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Abstract

In this paper we study tensor products of T-prime T-ideals over infinite fields.
The behaviour of these tensor products over a field of characteristic 0 was described by
Kemer. First we show, using methods due to Regev, that such a description holds if one
restricts oneself to multilinear polynomials only. Second, applying graded polynomial
identities, we prove that the tensor product theorem fails for the T-ideals of the algebras
M1,1(E) and E ⊗ E where E is the infinite dimensional Grassmann algebra; M1,1(E)
consists of the 2 × 2 matrices over E having even (i.e. central) elements of E, and
the other diagonal consisting of odd (anticommuting) elements of E. Then we pass
to other tensor products and study the respective graded identities. We obtain new
proofs of some cases of Kemer’s tensor product theorem. Note that these proofs do not
depend on the structure theory of T-ideals but are “elementary” ones. Finally, using
graded identities once again, we show that the tensor product theorem fails in one more
case when the base field is of positive characteristic. All this comes to show once more
that the structure theory of T-ideals is essentially about the multilinear polynomial
identities.
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1 Introduction

The T-prime algebras form one of the most important classes of algebras in the PI theory.
The structure theory for the T-ideals in the free associative algebra depends heavily on the
identities satisfied by such algebras. This theory was developed by Kemer, see for example
[11] for detailed account of this theory.

We recall some of the main definitions and notation that will be used in what follows. All
prerequisites needed to follow the exposition will be given in Section 2; here we state only the
necessary ones for consistency of the text. Throughout K is a fixed infinite field, char K 6= 2;
the algebras, vector space, tensor products and so on, are over K. Unless otherwise stated
we consider associative and unitary algebras. If X = {x1, x2, . . .} is an infinite (countable)
set we denote by K(X) the free associative algebra that is freely generated over K by X.
The elements of K(X) are called polynomials. If A is an algebra the polynomial f ∈ K(X)
is a polynomial identity (or simply an identity) for A if f(a1, a2, . . . , an) = 0 for all ai ∈ A.
The set of all identities T (A) for A is an ideal of K(X). This ideal is closed with respect to
the endomorphisms of the algebra K(X) and is called the T-ideal of A. It is easy to show
that every such ideal is the T-ideal of some algebra. The variety of algebras varA = varT (A)
defined by A (or by T (A)) is the class of all algebras that satisfy the identities in T (A).

The algebra A is T-prime (or verbally prime) if T (A) is T-prime, that is T (A) is prime
in the class of all T-ideals of K(X). This means that if I and J are T-ideals such that
IJ ⊆ T (A) then I ⊆ T (A) or J ⊆ T (A). Equivalently, T (A) is T-prime if f , g ∈ K(X),
and f(x1, . . . , xm)g(xm+1, . . . , xn) ∈ T (A) imply f ∈ T (A) or g ∈ T (A) (or both). Let E be
the infinite dimensional Grassmann (or exterior) algebra of a vector space V . One chooses
a basis e1, e2, . . . of V and then 1 and the monomials ei1ei2 . . . eik , i1 < i2 < . . . < ik, k ≥ 1
form a basis of E, and the multiplication in E is the one induced by eiej = −ejei, e2

i = 0.
Denote by Ei the span of all such monomials with k ≡ i (mod 2), i = 0, 1. Then E0 is the
centre of E, the elements of E1 anticommute and E = E0 ⊕ E1 as vector spaces.

It follows from Kemer’s theory that the only nontrivial T-prime T-ideals in K(X),
char K = 0, are T (Mn(K)) for Mn(K) being the matrix algebra of order n ≥ 1; T (Mn(E)),
n ≥ 1, and T (Ma,b(E)), a ≥ b ≥ 1. Here Mn(E) is the algebra of n × n matrices over
E. The algebra Ma,b(E) is the subalgebra of Ma+b(E) that consists of the block matrices(

A B
C D

)
. Here A ∈ Ma(E0), D ∈ Mb(E0), and B and C are matrices a × b and b × a

respectively, whose entries belong to E1. Denote as ∆0 the set of (i, j) such that 1 ≤ i, j ≤ a
or a + 1 ≤ i, j ≤ a + b = n, and as ∆1 the set of (i, j) with 1 ≤ i ≤ a, a + 1 ≤ j ≤ a + b, or
1 ≤ j ≤ a, a + 1 ≤ i ≤ a + b. Then Ma,b(E) consists of the matrices in Mn(E) such that the
(i, j)-th entry belongs to Eβ when (i, j) ∈ ∆β. An important corollary of Kemer’s theory is
the Tensor Product Theorem (TPT).

Theorem 1 Let charK = 0. Then

• T (Ma,b(E) ⊗ E) = T (Ma+b(E));

• T (Ma,b(E) ⊗ Mc,d(E)) = T (Mac+bd,ad+bc(E));
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• T (M1,1(E)) = T (E ⊗ E).

An alternative proof of Theorem 1 was given by Regev in [18]. Regev’s proof did not
depend on the structure theory. Instead Regev used essentially graded polynomial identities.
Some cases of the TPT were proved, again without using the structure theory of T-ideals,
in [6, 7, 8, 13].

Studying the identities satisfied by T-prime algebras is, without any doubt, very impor-
tant. But it is extremely difficult as well. Note that these identities are known in very few
cases only, and mainly when char K = 0. Thus T (E) is described in any characteristic (even
over finite fields), see [14, 4, 22]. Further on, T (M2(K)) was described in [16], see also [17],
and in a series of papers by Drensky, see for example [9, 10]. When char K = p > 2 the same
was done in [12, 5]. Add the description of T (E ⊗ E) given in [15] when char K = 0 and
in this way one gets the complete list. Hence one is led to study other types of polynomial
identities such as weak identities, identities with involution, and graded ones. Naturally
graded identities have attracted the attention not only as an object of independent study
but also due to the broad spectrum of applications and close connection to the ordinary
ones. We refer to [2, 13] and their bibliography for further reference.

In this paper we study graded identities in T-prime algebras with appropriate gradings
aiming at obtaining information about the ordinary identities satisfied by them. The paper
is organized as follows. In Section 3 we show that the Tensor Product Theorem holds for the
multilinear parts of the corresponding T-ideals when charK = p > 2. This is done using the
methods developed by Regev in [18]. Then we prove that T (M1,1(E)) ⊂ T (E ⊗E), a proper
inclusion. In order to do it we use generic constructions and some methods of [13]. We give
a polynomial that is an identity for E⊗E but is not for M1,1(E). Of course such polynomial
depends on the characteristic p of the base field. In Sections 4 and 5 we consider the G-
graded identities of the algebras Mn(E) and Ma,b(E)⊗E where a+ b = n and G = Zn ×Z2.
We exhibit bases of these graded identities and show that the latter algebra satisfies some
graded identities that do not hold for the former when char K = p > 2. It is interesting
to note that the difference between the respective graded T-ideals is in monomials only. In
other words Ma,b(E)⊗E satisfies some monomial identities that do not hold for Mn(E). In
the last Section 6 we study in detail the case n = 2, a = b = 1. We give finite bases of
the respective graded identities, and find an ordinary identity that holds for M1,1(E) ⊗ E
but does not hold for M2(E). In this case the difference between the two graded T-ideals
is one monomial given in explicit form. In order to achieve these goals we use once again
appropriate models for the corresponding relatively free algebras. Furthermore we make use
of methods introduced in [20, 21], and further developed in [1].

