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Abstract

We consider a tridimensional phase-field model for a solidifica-
tion/melting non-stationary process, which incorporates the physics
of binary alloys, thermal properties and fluid motion of non-solidified
material. The model is a free-boundary value problem consisting of
a non-linear parabolic system including a phase-field equation, a heat
equation, a concentration equation and a variant of the Navier-Stokes
equations modified by a penalization term of Carman-Kozeny type to
model the flow in mushy regions and a Boussinesq type term to take
into account the effects of the differences in temperature and concen-
tration in the flow. A proof of existence of generalized solutions for
the system is given. For this, the problem is firstly approximated and
a sequence of approximate solutions is obtained by Leray-Schauder’s
fixed point theorem. A solution of the original problem is then found
by using compactness arguments.
MSC: 35K65, 76D05, 80A22, 35K55, 82B26, 35Q10, 76R99

1 Introduction

This paper is concerned with a non-isothermal phase-field model that ac-
counts for both solidification/melting of a binary alloy and fluid motion.
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The present approach is based on ideas of Blanc et al.[1] and Voller et al.
[15] to model the possibility of flow and those of Caginalp et al. [2] for
the phase-field and the thermal properties of the alloy, and simpler versions
were also considered in [11] and [12]. It is described as the following coupled
system,

αǫ2φt + αǫ2v · ∇φ− ǫ2∆φ =
1

2
(φ− φ3) + β (θ − cθA − (1 − c)θB) in Q, (1)

Cvθt + Cvv · ∇θ = ∇ ·K1(φ)∇θ +
l

2
fs(φ)t in Q, (2)

ct + v · ∇c = K2 (∆c+M∇ · c(1 − c)∇φ) in Q, (3)

vt + νoAv − ν∆v + v · ∇v + ∇p+ k(fs(φ))v = F(c, θ) in Qml, (4)

div v = 0 in Qml, (5)

v = 0 in Qs, (6)

∂φ

∂n
= 0,

∂θ

∂n
= 0,

∂c

∂n
= 0 on ∂Ω × (0, T ), v = 0 on ∂Qml, (7)

φ(0) = φ0, θ(0) = θ0, c(0) = c0 in Ω, v(0) = v0 in Ωml(0), (8)

where Q = Ω × (0, T ), 0 < T < +∞ and Ω is an open bounded domain of
R

3 with smooth boundary ∂Ω. Here, φ is the phase-field which is the state
variable characterizing the different phases; θ denotes the temperature, and
c ∈ [0, 1] denotes the concentration, which is the fraction of one of the two
materials in the mixture; v is the velocity field; p is the associated hydro-
static pressure; ν and ν0 are positive constants corresponding to viscosities
associated to the fluid material; fs ∈ [0, 1] is the solid fraction.

The operator A is defined by

Av = −div
(

|∇v|p−2∇v
)

, p ≥ 3,

The penalization term k(fs) is the Carman-Kozeny type term and ac-
counts for mushy effects in the flow; its usual expression is k(fs) = C0fs

2/(1−
fs)

3, but more general expressions will be allowed in this paper. F(c, θ) is
the buoyancy force, which by using Boussinesq approximation is given by
F(c, θ) = ρg (c1(θ − θr) + c2(c− cr)) + F , where ρ is the mean value of the
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density; g is the acceleration of gravity; c1 and c2 are two real constants; θr,
cr are respectively the reference temperature and concentration, which for
simplicity of exposition are assumed to be zero; F is an external force. The
following physical parameter are assumed to be constant: α > 0 the relax-
ation scaling; β = ǫ[s]/3σ, where ǫ > 0 is a measure of the interface width;
σ is the surface tension, and [s] is the entropy density difference between
phases. Cv > 0 is the specific heat; l > 0 is associated to the latent heat; θA

and θB are the respective melting temperatures of two materials composing
the alloy; K2 > 0 is the solute diffusivity, and M a constant related to the
slopes of solidus and liquidus lines. Finally, K1 > 0 denotes the thermal
conductivity, which we will assume to depend on the phase-field.

We observe that equation (4) is associated to a modified form of the
classical form of the Navier-Stokes equations as proposed by Ladyzenskaja
in [6], in which the effective fluid viscosity depends on the gradient of the
velocity.

The domain Q is composed of three regions: Qs, Qm and Ql. The first
region is fully solid; the second is mushy, and the third is fully liquid. They
are defined by

Qs = { (x, t) ∈ Q / fs(φ(x, t)) = 1 },
Qm = { (x, t) ∈ Q / 0 < fs(φ(x, t)) < 1 },
Ql = { (x, t) ∈ Q / fs(φ(x, t)) = 0 },

(9)

and Qml will refer to the not fully solid region, i.e.,

Qml = Qm ∪Ql = { (x, t) ∈ Q / 0 ≤ fs(φ(x, t)) < 1 }. (10)

At each time t ∈ [0, T ], Ωml(t) is defined by

Ωml(t) = { x ∈ Ω / 0 ≤ fs(φ(x, t)) < 1 } . (11)

In view of these regions are a priori unknown, the model is a free boundary
problem.

Throughout this paper we assume the conditions,
(H1) fs is a Lipschitz continuous function defined on R and satisfying

0 ≤ fs(r) ≤ 1 for all r ∈ R; moreover f ′

s is measurable,
(H2) k is a non decreasing function of class C1[0, 1), satisfying k(0) = 0,

lim
x→1−

k(x) = +∞,

(H3) K1 is a Lipschitz continuous function defined on R; there exist
0 < a ≤ b such that 0 < a ≤ K1(r) ≤ b for all r ∈ R,
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(H4) F is a given function in L2(Q).

We use standard notation in this paper. We just briefly recall the follow-
ing functional spaces associated to the Navier-Stokes equations. Let G ⊆ R

3

be a non-void bounded open set; for T > 0, consider also QG = G × (0, T )
Then,

V(G) =
{

w ∈ (C∞

0 (G))3 , div w = 0
}

,

H(G) = closure of V(G) in (L2(G))
3
,

V p(G) = closure of V(G) in
(

W 1,p
0 (G)

)3
,

V (G) = closure of V(G) in (H1
0 (G))

3
,

Hτ,τ/2(QG) = Hölder continuous functions of exponent τ in x
and exponent τ/2 in t,

W 2,1
q (QG) = {w ∈ Lq(QG)/Dxw,D

2
xw ∈ Lq(QG), wt ∈ Lq(QG)} .

When G = Ω, we denote H = H(Ω), V = V (Ω), V p = V p(Ω). Properties of
these functional spaces can be found for instance in [7, 9, 14]. We denote by
〈·, ·〉 the duality pairing between H1(Ω) andH1(Ω)′.We also put (·, ·) = (·, ·)Ω

the inner product of (L2(Ω))
3
.

Our purpose in this work is to show that problem (1)-(8) is solvable in a
generalized sense to be made precise below.

The main result of this paper is the following.

Theorem 1 Let be T > 0, p ≥ 3, 5/2 < q ≤ 10/3, Ω ⊆ R
3 an open bounded

domain de class C3. Suppose that v0 ∈ H(Ωml(0)), φ0 ∈ W 2−2/q,q(Ω) ∩
H1+γ(Ω), 1/2 < γ ≤ 1, θ0 ∈ L2(Ω) and c0 ∈ L2(Ω), 0 ≤ c0 ≤ 1 a.e.

in Ω̄, satisfying the compatibility conditions
∂φ0

∂n
= 0 on ∂Ω. Under the

assumptions (H1)-(H4), there exist functions (φ, θ, c, v, χ) satisfying

(i) φ ∈W 2,1
q (Q), φ(0) = φ0,

(ii) θ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), θ(0) = θ0,

(iii) c ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), c(0) = c0, 0 ≤ c ≤ 1 a.e. in Q,

(iv) v ∈ Lp(0, T ;V p) ∩ L∞(0, T ;H), v = 0 a.e. in
o

Qs, v(0) = v0 in Ωml(0),
where Qs is defined by (9) and Ωml(0) by (11),

(v) χ ∈ Lp′(0, T ; (V p)′)
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and such that for any ζ ∈ L2(0, T ;H1(Ω)) with ζt ∈ L2(0, T ;L2(Ω)) and
ζ(T ) = 0 in Ω, we have

αǫ2φt + αǫ2v · ∇φ− ǫ2∆φ =
1

2
(φ− φ3) + β (θ + (θB − θA)c− θB) a.e. in Q,

(12)
∂φ

∂n
= 0 a.e. on ∂Ω × (0, T ), (13)

−Cv

∫ T

0

∫

Ω

θζtdxdt− Cv

∫ T

0

∫

Ω

vθ · ∇ζdxdt+

∫ T

0

∫

Ω

K1(φ)∇θ · ∇ζ dxdt

=
l

2

∫ T

0

∫

Ω

fs(φ)tζ dxdt+ Cv

∫

Ω

θ0ζ(0)dx, (14)

−

∫ T

0

∫

Ω

cζtdxdt−

∫ T

0

∫

Ω

vc · ∇ζdxdt+K2

∫ T

0

∫

Ω

∇c · ∇ζ dxdt

+K2M

∫ T

0

∫

Ω

c(1 − c)∇φ · ∇ζ dxdt =

∫

Ω

c0ζ(0)dx.

