ̂T
1 η(x, y), ..., ξ̂T

p η(x, y)) ≥ (ξT
1 η(x, y), ...ξT

p η(x, y)) /∈ −intRp
+ (20)

consequently,

(ξ̂T
1 η(x, y), ..., ξ̂T

p η(x, y)) /∈ −intRp
+ (21)

that is, y is solution of (WMV LI).

We will prove the statement (2). To done this, we suppose that y ∈ X is
solution of (WMV LI). In this case, for each x ∈ X and each ξi ∈ ∂fi(x),
i = 1, ..., p, (ξT

1 η(x, y), ..., ξT
p η(x, y)) /∈ −intRp

+. For z ∈ X fix, we consider
the sequence (αk) ∈ (0, 1], with αk −→ 0 when k −→ ∞ and we define
zk := y+αkη(z, y). Since X is invex respect to η, then the sequence (zk) belong
to X. The set ∂fi(zk) is nonempty and therefore we can to take ξk

i ∈ ∂fi(zk),
i = 1, ..., p for each k ∈ N. But y is a solution of (WMV LI) and therefore,

(ξkT
1 η(x, y), ..., ξkT

p η(x, y)) /∈ −intRp
+. (22)

We can assume that all the functions fi have the same Lipschitz constant K .
Since ξk

i ∈ ∂fi(zk), for each k, we have
∥∥∥ξk

i

∥∥∥ ≤ K, for i = 1, ..., p . For each i,

(ξk
i ) is a bounded subsequence in Rn, and, without loss of generality, we can

suppose that ξk
i −→ ξ̂i, i = 1, ..., p when k −→∞. By other hand, ξk

i ∈ ∂fi(zk)
for each k and zk −→ y when k −→ ∞ and since the set-valued mapping ∂fi

is closed (see [7] p. 29), we obtain ξ̂i ∈ ∂fi(y), i = 1, ..., p. Taking k −→∞ in
(22) and observing that the set (−intRp

+)c is closed in Rp, we obtain

(ξ̂T
i η(x, y), ..., ξ̂T

p η(x, y)) /∈ −intRp
+. (23)

Therefore, y ∈ X is solution of (WSV LI). ¥

Theorem 4.2 Let X a nonempty subset of Rn, invex respect to η and fi :
Rn−→ R, i = 1, ..., p invex locally Lipschitz functions respect to η on X. We
suppose that η is anti-symmetric. Then, y ∈ X is a weakly solution of (P ) iff
y ∈ X is solution of (WSV LI).

PROOF. Firstly, we suppose that y ∈ X is not weakly efficient solution of
(P ). Then, there exists z ∈ X such that

fi(y) > fi(z), i = 1, ..., p. (24)
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Let ξi ∈ ∂fi(y), i = 1, .., p. Since fi are invex, we have

ξT
i η(z, y) ≤ f 0

i (y, η(z, y)) ≤ fi(z)− fi(y) (25)

therefore,

fi(z)− fi(y) ≥ ξT
i η(z, y), ∀ξi ∈ ∂fi(y) (26)

and, from (24) and (26), we have

ξi ∈ ∂fi(y), (ξT
i η(z, y), ..., ξT

p η(z, y)) ∈ −intRp
+ (27)

for each z ∈ X and, consequently, y ∈ X is not solution of (WSV LI).

Now, we suppose that y ∈ X is not solution of (WSV LI). In this case, there
exists x ∈ X such that, for each ξi ∈ ∂fi(x), i = 1, ..., p

(ξT
1 η(x, y), ..., ξT

p η(x, y)) ∈ −intRp
+. (28)

Let ξi ∈ ∂fi(x). Since fi are invex,

fi(y)− fi(x) ≥ f 0
i (x; η(y, x)) ≥ ξT

i η(y, x), i = 1, ..., p (29)

consequently,

ξT
i η(y, x) ≤ fi(y)− fi(x), i = 1, .., p. (30)

The function η is anti-symmetric and from (30) follows

ξT
i η(x, y) ≥ fi(x)− fi(y), i = 1, .., p (31)

From (28) and (31), we obtain

0 > fi(x)− fi(y), i = 1, ..., p (32)

and, therefore, y ∈ X is not a weakly efficient solution of (P ). ¥

The following result is an alternative theorem for invex functions, the proof
can be to see in [3]:

Lemma 4.3 (Invex Gordan’s Theorem) Let C be a nonempty closed subset
of Ω. Suppose that fi : Ω → R, i ∈ I = {1, . . . , m} are locally Lipschitz
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functions and invex on C, for a common η. If f(x) = max{fi(x) i ∈ I}
attains a minimum on C, then either

(i) there exists x ∈ C such that fi(x) < 0 i ∈ I, or
(ii) ∃λi ≥ 0, i ∈ I, not all zero, such that

∑
i∈I λifi(x) ≥ 0 ∀x ∈ C, but

never both.

