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Abstract

The article analyzes a two-dimensional phase-field model for a non-stationary
process of solidification of a binary alloy with thermal properties. The model
allows the occurrence of fluid flow in non-solid regions, which are a priori
unknown, and is thus associated to a free boundary value problem for a highly
non-linear system of partial differential equations. These equations are the
phase-field equation, the heat equation, the concentration equation and a
modified Navier-Stokes equations obtained by the addition of a penalization
term of Carman-Kozeny type, which accounts for the mushy effects, and also
of a Boussinesq term to take in care of the effects of variations of temperature
and concentration in the flow. A proof of existence of weak solutions for
such system is given. The problem is firstly approximated and a sequence
of approximate solutions is obtained by Leray-Schauder fixed point theorem.
A solution is then found by using compactness argument.
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1 Introduction

Through the introduction of an extra variable to distinguish among physi-
cal phases, the phase-field methodology provides a continuum description of
phase change processes. This method has proved itself to be a powerful tool
for the study of situations with complex growth structures like dendrites,
and recently phase-field models for solidification have been extended to in-
clude melt convection, bringing interesting new mathematical aspects to the
methodology.

In an attempt to understand such mathematical aspects, we consider here
a two-dimensional phase-field model for a non-stationary process of solidifica-
tion with convection of a binary alloy with thermal properties. Our objective
is to prove the existence of solutions of a mathematical model that combines
ideas of Voller et al. [12, 13] and of Blanc et al. [1] for taking in consideration
the possibility of flow, with those of Caginalp et al. [2] for the phase-field and
the thermal properties of the alloy. The resulting system will be described
in detail in the next section. Here, we just observe that, besides having a
phase-field equation, a heat equation and a concentration equation, it also
includes the Navier-Stokes equations modified by the addition of a Carman-
Kozeny type term to take care of the flow in mushy regions and also by the
addition a Boussinesq type term to take in consideration buoyancy forces due
to thermal and concentration differences. Since these equations for the flow
only hold in an a priori unknown non-solid region, the model corresponds to
a free-boundary value problem. Moreover, since the Carman-Kozeny term
is dependent on the local solid fraction, this is assumed to be functionally
related to the phase-field.

The phase-field model with convection considered here includes advection
terms in each of its equations. In a recent paper, [9], a simplified version
of this model, which did not include the advection term in the phase-field
equation, was analyzed. We should say that the inclusion of this term brings
several new technical difficulties to an already hard problem. To overcome
these difficulties is the purpose of this paper; for this, we had to adapt to our
case the results presented in Hoffman and Jiang [5] concerning the phase-
field equation. We also had to restrict the analysis to the two-dimensional
situation. We will comment more about this point in the next section; here
we just remark that this restriction in the dimension of the space is clearly
of technical nature. We hope to remove it in the future.

Existence of solutions will be obtained by using a regularization technique
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similar to the one already used in [1] and [9]: with the help of an auxiliary
parameter, we will transform the original free-boundary value problem into a
more standard penalized one. This regularized problem will then be studied
by using fixed point arguments, and then we pass to the limit to obtain a
solution of the original problem.

The outline of this paper is as follows. In Section 2 we detail the model
we consider; we also fix the notation and state our main result. In Section 3
we study an auxiliary phase-field problem. The description and the analysis
of the regularized problem is done in Section 4. Section 5 is devoted to proof
the main existence theorem.