(15)

Also, for any t ∈ (0, T ) and η ∈ Lp(0, T ;V p) with compact support contained
in Qml ∪ Ωml(0) ∪ Ωml(T ) and such that ηt ∈ Lp′(0, T ; (V p)′), where Qml is
defined by (10) and Ωml(t) by (11), there hold

(v(t), η(t)) −

∫ t

0

(v, ηt)ds+ ν

∫ t

0

(∇v,∇η)ds+ νo

∫ t

0

(χ, η)ds

+

∫ t

0

(v · ∇v, η)ds+

∫ t

0

(k(fs(φ))v, η)ds

=

∫ t

0

(F(c, θ), η)ds+ (v0, η(0)).

(16)

Moreover, (φ, θ, c, v, χ) is a generalized solution of (1)-(8), in the sense that
under the following additional regularity and integrability assumptions:

• for a.e. t ∈ (0, T ), the boundary ∂Ωml(t) of Ωml in Ω has zero Lebesgue
measure

• suppose that k(fs(φ)) ∈ Ls(0, T ;L1+δ(Ωml(t))), with s = p/(p− 2), any
δ > 0 when p = 3 and δ = 0, when p > 3,

then χ = Av in the sense of distribution in Qml.
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Remark: Interpreting the modified Navier-Stokes equations requires some
topological information about the set occupied by the fluid. In fact, one
should know that such a set is open to interpret the modified Navier-Stokes
equations at least in the sense of distributions. This information is in partic-
ular implied by the continuity of phase-field, which in turn depends on the
degree of smoothness of the other variables. In the two dimensional case,
that is Ω ⊆ R

2, and when νo = 0, an existence theorem for system (1)-(8)
was obtained in [12]. The main feature of [12] is that the smoothness of v,
θ and c suffice to yield the continuity of φ. In the three dimensional case,
this does not appear possible. To stress this point, consider weak solutions
of the classical Navier-Stokes equations with external force in L2(Q). It is
well known that such solution satisfies v ∈ L2(0, T ;V )∩L∞(0, T ;H) (see e.g.
[14]). If Ω ⊆ R

2, this regularity implies that |v| ∈ L4(Q). This fact together
with (12)-(13) suffices to prove that φ is continuous, and therefore the set
Qml is open. In the three dimensional case, we just have that v ∈ L10/3(Q).
This modest degree of integrability of velocity prevents us from proving that
φ is continuous. When νo > 0 and p is large enough, as it is the case of the
present paper, it is possible to get more regularity of v and then the required
continuity of φ. In fact, if v ∈ Lp(0, T ;V p) ∩ L∞(0, T ;H), by interpolation
([8] p. 207), we conclude that v ∈ Lp5/3(Q). Taking p ≥ 3 is then enough
to yield the continuity of φ (see Thm 2) together the additional restriction
q > 5/2, because in this case W 2,1

q (Q) ⊆ Hτ,τ/2(Q̄), with τ = 2 − 5/q ([7] p.
80). Therefore the set Qml is open, giving a meaningful interpretation to the
velocity equation. The restriction q ≤ 10/3 is consequence of the obtained
regularity of temperature. This will be clear in the next section.

The previous existence result will be obtained by using a regularization
technique similar to the one already used in [1] and [11, 12]. The idea is to use
a auxiliary parameter to transform the original free-boundary value problem
in a penalized but more standard problem. This will be called the regularized
problem and will be studied by using fixed point arguments. Then, by using
compactness arguments as the auxiliary parameter goes to zero, we obtain a
generalized solution of the original problem.

The outline of this paper is as follows. In Section 2, we study an auxiliary
problem. Then, in Section 3, we study a regularized problem. Section 4 is
devoted to the proof of the main existence theorem.

6



2 An auxiliary problem

We consider the initial boundary value problem,

αǫ2φt + αǫ2v · ∇φ− ǫ2∆φ =
1

2
(φ− φ3) + g in Q, (17)

∂φ

∂n
= 0 on ∂Ω × (0, T ), (18)

φ(0) = φ0 in Ω, (19)

and prove the following result using a technique similar to the one already
used in [5] to treat a phase-field equation without convective term or in [12]
to treat the two dimensional problem.

Theorem 2 Let be T > 0, q ≥ 2, p ≥ 3. Suppose that g ∈ Lq(Q), v ∈
Lp(0, T ;V p) ∩ L∞(0, T ;H) and φ0 ∈W 2−2/q,q(Ω) satisfying the compatibility

condition
∂φ0

∂n
= 0 on ∂Ω. Then

i) If 2 ≤ q < 5, there exists a unique φ ∈ W 2,1
q (Q) solution of problem

(17)-(19) , which satisfies the estimate

‖φ‖W 2,1
q (Q) ≤ C

(

‖φ0‖W 2−2/q,q(Ω) + ‖g‖Lq(Q) + ‖φ0‖
3
W 2−2/q,q(Ω) + ‖g‖3

Lq(Q)

)

(20)
where C depends on ‖v‖L5(Q), on Ω and T,

ii) If q ≥ 5 and p > 3, there exists a unique φ ∈ W 2,1
r (Q), r = min{q, p5/3}

solution of problem (17)-(19), which satisfies the estimate (20) where
C depends on ‖v‖Lp5/3(Q), on Ω and T.

Proof: In order to apply Leray-Schauder fixed point theorem ([3] p.
189) we consider the operator Tλ, 0 ≤ λ ≤ 1, on the Banach space B =
L6(Q), which maps φ̂ ∈ B into φ by solving the problem

αǫ2φt + αǫ2v · ∇φ− ǫ2∆φ =
λ

2
(φ̂− φ̂3) + λg in Q, (21)

∂φ

∂n
= 0 on ∂Ω × (0, T ), (22)

φ(0) = φ0 in Ω. (23)
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We define Gλ =
λ

2
(φ̂− φ̂3) + λg and we observe that Gλ ∈ L2(Q). Since

v ∈ L5(Q), we infer from Lp-theory of parabolic equations ([7] Thm. 9.1
in Chapter IV, p. 341 and the remark at the end of Section 9 of the same
chapter, p. 351) that there is a unique solution φ of problem (21)-(23) with
φ ∈ W 2,1

2 (Q). Due to the embedding of W 2,1
2 (Q) into L10(Q) ([9] p.15), the

operator Tλ is well defined from B into B.
To prove continuity of Tλ, let φ̂n ∈ B strongly converging to φ̂ ∈ B; for

each n, let φn = Tλ(φ̂n). We have that φn satisfies the following estimate ([7]
p. 341)

‖φn‖W 2,1
2

(Q) ≤ C
(

‖φ̂n‖L2(Q) + ‖φ̂n‖
3
L6(Q) + ‖g‖L2(Q) + ‖φ0‖H1(Ω)

)

for some constant C independent of n. Since W 2,1
2 (Q) is compactly embedded

in L2(0, T ;H1(Ω)) ([13] Cor.4) and in L9(Q), it follows that there exist a
subsequence of φn (which we still denote by φn) strongly converging to φ =
Tλ(φ̂) in B. Hence Tλ is continuous for all 0 ≤ λ ≤ 1. At the same time, Tλ

is bounded in W 2,1
2 (Q), and the embedding of this space in B is compact.

Thus, we conclude that Tλ is a compact operator for each λ ∈ [0, 1].
To prove that for φ̂ in a bounded set of B, Tλ is uniformly continuous

with respect to λ, let 0 ≤ λ1, λ2 ≤ 1 and φi (i = 1, 2) be the corresponding
solutions of (21)-(23). For φ = φ1 − φ2 the following estimate holds

‖φ‖W 2,1
2

(Q) ≤ C|λ1 − λ2|
(

‖φ̂‖L2(Q) + ‖φ̂‖3
L6(Q) + ‖g‖L2(Q)

)

where C is independent of λi. Therefore, Tλ is uniformly continuous in λ.
Now we have to estimate the set of all fixed points of Tλ, let φ ∈ B be

such a fixed point, i.e., it is a solution of the problem

αǫ2φt + αǫ2v · ∇φ− ǫ2∆φ =
λ

2
(φ− φ3) + λg in Q, (24)

∂φ

∂n
= 0 on ∂Ω × (0, T ), (25)

φ(0) = φ0 in Ω. (26)

We multiply (24) successively by φ, φt and −∆φ, and integrate over Ω×(0, t).
After integration by parts and the use the Hölder’s, Young’s and Gagliardo-

8



Nirenberg’s inequalities, we obtain in the usual manner the following estimate

∫

Ω

(

φ2 + |∇φ|2
)

dx+ ‖φ‖2
W 2,1

2
(Q)

≤ C
(

‖g‖2
L2(Q) + ‖φ0‖

2
H1(Ω)

)

+C

∫ t

0

(

1 + ‖v‖5
L5(Ω)

)(

‖φ‖2
L2(Ω) + ‖∇φ‖2

L2(Ω)

)

dt
(27)

where C is independent of λ. By applying Gronwall’s Lemma we get

‖φ‖L6(Q) ≤ C‖φ‖W 2,1
2

(Q) ≤ C ′

where C and C ′ are constants independent of λ. Therefore, all fixed points
of Tλ in B are bounded independently of λ ∈ [0, 1].

Finally, for λ = 0, it is clear that problem (21)-(23) has a unique solution.
Therefore, we can apply Leray-Schauder’s fixed point theorem, and so there
is at least one fixed point φ ∈ B∩W 2,1

2 (Q) of the operator T1, i.e., φ = T1(φ).
This corresponds to a solution of problem (17)-(19). Now we have to examine
the regularity of φ. To prove i) we discuss the cases 2 ≤ q ≤ 3 and 3 < q < 5
separately.