We believe that the results in this paper contribute to the better understanding of the
nature of the T-ideals in positive characteristic, a task whose complete solution seems some-
what beyond our knowledge at the present stage.
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2 Preliminaries

We shall adopt all the notation introduced in Section 1. We repeat that K is an infinite
field, charK = p 6= 2. Unless otherwise stated all algebras A are over K, and unitary, 1 ∈ A.
If f , g ∈ K(X) the polynomial g is a consequence of f as an identity if g ∈ 〈f〉T , the T-ideal
generated by f , and f and g are equivalent as identities if 〈f〉T = 〈g〉T .

Let I be a T-ideal in K(X). The quotient algebra F = K(X)/I is the relatively free
algebra in the variety determined by I. Denote by Pn the vector subspace of K(X) of all
multilinear polynomials in x1, x2, . . . , xn of degree n. It is well known that when char K = 0,
the T-ideal I is generated as a T-ideal, by the set ∪n≥1(T ∩ Pn). That is I is generated by
its multilinear polynomials. When the field is infinite this may fail. But in this case I is
generated by its multihomogeneous elements. (We refer to the first chapters of [10] for the
proofs of these and of the next couple of basic facts about identities and T-ideals.) We can
make a further reduction of the class of polynomials that determine a T-ideal. Let L(X)
be the free Lie algebra freely generated by the set X over K. If we consider K(X) as a
Lie algebra with respect to the commutator [a, b] = ab − ba, then L(X) is the subalgebra
of K(X) generated by the set X. Fix an ordered basis of L(X) that consists of X and of
multihomogeneous elements u1, u2, . . . of degree ≥ 2. Suppose that the variables of X
are the first ones in the order. Then K(X) is the universal enveloping algebra of L(X),
and we may choose a basis of K(X) consisting of 1 and the monomials xn1

i1
. . . xnk

ik
uj1 . . . ujm

,
i1 < · · · < ik, j1 ≤ · · · ≤ jm. Denote as B(X) the (associative) subalgebra of K(X) generated
by 1 and by all ui. It is spanned by the products of commutators, and its elements are called
proper (or commutator) polynomials. A well known theorem states that over an infinite field
K, every T-ideal I is generated by I ∩ B(X). In other words I is generated by its proper
elements. The proof of this statement can be found in [10, pp. 42–46].

Let A be an algebra and G an additive abelian group (or semigroup). Assume that
A = ⊕g∈GAg is a direct sum of vector subspaces and that AgAh ⊆ Ag+h, g, h ∈ G. Then
A is G-graded. If G is the cyclic group of order n we speak about n-graded algebras.
Let X = ∪g∈GXg be a disjoint union of infinite sets. The free associative algebra K(X)
is G-graded in a standard way. If x ∈ Xg is a variable then w(x) = g is its weight, or
(homogeneous) degree. If M = xi1 . . . xin is a monomial then w(M) = w(xi1) + · · ·+ w(xin).
Observe that the last sum is the one in G. The polynomial f ∈ K(X) is G-graded identity
for the G-graded algebra A if f = 0 whenever the variables of Xg are substituted for elements
of the component Ag of A. In other words if ϕ : K(X) → A is a graded homomorphism then
f ∈ ker ϕ.

The Grassmann algebra E = E0 ⊕ E1 is 2-graded. Let X = Y ∪ Z, Y ∩ Z = ∅ for
Y = {y1, y2, . . .} and Z = {z1, z2, . . .} being the even and odd variables. The polynomial
[y1, y2] is a graded identity of E, z1 ◦ z2 and [y1, z1] are other two. Here and in the sequel we
denote by [a, b] = ab − ba the commutator of a and b, and a ◦ b = (ab + ba)/2. We suppose
that the commutators are left normed that is [a, b, c] = [[a, b], c] and so on.

One defines G-graded: T-ideals, varieties, relatively free algebras, consequences, and so
on, in analogy with the case of ordinary identities. If A is G-graded then a variation of the
proper polynomials is known. Since 1 ∈ A0, then every graded identity is equivalent to a
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finite collection of 0-proper graded identities. These are graded polynomials such that every
0-graded variable is in commutators only. The proof of this assertion repeats verbatim the
one for ordinary identities, see for example [13] for a proof. We shall call such polynomials
simply proper polynomials if there is no possibility of misunderstanding.

The following two facts will be useful later on.

Lemma 2 Let A and B be two G-graded algebras with respective G-graded T-ideals TG(A)
and TG(B). Then if TG(A) ⊆ TG(B) then T (A) ⊆ T (B).

Corollary 3 If TG(A) = TG(B) then T (A) = T (B).

The proofs of these two assertions are obvious and left to the reader.
The generic matrix algebra Gen(Mn(K)) is a convenient tool in studying the identities

satisfied by the matrices n × n over a field. Recall that if xk
ij are commuting variables then

Gen(Mn(K)) is the subalgebra of Mn(K[xk
ij ]) generated by the matrices Xk = (xk

ij). A well
known result states that Gen(Mn(K)) is relatively free in the variety generated by Mn(K).

Let Y = {y1, y2, . . . } and Z = {z1, z2, . . . } be variables and set X = Y ∪ Z. Define a
Z2-grading on K(X) assuming Y even and Z odd variables. Let T be the ideal in K(X)
generated by all ab− (−1)w(a)w(b)ba, a and b homogeneous monomials, and set Ω = K(X)/T .
Recall that w(a) stands for the homogeneous degree of a, w(a) = 0 or 1. We shall refer
to homogeneous polynomials and so on when considering homogeneity with respect to the
grading, and we leave the adjective multihomogeneous for homogeneity with respect to the
usual (multi-)degree of polynomials.

The algebra Ω is the free supercommutative algebra. In [3, Section 2] it was proved
that Ω ∼= K[X] ⊗K E(Y ) where K[X] are the commutative polynomials in X and E(Y )
is the Grassmann algebra of the span of Y . Suppose that Y = {yk

ij}, Z = {zk
ij}, and set

Bk = (yk
ij + zk

ij), Ck = (ck
ij) where ck

ij = yk
ij if 1 ≤ i, j ≤ a or a + 1 ≤ i, j ≤ a + b = n, and

ck
ij = zk

ij otherwise. The following theorem was proved in [3, Theorem 2].

Theorem 4 a) The matrices B1, B2, . . . , generate a subalgebra of Mn(Ω) that is relatively
free algebra in the variety generated by Mn(E).

b) The matrices C1, C2, . . . , generate a subalgebra of Mn(Ω) that is relatively free in the
variety varMa,b(E).

