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Summary

In the study of genetic divergence among organisms, generally the analysis is done directly

from the DNA molecule. Therefore, a possible outcome is binary (dominant or recessive

phenotype). Comparison of groups of molecular data is a great interest in molecular ge-

netics and evolutionary biology. Some work have been done on analysis of variance for

genetic data (Weir, 1990; Pinheiro et al., 2000; Pinheiro et al., 2001; Pinheiro et al., 2002

and others). Weir (1990) proposed a genetic diversity measure, the heterozygosity, and

developed an analysis of variance for binary data in a balanced design. Here, we extend

the work of Weir developing an analysis of variance for binary data with the purpose of

comparing groups in unbalanced designs. In order to test the null hypothesis of homo-

geneity among groups, the asymptotic distribution of the test statistic was found. An

application of the test to real data is illustrated using resampling methods such as the
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bootstrap to generate the empirical distribution of the test statistics.

Key words: Analysis of variance; Binary data; Bootstrap; Asymptotic distribution;

Molecular data; Statistical genetics, RAPD.

1 Introduction

Random amplified polymorphic DNA molecular markers are obtained using a single

random oligonucleotide primer in a polymerase chain reaction (PCR). These primers are

short and therefore there is a high probability that the genome will contain several priming

sites at varying distances from one another that are in an inverted orientation (Williams,

1991; Welsh et al., 1991). The main advantages of RAPD markers include suitability

to probe anonymous genomes, applicability to problems where only minute amounts of

DNA are available, and efficiency and low cost. The amplification profile of products are

resolved on agarose gels with RAPD molecular markers behaving as dominant markers,

with dominant homozygous and heterozygous represented as the phenotype band-present

and the recessive homozygous represented as the phenotype band-absent (Williams, 1991;

Welsh et al., 1991).

Molecular markers targeted by arbitrary primers that generate randomly amplified

polymorphic DNA (RAPD) have been increasingly employed with success to quantify and

describe patterns of genetic variation within populations and to partition genetic variation

among populations of animals and plants (Comes and Abbott, 2000). These markers

have also proven instrumental to infer patterns of population structure with important

implications for evolutionary and conservation biology (Haig et al., 1994; Souza et al.,

2002).

The study of species evolution can be characterized by extensions and causes of ge-

netic variation. There are many different ways to measure genetic variation; among them

one can think on the proportion of heterozygous in a population, the heterozygosity, since

each individual carries different alleles, which represents the existence of variation. The

continuous presence of different homozygous also can result in variation; for those situa-
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tions the genetic diversity is an appropriate measure (Weir, 1990). Genetic differences can

also be encountered by direct molecular analysis of DNA. In this case the variation can

be measured by comparison of nucleotides (Pinheiro et al., 2000, Pinheiro et al., 2001).

The main interest here is the comparison of groups of different sizes, when the response

variable is categorical (binary, in this particular case). In the classical analysis of variance

this comparison is done when the response variable is continuous. We would like to

develop an analysis of variance when the outcome variable is binary and the samples are

unbalanced. For example, one of the techniques to detect genetic polymorphism, for the

comparison of groups, is the class of molecular markers RAPD, where polymorphism is

detected through a binary outcome (dominant or recessive phenotype).

Weir (1990) proposed the observed heterozygosity as a measure of diversity and a

table of analysis of variance for binary data in balanced designs was developed. In our

case, the groups have different sizes and we extended some of his results of the table of

analysis of variance for unbalanced designs (Section 2). In Section 3 a test statistic and

its asymptotic distribution are developed to assess homogeneity among groups of binary

unbalanced data. The power of the test is discussed in Section 4 and the paper closes with

an application of the test statistic to real data in Section 5.

2 The ANOVA Table for Binary Data

Using a similar measure of diversity, which is defined as the proportion of dominant

phenotypes, an analysis of variance was developed considering that the loci are randomly

sampled, as it is the case of the class of markers RAPD. By the nature of this RAPD

marker, it does not make any biological sense to evaluate the contribution of the loci.

Therefore, the table of analysis of variance presented here does not consider the loci effect

(this effect will be incorporated in the residual).

Making an analogy to the ANOVA table for heterozygosity (Weir, 1990) with the
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RAPD markers, we have,

Xgik =















1, if the i-th individual of the g-th population is dominant

at locus k (band present).