2 The model and the main result

Consider 0 < T < +∞, a bounded open domain Ω ⊂ IR2 with smooth
boundary ∂Ω, and denote Q = Ω × (0, T ). Then, consider the following
problem:

vt − ν∆v + ∇p + v · ∇v + k(fs(φ))v = F(c, θ) in Qml, (1)

div v = 0 in Qml, (2)

v = 0 in Qs, (3)

αǫ2φt + αǫ2v · ∇φ − ǫ2∆φ −
1

2
(φ − φ3)

= β (θ − cθA − (1 − c)θB) in Q, (4)

Cvθt + Cvv · ∇θ = ∇ · K1(φ)∇θ +
l

2
fs(φ)t in Q, (5)

ct + v · ∇c = K2 (∆c + M∇ · c(1 − c)∇φ) in Q, (6)

∂φ

∂n
= 0,

∂θ

∂n
= 0,

∂c

∂n
= 0 on ∂Ω × (0, T ), v = 0 on ∂Qml, (7)

φ(0) = φ0, θ(0) = θ0, c(0) = c0 in Ω, v(0) = v0 in Ωml(0), (8)

In the previous equations, the order parameter (phase-field) φ is the state
variable characterizing the different phases; v is the velocity field, and p is
the associated hydrostatic pressure; fs ∈ [0, 1] is the solid fraction; θ is the
temperature; c ∈ [0, 1] is the concentration (the fraction of one of the two
materials in the mixture.) The Carman-Kozeny type term k(fs) accounts for
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the mushy effect on the flow, and its usual form is k(fs) = C0fs
2/(1 − fs)

3.
We do not restrict to this form and allow more general expressions. F(c, θ)
denotes the buoyancy forces, which by using Boussinesq approximation, we
assume to be of form F(c, θ) = ρg (c1(θ − θr) + c2(c − cr)) + F . Here, ρ > 0
is the mean value of the density (constant); g is the acceleration of gravity;
c1 and c2 are two real constants; θr and cr are respectively the reference
temperature and concentration, which for simplicity of exposition will be
assumed to be zero, and F is a given external force field. Also, α > 0 is the
relaxation scaling; β = ǫ[s]/3σ, where ǫ > 0 is a measure of the interface
width; σ is the surface tension, and [s] is the entropy density difference
between phases; ν > 0 is the viscosity; Cv > 0 is the specific heat; l > 0 the
latent heat (constant); θA, θB are the melting temperatures of two materials
composing the alloy; K2 > 0 is the solute diffusivity, and M is a constant
related to the slopes of solidus and liquidus lines. Finally, K1 > 0 denotes
the thermal conductivity which is assumed to depend on the phase-field.

The domain Q is composed of three regions, Qs, Qm and Ql. The first
region is fully solid, the second is mushy and the third is fully liquid . They
are defined by

Qs = { (x, t) ∈ Q / fs(φ(x, t)) = 1 },
Qm = { (x, t) ∈ Q / 0 < fs(φ(x, t)) < 1 },
Ql = { (x, t) ∈ Q / fs(φ(x, t)) = 0 },

(9)

and Qml will refer to the not-solid region, i.e.,

Qml = Qm ∪ Ql = { (x, t) ∈ Q / 0 ≤ fs(φ(x, t)) < 1 }. (10)

At each time t ∈ [0, T ], Ωml(t) is defined by

Ωml(t) = { x ∈ Ω / 0 ≤ fs(φ(x, t)) < 1 } . (11)

In view of these regions are a priori unknown, the model is a free boundary
problem.

Throughout this paper we assume the conditions,
(H1) k is a non decreasing function of class C1[0, 1) satisfying k(0) = 0

and lim
x→1−

k(x) = +∞,

(H2) fs is a Lipschitz continuous function defined on IR and satisfying
0 ≤ fs(r) ≤ 1 for r ∈ IR; f ′

s is measurable,
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(H3) K1 is a Lipschitz continuous function defined on IR such that there
exist a > 0 and b > 0 for which

0 < a ≤ K1(r) ≤ b for all r ∈ IR,

(H4) F is a given function in L2(Q).

Our purpose in this work is to show that problem (1)-(8) admits at least
one solution in a sense to be made precise below.

Before that, we comment on the restriction on the spatial dimension.
Since the modified Navier-Stokes equations only hold in the non-solid region
Qml, this set must be open for these equations to be understood at least in
the sense of distributions. This information is in particular implied by the
continuity of phase-field φ which in turn depends on the smoothness of v. It
turns out that only for the bidimensional case we are able to show enough
regularity of v to yield the continuity of φ. As we wrote in the Introduction,
such limitations are quite clearly of technical nature, and it is our hope to
remove them in the future.