3 The multilinear TPT; TPT fails for M1,1(E) and E⊗E

We start with the Tensor product theorem and its multilinear version. If I is a T-ideal in
K(X) we denote by P (I) the set of all multilinear polynomials in I. One of the main results
in this section is the following theorem.

Theorem 5 (cf. [18]) Let K be an infinite field, charK 6= 2. Then

1. P (T (Ma,b(E) ⊗ E)) = P (T (Ma+b(E)));
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2. P (T (Ma,b(E) ⊗ Mc,d(E))) = P (T (Mac+bd,ad+bc(E)));

3. P (T (M1,1(E))) = P (T (E ⊗ E)).

Proof . This theorem is the main result of Regev’s paper [18]. The proof is the same as in
[18]. The assumption char K = 0 in [18] can be removed easily at the price of considering
multilinear identities only. Note that in no instance in the proofs of the corresponding
results in [18] there was need of dividing by integers, and the coefficients of the polynomials
considered in [18] are ±1.

Now knowing that the multilinear version of the TPT holds we show that when char K =
p > 2 the “general” TPT fails. We need some notation and definitions of [13]. First recall
which gradings we shall consider. The algebra A = M1,1(E) is 2-graded in the following way:

M1,1(E) = A0 ⊕ A1, A0 = {

(
a 0
0 d

)
}, A1 = {

(
0 b
c 0

)
}

where a, d ∈ E0, and b, c ∈ E1. For E ⊗ E we have

E ⊗ E = (E0 ⊗ E0 ⊕ E1 ⊗ E1) ⊕ (E0 ⊗ E1 ⊕ E1 ⊗ E0).

Since these algebras are 2-graded, in order to simplify the notation we shall use the letters
yi for the 0-variables, and zi for the 1-variables of K(X). Sometimes we shall omit the indices
from the respective variables. We use the notation T2(A) for the ideal of 2-graded identities
of a given 2-graded algebra A.

It was proved in [13, Theorems 9, 23] that the 2-graded identities for M1,1(E) follow from
[y1, y2] and z1z2z3 + z3z2z1, and those for E⊗E follow from the above two plus [yp

1, z1] where
p = char K. Thus T2(M1,1(E)) ⊂ T2(E⊗E), a proper inclusion, and T (M1,1(E)) ⊆ T (E⊗E).
Now denote by E ′ the Grassmann algebra without unit, and consider the nonunitary algebra
M1,1(E

′). Note that this algebra is 2-graded in a natural way, and its 1-component is the
same as that of M1,1(E). Let A = M1,1(E

′)⊕K be the unitary algebra obtained by M1,1(E
′)

by formal adjoining of a unit.

Lemma 6 The algebra A satisfies all 2-graded identities of T2(E ⊗ E).

Proof . The inclusion A ⊂ M1,1(E) implies that A satisfies the graded identities [y1, y2] and
z1z2z3 + z3z2z1. Observe that the algebra E ′ satisfies the (ordinary) identity xp = 0 (see
[19]). Let a ∈ A0, then a = λI +(a11e11 +a22e22) where eij are the matrix units and aii ∈ E ′

0.
Now we have (a11e11 + a22e22)

p = ap
11e11 + ap

22e22 = 0. On the other hand λI is central and
the p-th binomial coefficients are divisible by p therefore ap = λpI ∈ K. Here we identify the
field K with the scalar matrices λI, λ ∈ K, for I being the identity matrix. Thus A satisfies
[yp, z].

Proposition 7 The algebras A and E ⊗ E satisfy the same 2-graded identities.
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Proof . Due to the preceding lemma it suffices to prove that every 2-graded identity of A
is satisfied by E ⊗ E. Hence it is sufficient to show that every proper graded identity of A
is satisfied by E ⊗ E. In order to prove this fact we use ideas of [13]. As in [13, Lemma
17], choose a set {gi(z1, z2, . . . , zn)} of multilinear polynomials that are linearly independent
modulo the T2-ideal of A. Then the polynomials

yi1
1 yi2

2 . . . yik
k z2

n+1z
2
n+2 . . . z2

n+rgi(z1, z2, . . . , zn)

are linearly independent modulo T2(A) provided that all ij < p (see the proof in [13, Lemma
17]).

Denote by F the relatively free 2-graded algebra of A, then F is a homomorphic image
of the relatively free 2-graded algebra of M1,1(E). Hence every proper polynomial of F can
be written in the form

yα1
1 yα2

2 . . . yαm

m z2
i1
z2

i2
. . . z2

ik
gj(zj1 , zj2, . . . , zjl

)

where {i1, i2, . . . , ik} ∩ {j1, j2, . . . , jl} = ∅, i1 < i2 < · · · < ik, and gj is multilinear. Fur-
thermore we may impose the restriction αi < p since if some αi ≥ p then the corresponding
element vanishes on A. The last statement holds for 0-proper polynomials; since every
variable yi participates in commutators only we may dispense with the scalar part of the
respective matrices. See [13, Proposition 12, Corollary 22] for the detailed proof of the last
statement. Now it suffices to prove that the last polynomials are linearly independent in F ,
and in turn one has to consider the multilinear polynomials gj only.

So we find a basis of the vector subspace of F of the multilinear polynomials in the
variables zj . But such a basis consists of the polynomials

za1zb1za2zb2 . . . zam
ẑbm

for a1 < a2 < . . . < am, b1 < b2 < . . . < bm and the hat over the variable zbm
means that

it may be missing. The last fact was proved in [13, Proposition 8]. Therefore we finish the
proof using [13, Theorem 23].

Corollary 8 T (A) = T (E ⊗ E).

The algebra A satisfies the same 2-graded (and hence ordinary) identities as E⊗E. Since
A is subalgebra of M1,1(E), in order to compare the identities of M1,1(E) and of E ⊗ E, it
is more convenient to work in A than in E ⊗ E.

Lemma 9 The polynomial f(x1, x2) = [xp2

1 , x2] is an identity for A but not for M1,1(E).

Proof . If we choose a =

(
1 0
0 2

)
∈ M1,1(E) for x1 then ap2

= a is not central. Hence

f 6∈ T (M1,1(E)). Now we prove that for every a ∈ A the element ap2
is central. Since

a = k + a′ for k ∈ K and a′ ∈ M1,1(E
′) we get ap2

= kp2
+ (a′)p2

and kp2
is central. Thus
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we may consider a = a′ ∈ M1,1(E
′). Let a =

(
x y
z t

)
∈ M1,1(E

′); hence x, t ∈ E ′
0, y,

z ∈ E ′
1 = E1. Then since p ≥ 3 we have that p2 ≥ 4p − 3. The entries of ap2

will be linear
combinations of monomials in x, y, z, t, each of them of degree p2. Hence every monomial
will contain one of the elements x, y, z, t at least p times. Now we use the fact that x and t
are central in E ′ and y and z anticommute, and write, up to a sign, every such monomial in
the form xαyβzγtδ where at least one of the powers is ≥ p. But according to [19] the algebra
E ′ satisfies the identity xp

1 = 0. Therefore ap2
= 0 and the proof is complete.