0, elsewhere (band absent).

As mentioned earlier, using RAPD markers, one can consider that the loci are randomly

sampled in the individuals and populations and, since they are also randomly sampled

without any guaranty that the loci are the same for all the individuals, we decided to

incorporate the effect of locus in the residual term.

Table 1 shows the ANOVA table for RAPD data.

Table 1: Analysis of Variance for RAPD Data in Unbalanced Designs

Source of Sum of

Variation d.f. Squares E(SS)

Population G − 1 PSS E
(

PSS
G−1

)

Individuals within
∑

g

(Ng − 1) ISS E
(

ISS
NT−G

)

populations

Residual (K − 1)NT RSS E
(

RSS
(K−1)NT

)

Total KNT − 1 TSS

The Population Sum of Squares (PSS), Individual Sum of Squares (ISS), Residual Sum of

Squares (RSS) and the Total Sum of Squares (TSS) are as follows

PSS =
G

∑

g=1

KNg
(

X̄g·· − X̄...
)2

(2.1)

ISS =
G

∑

g=1

Ng
∑

i=1

K
(

X̄gi· − X̄g··
)2

, (2.2)
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TSS =
G

∑

g=1

Ng
∑

i=1

K
∑

k=1

(Xgik − X̄···)
2 and RSS = TSS − PSS − ISS (2.3)

3 The Test Statistic and its Asymptotic Distribution

Now, one would like to develop a test statistic to test the hypothesis of homogeneity

among groups (or populations). Then, the asymptotic distribution of this test statistic

will be of interest.

The outcomes one obtains from RAPD markers are like random vectors of binary

data. Considering that the loci are independent and that the groups and individuals are

also independent, the response variable Xgik follows a Bernoulli distribution, i.e.,

P (Xgik = xgik) = p
xgik

gk (1 − pgk)
(1−xgik)II{0,1}(xgik), (3.1)

where pgk is the probability that an individual of population g be dominant at locus k,

i = 1, . . . , Ng; g = 1, . . . , G; k = 1, . . . , K. Therefore, E(Xgik) = pgk and Var(Xgik) =

pgk(1 − pgk).

Note that for RAPD markers, X̄gi· represents the proportion, of dominant phenotype

in individual i of group g, X̄g·· represents the proportion of dominant phenotype in group

g and X̄... is the general proportion (or mean) of dominant phenotype in the whole sample:

X̄gi· =
Xgi·

K
, X̄g·· =

Xg··

KNg
e X̄... =

∑

g NgX̄g··

NT
.

As our interest is to test the hypothesis of homogeneity among groups, i.e., H0 : pgk =

pk, for all g, observing Table 1 we propose as the test statistic F = MSP/MSI, where

MSP =
PSS

G − 1
and MSI =

ISS

NT − G
,

with PSS being the population sum of squares given in (2.1), which measures the vari-

ability among populations; ISS the sum of squares of individuals within population, which

measures the variability among individuals within a group (population), and G − 1 and
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NT − G are, respectively, the degrees of freedom for populations and individuals within

population.

In order to obtain the asymptotic distribution of the statistic F , one needs to find

first the asymptotic distribution of the sum of squares of the population effect. Then, by

(2.1),we have that PSS is a function of the mean number of dominant phenotypes for the

g-th group (X̄g··) and the total number of dominant phenotypes in the g-th group can be

written as

Xg·· =

Ng
∑

i=1

K
∑

k=1

Xgik,

by model (3.1),

E(Xg··) = Ng

∑

k

pgk and Var(Xg··) = Ng

∑

k

pgk(1 − pgk).

As Xgik are independent, but not identically distributed random variables, one will

use the Central Limit Theorem of Liapunov for independent random variables (James,

1996).