We use standard notation in this paper. We just briefly recall the follow-
ing functional spaces associated to the Navier-Stokes equations. Let G ⊆ IR2

be a non-void bounded open set; for T > 0, consider also QG = G × (0, T )
Then,

V(G) =
{

w ∈ (C∞

0 (G))2 , div w = 0
}

,

H(G) = closure of V(G) in (L2(G))
2
,

V (G) = closure of V(G) in (H1
0 (G))

2
,

Hτ,τ/2(QG) = Hölder continuous functions of exponent τ in x
and exponent τ/2 in t,

W 2,1
q (QG) = {w ∈ Lq(QG)/ Dxw, D2

xw ∈ Lq(QG), wt ∈ Lq(QG)} .

When G = Ω, we denote H = H(Ω), V = V (Ω). Properties of these func-
tional spaces can be found for instance in [6, 11]. We denote by 〈·, ·〉 the
duality pairing between H1(Ω) and H1(Ω)′. We also put (·, ·) = (·, ·)Ω the
inner product of (L2(Ω))

2
.

The main result of this paper is the following.

Theorem 1 Let be T > 0, Ω ⊆ IR2 a bounded open domain of class C3.
Suppose that v0 ∈ H(Ωml(0)), φ0 ∈ W 2−2/q,q(Ω)∩H1+γ(Ω), 2 < q < 4, 1/2 <

γ ≤ 1, satisfying the compatibility condition
∂φ0

∂n
= 0 on ∂Ω, θ0 ∈ L2(Ω)

5



and c0 ∈ L2(Ω) satisfying 0 ≤ c0 ≤ 1 a.e. in Ω̄. Under the assumptions
(H1)-(H4), there exist functions (v, φ, θ, c) such that

i) v ∈ L2(0, T ; V )∩L∞(0, T ; H), v = 0 a.e. in
o

Qs, v(0) = v0 in Ωml(0),
where Qs is defined by (9) and Ωml(0) by (11),

ii) φ ∈ W 2,1
q (Q), φ(0) = φ0,

iii) θ ∈ L2(0, T ; H1(Ω)) ∩ L∞(0, T ; L2(Ω)), θ(0) = θ0,

iv) c ∈ L2(0, T ; H1(Ω)) ∩ L∞(0, T ; L2(Ω)), c(0) = c0, 0 ≤ c ≤ 1 a.e. in Q,

and such that

(v(t), η(t))Ωml(t) −
∫ t

0
(v, ηt)Ωml(s)ds + ν

∫ t

0
(∇v,∇η)Ωml(s)ds

+
∫ t

0
(v · ∇v, η)Ωml(s)ds +

∫ t

0
(k(fs(φ))v, η)Ωml(s)ds(12)

=
∫ t

0
(F(c, θ), η)Ωml(s)ds + (v0, η(0))Ωml(0),

t ∈ (0, T ), for any η ∈ L2(0, T ; V (Ωml(t))) with compact support contained
in Qml ∪Ωml(0)∪Ωml(T ) and ηt ∈ L2(0, T ; V (Ωml(t))

′) where Qml is defined
by (10) and Ωml(t) by (11),

αǫ2φt + αǫ2v · ∇φ − ǫ2∆φ =
1

2
(φ − φ3) + β (θ + (θB − θA)c − θB) a.e. in Q,

(13)
∂φ

∂n
= 0 a.e. on ∂Ω × (0, T ), (14)

−Cv

∫ T

0

∫

Ω
θζtdxdt − Cv

∫ T

0

∫

Ω
v θ · ∇ζ dxdt +

∫ T

0

∫

Ω
K1(φ)∇θ · ∇ζ dxdt

=
l

2

∫ T

0

∫

Ω
fs(φ)tζ dxdt + Cv

∫

Ω
θ0ζ(0)dx (15)