Theorem 10 Let charK = p > 2. Then T (M1,1(E)) ( T (E ⊗ E). More precisely the

identity [xp2

1 , x2] is satisfied by the latter but not by the former algebra.

Proof . Combining the above Lemma and Proposition we obtain T (E⊗E) = T (A) ( T (M1,1)
and we are done.

Remark 1 The above theorem shows that the tensor product theorem fails in positive char-
acteristic. However, it does hold if one considers the multilinear parts of the corresponding
T-ideals.

We note that the algebras E ⊗E and M1,1(E) provide an example of algebras that satisfy
the same multilinear identities but have different T-ideals if charK = p > 2. Another
example of such a pair of algebras (and another example that shows the TPT fails in positive
characteristic) will be given later.

4 The graded identities for Mn(E)

In this section we fix the group G as the group Zn × Z2. If n is fixed positive integer, we
denote by i the residue of i modulo n, 0 ≤ i ≤ n − 1.

Define a G-grading on the algebra Mn(E) as follows. If g = (α, β) ∈ G then

Mn(E)g = {A = (aij) ∈ Mn(E) | aij ∈ Eβ if j − i = α and 0 otherwise}.

Thus this grading is the natural extension of the usual Zn-grading on the matrix algebra
Mn(K) and of the Z2-grading on E. We leave to the reader the easy exercise that the above
is indeed a G-grading. For a homogeneous element h of degree (α, β) ∈ G in a G-graded
algebra A we write α(h) = α ∈ Zn and β(h) = β ∈ Z2.

For the computations that follow it will be useful to note that the n-grading on the
algebra Mn(K) is the following. Its i-th component consists of the matrices

∑
krsers, krs ∈ K, s − r ≡ i (mod n),

for i = 0, 1, . . . , n − 1. These are the matrices whose nonzero entries belong to the (i − 1)-
st diagonal, and when this diagonal reaches the “border” of the matrix (at the position
(n − i, n)), it “continues” from the beginning (n − i + 1, 1) of the next row. See the matrix
from 1 below in order to visualise the picture of the grading.
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This interpretation shows at once that the gradings in consideration are well defined.
One may define analogously a G-grading on the generic algebra F in varMn(E) (see

Theorem 4). But such a grading is not the most convenient for our goals since the notation
would be rather complicated and clumsy. Instead we introduce another model for the rela-
tively free algebra in varMn(E). In some sense it corresponds to appropriate change of rows
and columns in the respective matrices.

First we “rename” the variables. Consider the set X = Y ∪ Z where

Y = {yd
i | d ∈ Zn, i ≥ 1}, Z = {zd

i | d ∈ Zn, i ≥ 1}.

Of course we impose all the restrictions of Theorem 4. Let X = {x1, x2, . . . }. Then we define
Ak = (ak

rs) ∈ Mn(Ω) to be the matrix with entries

ak
rs =






yr−1
k if α(xk) = s − r and β(xk) = 0,

zr−1
k if α(xk) = s − r and β(xk) = 1,

0 otherwise,

k = 1, 2, . . .

Now denote as H the G-graded subalgebra of Mn(Ω) generated by the matrices Ak, k ≥ 1.

Proposition 11 The G-graded algebra H is relatively free in the variety of G-graded algebras
generated by Mn(E).

Proof . The proof repeats verbatim the one for the generic matrices. Let ϕ : K(X) → H
be the homomorphism defined by xk 7→ Ak, k ≥ 1. Then it is obviously graded homomor-
phism onto H . An easy computation shows that its kernel is exactly TG(Mn(E)), and the
proposition is proved.

Remark 2 The algebra H is isomorphic to the relatively free (ungraded) algebra in varMn(E)
since it satisfies the same G-graded identities as Mn(E) does.

Now we write down a list of G-graded polynomials that turn out to be a basis of the
G-graded identities for Mn(E). Let S be the set of the identities:

Identity (α(x1), β(x1)) (α(x2), β(x2)) (α(x3), β(x3))
x1x2 − x2x1 (0, 0) (0, 0)

(0, 0) (0, 1)
x1x2 + x2x1 (0, 1) (0, 1)

(α, 0) (−α, 0) (α, 0)
x1x2x3 − x3x2x1 (α, 1) (−α, 0) (α, 0)

(α, 0) (−α, 1) (α, 0)
(α, 1) (−α, 1) (α, 1)

x1x2x3 + x3x2x1 (α, 0) (−α, 1) (α, 1)
(α, 1) (−α, 0) (α, 1)

Denote by I the ideal of G-graded identities in K(X) generated by the set S.
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Lemma 12 I ⊆ TG(Mn(E)).

Proof . The proof consists of a direct (and easy) computation based on the multiplication
rules in the matrix and the Grassmann algebra, according to the definition of the grading.

Remark 3 Let A and B be n × n matrices over a ring R, A =
∑n

κ=1 aκeκ,i−1+κ, B =∑n
κ=1 bκeκ,j−1+κ where the second indices in the matrix units eij are taken modulo n i.e.,

n + 1 = 1, n + 2 = 2 and so on. Then AB =
∑n

κ=1 aκbiκeκ,i+j−2+κ. Hence the entries of
AB are zeros except for the ones on the diagonal that is parallel to the main diagonal, and
starts at position i + j − 1 on the first row. When this diagonal reaches the “border” of the
matrix it continues at the beginning of the next row of AB, again parallel to the diagonal.
This assertion follows directly from the definition of the product. Note that when R = E is
the Grassmann algebra the above rule for the product shows once again that the definition of
the G-grading on Mn(E) is correct.

Lemma 13 Let M = M(x1, . . . , xm) ∈ K(X) be a nonzero monomial of length r. Suppose
that M ∈ K(X)(α,β). Then

M(A1, . . . , Am) = ±




0 . . . 0 M0 0 . . . 0
0 . . . 0 0 M1 . . . 0

. . .
. . .

0 . . . 0 0 0 . . . M−α−1

M−α . . . 0 0 0 . . . 0
. . . . . .

0 . . . Mn−1 0 0 . . . 0




(1)

where Mγ = yα1+γ
i1

. . . yαt+γ
it

zβ1+γ
j1

zβs+γ
js

for suitable 1 ≤ i1 ≤ . . . ≤ it ≤ m, 1 ≤ j1 ≤ . . . ≤
js ≤ m, and ακ, βκ ∈ Zn, γ = 0, 1, . . . , n − 1. Note that in the upper indices in the
monomials Mγ, the summation is the one in Zn.

Proof . As it often happens the proof of an extensive assertion is short and straightforward.
The present is not an exception. One inducts on r = t + s, the base r = 1 being obvious. If
M(x1, . . . , xm) = N(x1, . . . , xm)xq for some q then one applies the induction to N and uses
Remark 3.

Proposition 14 Suppose that the monomials M , N ∈ K(X). Assume that M(A1, . . . , Am)
and ±N(A1, . . . , Am) have at the same position, the same nonzero entry (belonging to the
free anticommutative algebra). Then M ≡ ±N (mod I).