In this case, for a given population g, Xg11, . . . , Xg1K , . . . , XgNg1, . . . ,

XgNgK , g = 1, . . . , G, are independent random variables, such that E(Xgik) = pgk,

Var(Xgik) = pgk(1 − pgk), Sn = Xg.. e s2
n = Var(Xg..), where n = KNg. Therefore,

verifying the Liapunov condition, we have:

For δ = 1 and 0 < pgk < 1,

1

s3
n

Ng
∑

i=1

K
∑

k=1

E|Xgik − µk|3 =

∑

k pgk(1 − pgk)(1 − 2pgk + 2p2
gk)

∑

k pgk(1 − pgk)
(√

Ng
∑

k pgk(1 − pgk)
)

Note that

1

2
≤ 1 − 2pgk + 2p2

gk < 1 ⇒
K

∑

k=1

pgk(1 − pgk)(1 − 2pgk + 2p2
gk) <

K
∑

k=1

pgk(1 − pgk)

Then,

∑

k pgk(1 − pgk)(1 − 2pgk + 2p2
gk)

∑

k pgk(1 − pgk)
(√

Ng
∑

k pgk(1 − pgk)
) <

1
√

Ng
∑K

k=1 pgk(1 − pgk)
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If h⋆ = min
k

{pgk(1 − pgk)}, then Ng
∑

k pgk(1 − pgk) ≥ KNgh
⋆ and hence

1
√

∑K
k=1 Ngpgk(1 − pgk)

≤ 1
√

KNgh⋆
→ 0 when KNg → ∞

Since the Liapunov condition is satisfied,

X̄g·· ≈ N

(

∑

k pgk

K
,

∑

k pgk(1 − pgk)

K2Ng

)

for K or Ng sufficiently large.

Once the asymptotic distribution of X̄g·· is normal, we could write PSS as a quadratic

form of normal random variables.

Note that PSS can be written as

PSS = H′FH, (3.2)

where H = (X̄1··, X̄2··, . . . , X̄G··)
′ and F = KF⋆, with F⋆ being a symmetric matrix

G × G with its elements given as

f⋆(g, g) = Ng

(

1 − Ng

NT

)

and f⋆(g, g′) = −NgNg′

NT
, g′ 6= g (3.3)

Therefore, asymptotically

H ≈ N (µ1,Σ1) (3.4)

where

µ1 =
1

K

(

∑

k

p1k,
∑

k

p2k, . . . ,
∑

k

pGk

)′

and Σ1 =
1

K2
Σ⋆

1, (3.5)

Σ⋆
1 is a diagonal matrix G × G with diagonal elements of the form

σ⋆(g, g) =

∑

k pgk(1 − pgk)

Ng
.

Under the hypothesis of homogeneity among groups, H0 : pgk = pk for all g, from

(3.4), asymptotically,

H ≈ N (µ01,Σ01) (3.6)
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where µ01 =

∑

k pk

K
uG, with uG being a column vector of 1’s of dimension G and

Σ01 =

∑

k pk(1 − pk)

K2
Σ⋆

01, (3.7)

with Σ⋆
01 being a diagonal matrix G × G with elements σ⋆

0(g, g) = N−1
g , g = 1, . . . , G.

As PSS is a quadratic form of random variables with asymptotic normal distribution,

one uses Cochran’s Theorem (Sen and Singer, 1993) to find out the distribution of PSS

under H0.

As PSS = H′FH = KH′F⋆H, where F⋆ is given by (3.3).

From (3.6) and (3.7) we have that, for K → ∞,

K
√

∑

k pk(1 − pk)
(H − µ01)

D−→ N (0,Σ⋆
01) .

Note that, since Σ⋆
01 is a diagonal matrix whose elements are all positive, Σ⋆

01 is

non singular and, therefore, F⋆ is a generalized inverse of Σ⋆
01 if and only if F⋆Σ⋆

01 is

idempotent, i.e., F⋆Σ⋆
01F

⋆ = F⋆ ⇔ F⋆Σ⋆
01F

⋆Σ⋆
01 = F⋆Σ⋆

01.

Lemma 3.1 F⋆Σ⋆
01 is idempotent. (Proof in the Appendix)

Lemma 3.2 Rank(F⋆) = G − 1. (Proof in the Appendix)

Note that

µ
′
01F

⋆
µ01 =

(
∑

k pk)
2

K2
u′

GF⋆uG = 0, (3.8)

since, by (3.3) and as uG is a column vector of 1’s of size G, u′
G
F⋆ is a row vector of size

G whose i-th element, i = 1, . . . , G is

Ni

(

1 − Ni

NT

)

− Ni

NT
(NT − Ni) = 0 (3.9)

Then, by (3.8), from Lemmas 3.1 and 3.2, and using Cochran’s Theorem (Sen and

Singer, 1993) for K → ∞

K2

∑

k pk(1 − pk)
(H − µ01)

′F⋆(H − µ01)
D−→ χ2

G−1
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Note that,

(H − µ01)
′F⋆(H − µ01) = H′F⋆H − 2µ

′
01F

⋆H + µ
′
01F

⋆
µ01,

therefore, by (3.8) and (3.9),

K2

∑

k pk(1 − pk)
(H − µ01)

′F⋆(H − µ01) =
K

∑

k pk(1 − pk)
PSS.