If 2 ≤ q ≤ 3, since W 2,1
2 (Q) is embedded into L9(Q), we have that

G =
1

2
(φ− φ3) + g ∈ Lq(Q) and this implies φ ∈ W 2,1

q (Q). If 3 < q < 5,

we have that G ∈ L3(Q) and as a consequence φ ∈ W 2,1
3 (Q). According to

embedding ([9] p.15) we can conclude that φ ∈ L∞(Q) and consequently
φ ∈ W 2,1

q (Q). To prove estimate (20) we restrict to the case 2 ≤ q ≤ 3. The
proof for 3 < q < 5 is similar. Observe that from Lp-theory of parabolic
equations we have

‖φ‖W 2,1
q (Q) ≤ C

(

‖G‖Lq(Q) + ‖φ0‖W 2−2/q,q(Ω)

)

≤ C
(

‖g‖Lq(Q) + ‖φ‖Lq(Q) + ‖φ‖3
L3q(Q) + ‖φ0‖W 2−2/q,q(Ω)

)

≤ C
(

‖g‖Lq(Q) + ‖φ‖W 2,1
2

(Q) + ‖φ‖3
W 2,1

2
(Q)

+ ‖φ0‖W 2−2/q,q(Ω)

)

.

Using estimate (27) we deduce (20).
If q ≥ 5 and p > 3, we have that G ∈ Lq(Q) and since v ∈ Lp5/3(Q), from

Lp-theory of parabolic equations we can conclude that φ ∈ W 2,1
r (Q) where

r = min{q, p5/3}. The estimative (20) is proved by analogous reasoning.
It remains to show uniqueness of the solution. Let us assume that φ1 and

φ2 are two solutions of problem (17)-(19). Then the difference φ = φ1 − φ2

9



satisfies the following initial boundary value problem

αǫ2φt + αǫ2v · ∇φ− ǫ2∆φ =
1

2
φ

(

1 − (φ2
1 + φ1φ2 + φ2

2)
)

in Q, (28)

∂φ

∂n
= 0 on ∂Ω × (0, T ), (29)

φ(0) = 0 in Ω, (30)

We remark that d := φ2
1 +φ1φ2 +φ2

2 ≥ 0. Multiplying (28) by φ and using the
usual method of Gronwall’s Lemma give us φ ≡ 0. Therefore, the solution of
problem (17)-(19) is unique and the proof of Theorem 2 is then complete. ✷

3 A regularized problem

In this section we turn to the full problem and introduce a regularized prob-
lem to lead with the modified Navier-Stokes equations in the whole domain
instead of unknown regions, as well as with suitable regularity to the co-
efficients. We prove an existence result using Leray-Schauder Fixed Point
Theorem ([3] p. 189).

Before doing so, we recall certain results that will be helpful in the intro-
duction of such regularized problem.

Recall that there is an extension operator Ext(·) taking any function w
in the space W 2,1

2 (Q) and extending it to a function Ext(w) ∈W 2,1
2 (R4) with

compact support satisfying

‖Ext(w)‖W 2,1
2

(R4) ≤ C ‖w‖W 2,1
2

(Q),

with C independent of w (see [10] p.157).
For δ ∈ (0, 1), let ρδ ∈ C∞

0 (R3) be a family of symmetric positive mol-
lifier functions converging to the Dirac delta function, and denote by ∗ the
convolution operation. Then, given a function w ∈ W 2,1

2 (Q), we define a
regularization ρδ(w) ∈ C∞

0 (R3) of w by

ρδ(w) = ρδ ∗ Ext(w).

This sort of regularization will be used with the phase-field variable. We
will also need a regularization for the velocity, and for it we proceed as follows.

Given v ∈ L2(0, T ;V ), first we extend it as zero in R
4\Q. Then, as

in [10] p. 157, by using reflection and cutting-off, we extend the resulting
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function to another one defined on R
4 and with compact support. Without

the danger of confusion, we again denote such extension operator by Ext(v).
Then, being δ > 0, ρδ and ∗ as above, operating on each component, we can
again define a regularization ρδ(v) ∈ C∞

0 (R4) of v by

ρδ(v) = ρδ ∗ Ext(v).

Besides having properties of control of Sobolev norms in terms of the corre-
sponding norms of the original function (exactly as above), such extension
has the property described below.

For 0 < δ ≤ 1, define firstly the following family of uniformly bounded
open sets

Ωδ = {x ∈ R
3 : d(x,Ω) < δ}. (31)

We also define the associated space-time cylinder

Qδ = Ωδ × (0, T ). (32)

Obviously, for any 0 < δ1 < δ2, we have Ω ⊂ Ωδ1 ⊂ Ωδ2 , Q ⊂ Qδ1 ⊂ Qδ2 .
Also, by using properties of convolution, we conclude that ρδ(v)|∂Ωδ = 0.
In particular, for v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), we conclude that ρδ(v) ∈
L∞(0, T ;H(Ωδ)) ∩ L2(0, T ;V (Ωδ)).

Moreover, since Ω is of class C3, there exists δ(Ω) > 0 such that for
0 < δ ≤ δ(Ω), we conclude that Ωδ is of class C2 and such that the C2 norms
of the maps defining ∂Ωδ are uniformly estimated with respect to δ in terms
of the C3 norms of the maps defining ∂Ω.

Since we will be working with the sets Ωδ, the main objective of this last
remark is to ensure that the constants associated to Sobolev immersions and
interpolations inequalities, involving just up to second order derivatives and
used with Ωδ, are uniformly bounded for 0 < δ ≤ δ(Ω). This will be very
important to guarantee that certain estimates will be independent of δ.

Finally, let f δ
s be any regularization of fs.

Now, we are in position to define the regularized problem. For δ ∈
(0, δ(Ω)), we consider the system

(vδ
t , u) + ν(∇vδ,∇u) + νo(Av

δ, u) + (vδ · ∇vδ, u) + (k(f δ
s (φδ) − δ)vδ, u)

= (F(cδ, θδ), u) ∀ u ∈ V p, a.e. t ∈ (0, T ), (33)

αǫ2φδ
t + αǫ2ρδ(v

δ) · ∇φδ − ǫ2∆φδ

=
1

2
(φδ − (φδ)3) + β

(

θδ + (θB − θA)cδ − θB

)

in Qδ,
(34)

11



Cvθ
δ
t + Cvρδ(v

δ) · ∇θδ = ∇ ·
(

K1(ρδ(φ
δ))∇θδ

)

+
l

2
f δ

s (φδ)t in Qδ, (35)

cδt −K2∆c
δ + ρδ(v

δ) · ∇cδ = K2M∇ ·
(

cδ(1 − cδ)∇ρδ(φ
δ)

)

in Qδ, (36)

∂φδ

∂n
= 0,

∂θδ

∂n
= 0,

∂cδ

∂n
= 0 on ∂Ωδ × (0, T ), (37)

vδ(0) = vδ
0 in Ω, φδ(0) = φδ

0, θδ(0) = θδ
0, cδ(0) = cδ0 in Ωδ. (38)

We then have the following existence result.

Proposition 1 Let be T > 0, p ≥ 3. For each δ ∈ (0, δ(Ω)), let vδ
0 ∈ H, φδ

0 ∈
H1+γ(Ωδ), θδ

0 ∈ H1+γ(Ωδ), 1/2 < γ ≤ 1 and cδ0 ∈ C1(Ω̄δ), 0 < cδ0 < 1 in Ω̄δ,

satisfying the compatibility conditions
∂φδ

0

∂n
=
∂θδ

0

∂n
=
∂cδ0
∂n

= 0 on ∂Ωδ . Assume

that (H1)-(H4) hold. Then there exist functions (vδ, φδ, θδ, cδ) which satisfy
(33)-(38) and

i) vδ ∈ Lp(0, T ;V p) ∩ L∞(0, T ;H), vδ
t ∈ Lp′(0, T ; (V p)′),

ii) φδ ∈ L2(0, T ;H2(Ωδ)), φδ
t ∈ L2(Qδ),

iii) θδ ∈ L2(0, T ;H2(Ωδ)), θδ
t ∈ L2(Qδ),

iv) cδ ∈ C2,1(Qδ), 0 < cδ < 1.

Remark: It is possible to obtain more regularity for φδ when the initial data
are more regular. This will be done in the last section.

Proof: For simplicity we shall omit the superscript δ at vδ, φδ, θδ, cδ.
First of all, we consider the following family of operators, indexed by the
parameter 0 ≤ λ ≤ 1,

Tλ : B → B,

where B is the Banach space

B = Lp(0, T ;H)× L2(Qδ) × L2(Qδ) × L2(Qδ),

and defined as follows: given (v̂, φ̂, θ̂, ĉ) ∈ B, let Tλ(v̂, φ̂, θ̂, ĉ) = (v, φ, θ, c),
where (v, φ, θ, c) is obtained by solving the problem

(vt, u) + ν(∇v,∇u) + ν0(Av, u) + (v · ∇v, u)

= λ(F(ĉ, θ̂), u) − λ(k(f δ
s (φ̂) − δ)v̂, u) ∀u ∈ V p, t ∈ (0, T ),

(39)

12



αǫ2φt + αǫ2ρδ(v) · ∇φ− ǫ2∆φ−
1

2
(φ− φ3)

= λβ
(

θ̂ + (θB − θA)ĉ− θB

)

in Qδ,
(40)

Cvθt + Cvρδ(v) · ∇θ = ∇ · (K1(ρδ(φ))∇θ) +
l

2
f δ

s (φ)t in Qδ, (41)

ct −K2∆c+ ρδ(v) · ∇c = K2M∇ · (c(1 − c)∇ρδ(φ)) in Qδ, (42)

∂φ

∂n
= 0,

∂θ

∂n
= 0,

∂c

∂n
= 0 on ∂Ωδ × (0, T ), (43)

v(0) = vδ
0 in Ω, φ(0) = φδ

0, θ(0) = θδ
0, c(0) = cδ0 in Ωδ. (44)

Clearly (v, φ, θ, c) is a solution of (33)-(38) if and only if it is a fixed point
of the operator T1. In the following, we prove that T1 has at least one fixed
point by using the Leray-Schauder fixed point theorem ([3] p. 189).