Proof . We induct on the length q of M . The proposition is evidently true if q = 1, so
suppose q > 1. Assume that the common nonzero entry is at position (h, k). Then write
M = M1xtM2 for some t where α(M1) = r and α(M2) = s for r, s ∈ Zn.
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First we consider the case β(xt) = 0. The (h, k)-th entry of the monomial M(A1, . . . , Am)
will be the following:

M ′eh,h+r × yh+r−1
t eh+r,k−s × M ′′ek−s,k, if α(xt) = k − s − h − r ∈ Zn.

Recall that the bar u means that we take the residue of u modulo n. On the other hand, one
may write N = N ′xtN

′′. When we evaluate N on the matrices Aκ, the contribution of At to

the (h, k)-th entry of N(A1, . . . , Am) will be exactly yh+r−1
t eh+r,k−s. But then according to

Remark 3, N can be written as N = N1xtN2 where the (h, h + r)-th entry of the evaluation
of N1 on the Ai’s is some N ′eh,h+r 6= 0; therefore α(N1) = α(M1) = r ∈ Zn. In this way
we conclude that if M = M1xtM2xtM3 . . .Ml−1xtMl then N = N1xtN2xtN3 . . . Nl−1xtNl for
suitable monomials Nκ. Furthermore for some permutation σ of {1, 2, . . . , l} one has

α(M1xtM2xt . . . xtMκ) = α(N1xtN2xt . . . xtNσ(κ)).

Now let the monomial M start with x1. Then N = N1x1N2 for α(N1) = 0. We consider
three cases in this situation.

Case 1. M = x1M1x1M2 and α(x1M1) = 0. Then N = N3x1N4x1N5 such that α(N3) =
α(N3x1N4) = 0. But then α(x1N4) = 0 and N ≡ ±x1N4N3x1N5 (mod I) according to the
defining identities of I, see the table for the set S.

Case 2. M = M1xaxbM2, N = N3xaN4x1N5xbN6, and N1 = N3xaN4, such that α(M1) =
α(N3), α(M1xa) = α(N3xaN4x1N5). Then α(N4x1N5) = 0. But α(N3xaN4) = α(N1) = 0
and therefore α(N3xa) = −α(N4) = α(x1N5). So we conclude, according to the identities of
S, that N ≡ ±x1N5N4N3xaxbN6 (mod I).

Case 3. Neither of the former two cases holds. Then write M=xi1xi2 . . . xiq , and choose
a variable, say x1, that appears in N1, N1 = N3x1N4. Then for some r, 1 ≤ r ≤ q, we will
have ir = 1. Therefore α(N3) = α(xi1xi2 . . . xir−1). If r < q then suppose N = N5xir+1N6,
and hence α(N5) = α(xi1xi2 . . . xir). But the degree (the length) deg N1 > deg N5 since if
deg N1 = deg N5 then we would have Case 1; if deg N1 < deg N5 then this would be Case
2. So the variable xir+1 participates in N1 as well. Therefore for some r0, the monomials N1

and xir0
xir0+1 . . . xiq will be homogeneous of the same G-degree.

Now if N starts with xj then M = M3M4xjM5 for some monomials Mi such that
α(M3M4) = 0, M4xjM5 = xir0

xir0+1 . . . xiq . As a result we get that

α(M4xjM5) = α(xir0
xir0+1 . . . xiq) = α(N1) = 0 ∈ Zn.

But then we have α(M3) = −α(M4) = α(xjM5) hence M ≡ xj(M5M4M3) (mod I). But the
last monomial starts with xj .

All three cases considered, we have shown that M ≡ U (mod I), N ≡ V (mod I), and
U and V start with the same letter say x. Write U = xU ′, V = xV ′. Since I ⊆ TG(Mn(E))
we have that

M(A1, . . . , Am) = U(A1, . . . , Am), N(A1, . . . , Am) = V (A1, . . . , Am).

Now U ′(A1, . . . , Am) and ±V ′(A1, . . . , Am) will satisfy the assumption of the proposition.
Namely they have the same nonzero entry at the same position, and we apply the induction.
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Then U ′ ≡ ±V ′ (mod I), and U ≡ ±V (mod I), and we are done with the proof when
β(xt) = 0. If β(xt) = 1 one follows verbatim the above proofs.

Lemma 15 Suppose that M(x1, . . . , xm) ∈ K(X) is a monomial and let M(A1, . . . , Am) =
0, then M ∈ I.

Proof . The equality M(A1, . . . , Am) = 0 implies that some variable, say x, appears at least
twice in M . (If M were linear in each variable then the explicit form of the product from
Lemma 13 would imply that a multilinear monomial in the free supercommutative algebra
must vanish which is impossible.) Hence M = M1xM2xM3 for some monomials M1, M2,
M3, some of them possibly empty. Furthermore α(M1) = α(M1xM2) and β(x) = 1 since
according to Lemma 13 all entries of the product must be 0. But this cannot happen if
the entries are linear in the variables z. Therefore α(x) = −α(M2), and using the identity
x1x2x3 + x3x2x1 = 0 with x1 = x3 = x, x2 = M2, we get that xM2x ∈ I. Thus M =
M1xM2xM3 ∈ I.

The main result in this section is the following theorem. When char K = 0 it was obtained
in [7].

Theorem 16 Let K be an infinite field, charK = p 6= 2 and let G = Zn×Z2. The G-graded
identities of the algebra Mn(E) follow from the set of graded identities S.

Proof . We already saw (Lemma 12) that I ⊆ T where T = TG(Mn(E)). Hence let f ∈ T , we
have to show f ∈ I. Write f =

∑r

i=1 aifi (mod I) where fi are G-homogeneous monomials.
Suppose further that the integer r is the least possible with this property thus all ai 6= 0
in K. If r ≥ 1 then some fi 6= 0. Take f1 6= 0 (mod I) and then f1(A1, . . . , Am) 6= 0
according to Lemma 15. But a1f1(A1, . . . , Am) = −

∑r

i=2 aifi(A1, . . . , Am), and for some
q, 2 ≤ q ≤ r, say q = 2, the matrices f1(A1, . . . , Am) and ±f2(A1, . . . , Am) have, at the
same position, the same nonzero entry. Then Proposition 14 yields f1 ≡ ±f2 (mod I). We
write f ≡ (a1 ± a2)f1 +

∑r
i=3 aifi and we get a combination with r − 1 (or r − 2) terms, a

contradiction. Therefore r = 0 and the theorem is proved.