Hence, under H0 and for K sufficiently large

K
∑

k pk(1 − pk)
PSS ≈ χ2

G−1 (3.10)

Now we obtain the asymptotic distribution of the sum of squares due to the effect of

individuals within population (ISS). Then, by (2.2), one has

ISS =
G

∑

g=1

Ng
∑

i=1

K
(

X̄gi· − X̄g··
)2

,

where X̄gi· represents the proportion, over K loci, of dominant phenotypes in individual i

of group g and X̄g·· represents the average number of dominant phenotypes in group g.

To obtain the asymptotic distribution of ISS, it is necessary to obtain the asymp-

totic distribution of X̄gi·. Note that the number of dominant phenotypes over K loci in

individual i of population g is

Xgi· =
K

∑

k=1

Xgik.

Therefore,

E(Xgi·) =
∑

k

pgk and Var(Xgi·) =
∑

k

pgk(1 − pgk).

In this case one has that Xgi1, . . . , XgiK are independent random variables such that

E(Xgik) = pgk, Var(Xgik) = pgk(1 − pgk), SK = Xgi· e sK =
√

Var(Xgi·).

To verify whether the condition of Liapunov’s Central Limit Theorem is satisfied one

takes δ = 1 and 0 < pgk < 1, then

1

s3
K

K
∑

k=1

E|Xgik − µk|3 =
1

s3
K

K
∑

k=1

E|Xgik − pgk|3
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=

∑

k pgk(1 − pgk)(1 − 2pgk + 2p2
gk)

∑

k pgk(1 − pgk)
(√

∑

k pgk(1 − pgk)
)

One has that
∑

k pgk(1 − pgk)(1 − 2pgk + 2p2
gk)

∑

k pgk(1 − pgk)
(√

∑

k pgk(1 − pgk)
) <

1
√

∑K
k=1 pgk(1 − pgk)

.

If h⋆ = min
k

{pgk(1 − pgk)}, then
∑

k pgk(1 − pgk) ≥ Kh⋆ and therefore

1
√

∑K
k=1 pgk(1 − pgk)

≤ 1√
Kh⋆

→ 0 when K → ∞,

satisfying Liapunov’s condition.

Therefore one has that when K → ∞,

X̄gi·
D−→ N

(
∑

k pgk

K
,

∑

k pgk(1 − pgk)

K2

)

As PSS, ISS can also be written as a quadratic form of normal random variables, i.e.,

ISS = H2
′F2H2 (3.11)

where H2 = (X̄11·, X̄12·, . . . , X̄1N1·, X̄21·, . . . , X̄2N2·, . . . , X̄GNG·)
′ and F2 = KF⋆

2, F⋆
2

is a symmetric matrix NT × NT of the form

F⋆
2 =



































A1 0 . . . 0

0 A2 . . . 0

· . . . 0

·
·
0 . . . AG



































(3.12)

where Ag = (ag(i, j)) , g = 1, . . . , G, is a matrix Ng × Ng such that

ag(i, i) = 1 − 1

Ng
and ag(i, j) = − 1

Ng
, i, j = 1, . . . , Ng (3.13)
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Therefore, asymptotically

H2 ≈ N (µ2,Σ2) (3.14)

where

µ2 =
1

K

(

∑

k

p1ku
′
N1

,
∑

k

p2ku
′
N2

, . . . ,
∑

k

pGku
′
NG

)′

and Σ2 =
1

K2
Σ⋆

2,

(3.15)

uNg
is a column vector of 1’s, of size Ng, Σ⋆

2 is a block diagonal NT × NT whose block

diagonal elements are Σ⋆
2g =

∑

k pgk(1 − pgk)INg , with INg identity matrix Ng × Ng,

g = 1, . . . , G.