Now, we give an analogous result of the Proposition 3.6 for weakly efficient
solutions.

Proposition 4.4 Let X be a compact, nonempty subset of Rn and fi : Rn−→ R
invex locally Lipschitz functions respect to η on X. We assume that for each
y ∈ X the function η(·, y) is linear. Then, are equivalently:

(a) y ∈ X is a weakly efficient solution of (P ).
(b) There exist λi ≥ 0, i = 1, ..., p not all zeros such that y ∈ X is a solution

of the following scalar variational inequality: to find y ∈ X such that there
exist ξi ∈ ∂fi(y), i = 1, ..., psuch that, for each x ∈ X

(λ1ξ1 + ... + λpξp)
T η(x, y) ≥ 0.

(c) There exist λi ≥ 0, i = 1, ..., p, not all zero and such that y ∈ X is a
solution of the following scalar variational inequality: to find y ∈ X such
that for each x ∈ X, there exist ξi ∈ ∂fi(y) such that

(λ1ξ1 + ... + λpξp)
T η(x, y) ≥ 0.

PROOF. The equivalence between (b) and (c) is proved analogously as in
Proposition 3.6.

(a) ⇒ (b): We assume that y ∈ X is a weakly efficient solution of (P ). Since
fi are invex, the functions φi,

φi(x) = fi(x)− fi(y) (x ∈ X)

are invex respect to η on X. By hypotheses, there not exists x ∈ X such that
φi(x) < 0, i = 1, .., p. Consequently, from Lemma 4.3 there exist λi ≥ 0, i =
1, ..., p not all zero and such that

∑p
i=1 λiφi(x) ≥ 0,∀x ∈ X. Or, equivalently,

x is solution of the scalar problem (SP )

minimize
∑p

i=1 λifi(x)

subject to: x ∈ X





(SP)
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and therefore,

0 ∈ ∂(
p∑

i=1

λifi)(y) + NX(y).

Thus, there exist µ ∈ NX(y), ξi ∈ ∂fi(y), i = 1, ..., p such that

µ +
p∑

i=1

λiξi.

Since η(x, y) ∈ TX(y),∀x ∈ X, we obtain

0 ≥ 〈µ, η(x, y)〉 = −
p∑

i=1

λi〈ξi, η(x, y)〉, ∀x ∈ X

that is,

(λ1ξ1 + ... + λpξp)
T η(x, y),∀x ∈ X.

That is exactly the affirmation given in (b).

Now, (b) ⇒ (a): We assume that there exist λi ≥ 0, i = 1, ..., p not all zero,
ξi ∈ ∂fi(y) such that

(λ1ξi + ...λpξp)
T η(x, y) ≥ 0,∀x ∈ X. (34)

If y no is a weakly efficient, then y is not solution of the pondered scalar
problem associate to λ, that is, there exists x ∈ X such that

∑p
i=1 λi(fi(x) −

fi(y)) < 0. By other hand,

p∑

i=1

λi(fi(x)− fi(y))≥
p∑

i=1

λif
0
i (y, η(x, y)) ≥

p∑

i=1

λiξ
T
i η(x, y) (35)

= (λ1ξi + ...λpξp)
T η(x, y) ≥ 0 (36)

this contradict (34). ¥

Easily, from Theorems 4.1, 4.2 and Proposition 4.4, we obtain:

Theorem 4.5 Let X be a compact, nonempty subset of Rn, invex respect to η
and fi : Rn−→ R, i = 1, ..., p are invex locally Lipschitz functions respect to η
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on X. We assume that the function η is anti-symmetric and such that η(·, y)
is linear for each y ∈ Y . Then, the following affirmations are equivalently :

(a) y ∈ X is a weakly efficient solution of (P ).
(b) y ∈ X is solution of (WMV LI).
(c) y ∈ X is solution of (WSV LI).
(d) There exist λi ≥ 0, i = 1, ..., p, not all zero and such that y ∈ X and

is solution of the following scalar inequality: to find y ∈ X such that there
exist ξi ∈ ∂fi(y), i = 1, ..., p such that, for each x ∈ X

(λ1ξ1 + ... + λpξp)
T η(x, y) ≥ 0.