5 The graded identities for Ma,b(E) ⊗ E

In this section we describe the graded identities of the algebra Ma,b(E), a + b = n. Most of
the statements and of the proofs are quite similar to their analogues in the previous section,
and in order not to be (too) boring we shall sketch or even omit some of them. Recall that
G stands for the group Zn × Z2. First we define a G-grading on the algebra Ma,b(E) ⊗ E.
Let (α, β) ∈ G and set Ma,b(E)(α,β) to be the subspace of the matrices in Ma,b(E) having
as (i, j)-th entry an element of Eβ when j − i = α in Zn and (i, j) ∈ ∆β, and 0 otherwise.
(The sets ∆β were defined at the beginning of the paper, just before Theorem 1.) Then we
define G-grading on the algebra Ma,b(E) ⊗ E = P as follows:

P(α,β) = (Ma,b(E))(α,β) ⊗ E0 + (Ma,b(E))(α,β+1) ⊗ E1.
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Now we proceed in constructing a model for the relatively free graded algebra. Note that
we could use the construction of Theorem 4 but it would not be the most appropriate for
our purposes. Consider the n × n matrices Ai = (aij) and Bi = (bij) defined as follows.

The entries aij of A equal yr−1
i when α(xi) = s − r and (r, s) ∈ ∆0, and 0 otherwise.

Analogously bij = zr−1
i when α(xi) = s − r and (r, s) ∈ ∆1, and 0 otherwise. Denote

by SC the free supercommutative algebra freely generated by X = Y ∪ Z, Y = {yi},
Z = {zi}. Then consider the elements Ci ∈ Mn(Ω) ⊗ SC defined as follows. If β(xi) = 0
then Ci = Ai ⊗ yi + Bi ⊗ zi; if β(xi) = 1 then Ci = Bi ⊗ yi + Ai ⊗ zi. Let F be the algebra
generated by Ci, i ≥ 1. The algebra F is G-graded in a natural way.

Lemma 17 TG(P ) = TG(F ).

Proof . The proof consists in showing the two inclusions which are immediate.

Remark 4 Observe that if we consider ϕ : K(X) → F defined by xi 7→ Ci then ϕ is a
homomorphism, and it is onto. But this does not mean that ker ϕ = TG(P ). On the contrary,
choose a = b = 1 and f(x1) = x2

1 for (α(x1), β(x1)) = (1, 0). Then ϕ(f) = 0. On the other

hand if we substitute x1 for d =

(
0 e1

e2 0

)
⊗ e5 +

(
0 e3

e4 0

)
⊗ e6 then f(d) = d2 6= 0.

This is due to the fact that ϕ is not a G-graded homomorphism and consequently ker ϕ is
not G-graded ideal. For an example, choose x1 and x2 of the component (1, 0) in the grading,
and see that f(x1 + x2) = (x1 + x2)

2 6∈ ker ϕ. But on the other hand it is immediate that
TG(F ) ⊂ ker ϕ.

Set I the ideal of the G-graded identities generated by the polynomials from the set S
defined in Section 4 and by all monomials in TG(P ).

Lemma 18 I ⊆ TG(P ).

Proof . See the corresponding proof of the previous section, that of Lemma 12.

Corollary 19 1. TG(Mn(E)) ⊆ TG(Ma,b(E) ⊗ E);
2. T (Mn(E)) ⊆ T (Ma,b(E) ⊗ E).

Proof . The proof follows immediately from Lemma 18 and from Theorem 16.

Proposition 20 Suppose M(x1, . . . , xm), N(x1, . . . , xm) ∈ K(X) are monomials. Let the
matrices M(H1, . . . , Hm) and ±N(H1, . . . , Hm) where Hi = Ai or Hi = Bi for every i, have
at some position the same nonzero entry. Then M ≡ ±N (mod I).

Proof . The proof follows almost word by word that of Proposition 14, only minor changes
are needed. That is why we do not give it.

Theorem 21 The G-graded identities of Ma,b(E)⊗E, a+b = n, follow from the polynomials
of the set S plus all monomials that lie in TG(Ma,b(E) ⊗ E).
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Proof . Since in this proof there are several “deviations” of the known scheme (see the proof
of Theorem 16) we give it in detail. It suffices to prove that if f is multihomogeneous and
is G-graded identity for Ma,b(E)⊗E then f ∈ I. Choose, as in Theorem 16, the least r ≥ 0
such that f ≡

∑r

i=1 aifi (mod I) for fi being monomials in K(X) and 0 6= ai ∈ K. Let us
suppose that r > 0.

But f1 is not a graded identity of Ma,b(E) ⊗ E due to the minimality of r. Therefore
f1 6= 0 on Ma,b(E) ⊗ E, and f1(w1, . . . , wm) 6= 0 for suitable wk = Ctk,1

+ . . . + Ctk,nk
, and

tu,v 6= tr,s if (u, v) 6= (r, s). Write f1 = xi1xi2 . . . xiq .
Let J = {ti,j | 1 ≤ i ≤ m, 1 ≤ j ≤ ni} ⊂ N, and define the function g : J → {1, 2, . . . , m}

by g(tu,v) = u. Note that g is well defined. Since f1(w1, . . . , wm) 6= 0 then we obtain a term
Hj1 . . .Hjq

⊗ e 6= 0 from it that will not cancel. Here Hjk
= Ajk

or Bjk
for all k, and e ∈ E.

Observe that g(jk) = ik.
Now from the equality a1f1 = −

∑r
i=2 aifi we obtain that the right-hand side contains a

term Hjσ(1)
. . .Hjσ(q)

⊗ e for some permutation σ of {1, 2, . . . , q}, and furthermore Hj1 . . .Hjq

and ±Hjσ(1)
. . . Hjσ(q)

share a nonzero entry at some position (the same for both). Assume
that this term comes from f2 = xs1 . . . xsq

, then g(jσ(k)) = sk. Now let h1(xj1, . . . , xjq
) =

xj1 . . . xjq
and h2(xj1 , . . . , xjq

) = xjσ(1)
. . . xjσ(q)

, then h1 ≡ ±h2 (mod I) according to Propo-
sition 20. But iσ(k) = g(jσ(k)) = sk hence

f1(x1, . . . , xm) = h1(xj1, . . . , xjq
), f2(x1, . . . , xm) = h2(xi1 , . . . , xiq).

Therefore we finish the proof in the same manner as that of Theorem 16.
As an immediate consequence we obtain one of the main results of [8], and another proof

of a statement of Kemer’s TPT.

Corollary 22 Let charK = 0, then the G-graded identities of Ma,b(E)⊗E follow from those
of the set S. Furthermore Ma,b(E) ⊗ E and Mn(E), n = a + b, satisfy the same ordinary
identities.

Remark 5 Note that when charK > 0 we cannot claim the validity of the above Corollary.
As we shall see in the next section, there exist monomials that are G-graded identities for
Ma,b(E)⊗E but that do not follow from the graded identities of S. Such a monomial for the
algebra Ma,a(E) ⊗ E is for example

ca(x1, . . . , xp) = x1x2x1x3x1 . . . x1xpx1

with α(xi) = a ∈ Zn and β(x1) = 0, n = 2a. Then ca is a graded identity for Ma,a(E) ⊗ E.
On the other hand, let d =

∑a

i=1(ei,a−1+i + ea+i,i) ∈ M2a(E), then ca(d, d, . . . , d) = d 6= 0.
Therefore we have the strict inclusion

TG(M2a(E)) ( TG(Ma,a(E) ⊗ E)), G = Z2a × Z2.