From (3.14) one has, under H0

H2 ∼ N (µ02,Σ02)

where µ02 =

∑

k
pk

K uNT
and Σ02 is a diagonal matrix NT×NT of the form

∑

k pk(1 − pk)

K2
INT

.

One has then, ISS = H2
′F2H2 = KH2

′F⋆
2H2.

Under H0,

K
√

∑

k pk(1 − pk)
(H2 − µ02)

D−→ N(0, INT
), when K → ∞,

by Cochran’s Theorem (Sen and Singer, 1993) and given that INT
is a non singular matrix,

K2

∑

k pk(1 − pk)
(H2 − µ02)

′F⋆
2(H2 − µ02)

D−→ χ2
posto(F⋆

2
)

if and only if F⋆
2INT

= F⋆
2 is idempotent.

Lemma 3.3 F⋆
2 is idempotent. (Proof in the Appendix)

Lemma 3.4 Rank(F⋆
2) = NT − G. (Proof in the Appendix)

One has

(H2 − µ02)
′F⋆

2(H2 − µ02) = H2
′F⋆

2H2 − 2µ
′
02F

⋆
2H2 + µ

′
02F

⋆
2µ02

=
ISS

K
(3.16)
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since µ
′
02F

⋆
2µ02 =

(
∑

k pk)
2

K2
u′

NT
F⋆

2uNT
= 0, where uNT

is a NT column vector of 1’s,

u′
NT

F⋆
2 is a row vector, 1 × NT of the form (a1 a2 . . . aG), where ag, g = 1, . . . , G is a

Ng row vector such that

ag(i) = 1 − 1

Ng
−

(

Ng − 1

Ng

)

= 0.

Therefore, under H0, using Cochran’s Theorem (Sen and Singer, 1993), Lemmas 3.3 and

3.4 and (3.16), for K sufficiently large,

K2

∑

k pk(1 − pk)
(H2 − µ02)

′F⋆
2(H2 − µ02) =

K
∑

k pk(1 − pk)
ISS ≈ χ2

NT−G

(3.17)

Since the interest is to compare groups of arrays of binary outcomes under the null hy-

pothesis of homogeneity among groups and using (3.10) and (3.17), one has asymptotically

(K → ∞) that,

K
∑

k pk(1 − pk)
PSS ∼ χ2

G−1 and
K

∑

k pk(1 − pk)
ISS ∼ χ2

NT−G

The null hypothesis can be tested using the statistic F =
MSP

ISS
, where

MSP =
PSS

G − 1
and MSI =

ISS

NT − G
.

Lemma 3.5 PSS and ISS are independent. (Proof in the Appendix)

Therefore one has,

F =
MSP

MSI
≈

(

χ2

G−1

G−1

)

(

χ2

NT −G

NT−G

) ≈ FG−1,NT−G, (3.18)

In other words, asymptotically F follows the Fisher-Snedecor distribution with parameters

G − 1 and NT − G.

When the vector of outcomes has a small dimension as is the case when RAPD markers

are characterized by few loci, one can resort to resampling methods such as the bootstrap.
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4 The Power of the Test

A brief study of the power of the test is now undertaken. It was seen in (3.2) and

(3.11) that the sum of squares due to the population effects (PSS) and to individuals

within population (ISS), respectively, can be written in matrix form:

PSS = H′FH and ISS = H2
′F2H2.

From (3.4) and (3.14) one has, asymptotically on the number of loci K,

H ∼ N (µ1,Σ1) and H2 ∼ N (µ2,Σ2) ,

where µ1, Σ1, µ2 and Σ2 are defined in (3.5) and (3.15).

Since F is symmetric it can be decomposed as: F = Q⋆
1D

⋆
1Q

⋆
1

′, where Q⋆
1 is the

orthogonal matrix of eigenvectors of F and D⋆
1 is the diagonal matrix of eigenvalues of F.

Therefore,

F = Q⋆
1(D⋆

1)1/2(D⋆
1)1/2Q⋆

1

′ = (F1/2)′F1/2 (4.1)

Since F is semi-definite positive (proof in the Appendix), the elements of F1/2 ∈ IR.