(e) There exist λi ≥ 0, i = 1, ..., p, not all zero and such that y ∈ X is a
solution of the following scalar inequality y ∈ X such that for each x ∈ X,
there exist ξi ∈ ∂fi(y)such that

(λ1ξ1 + ... + λpξp)
T η(x, y) ≥ 0.

5 EXISTENCE OF WEAKLY EFFICIENT SOLUTIONS

We begin this Section recalling a fixed point theorem for set-valued mappings,
which is a generalization of the classical fixed point theorem of Fan- Browder,
and whose proof can be to find in Park [22].

Lemma 5.1 Let X be a convex, nonempty subset of a Hausdorff topological
vectorial space E and K a compact, nonempty subset of X. Let A,B : X ⇒ X
be two set-valued mappings satisfying the following conditions:

(1) Ax ⊂ Bx, ∀x ∈ X.
(2) Bx is a convex set, ∀x ∈ X.
(3) Ax 6= ∅, ∀x ∈ K.
(4) A−1y is an open set, ∀y ∈ X.
(5) For each N , finite subset ofX, there exist LN compact, convex, nonempty

subset of X such that LN ⊇ N and for each x ∈ LN \K, Ax ∩ LN 6= ∅.

Then, there exists x ∈ X such that x ∈ Bx.

We will use the results of the previous section, together with Lemma 5.1 to
establish the existence of weakly efficient solution for the nonsmooth invex
vectorial optimization problem under weak compactness hypothesis on the
feasible set X.

Theorem 5.2 Let X be a nonempty subset of Rn, invex respect to η and
fi : Rn−→ R, i = 1, ..., p invex locally Lipschitz functions respect to η. We
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assume that η is an anti-symmetric function and such that η(·, y) is convex
and continuous, for each y ∈ X. Also, we assume that there exists a compact,
nonempty subset, K, of X such that, for each finite subset N of X there exists
a compact, convex and nonempty subset, LN , of X, such that LN ⊇ N and
for each x ∈ LN \ K, there exists z ∈ LN such that there exist ξi ∈ ∂fi(z),
i = 1, ..., p satisfying

(ξT
1 η(z, x), ..., ξT

p η(z, x)) ∈ −intRp
+.

Then, (P ) has a weakly efficient solution.

PROOF. We wrote the proof using a concise notation to make it clearer. We
denote by ∂f(x) the set ∂f1(x)×...×∂fp(x) (x ∈ X). Let s = (s1, ..., sp) where
si ∈ Rn, i = 1, ..., p. We denote by sT η(x, y) the vector (sT

1 η(x, y), ..., sT
p η(x, y)) ∈

Rp. Let A,B : X ⇒ X be two set-valued mappings given by:

Ax := {z ∈ X : ∃t ∈ ∂f(z), tT η(z, x) ∈ −intRp
+}

Bx := {z ∈ X : ∀s ∈ ∂f(x), sT η(z, x) ∈ −intRp
+}.

We will prove (using Lemma 5.1) that there exists y ∈ K such that Ay = ∅ or,
equivalently, that y is solution of (WMV LI) and by Theorems 4.1 and 4.2 it
is sufficient to prove our result. In first time, we will prove that the set-valued
mappings A and B satisfy the conditions (1), (2), (4) and (5) of the Lemma 5.1
and that B has not fixed point. So, Lemma 5.1 will be implies the existence of
y ∈ K such that Ay = ∅. We will show that the condition (1) of the Lemma
5.1 holds: Let x ∈ X and z ∈ Ax. Then, there exist t = (ξ1, ..., ξp) ∈ ∂f(z)
such that

(ξT
1 η(z, x), ..., ξT

p η(z, x)) ∈ −intRp
+. (37)

Let s = (ξ̂1, ..., ξ̂p) ∈ ∂f(x). Using the invexity of functions fi and the anti-
symmetry of η, we have for each i = 1, ..., p