We consider in detail the case a = 1 in the next section.
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6 The identities for M1,1(E) ⊗ E and M2(E)

Here we fix n = 2, a = b = 1 and G = Z2 × Z2, and p is the characteristic of the base field
K. Denote by I the ideal of G-graded identities generated by the set S and set I1 the ideal
of G-graded identities generated by I and by the polynomial

c(x1, x2, . . . , xp) = x1x2x1x3x1 . . . x1xpx1

with α(xi) = 1 for all i and β(x1) = 0.

Lemma 23 If charK = p 6= 0 then I1 ⊆ TG(M1,1(E) ⊗ E).

Proof . We already know from Lemma 18 that I ⊆ TG(M1,1(E) ⊗ E) and thus it remains to
show that c is indeed a graded identity for M1,1(E)⊗E. The polynomial c is linear in the vari-
ables x2, . . . , xp. Therefore in order to check whether it vanishes on M1,1(E)⊗E it suffices to

substitute x1 for a1 =
∑r

j=1

(
0 αj

βj 0

)
⊗γj , and xi, i > 1, for ai =

(
0 δi

εi 0

)
⊗ϕi. Here αi,

βi, γi, δi, εi ∈ E1 and ϕi ∈ E0 ∪ E1. But we have a1ai =
∑r

j=1

(
αjεi 0
0 βjδi

)
⊗ γjϕi when-

ever i > 1. Using this fact and t2 = 0 for t ∈ E1 we obtain immediately that c(a1, . . . , ap) = 0

when r < p. So consider r = p. Then c(a1, . . . , ap) =
∑ (

0 uσ

vσ 0

)
⊗ wσ for σ running

over the permutations of {1, 2, . . . , p}, and uσ = ασ(1)ε2ασ(2)ε3 . . . ασ(p−1)εpασ(p), and similar
expressions for vσ and wσ. But the αi and εj anticommute, hence

c(a1, . . . , ap) = p!

(
0 u1

v1 0

)
⊗ w1 = 0

in K. The case r > p is easily reduced to the former one by means of choosing subsets of p
elements each.

Remark 6 We compute c(e12 + e21, . . . , e12 + e21) = e12 + e21 in M2(E) hence c is not a
G-graded identity for M2(E), and TG(M2(E)) ( TG(M1,1(E) ⊗ E).

Lemma 24 1. If f ∈ K(X) is a monomial and x ∈ X is such that β(x) = 1 and α(x) =
α(f) then the monomial xfx ∈ I1.

2. If f1, f2 ∈ K(X) are monomials and x ∈ X is a variable, β(x) = 1, then xf1xf2x ∈ I1.

Proof . 1. When α(x) = 1, using the graded identity x1x2x3 + x3x2x1 = 0 one obtains
xfx ≡ −xfx (mod I1), and therefore xfx ∈ I1. If α(x) = 0, we may consider deg f ≥ 1
since, when f = 1, x1x2 = −x2x1 and x2 ∈ I1. So let α(x) = 0 and deg f > 0. If β(f) = 0
then use x1x2 = x2x1 and get xfx ≡ xxf ∈ I1. Analogously if β(f) = 1 we use x1x2 = −x2x1

and get xfx ≡ −xxf ∈ I1.
2. Suppose first α(x) = 0, then according to the first statement of the Lemma we may

consider α(f1) = α(f2) = 1 only. Hence α(f1xf2) = 0, and xf1xf2x ∈ I1. Similarly one deals
with the case when α(x) = 1.
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Proposition 25 If the monomial f(x1, . . . , xm) ∈ K(X) is a G-graded identity for M1,1(E)⊗
E then f ∈ I1.

Proof . Suppose that f /∈ I1, we shall find ai ∈ M1,1(E)⊗E such that f(a1, . . . , am) 6= 0. We
induct on q = deg f , the length of the monomial f . The base q = 1 is trivial; suppose now
q > 1. Then we write f = hxi for some monomial h and some i. Now if h ∈ I1 the assertion
of the proposition is true. So we assume h /∈ I1. Assume further that i = 1, so f = hx1.
Then for some bi ∈ M1,1(E) ⊗ E, h(b1, . . . , bm) 6= 0. Suppose that degx1

f = d that is there
are d entries of x1 in f . We can choose the bi’s in such a way that the generators e1, e2,
e3, e4 of the Grassmann algebra E appear in neither of them. Write f = f1x1f2x1 . . . x1fdx1

where fi are monomials that do not contain x1. Hence fi = fi(x2, . . . , xm). We shall write
f(x), h(b) and so on, to indicate f(x1, . . . , xm), h(b1, . . . , bm) respectively. We divide the
remaining proof in four cases depending on the homogeneous degree (α(x1), β(x1)) of x1.

Case 1. (α(x1), β(x1)) = (0, 0). In this case, since f1(b)b1f2(b)b1 . . . b1fd(b) 6= 0 we have

f1(b) . . . fd(b) 6= 0. Then for a =

(
1 0
0 1

)
⊗ 1 we get that

f(a, b2, . . . , bm) = f1(b)af2(b)a . . . fd(b)a = f1(b) . . . fd(b) 6= 0.

Case 2. (α(x1), β(x1)) = (1, 1); choose a =

(
0 e1

e2 0

)
⊗ 1. But according to Lemma 24

in this case d ≤ 2. When d = 1 we get f(a, b2, . . . , bm) = h(b)a 6= 0. If d = 2 then again by
Lemma 24, we obtain α(f2) = 0. But h(b) = f1(b)b1f2(b) 6= 0 and hence f1(b)af2(b) 6= 0 as
well. On the other hand, for every α, β ∈ E0,

(
0 e1

e2 0

) (
α 0
0 β

) (
0 e1

e2 0

)
=

(
βe1e2 0

0 αe2e1

)
.

Therefore f(a, b2, . . . , bm) = f1(b)af2(b)a 6= 0.

Case 3. (α(x1), β(x1))=(0, 1); let a =

(
1 0
0 1

)
⊗ e1, b =

(
1 0
0 e2e3

)
⊗ e4. Once again

by Lemma 24 we have d ≤ 2. If d = 1 then f(a, b2, . . . , bm) = h(b)a 6= 0. Let d = 2, then
α(f2) = 1. But h(b) = f1(b)b1f2(b) 6= 0 and hence f1(b)af2(b) 6= 0 as well. If we write

f2(b) =
∑

j

(
0 αj

βj 0

)
⊗ γj then

af2(b)b =
∑

j

(
0 αje2e3

βj 0

)
⊗ e1γje4,

bf2(b)a =
∑

j

(
0 αj

e2e3βj 0

)
⊗ e4γje1.

So we get f(a + b, b2, . . . , bm) = f1(b)(a + b)f2(b)(a + b) and by Lemma 24, it equals

f1(b)af2(b)b + f1(b)bf2(b)a = f1(b)af2(b)

(
1 − e2e3 0

0 e2e3 − 1

)
⊗ e4 6= 0.
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Case 4. (α(x1), β(x1)) = (1, 0). Set a =

(
0 e1

e2 0

)
⊗ e3, then computing the element

f(a + b1, b2, . . . , bm) we obtain that it equals its homogeneous component that is linear in a,
namely

d∑

i=1

f1(b)b1 . . . fi(b)afi+1(b)b1 . . . fd(b)b1.