Therefore, PSS can be written as:

PSS = (F1/2H)′F1/2H = X′
1X1,

one has then that

X1 ∼ N
(

F1/2
µ1; F1/2Σ1(F

1/2)′
)

.

Theorem 4.1 (proof in the Appendix)

If X is a n × 1 random vector, X ∼ N(µ,V), where V is a nonsingular diagonal

matrix and A is a n × n diagonal matrix of deterministic elements, then,

X′AX ∼
n

∑

i=1

λi

(

χ2
1(δi)

)

i
,

where λi are the eigenvalues of matrix AV and δi =
µ2

i

2νi
, where µ2

i is the i-th element of

vector µ and νi are the eigenvalues of V.
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Let Q1 be an orthogonal matrix such that Q1F
1/2Σ1(F

1/2)′Q′
1 = Υ1, where Υ1 is a

diagonal matrix.

If Y1 = Q1X1 ⇒ X1 = Q′
1Y1, then, Y1 ∼ N

(

Q1F
1/2

µ1; Υ1

)

and

X1
′X1 = Y′

1Y1 ∼
G

∑

i=1

υ1i(χ
2
1(δ1i))i

where δ1i =
a2

1i

2υ1i
, with a1i as the i-th element of vector

1

2
Q1F

−1/2
µ1 e υ1i, i = 1, . . . , G, are

the eigenvalues of Υ1, and therefore are the elements of the diagonal matrix Υ1 (Theorem

4.1). Note that Υ1 is semi-definite positive because it is a covariance matrix of normally

distributed random variables and, therefore, υ1i ≥ 0.

Analogously, from (4.1) one can obtain F2 = (F2
1/2)′F2

1/2, and since F2 is semi-

definite positive (proof in the Appendix), its elements ∈ IR.

One then has

ISS = ((F2)1/2H2)′(F2)1/2H2 = X′
2X2 = Y′

2Q2Q
′
2Y2 = Y′

2Y2,

where Q2 is a diagonal matrix such that Q2(F2)1/2Σ2((F2)1/2)′Q′
2 = Υ2 is a diagonal

matrix.

Therefore, Y2 ∼ N
(

Q2(F2)1/2
µ2; Υ2

)

and by Theorem 4.1,

ISS = Y′
2Y2 ∼

NT
∑

i=1

υ2i(χ
2
1(δ2i))i

where δ2i =
a2

2i

2υ2i
, with a2i as the i-th element of vector

1

2
Q2(F2)1/2

µ2 and υ2i, i =

1, . . . , NT , are the eigenvalues of Υ2, and therefore are the elements of diagonal matrix

Υ2. In this case υ2i ≥ 0.

Then, from (3.18), for u ∈ IR,

Pr(F ≥ u) = Pr

(

PSS

ISS
≥ G − 1

NT − G
u

)

(4.2)

since PSS and ISS are linear combinations of random variables following χ2
1 distribution

whose non-centrality parameters are nonnegative and whose coefficients of the linear com-

bination are also all nonnegative, PSS/ISS is a random variable that takes values only in

IR+.
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Therefore, if N0 = min
0≤g≤G

Ng, for N0 → ∞, the probability in (4.2) tends to 1 indicating

that the power of the test converges to 1, i.e.,

Pr

(

PSS

ISS
≥ G − 1

NT − G
u

)

−→ Pr

(

PSS

ISS
≥ 0

)

= 1.

5 Application

The data set represents samples from a freshwater turtle, Hydromedusa maximiliani

that inhabits shallow rivers and creeks in mountainous regions of the Atlantic Forest of

eastern Brazil (Souza et al., 2000). The study area in the state of São Paulo covers

approximately 2, 700 ha containing three drainages from which a total of 44 individuals

were sampled, based on the natural spatial hierarchy formed by rivers and streams.

The three drainages are referred to as I, II and III and samples sizes for each drainage

were 25, 8 and 11, respectively. Drainage I, which contained the larger sample, was further

subdivided into three sites representing different rivers. Sample sizes for each site were 4,

12 and 9, respectively.

Under the hypothesis of homogeneity among groups we have H0 : p1k = p2k = p3k =

pk, where pk is the probability of having a band (the dominant phenotype) at position

k. Since the number of loci is not large enough in order to apply an asymptotic test, it

is necessary to generate the empirical distribution for the test statistic using resampling

methods. A bootstrap procedure was used as follows:

Step 1: pk is estimated from the data, that is, it is given by p̂k =
x··k

NT
, which is the

proportion of observed bands at position k for the combined sample of NT individuals,

and the observed value of the statistic F (Fobs) is calculated.