To verify that Tλ is well defined, observe that equation (39) is a variant of
Navier-Stokes equation and since k(f δ

s (φ̂)−δ)v̂ ∈ L2(Q), there exist a unique
solution v ∈ Lp(0, T ;V p) ∩ L∞(0, T ;H) ∩ Lp5/3(Q) ([8] p. 207).

Since θ̂, ĉ ∈ L2(Qδ) and ρδ(v) ∈ L5(Qδ), we infer from Theorem 2 that
there is a unique solution φ of equation (40) with φ ∈W 2,1

2 (Qδ).
SinceK1 is a bounded Lipschitz continuous function and ρδ(φ) ∈ C∞(Qδ),

we have that K1(ρδ(φ)) ∈ W 1,1
r (Qδ), 1 ≤ r ≤ ∞, and since ρδ(v) ∈ L5(Qδ)

and f δ
s (φ)t = f δ

s
′

(φ)φt ∈ L2(Qδ), we infer from Lp-theory of parabolic equa-
tions ([7] Thm. 9.1 in Chapter IV, p. 341 and the remark at the end of
Section 9 of the same chapter, p. 351) that there is a unique solution θ of
equation (41) with θ ∈W 2,1

2 (Qδ).
We observe that equation (42) is a semilinear parabolic equation with

smooth coefficients and growth conditions on the non-linear forcing terms to
apply semigroup results of Henry [4] p.75. Thus, there is a unique global
classical solution c.

In addition, note that equation (42) does not admit constant solutions,
except c ≡ 0 and c ≡ 1. Thus, by using Maximum Principles together with

conditions 0 < cδ0 < 1 and
∂cδ

∂n
= 0, we can deduce that

0 < c(x, t) < 1, ∀ (x, t) ∈ Qδ. (45)

Therefore, the mapping Tλ is well defined from B into B.
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To prove continuity of Tλ let (v̂k, φ̂k, θ̂k, ĉk), k ∈ N be a sequence in B
such that converges strongly in B to (v̂, φ̂, θ̂, ĉ) and let (vk, φk, θk, ck) be the
solution of the problem:

(vk
t , u) + ν(∇vk,∇u) + νo(Av

k, u) + (vk · ∇vk, u)

= λ(F(ĉk, θ̂k), u) − λ(k(f δ
s (φ̂k) − δ)v̂k, u) ∀u ∈ V p, t ∈ (0, T ),

(46)

αǫ2φk
t + αǫ2ρδ(v

k) · ∇φk − ǫ2∆φk

=
1

2
(φk − (φk)3) + λβ

(

θ̂k + (θB − θA)ĉk − θB

)

in Qδ,
(47)

Cvθ
k
t + Cvρδ(v

k) · ∇θk = ∇ ·
(

K1(ρδ(φ
k))∇θk

)

+
l

2
f δ

s (φk)t in Qδ, (48)

ckt −K2∆c
k + ρδ(v

k) · ∇ck = K2M∇ ·
(

ck(1 − ck)∇ρδ(φ
k)

)

in Qδ, (49)

∂φk

∂n
= 0,

∂θk

∂n
= 0,

∂ck

∂n
= 0 on ∂Ωδ × (0, T ), (50)

vk(0) = vδ
0 in Ω, φk(0) = φδ

0, θk(0) = θδ
0, ck(0) = cδ0 in Ωδ. (51)

We show that the sequence (vk, φk, θk, ck) converges strongly inB to (v, φ, θ, c)
= Tλ(v̂, φ̂, θ̂, ĉ). For that purpose, we will obtain estimates to (vk, φk, θk, ck)
independent of k. We denote by Ci any positive constant independent of k.

We take u = vk in equation (46). Using Hölder’s and Young’s inequalities
we obtain

d

dt

∫

Ω

|vk|2dx +νo

∫

Ω

|∇vk|pdx+ ν

∫

Ω

|∇vk|2dx

≤ C1

∫

Ω

(

|F |2 + |v̂k|2 + |θ̂k|2 + |ĉk|2 + |vk|2
)

dx.

Then, by the usual method of Gronwall’s inequality, we get

‖vk‖L∞(0,T ;H)∩Lp(0,T ;V p) ≤ C1. (52)

Observe that operator A satisfies ‖Av‖ ≤ C‖v‖p−1
V p . Now, from the equation

(46) we infer that

‖vk
t ‖(V p)′ ≤ C1

(

‖vk‖p−1
V p + ‖vk‖V + ‖vk‖2

L2p′ (Ω)
+ ‖F‖L2(Ω)

+‖v̂k‖L2(Ω) + ‖θ̂k‖L2(Ωδ) + ‖ĉk‖L2(Ωδ)

)

,
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then, using (52) and since 2p′ ≤ p5/3, we obtain

‖vk
t ‖Lp′ (0,T ;(V p)′) ≤ C1. (53)

From estimate (20) we have that

‖φ‖W 2,1
2

(Qδ) ≤ C
(

‖φ0‖H1(Ωδ) + ‖θ̂k‖L2(Qδ) + ‖ĉk‖L2(Qδ) + ‖φ0‖
3
H1(Ωδ)

+‖θ̂k‖3
L2(Qδ) + ‖ĉk‖3

L2(Qδ) + 1
)

where C depends on ‖ρδ(v
k)‖L5(Qδ). Therefore, using (52) we conclude that

‖φ‖W 2,1
2

(Qδ) ≤ C1. (54)

Now, multiplying (48) by θk one obtains

∫

Ωδ

|θk|2dx+

∫ t

0

∫

Ωδ

|∇θk|2dxdt ≤ C1 + C2

∫ t

0

∫

Ωδ

(

|φk
t |

2 + |θk|2
)

dxdt (55)

and we infer from (54) and Gronwall’s Lemma that

‖θk‖L∞(0,T ;L2(Ωδ)) ≤ C1, (56)

hence, it follows from (55) that

‖θk‖L2(0,T ;H1(Ωδ)) ≤ C2. (57)

We take scalar product of (48) with η ∈ H1(Ωδ), integrating by parts and
using Hölder’s and Young’s inequalities, we obtain

‖θk
t ‖H1(Ωδ)′ ≤ C1

(

‖∇θk‖L2(Ωδ) + ‖ρδ‖L∞(Qδ)‖v
k‖L2(Ω)‖θ

k‖L2(Ωδ) + ‖φk
t ‖L2(Ωδ)

)

and we infer from (52),(54) and (57) that

‖θk
t ‖L2(0,T ;H1(Ωδ)′) ≤ C1. (58)

Next, multiplying (49) by ck we conclude by analogous reasoning and using
(45) that

∫

Ωδ

|ck|2dx+

∫ t

0

∫

Ωδ

|∇ck|2dxdt ≤ C1 + C2

∫ t

0

∫

Ωδ

|∇φk|2dxdt,
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hence, from (54) we have,

‖ck‖L2(0,T ;H1(Ωδ))∩L∞(0,T ;L2(Ωδ)) ≤ C1. (59)

In order to get an estimate for (ckt ) in L2(0, T ;H1(Ωδ)′), we return to the
equation (49) and use similar techniques, then

‖ckt ‖L2(0,T ;H1(Ωδ)′) ≤ C1. (60)

We now infer from (52)-(60) that the sequence (vk) is uniformly bounded
with respect to k in

W1 =
{

w ∈ Lp(0, T ;V p), wt ∈ Lp′(0, T ; (V p)′)
}

and in
W2 =

{

w ∈ L∞(0, T ;H), wt ∈ Lp′(0, T ; (V p)′)
}

,

the sequence (φk) is bounded in W 2,1
2 (Qδ) and the sequences (θk) and (ck)

are bounded in

W3 =
{

w ∈ L2(0, T ;H1(Ωδ)), wt ∈ L2(0, T ;H1(Ωδ)′)
}

and in

W4 =
{

w ∈ L∞(0, T ;L2(Ωδ)), wt ∈ L2(0, T ;H1(Ωδ)′)
}

.