ξ̂T
i η(z, x)≤ f 0

i (x; η(z, x)) ≤ fi(z)− fi(x) = −(fi(x)− fi(z)) (38)

≤−ξT
i η(x, z) = ξT

i η(z, x). (39)

From (37) and (38) follows

(ξ̂T
1 η(z, x), ..., ξ̂T

p η(z, x)) ∈ −intRp
+
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and, therefore, z ∈ Bx. Now, we will see that the second condition of Lemma
5.1 holds: let x ∈ X, z1, z2 ∈ Bx and λ ∈ [0, 1]. Then, for each s = (ξ1, ..., ξp) ∈
∂f(x), we have

(ξT
1 η(z1, x), ..., ξT

p η(z1, x)), (ξT
1 η(z2, x), ..., ξT

p η(z2, x)) ∈ −intRp
+. (40)

For each j = 1, ..., p, we consider ξj = (ξ
(1)
j , ..., ξ

(n)
j ), ξ

(k)
j ∈ R, η(x, y) =

(η1(x, y), ..., ηn(x, k)), ηi(x, y) ∈ R. Then, from the convexity of ηi and (40),
we obtain

ξT
j η(λz1 + (1− λ)z2, x) =

n∑

i=1

ξ
(i)
j ηi(λz1 + (1− λ)z2, x) (41)

≤
n∑

i=1

ξ
(i)
j [ληi(z1, x) + (1− λ)ηi(z2, x)] (42)

= λξT
j η(z1, x) + (1− λ)ξT

j η(z2, x) < 0, j = 1, ..., p.(43)

Furthermore, λz1 + (1 − λ)z2 ∈ Bx. The fourth condition of Lemma 5.1 is
proved as follows: We prove that, for each z ∈ X, the set (A−1z)c is closed. To
done this, we consider a sequence (xn) ∈ (A−1z)c and such that xn converge
to x. Then, xn /∈ A−1z that is, z ∈ Axn, ∀n ∈ N . Let t = (ξ1, ..., ξp) ∈ ∂f(z)
such that

(ξT
1 η(z, xn), ..., ξT

p η(z, xn)) /∈ −intRp
+. (44)

Since η(·, z) is continuous and anti-symmetric, we have that η(z, ·) also is
continuous and being (−intRp

+)c closed, making n −→∞ in (44)) we obtain

(ξT
1 η(z, x), ..., ξT

p η(z, x)) /∈ −intRp
+.

and, furthermore, x ∈ (A−1z)c. By our hypotheses, the condition (5) of the
Lemma 5.1 holds. However, B has not fixed point, because if there exist a
point fixed, it would exist x ∈ X such that for each s ∈ ∂f(x), sT η(x, x) =
0 ∈ −intRp, which is absurd. Consequently, from Lemma 5.1, there exists
y ∈ K such that Ay = ∅. ¥

Corollary 5.3 Let X be a nonempty subset of Rn, invex respect to η and η
anti-symmetric such that η(·, y) is convex and continuous. We assume that

K = {x ∈ X : (f 0
1 (z0, η(z0, x), ..., f 0

p (z0, η(z0, x)) /∈ −intRn
+}

is compact for some z0 ∈ X. Then, (P ) has weakly efficient solutions.
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PROOF. Let N be a nonempty and finite subset of X. We define: LN :=
co(N ∪ K) (where coA denote the closed convex hull of A). Then, for each
x ∈ LN \K ⊂ X \K, we have

(f 0
1 (z0, η(z0, x)), ..., f 0

p (z0, η(z0, x))) ∈ −intRp
+. (45)

Let z := z0 ∈ K ⊂ LN , ξi ∈ ∂fi(z). We have:

ξT
i η(z0, x) ≤ f 0

i (z0, η(z0, x)), i = 1, ..., p (46)

and, from (45) and (46), we obtain

(ξT
1 η(z, x), ..., ξT

p η(z, x)) ∈ −intRp
+.

Thus, the hypotheses of Theorem 5.2 are verified and consequently (P ) has
weakly efficient solutions. ¥

CONCLUSIONS: In this paper, we study the equivalence between solutions
of the vectorial variational-like inequalities of Minty and Stampacchia type
and the efficient solutions and weakly efficient solutions of the nonsmooth,
invex, vectorial optimization problem. The results were obtained by using an
approach analogous those used by Gianessi [12] . Also, these results are a
generalization those proved by Lee [18].
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