Step 2: NT = 44 random vectors of dimension K = 10 are generated, where each of the

K elements is taken from a Bernoulli distribution, with parameter p̂k.

Step 3: The value of statistic F is calculated for the simulated data.

Step 4: Steps 2 and 3 are repeated 10.000.

Following the procedure described above we generated the empirical distribution of F

using MATLAB. The p − value is given as the total number of F statistics whose values

15



are larger than the observed value for the statistics divided by 10, 000, that is,

p − value =
#F ′s ≥ Fobs

10, 000
.

Figure 1 shows the asymptotic behavior of the distribution of the statistics F , given

in (3.18), to compare drainages I, II, and III.

Using the simulated data, an estimate of Fobs = 0.2702 and a p− value = 0.7625 were

obtained, indicating that there is no difference among the drainages at 5% level.

For the three sites within drainage I we obtained Fobs = 0.5251 and a p − value =

0.5839. This result also shows that there is no difference in the proportions of dominant

phenotypes among freshwater turtles 1, 2 and 3. The behavior of the distributions for

these cases can be seen in Figures 1 and 2.
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Figure 1: Empirical Distribution of F : RAPD of turtles from Drainage I, II and III.

Appendix A

Lemma 3.1 F⋆Σ⋆
01 is idempotent.
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Figure 2: Empirical Distribution of F : RAPD of turtles (Sites 1, 2 and 3 from Drainage

I).

Proof: By (3.3) and (3.7),

F⋆Σ⋆
01 = E01,

where the elements of E01 are:

e01(g, g) = 1 − Ng

NT
e e01(g, g′) = −Ng

NT
, g 6= g′, g, g′ = 1, ..., G

The elements of E2
01 are

e2
01(g, g) =

(

1 − Ng

NT

)2

+
Ng

NT
(NT − Ng) = 1 − Ng

NT

e2
01(g, g′) = −Ng

NT



1 − Ng

NT
+ 1 − Ng′

NT
− 1

NT

∑

l 6=g,g′

Nl



 = −Ng

NT

Lemma 3.2 Rank(F⋆) = G − 1.

Proof: Multiplying line r of matrix F⋆ by the constant 1
Nr

, does not change the

rank of F⋆ (Rao, 1965), which is equivalent to pre-multiply F⋆ by elementary matrices

G × G known as Kronecker ∆r, i.e., square diagonal matrices with nonzero elements in

17



the diagonal, being in this case:

∆r =
(

δgg′
)

: δgg =







1
Ng

if g = r

1 if g 6= r
, δgg′ = 0, g 6= g′, g, g′ = 1, . . . , G.

Premultiplying F⋆ by G Kronecker matrices ∆r, r = 1, ..., G one obtains a matrix E1

whose elements are:

e1(g, g) = 1 − Ng

NT
; e1(g, g′) = −Ng′

NT
, g 6= g′, g, g′ = 1, ..., G.

Note that E1 = E′
01 and therefore rank(F⋆) = rank(E′

01) = rank(E01). As the rank of an

idempotent matrix is equal to its trace (Rao, 1965), rank(F⋆) =
∑G

g=1

(

1 − Ng

NT

)

= G − 1

Lemma 3.3 F⋆
2 is idempotent.

Proof: From (3.12) and (3.13) one has F⋆
2 = A⋆

1 + A⋆
2 + . . . + A⋆

G
, given that

A⋆
1 =















A1 0 . . . 0

0 0 . . . 0
... . . .

. . .
...

0 . . . . . . 0















, A⋆
2 =















0 0 . . . 0

0 A2 . . . 0
... . . .

. . .
...

0 . . . . . . 0















, . . .

. . . , A⋆
G =















0 0 . . . 0

0 0 . . . 0
... . . .

. . .
...

0 . . . . . . AG















A2
g =

(

a2
g(i, j)

)

, a2
g(i, i) = 1 − 1

Ng
= ag(i, i)

a2
g(i, j) = − 1

Ng

[

2

(

1 − 1

Ng

)

− Ng − 2

Ng

]

= − 1

Ng
= ag(i, j), g = 1, . . . , G.