SinceW1 is compactly embedded in Lp(0, T ;H),W2 in C([0, T ]; (V p)′),W 2,1
2 (Qδ)

in L2(0, T ;H1(Ωδ)), W3 in L2(Qδ) and W4 in C([0, T ];H1(Ωδ)′) ([13] Cor.4),
it follows that there exist

v ∈ Lp(0, T ;V p) ∩ L∞(0, T ;H) with vt ∈ Lp′(0, T ; (V p)′),
χ ∈ Lp′(0, T ; (V p)′),
φ ∈ L2(0, T ;H2(Ωδ)) with φt ∈ L2(Qδ),
θ ∈ L2(0, T ;H1(Ωδ)) ∩ L∞(0, T ;L2(Ωδ)) with θt ∈ L2(0, T ;H1(Ωδ)′),
c ∈ L2(0, T ;H1(Ωδ)) ∩ L∞(0, T ;L2(Ωδ)) with ct ∈ L2(0, T ;H1(Ωδ)′),
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and a subsequence of (vk, φk, θk, ck) (which we still denote by (vk, φk, θk, ck)),
such that, as k → +∞,

vk → v in Lp(0, T ;H) ∩ C([0, T ]; (V p)′) strongly,
vk ⇀ v in Lp(0, T ;V p) weakly,
Avk ⇀ χ in Lp′(0, T ; (V p)′) weakly,
φk → φ in L2(0, T ;H1(Ωδ)) ∩ C([0, T ];L2(Ωδ)) strongly,
φk ⇀ φ in L2(0, T ;H2(Ωδ)) weakly,
θk → θ in L2(Qδ) ∩ C([0, T ];H1(Ωδ)′) strongly,
θk ⇀ θ in L2(0, T ;H1(Ωδ)) weakly,
ck → c in L2(Qδ) ∩ C([0, T ];H1(Ωδ)′) strongly,
ck ⇀ c in L2(0, T ;H1(Ωδ)) weakly.

(61)

It now remains to pass to the limit as k tends to +∞ in (46)-(51).
We observe that k(f δ

s (·) − δ) is bounded Lipschitz continuous function
from R in R then k(f δ

s (φ̂k) − δ) converges to k(f δ
s (φ̂) − δ) in Lp(Q), for any

p ∈ [1,∞). We then pass to the limit in the usual form as k tends to +∞ in
(46) and get

d

dt
(v, u)+νo(χ, u)+ν(∇v,∇u)+(v·∇v, u) = λ(F(ĉ, θ̂), u)−λ(k(f δ

s (φ̂)−δ)v̂, u)

for all u ∈ V p, t ∈ (0, T ). Using that the operator A is monotone we can
conclude that χ = Av.

Since the embedding of W 2,1
2 (Qδ) into L9(Qδ) is compact ([9] p.15), and

(φk) is bounded in W 2,1
2 (Qδ), we infer that (φk)3 converges to φ3 in L2(Qδ).

Also, since vk converges to v in Lp(0, T ;H) we have that ρδ(v
k) converges to

ρδ(v) in Lp(0, T ;H(Ωδ)). We then pass to the limit as k tends to +∞ in (47)
and get

αǫ2φt +αǫ2ρδ(v) ·∇φ−ǫ
2∆φ−

1

2
(φ−φ3) = λβ

(

θ̂ + (θB − θA)ĉ− θB

)

in Qδ.

Since K1(ρδ) and f δ
s
′

are bounded Lipschitz continuous functions and φk

converges to φ in L9(Qδ) we have thatK1(ρδ(φ
k)) converges to K1(ρδ(φ)) and

f δ
s
′

(φk) converges to f δ
s
′

(φ) in Lp(Qδ) for any p ∈ [1,∞). These facts and (61)
yield the weak convergence of K1(ρδ(φ

k))∇θk to K1(ρδ(φ))∇θ and f δ
s
′

(φk)φk
t

to f δ
s
′

(φ)φt in L3/2(Qδ). Now, multiplying (48) by η ∈ D(Qδ), integrating
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over Ωδ × (0, T ) and by parts, we obtain

∫ T

0

∫

Ωδ

Cv

(

θk
t + ρδ(v

k) · ∇θk
)

η +K1(ρδ(φ
k))∇θk · ∇η dxdt

=

∫ T

0

∫

Ωδ

l

2
f δ

s

′

(φk)φk
t η dxdt,

then we may pass to the limit and find that,

Cvθt + Cvρδ(v) · ∇θ = ∇ · (K1(ρδ(φ))∇θ) +
l

2
f δ

s

′

(φ)φt in D′(Qδ), (62)

and using Lp-theory of parabolic equations we have that (62) holds almost
everywhere in Qδ.

It remains to pass to the limit in (49). We infer from (61) that ∇ρδ(φ
k)

converges to ∇ρδ(φ) in L2(Qδ) and since ‖ck‖L∞(Qδ) is bounded, it follows
that ck(1 − ck) converges to c(1 − c) in Lp(Qδ) for any p ∈ [1,∞). Similarly,
we may pass to the limit in (49) to obtain

ct −K2∆c+ ρδ(v) · ∇c = K2M∇ · (c(1 − c)∇ρδ(φ)) in Qδ.

Therefore Tλ is continuous for all 0 ≤ λ ≤ 1. At the same time, Tλ is
bounded in W1 ×W 2,1

2 (Qδ) ×W3 ×W3 and the embedding of this space in
B is compact; then we conclude that Tλ is a compact operator.

To prove that for (v̂, φ̂, θ̂, ĉ) in a bounded set of B, Tλ is uniformly contin-
uous in λ, let 0 ≤ λ1, λ2 ≤ 1 and (vi, φi, θi, ci) (i = 1, 2) be the corresponding
solutions of (39)-(44). We observe that v = v1 − v2, φ = φ1 − φ2, θ = θ1 − θ2
and c = c1 − c2 satisfy the following problem:

(vt, u) + ν(∇v,∇u) + νo(Av1 −Av2, u) + (v1 · ∇v, u) − (v · ∇v2, u)

= (λ1 − λ2)(F(ĉ, θ̂), u) + (λ2 − λ1)(k(f
δ
s (φ̂) − δ)v̂, u),

for all u ∈ V p, t ∈ (0, T ),

(63)

αǫ2φt − ǫ2∆φ+ αǫ2ρδ(v1) · ∇φ−
1

2
φ

(

1 − (φ2
1 + φ1φ2 + φ2

2)
)

= αǫ2ρδ(v) · ∇φ2 + (λ1 − λ2)β
(

θ̂ + (θB − θA)ĉ− θB

)

in Qδ,
(64)

Cvθt −∇ ·K1(ρδ(φ1))∇θ −∇ · [K1(ρδ(φ1)) −K1(ρδ(φ2))]∇θ2
+Cvρδ(v1) · ∇θ = Cvρδ(v) · ∇θ2

+
l

2
f δ

s

′

(φ1)φt +
l

2

[

f δ
s

′

(φ1) − f δ
s

′

(φ2)
]

φ2t in Qδ,

(65)
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ct −K2∆c + ρδ(v1) · ∇c = K2M∇ · (c1(1 − c1) [∇ρδ(φ1) −∇ρδ(φ2)])
+ρδ(v) · ∇c2 +K2M∇ · (c(1 − (c1 + c2))∇ρδ(φ2)) in Qδ,

(66)
∂φ

∂n
= 0,

∂θ

∂n
= 0,

∂c

∂n
= 0 on ∂Ωδ × (0, T ), (67)

v(0) = 0 in Ω, φ(0) = 0, θ(0) = 0, c(0) = 0 in Ωδ. (68)

Taking u = v in equation (63), using Hölder’s, Young’s and interpolation
inequalities and the monotonicity of operator A we obtain

1

2

d

dt

∫

Ω

|v|2dx +

∫

Ω

ν|∇v|2dx ≤

∫

Ω

|v||∇v2||v|dx

+ |λ1 − λ2|

∫

Ω

(

|F(ĉ, θ̂)||v|+ k(f δ
s (φ̂) − δ)|v̂||v|

)

dx

≤ C1‖v2‖
s
Lr(Ω)‖v‖

2
L2(Ω) +

ν

2
‖v‖2

V

+ C2|λ1 − λ2|
2

∫

Ω

|F |2 + |θ̂|2 + |ĉ|2 + |v̂|2dx+ C3

∫

Ω

|v|2dx.

where 2/s+3/r = 1 and r > 3.Observe that due to assumption p ≥ 3 we have
that v ∈ Ls(0, T ;Lr(Ω)). Then, integration with respect t and Gronwall’s
Lemma give us

‖v‖2
L∞(0,T ;H)∩L2(0,T ;V ) ≤ C1 |λ1 − λ2|

2. (69)

Applying Lp-theory of parabolic equations ([7] p. 341) to equation (64),
the following estimate holds

‖φ‖W 2,1
2

(Qδ) ≤ C1

(

‖ρδ(v) · ∇φ2‖L2(Qδ) + |λ1 − λ2|
(

‖θ̂‖L2(Qδ) + ‖ĉ‖L2(Qδ) + 1
))

where C1 depends on ‖ρδ(v1)‖L5(Qδ) and ‖φ2
1 + φ1φ2 + φ2

2‖L5/2(Qδ), which are
independent of λi. Therefore, using (69) we arrive at

‖φ‖2
W 2,1

2
(Qδ)

≤ C1 |λ1 − λ2|
2. (70)

Multiplying (65) by θ, integrating over Ωδ using Hölder’s inequality and
that K1 and f δ

s
′

are bounded Lipschitz continuous functions, we have

d

dt

∫

Ωδ

|θ|2dx+ a

∫

Ωδ

|∇θ|2dx

≤ C1

∫

Ωδ

|ρδ(φ)||∇θ2||∇θ| + |ρδ(v)||∇θ2||θ| + |φt||θ| + |φ||φ2t| |θ|dx

≤ C1‖φ‖
2
L∞(0,T ;L2(Ωδ))‖∇θ2‖L2(Ωδ) + C2‖v‖

2
L∞(0,T ;H)‖∇θ2‖

2
L2(Ωδ)

+C3

∫

Ωδ

|φt|
2 + |θ|2dx+ C4‖φ‖

2
L∞(0,T ;H1(Ωδ))‖φ2t‖

2
L2(Ωδ) +

a

2

∫

Ωδ

|∇θ|2dx.
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Integration with respect to t and the use of Gronwall’s Lemma and (69)-(70)
lead to the estimate

‖θ‖2
L∞(0,T ;L2(Ωδ)) ≤ C1 |λ1 − λ2|

2. (71)

We multiply (66) by c, integrate over Ωδ × (0, t) and by parts, and we use
Hölder’s and Young’s inequalities and (45) to obtain

∫

Ωδ

|c|2dx +

∫ t

0

∫

Ωδ

|∇c|2dxdt

≤ C1

∫ t

0

∫

Ωδ

(

|∇ρδ(φ1) −∇ρδ(φ2)|
2 + |ρδ(v)|

2 + |c|2
)

dxdt

≤ C1

∫ t

0

∫

Ωδ

(

|∇φ|2 + |c|2
)

dxdt+ C1

∫ t

0

∫

Ω

|v|2dxdt.