First let α(fi) = 1 for all i ≥ 2. Then if d ≥ p we apply the graded identity c, and get f ∈ I1.
Hence d < p, and we apply x1x2x3 = x3x2x1 and get

f(a + b1, b2, . . . , bm) = df1(b)b1f2(b)b1 . . . b1fd(b)a = dh(b)a 6= 0.

Thus we are to consider α(fi) = 0 for some i ≥ 2. Let t be the number of all j, 2 ≤ j ≤ d
such that α(fjx1fj+1 . . . x1fd) = 0, and let r be the largest j with this property. We set
further u = f1(b)b1f2(b)b1 . . . b1fd(b)a and

v = f1(b)b1f2(b)b1 . . . b1fr−1(b)afr(b)b1 . . . b1fd(b)b1.

Then by x1x2x3 = x3x2x1 we get f(a + b1, b2, . . . , bm) = (d − t)u + tv. Furthermore, if
d − t ≥ p and/or t ≥ p we apply the graded identity c and obtain f ∈ I1. Now taking into
account the equalities

(
0 α
β 0

) (
γ 0
0 δ

) (
0 e1

e2 0

)
=

(
αδe2 0

0 βγe1

)
,

(
0 e1

e2 0

) (
γ 0
0 δ

) (
0 α
β 0

)
=

(
e1δβ 0

0 e2γα

)
,

we see that e1 and e2 are in different rows of the respective products for u and v. Therefore
u and v turn out linearly independent, and we conclude that f(a + b1, b2, . . . , bm) 6= 0.

Now combining Theorem 21 together with Proposition 25, we obtain the following theo-
rem.

Theorem 26 Let charK = p 6= 2. The Z2 × Z2-graded identities of the graded algebra
M1,1(E) ⊗ E follow from those of the set S (with n = 2, a = b = 1) and the identity
c(x1, . . . , xp) = 0.

Now assume that E ′ ⊂ E is the Grassmann algebra without unit. We recall that E ′

satisfies the (ordinary) identity xp = 0 (see for example [19]). Define the algebra A as the
subalgebra of M2(E) consisting of the matrices whose entries on the second diagonal belong
to E ′. Then A is G-graded with the grading inherited by the one on M2(E).

In the next couple of statements we describe the G-graded identities of A for G = Z2×Z2.
We shall use the matrices Ai defined at the beginning of Section 4, with n = 2. In order
to adapt them to the algebra A we introduce additional relations in the algebra Ω namely
(yα

i )p = 0 when (α(xi), β(xi)) = (1, 0). The following lemma is the variant of Lemma 15 for
the present situation.
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Lemma 27 If f(x1, . . . , xm)∈K(X) is a monomial such that f(A1, . . . , Am)= 0 then f ∈ I1.

Proof . Suppose first that, in the notation of Lemma 13 and Eq. 1, the variable zβ
j appears

twice (or more) in the monomial M0. Here j ∈ {j1, . . . , js}, β ∈ {β1, . . . , βs}. Then f =
f1xjf2xjf3 for some monomials f1, f2, f3. But we have α(f1) = α(f1xjf2) and β(xj) = 1
therefore α(xj) = −α(f2). Now by the graded identity x1x2x3 + x3x2x1 = 0 with x1 = x3 =
xj , x2 = f2, we obtain xjf2xj ∈ I1.

If the above is not the case then according to Eq. 1, necessarily some variable yα
i appears

p times (or more) in M0, for (α(xi), β(xi)) = (1, 0). We write f = f1xif2xi . . . xifpxifp+1,
then

α(f1) = α(f1xif2) = . . . = α(f1xif2xi . . . xifp).

Thus α(xi) = −α(fr) for all r = 2, . . . , p. But then the identity c = 0 can be applied and
we obtain f ∈ I1 as well.

Theorem 28 The Z2 ×Z2-graded identities of the algebra A admit a basis consisting of the
identities of the set S (with n = 2) and the identity c = 0.

Proof . The proof repeats word by word the one of Theorem 16.
Now using graded identities we draw conclusions about the ordinary ones.

Corollary 29 Let charK = p 6= 2. Then the algebras M1,1(E) ⊗ E and A satisfy the same
ordinary polynomial identities.

Proof . According to Theorems 26 and 28 these two algebras satisfy the same G-graded
identities.

Now we give one more example where the Tensor product theorem fails in positive char-
acteristic.

Theorem 30 Let K be an infinite field, charK = p > 2. Then T (M2(E)) ( T (M1,1(E) ⊗
E).

Proof . Comparing the bases of the G-graded identities satisfied by these two algebras we
obtain immediately that T (M2(E)) ⊆ T (M1,1(E)⊗E)). In order to show that the inclusion
is proper one, we exhibit a polynomial that is an identity for M1,1(E) ⊗ E but not for
M2(E). Note that such a polynomial cannot be multilinear due to Theorem 5. Choose
f = [x1, x2]

4p−3.
Then we compute f(e21 − e12, e11) = e21 + e12 6= 0 in M2(E) hence f /∈ T (M2(E)).
On the other hand, if a, b ∈ A then a direct verification shows that [a, b] ∈ M2(E

′).
But for every c ∈ M2(E

′) we have that c4p−3 = 0 due to the identity xp = 0 in E ′ (and
the pigeonhole principle). Therefore f ∈ T (A). Now according to Corollary 29, T (A) =
T (M1,1(E) ⊗ E) and f ∈ T (M1,1(E) ⊗ E). Hence the inclusion of the theorem is proper.

We state some open problems whose solution would help to much better understanding of
the polynomial identities satisfied by the algebras Mn(E) and Ma,b(E) over fields of positive
characteristic.
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1. Let n > 2 and G = Zn × Z2; find a finite set of monomials in K(X) that is a basis for
the graded identities of Ma,b(E) ⊗ E modulo the identities of S.

2. Let Aa,b be the subalgebra of Mn(E) of all matrices of the form (aij) where aij ∈ E
if (i, j) ∈ ∆0 and aij ∈ E ′ if (i, j) ∈ ∆1. Is it true that T (Ma,b(E) ⊗ E) = T (Aa,b)?
Observe that ca = 0 is a graded identity for the algebra Aa,a. (See Remark 5 for the
definition of ca.)

3. Find an ordinary identity satisfied by the algebra Aa,b but not by the algebra Ma+b(E).

4. We know that T (Mk,l(E)⊗E) = T (Mr,s(E)⊗E) whenever k+l = r+s and char K = 0.
Do these T-ideals coincide when K is an infinite field, char K = p > 2? Observe that
ck = 0 is not a graded identity for Mr,s(E)⊗E when r > s and r + s = 2k, because if
d = (e1,k+1 + ek+1,1) ⊗ 1 then ck(d, . . . , d) = d 6= 0.
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