Therefore, one has

(A⋆
g)

2 = A⋆
g ∀ g and A⋆

gA
⋆
g′ = 0 ∀ g 6= g′ ⇒ (F⋆

2)2 = F⋆
2 (Rao, 1965).
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Lemma 3.4 Rank(F⋆
2) = NT − G.

Proof: Since F⋆
2 is idempotent (Lema 3.3),

Rank(F⋆
2) = Trace(F⋆

2) =
G

∑

g=1

Ng
∑

i=1

(

1 − 1

Ng

)

= NT − G

Lemma 3.5 PSS and ISS are independent.

Proof: From (3.2) and (3.11), PSS and ISS can be written in matrix form. Note that

H′FH = (MH2)′FMH2, where M is a matrix G × NT whose elements are:

mij =















1

Ni
if

i−1
∑

l=1

Nl < j ≤
i

∑

l=1

Nl

0 otherwise

i = 1 . . . G.

One has that H2
′F2H2 and H2

′M′FMH2 are independent if and only if F2Σ02M
′FM =

0 (Searle, 1971). From (3.3) and (3.12),

F2Σ02M
′FM =

∑

k pk(1 − pk)

NT
Φ

where the elements of Φ = (φij), i, j = 1 . . . NT , are

φij =



















1

Ni
(NT − Ni)

[

1 − 1

Ni
− Ni − 1

Ni

]

= 0 if
i−1
∑

l=1

Nl < i, j ≤
i

∑

l=1

Nl

−
(

1 − 1

Ni

)

+
Ni − 1

Ni
= 0 otherwise

Proof of Theorem 4.1: The moment generating function of a random variable Y with non

central χ2 distribution with n degrees of freedom and non centrality parameter δ, i.e.,

Y ∼ χ2
n(δ) is given by:

MY (t) = (1 − 2t)−
1

2
ne−δ[1−(1−2t)−1] (Searle, 1971, p49)

According to Searle (1971, p57), if X is a random vector n × 1,

X ∼ N(µ,V), V non singular, and A a n × n matrix of deterministic elements, then the
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moment generating function of X′AX is given by:

MX′AX(t) =
n

∏

i=1

(1 − 2tλi)
− 1

2 exp

{

−1

2
µ
′

[

−
∞
∑

k=1

(2t)k(AV)k

]

V−1
µ

}

.

With A and V diagonal matrices, AV is a diagonal matrix whose diagonal elements

are λi, i = 1, . . . , n, Therefore (AV)k is a diagonal matrix whose diagonal elements are

λk
i . Then, −

∞
∑

k=1

(2t)k(AV)k is also a diagonal matrix with diagonal elements being

−
∞
∑

k=1

(2tλi)
k = 1 − (1 − 2tλi)

−1, provided that |tλi| < 1, i = 1, . . . , n.

Thus, as V is non singular, with diagonal elements being νi, i = 1, . . . , n,

µ
′

[

−
∞
∑

k=1

(2t)k(AV)k

]

V−1
µ =

n
∑

i=1

µ2
i

νi
[1 − (1 − 2tλi)

−1].

MX′AX(t) =
n

∏

i=1

(1 − 2tλi)
− 1

2 exp

{

−1

2

n
∑

i=1

µ2
i

νi
[1 − (1 − 2tλi)

−1]

}

=
n

∏

i=1

MYi
(tλi) =

n
∏

i=1

MλiYi
(t),

where Yi ∼ χ2
1(δi), with δi =

µ2
i

2νi
.
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Paulo (00/00805-9), Fundo de Apoio ao Ensino e Pesquisa (0023/00) and Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior.

References

Comes, H.P., and Abbott, R.J.(2000). Random amplified polymorphic DNA (RAPD) and

quantitative trait analyses across a major phylogeographical break in the Mediter-

ranean ragwort Senecio gallicus Vill. (Asteraceae). Molecular Ecology 9, 61-69.

20



Haig, S.M., Rhymer, J.M., and Heckel, D.G. (1994). Population differentiation in ran-

domly amplified polymorphic DNA of red-cockaded woodpeckers Picoides borealis.

Molecular Ecology 3, 581-595.
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