Applying Gronwall’s Lemma and using (69)-(70) we arrive at

‖c‖2
L∞(0,T ;L2(Ωδ)) ≤ C1 |λ1 − λ2|

2. (72)

Therefore, it follows from (69)-(72) that Tλ is uniformly continuous in λ.
To estimate the set of all fixed points of Tλ let (v, φ, θ, c) ∈ B be such a

fixed point, i.e., it is a solution of the problem

(vt, u) + ν(∇v,∇u) + νo(Av, u) + (v · ∇v, u)
= λ(F(c, θ), u) − λ(k(f δ

s (φ) − δ)v, u) ∀u ∈ V, t ∈ (0, T ),
(73)

αǫ2φt + αǫ2ρδ(v) · ∇φ− ǫ2∆φ−
1

2
(φ− φ3)

= λβ (θ + (θB − θA)c− θB) in Qδ,
(74)

Cvθt + Cvρδ(v) · ∇θ = ∇ · (K1(ρδ(φ))∇θ) +
l

2
f δ

s (φ)t in Qδ, (75)

ct −K2∆c + ρδ(v) · ∇c = K2M∇ · (c(1 − c)∇ (ρδ(φ))) in Qδ, (76)

∂φ

∂n
= 0,

∂θ

∂n
= 0,

∂c

∂n
= 0 on ∂Ωδ × (0, T ), (77)

v(0) = vδ
0 in Ω, φ(0) = φδ

0, θ(0) = θδ
0, c(0) = cδ0 in Ωδ. (78)
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We take u = v in equation (73). Then

1

2

d

dt

∫

Ω

|v|2dx +

∫

Ω

(

νo|∇v|
p + ν|∇v|2 + λk(f δ

s (φ) − δ)|v|2
)

dx

≤ C1

∫

Ω

|F |2 + |θ|2 + |c|2 + |v|2dx

≤ C1

∫

Ω

|F |2 + |v|2dx+ C1

∫

Ωδ

|θ|2 + |c|2dx.

(79)

Multiplying equation (74) by φ, integrating over Ωδ and by parts, using
Hölder’s and Young’s inequalities we obtain,

αǫ2

2

d

dt

∫

Ωδ

|φ|2dx +

∫

Ωδ

(

ǫ2|∇φ|2 +
1

2
φ4

)

dx

≤ C1 + C1

∫

Ωδ

(

|θ|2 + |c|2 + |φ|2
)

dx.
(80)

By multiplying (75) by e = Cvθ −
l

2
f δ

s (φ) and (76) by c, arguments sim-

ilar to the previous ones lead to the following estimates

1

2

d

dt

∫

Ωδ

|e|2dx+
Cva

2

∫

Ωδ

|∇θ|2dx ≤ C2

∫

Ωδ

|∇φ|2dx+ C1

∫

Ω

|v|2dx, (81)

1

2

d

dt

∫

Ωδ

|c|2dx+
K2

2

∫

Ωδ

|∇c|2dx ≤ C2

∫

Ωδ

|∇φ|2dx, (82)

where (45) was used to obtain the last inequality.
Now, multiplying (80) by A and adding the result to (79),(81)-(82), gives

us

d

dt

∫

Ω

1

2
|v|2 +

d

dt

∫

Ωδ

(

Aαǫ2

4
|φ|2 +

1

2
|e|2 +

1

2
|c|2

)

dx

+

∫

Ω

(

νo|∇v|
p + ν|∇v|2 + λk(f δ

s (φ) − δ)|v|2
)

dx

+

∫

Ωδ

(

(Aǫ2 − 2C2)|∇φ|
2 +

A

2
φ4 +

Cva

2
|∇θ|2 +

K2

2
|∇c|2

)

dx

≤ C1 + C1

∫

Ω

|v|2dx+ C1

∫

Ωδ

(

|φ|2 + |θ|2 + |c|2
)

dx (83)
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where C1 is independent of λ and δ, being A ∈ R an arbitrary parameter.
Taking A large enough and using Gronwall’s Lemma to obtain

‖v‖L∞(0,T ;H) + ‖φ‖L∞(0,T ;L2(Ωδ)) + ‖e‖L∞(0,T ;L2(Ωδ)) + ‖c‖L∞(0,T ;L2(Ωδ)) ≤ C1,

where C1 is independent of λ. Since θ =
1

Cv

(

e+
l

2
f δ

s (φ)

)

and f δ
s (φ) is

bounded in L∞(Qδ), we also have that ‖θ‖L∞(0,T ;L2(Ωδ)) ≤ C1. Therefore,
all fixed points of Tλ in B are bounded independently of λ ∈ [0, 1].

Finally, for λ = 0, we can reason as in the proof that Tλ is well defined
to conclude that the problem (39)-(44) has a unique solution. Therefore, we
can apply Leray-Schauder’s Theorem and so there is at least one fixed point
(v, φ, θ, c) ∈ B∩{Lp(0, T ;V p)∩L∞(0, T ;H)}×W 2,1

2 (Qδ)×W 2,1
2 (Qδ)×C2,1(Qδ)

of the operator T1, i.e. (v, φ, θ, c) = T1(v, φ, θ, c). These functions are a
solution of problem (33)-(38) and the proof of Proposition 1 is complete. ✷

4 The proof of Theorem 1

To prove Theorem 1, we start by taking the initial condition in the previous
regularized problem as follows. For 0 < δ ≤ δ(Ω) as in the statement of
Theorem 1, we choose φδ

0 ∈W 2−2/q,q(Ωδ)∩H1+γ(Ωδ), vδ
0 ∈ H , θδ

0 ∈ H1+γ(Ω),

1/2 < γ ≤ 1, cδ0 ∈ C1(Ωδ), satisfying
∂φδ

0

∂n
=

∂θδ
0

∂n
=

∂cδ0
∂n

= 0 on ∂Ωδ and

0 < cδ0 < 1 in Ωδ, vδ
0 → v0 in the norm of H(Ωml(0)), and such that the

restrictions of these functions to Ω (recall that Ω ⊂ Ωδ) satisfy as δ → 0+
the following: φδ

0 → φ0 in the norm of W 2−2/q,q(Ω) ∩ H1+γ(Ω), θδ
0 → θ0 in

the norm of L2(Ω), cδ0 → c0 in the norm of L2(Ω).
We then infer from Proposition 1 that there exists (φδ, vδ, θδ, cδ) solution

the regularized problem (33)-(38).
In the following, we will derive bounds, independent of δ, for such solu-

tions and then use compactness arguments to pass to the limit as δ approach
0 to establish the desired existence result. Such estimates will stated in fol-
lowing in a sequence of lemmas; however, most of them are ease consequence
of the estimates obtained in the last section (those that are independent of
δ) and the fact that Ω ⊂ Ωδ. We begin with the following:

Lemma 1 There exists a constant C1 such that, for any δ ∈ (0, δ(Ω))

‖vδ‖L∞(0,T ;H)∩Lp(0,T ;V p) +

∫ T

0

∫

Ω

k(f δ
s (φδ) − δ)|vδ|2dxdt ≤ C1, (84)
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‖φδ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ ‖φδ‖L∞(0,T ;L2(Ωδ))∩L2(0,T ;H1(Ωδ)) ≤ C1, (85)

‖θδ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ ‖θδ‖L∞(0,T ;L2(Ωδ))∩L2(0,T ;H1(Ωδ)) ≤ C1, (86)

‖cδ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ ‖cδ‖L∞(0,T ;L2(Ωδ))∩L2(0,T ;H1(Ωδ)) ≤ C1. (87)

Proof: The result follows from inequality (83). ✷

Lemma 2 There exists a constant C1 such that, for any δ ∈ (0, δ(Ω))

‖φδ‖W 2,1
q (Q) ≤ C1, for any 2 ≤ q ≤ 10/3, (88)

‖θδ
t ‖L2(0,T ;H1

o (Ω)′) ≤ C1, (89)

‖cδt‖L2(0,T ;H1
o (Ω)′) ≤ C1. (90)

Proof: Note that (88) follows from estimate (20) of Theorem 2 and
Lemma 1.

Next, we take the scalar product of (35) with η ∈ H1
o (Ω), using Hölder’s

inequality and (H3) we find

Cv‖θ
δ
t‖H1

o (Ω)′ ≤ C1

(

‖∇θδ‖L2(Ω) + ‖θδ‖L10/3(Ω)‖v
δ‖L5(Ω) + ‖φδ

t‖L2(Ω)

)

.

Then, (89) follows from Lemma 1 and (88).
Using that 0 < cδ < 1 in Q, we infer from (36) that,

‖cδt‖H1
o (Ω)′ ≤ C1

(

‖∇cδ‖L2(Ω) + ‖vδ‖L2(Ω) + ‖∇φδ‖L2(Ω)

)

.

Then, (90) follows from Lemma 1. ✷

Lemma 3 There exist a constant C1 and δ0 ∈ (0, δ(Ω)) such that, for any
δ < δ0,

‖vδ
t ‖Lp′(t1,t2;V p(U)′) ≤ C1 (91)

where 0 ≤ t1 < t2 ≤ T, U ⊆ Ωml(t1) and such that [t1, t2] × Ū ⊆ Qml ∪
Ωml(0) ∪ Ωml(T ).

Proof: Let 0 ≤ t1 < t2 ≤ T, U ⊆ Ωml(t1) be such that [t1, t2] × Ū ⊆
Qml∪Ωml(0)∪Ωml(T ). It is verified by means of (33) that for a.e. t ∈ (t1, t2),

(vδ
t , u) = −νo

∫

U

Avδ udx− ν

∫

U

∇vδ · ∇udx−

∫

U

vδ · ∇vδudx

−

∫

U

k(f δ
s (φδ) − δ)vδudx+

∫

U

F(cδ, θδ)udx, u ∈ V p(U).
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In order to estimate ‖vδ
t ‖V p(U)′ , we observe that the sequence (φδ) is bounded

in W 2,1
q (Q), for 2 ≤ q < 5, in particular, for q > 5/2 we have that W 2,1

q (Q) ⊆

Hτ,τ/2(Q̄) where τ = 2 − 5/q ([7] p.80). Consequently, because of Arzela-
Ascoli’s theorem, there exist φ and a subsequence of (φδ) (which we still
denote by φδ ), such that φδ converges uniformly to φ in Q̄. Recall that Qml =
{(x, t) ∈ Q/ 0 ≤ fs(φ(x, t)) < 1} and Ωml(t) = {x ∈ Ω / 0 ≤ fs(φ(x, t)) < 1} .
Note that for a certain γ ∈ (0, 1) and for (x, t) ∈ [t1, t2] × Ū ,

fs(φ(x, t)) < 1 − γ.

Due to the uniform convergence of f δ
s towards fs on any compact subset,

there is an δ0 such that for all δ ∈ (0, δ0) and for all (x, t) ∈ [t1, t2] × Ū ,

f δ
s (φδ(x, t)) < 1 − γ/2.

By assumption (H2) we infer that

k(f δ
s (φδ(x, t)) − δ) < k(1 − γ/2) for (x, t) ∈ [t1, t2] × Ū and δ < δ0.

Thus,

‖vδ
t ‖V p(U)′ ≤ C1

(

‖vδ‖p−1
V p + ‖vδ‖V + ‖vδ‖2

Ls(Ω) + ‖F‖L2(Ω) + ‖cδ‖L2(Ω)

+‖θδ‖L2(Ω) + ‖k(f δ
s (φδ(x, t)) − δ)‖L∞(U)‖v

δ‖L2(Ω)

)

,

where 2/s+ 1/p = 1. Hence, (91) follows from Lemma 1. ✷

From (84), the sequence (vδ) is also bounded in Lp(t1, t2;W
1,p(U)); then,

by compact embedding ([13] Cor. 4), there exist v and a subsequence of (vδ)
(which we still denote vδ), such that

vδ → v strongly in Lp((t1, t2) × U).

Observe that Qml is an open set and can be covered by a countable number
of open sets (ti, ti+1)×Ui such that Ui ⊆ Ωml(ti), then by means of a diagonal
argument, we obtain

vδ → v strongly in Lp
loc(Qml ∪ Ωml(0) ∪ Ωml(T )). (92)

Moreover, from (84) we have that v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) and

vδ ⇀ v weakly in L2(0, T ;V ),

vδ ∗

⇀ v weakly * in L∞(0, T ;H).
(93)
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Since Avδ is bounded in Lp′(0, T ; (V p)′) there exists χ ∈ Lp′(0, T ; (V p)′) such
that

Avδ ⇀ χ ∈ Lp′(0, T ; (V p)′) weakly. (94)

We now infer from Lemma 1 and Lemma 2, using compact embedding ([13]
Cor.4), that there exist

φ ∈ W 2,1
q (Q) for 2 ≤ q ≤ 10/3,

θ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),
c ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

and a subsequence of (φδ, θδ, cδ) (which we still denote by (φδ, θδ, cδ) ) such
that, as δ → 0,

φδ → φ uniformly in Q,
φδ → φ strongly in Lq(0, T ;W 1,q(Ω)),
φδ

t ⇀ φt weakly in Lq(Q),
θδ → θ strongly in L2(Q) ∩ C([0, T ];H1

o (Ω)′),
θδ ⇀ θ weakly in L2(0, T ;H1(Ω)),
cδ → c strongly in L2(Q) ∩ C([0, T ];H1

o (Ω)′),
cδ ⇀ c weakly in L2(0, T ;H1(Ω)).

(95)

It now remains pass to the limit as δ decreases to zero in (33)-(38). We
start with the velocity equation.

We take u = η(t) in (33) where η ∈ Lp(0, T ;V p) with compact support
contained in Qml ∪ Ωml(0) ∪ Ωml(T ) and ηt ∈ Lp′(0, T ;V p(Ωml(t))

′); after
integration over (0, t), we find

∫ t

0

(

(vδ
t , η) + ν(∇vδ,∇η) + νo(Av

δ, η) + (vδ · ∇vδ, η)

+ (k(f δ
s (φδ) − δ)vδ, η)

)

ds =

∫ t

0

(F(cδ, θδ), η)ds.

(96)

Moreover, we observe that

∫ t

0

(vδ
t , η)ds = −

∫ t

0

(vδ, ηt)ds+ (vδ(t), η(t)) − (vδ
0, η(0)).

Also, because of uniform convergence of f δ
s to fs on compact subsets, as well

as the assumption (H2), it follows that k(f δ
s (φδ) − δ) converges to k(fs(φ))
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uniformly on compact subsets of Qml∪Ωml(0)∪Ωml(T ). These facts, together
with (92)-(95), ensure that we can pass to the limit in (96) and get

(v(t), η(t)) −

∫ t

0

(v, ηt)ds+ ν

∫ t

0

(∇v,∇η)ds+ νo

∫ t

0

(χ, η)ds (97)

+

∫ t

0

(v · ∇v, η)ds+

∫ t

0

(k(fs(φ))v, η)ds =

∫ t

0

(F(c, θ), η)ds+ (v0, η(0)),

Since vδ(0) → v(0) in (V p(U))′, for any U such that Ū ⊆ Ωml(0), by using
(97) it is easy to see that v(0) = v0 in Ωml(0).

Now, we check that v = 0 a.e. in
o

Qs. For this, take a compact set K ⊆
o

Qs.
Then there is an δK ∈ (0, δ(Ω)) such that

f δ
s (φδ(x, t)) = 1 in K for δ < δK .

Hence, k(f δ
s (φδ(x, t) − δ) = k(1 − δ) in K for δ < δK . From (84) we infer

that
k(1 − δ)‖vδ‖2

L2(K) ≤ C1 for δ < δK ,

where C1 is independent of δ. Thus, as δ tends to 0, by assumption (H2),
k(1 − δ) blows up and, consequently, ‖vδ‖L2(K) converges to 0. Therefore
v = 0 a.e. in K, and since K is an arbitrary compact subset, we conclude
that

v = 0 a.e. in
o

Qs

Now, we proceed with the other equations.
It follows from (93)-(95) that we may pass to the limit in (34), and find

that (12) holds almost everywhere.
In order to pass to the limit in (35), we note that given ζ ∈ L2(0, T ;H1(Ω))

with ζt ∈ L2(0, T ;L2(Ω)) satisfying ζ(T ) = 0, we can consider an extension
of ζ such that ζδ ∈ L2(0, T ;H1(Ωδ)) with ζδ

t ∈ L2(0, T ;L2(Ωδ)) satisfying
ζδ(T ) = 0. Now, we take the scalar product of (35) with ζδ,

−Cv

∫

Ωδ

θδ
0ζ

δ(0)dx− Cv

∫ T

0

∫

Ωδ

θδζδ
t dxdt − Cv

∫ T

0

∫

Ωδ

ρδ(v
δ)θδ · ∇ζδdxdt

+

∫ T

0

∫

Ωδ

K1(ρδ(φ
δ))∇θδ · ∇ζδdxdt =

l

2

∫ T

0

∫

Ωδ

f δ
s

′

(φδ)φδ
tζ

δdxdt.(98)

Observe that since ρδ(v
δ) converges weakly to v in L2(0, T ;H1(Ω)) and θδ →

θ strongly in C([0, T ];H1
o (Ω)′) we have that ρδ(v

δ)θδ converges to vθ in D′(Q).
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Observe that f δ
s
′

→ f ′

s in Lq(R) for 2 ≤ q <∞, then from (95) we infer that
f δ

s
′

(φδ)φδ
t converges weakly to f ′

s(φ)φt in Lq/2(Q). Moreover, from Lemma 1
the integrals over Ωδ\Ω are bounded independent of δ and since |Ωδ\Ω| → 0
as δ → 0, we have that these integrals tend to zero as δ → 0. Therefore, we
may pass to the limit in (98) and obtain

−Cv

∫ T

0

∫

Ω

θζtdxdt− Cv

∫ T

0

∫

Ω

vθ · ∇ζdxdt+

∫ T

0

∫

Ω

K1(φ)∇θ · ∇ζ dxdt

=
l

2

∫ T

0

∫

Ω

f ′

s(φ)φtζ dxdt+ Cv

∫

Ω

θ0ζ(0)dx

for all ζ ∈ L2(0, T ;H1(Ω)) with ζt ∈ L2(0, T ;L2(Ω)) and ζ(T ) = 0.
It remains to pass to the limit in (36). We proceed in similar ways as

before, taking the scalar product of it with ζδ ∈ L2(0, T ;H1(Ωδ)) with ζδ
t ∈

L2(0, T ;L2(Ωδ)) and ζδ(T ) = 0,

−

∫ T

0

∫

Ωδ

cδζδ
t dxdt−

∫ T

0

∫

Ωδ

ρδ(v
δ)cδ · ∇ζδdxdt+K2

∫ T

0

∫

Ωδ

∇cδ · ∇ζδdxdt

+K2M

∫ T

0

∫

Ωδ

cδ(1 − cδ)∇ρδ(φ
δ) · ∇ζδdxdt =

∫

Ωδ

cδ0ζ
δ(0)dx,

then from (93),(95) and using that the sequence (cδ) is bounded in L∞(Q)
we may pass to the limit as δ → 0 and obtain

−

∫ T

0

∫

Ω

cζtdxdt−

∫ T

0

∫

Ω

vc · ∇ζdxdt+K2

∫ T

0

∫

Ω

∇c · ∇ζ dxdt

+K2M

∫ T

0

∫

Ω

c(1 − c)∇φ · ∇ζ dxdt =

∫

Ω

c0ζ(0)dx

holds for any ζ ∈ L2(0, T ;H1(Ω)) with ζt ∈ L2(0, T ;L2(Ω)) and ζ(T ) = 0.
Observe that since 0 < cδ < 1 and cδ converges to c in L2(Q) we have that
0 ≤ c ≤ 1 a.e. in Q.

Now, it follows from (95) that
∂φ

∂n
= 0, φ(0) = φ0, θ(0) = θ0 and c(0) = c0,

and the first part of the proof of Theorem 1 is complete.

Under the additional regularity and integrability hypotheses stated in
the second part of the statement of Theorem 1, in the following we will
show that χ = Av. We will use the monotonicity and the hemicontinuity of
operator A ([9] Chp. 2) by adapting an argument that is usual in the theory
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of monotone operators. For this, we take any ψ ∈ Lp(0, T ;V p) such that
suppψ is contained in the closure of Ωml(0) ∪Qm ∪ Ωml(T ) and define

X t
δ = νo

∫ t

0

(

Avδ − Aψ, vδ − ψ
)

ds+
1

2
‖vδ(t)‖2

L2(Ω)

+ν

∫ t

0

‖∇vδ‖2
L2(Ω)ds+

∫ t

0

∫

Ω

k(f δ
s (φδ) − δ)|vδ|2dxds. (99)

Since A is monotone and Ωml(t) ⊆ Ω,

X t
δ ≥

1

2
‖vδ(t)‖2

L2(Ωml(t))
+ ν

∫ t

0

‖∇vδ‖2
L2(Ωml(s))

ds

+

∫ t

0

‖k1/2(f δ
s (φδ) − δ)|vδ|‖2

L2(Ωml(s))
ds.

(100)

Observe that vδ(t) ⇀ v(t) weakly inH , vδ ⇀ v weakly in Lp(Q); thus, thanks
to (92), vδ → v a.e. in Qml. Note also that k1/2(f δ

s (φδ) − δ) → k1/2(fs(φ))
a.e. in Qml; hence

k1/2(f δ
s (φδ) − δ)vδ → k1/2(fs(φ))v a.e. in Qml

From (84) we have that

∫ t

0

‖k1/2(f δ
s (φδ) − δ)|vδ|‖2

L2(Ωml(s))
ds is bounded.

Therefore ([8] Lemma 1.3),

k1/2(f δ
s (φδ) − δ)vδ ⇀ k1/2(fs(φ))v weakly in L2(Qml).

Thus, we conclude from (100) that

lim
δ→0

inf X t
δ ≥

1

2
‖v(t)‖2

L2(Ωml(t))
+ ν

∫ t

0

‖∇v‖2
L2(Ωml(s))

ds

+

∫ t

0

‖k1/2(fs(φ))|v|‖2
L2(Ωml(s))

ds.

(101)

On the other hand, by using (33) with u = vδ, after integrating in [0, t], we

obtain an expression for ν0

∫ t

0

(Avδ, vδ)ds that substituted into (99), gives

X t
δ =

1

2
‖vδ

0‖
2
L2(Ω)+

∫ t

0

(F(cδ, θδ), vδ)ds−νo

∫ t

0

(Avδ, ψ)ds−νo

∫ t

0

(Aψ, vδ−ψ)ds.
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By letting δ → 0 in this last expression, we conclude that

X t
δ → X t =

1

2
‖v0‖

2
L2(Ω)+

∫ t

0

(F(c, θ), v)ds−νo

∫ t

0

(χ, ψ)ds−νo

∫ t

0

(Aψ, v−ψ)ds

Now, from the fact that v = 0 a.e. in
o

Qs and our additional hypothesis that
the measure of ∂Ωml is zero for a.e. t ∈ (0, t), we can write X t as

X t =
1

2
‖v0‖

2
L2(Ωml(0))

+

∫ t

0

(F(c, θ), v)Ωml(s)ds− νo

∫ t

0

(χ, ψ)ds

−νo

∫ t

0

(Aψ, v − ψ)ds.

This and (101) imply that

1

2
‖v0‖

2
L2(Ωml(0))

+

∫ t

0

(F(c, θ), v)Ωml(s)ds− νo

∫ t

0

(χ, ψ)ds− νo

∫ t

0

(Aψ, v − ψ)ds

≥
1

2
‖v(t)‖2

L2(Ωml(t))
+ ν

∫ t

0

‖∇v‖2
L2(Ωml(s))

ds+

∫ t

0

‖k1/2(fs(φ))|v|‖2
L2(Ωml(s))

ds.

Now, we recall that (97) holds for a.e. t ∈ (0, T ) and any η ∈ Lp(0, T ;V p)
with compact support contained in Qml∪Ωml(0)∪Ωml(T ) and such that ηt ∈
Lp′(0, T ; (V p)′). Thus, our previous estimates and our additional hypothesis
on the integrability of k(fs(φ)) allow us to use density arguments to conclude
that (97) holds for any η ∈ Lp(0, T ;V p) with support contained in the closure
of Qml ∪ Ωml(0) ∪ Ωml(T ) and such that ηt ∈ Lp′(0, T ; (V p)′). In particular,
v has this properties, and we can take η = v in (97) and integrate in time on
the interval [0, t] to find an energy identity that used with the last inequality
furnishes

νo

∫ t

0

(χ− Aψ, v − ψ)ds ≥ 0 a.e. t.

Therefore, by standard arguments using the hemicontinuity of operator A
([8] Chp.2), we can conclude that χ = Av, and the proof of Theorem 1 is
then complete. ✷

References

[1] Blanc, Ph., Gasser, L., Rappaz,J., ‘Existence for a stationary model of
binary alloy solidification’, Math. Mod. and Num. Anal. 29(6),687-699
(1995).

29



[2] Caginalp, G. and Xie, W., ‘Phase-field and sharp-interfase alloys mod-
els’, Phys. Rev. E, 48(3), 1897-1909 (1993).

[3] Friedman, A., Partial Differential Equation of Parabolic Type, Prentice-
Hall, 1964.

[4] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture
Notes in Math, Vol 840, Springer-Verlag, 1981.

[5] Hoffman, K-H. and Jiang, L., ‘Optimal control of a phase field model
for solidification’, Numer. Funct. Anal. and Optim., 13, 11-27 (1992).

[6] Ladyzenskaja, O.A., The Mathematical Theory of Viscous Incompress-
ible Flow, Gordon and Breach Science Publishers Inc, 1969.

[7] Ladyzenskaja, O.A., Solonnikov, V.A. and Ural’ceva, N.N., Linear and
Quasilinear Equations of Parabolic Type, American Mathematical Soci-
ety, Providence, 1968.
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non linéaires, Dunod, Gauthier-Villars, 1969.

[9] Lions, J.L., Control of Distributed Singular Systems, Gauthier-Villars,
1985.

[10] Mikhailov, V.P. Partial Differential Equations, Mir, 1978.

[11] Planas, G., Boldrini, J.L., ‘Weak solutions to a phase field model with
convection for solidification of an alloy’, to appear in Commun. Appl.
Anal. 2003.

[12] Planas, G., Boldrini, J.L., ‘A Bidimensional Phase-Field Model
with Convection for Change Phase of an Alloy’, RP16/03 IMECC-
UNICAMP, 2003.

[13] Simon, J., ‘Compacts sets in the space Lp(0, T, B)’, Ann. Mat. Pura
Appl., 146, 65-96 (1987).

[14] Temam, R., Navier-Stokes Equations, AMS Chelsea Publishing, 2001.

[15] Voller,V.R., Cross,M., Markatos,N.C., ‘An enthalpy method for con-
vection/diffusion phase change’, Int. J. for Numer. Meth. in Eng. 24,
271-284 (1987).

30