−
∫ T

0

∫

Ω
cζtdxdt −

∫ T

0

∫

Ω
v c · ∇ζ dxdt + K2

∫ T

0

∫

Ω
∇c · ∇ζ dxdt

+K2M
∫ T

0

∫

Ω
c(1 − c)∇φ · ∇ζ dxdt =

∫

Ω
c0ζ(0)dx, (16)

for any ζ ∈ L2(0, T ; H1(Ω)) with ζt ∈ L2(0, T ; L2(Ω)) and ζ(T ) = 0 in Ω.
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Remark. The restriction q > 2 ensure the continuity of phase-field
because W 2,1

q (Q) ⊆ Hτ,τ/2(Q̄) where τ = 2 − 4/q if q > 2 ([6] p. 80).
Therefore the set Qml is open giving a meaningful interpretation to equation
of velocity field. The restriction q < 4 comes from the regularity of velocity
field. It will be clear in the next section.

3 An auxiliary problem

We consider the initial boundary value problem,

αǫ2φt + αǫ2v · ∇φ − ǫ2∆φ =
1

2
(φ − φ3) + g in Q, (17)

∂φ

∂n
= 0 on ∂Ω × (0, T ), (18)

φ(0) = φ0 in Ω, (19)

and prove the following result using a technique similar to the one already
used in [5] to treat a phase-field equation without convective term.

Theorem 2 Suppose that g ∈ Lq(Q) with 2 ≤ q < 4, v ∈ L2(0, T ; V ) ∩
L∞(0, T ; H) and φ0 ∈ W 2−2/q,q(Ω) satisfying the compatibility conditions
∂φ0

∂n
= 0 on ∂Ω. Then there exist a unique φ ∈ W 2,1

q (Q) solution of problem

(17)-(19) for any T > 0, which satisfies the estimate

‖φ‖W 2,1
q (Q) ≤ C

(

‖φ0‖W 2−2/q,q(Ω) + ‖g‖Lq(Q) + ‖φ0‖
3
W 2−2/q,q(Ω) + ‖g‖3

Lq(Q)

)

(20)
where C depends on ‖v‖L4(Q), on Ω and T.

Proof: In order to apply Leray-Schauder fixed point theorem ([3] p.
189) we consider the operator Tλ, 0 ≤ λ ≤ 1, on the Banach space B =
L6(Q), which maps φ̂ ∈ B into φ by solving the problem

αǫ2φt + αǫ2v · ∇φ − ǫ2∆φ =
λ

2
(φ̂ − φ̂3) + λg in Q, (21)

∂φ

∂n
= 0 on ∂Ω × (0, T ), (22)

φ(0) = φ0 in Ω. (23)
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We define Gλ =
λ

2
(φ̂ − φ̂3) + λg and we observe that Gλ ∈ L2(Q). Since

v ∈ L4(Q), we infer from Lp-theory of parabolic equations ([6], Thm. 9.1
in Chapter IV, p. 341 and the remark at the end of Section 9 of the same
chapter, p. 351) that there is a unique solution φ of problem (21)-(23) with
φ ∈ W 2,1

2 (Q). Due to the embedding of W 2,1
2 (Q) into Lp(Q), for any p ∈ [1,∞)

([7] p.15), the operator Tλ is well defined from B into B.
To prove continuity of Tλ, let φ̂n ∈ B strongly converging to φ̂ ∈ B; for

each n, let φn = Tλ(φ̂n). We have that φn satisfies the following estimate ([6]
p. 341)

‖φn‖W 2,1
2

(Q) ≤ C
(

‖φ̂n‖L2(Q) + ‖φ̂n‖
3
L6(Q) + ‖g‖L2(Q) + ‖φ0‖H1(Ω)

)

for some constant C independent of n. Since W 2,1
2 (Q) is compactly embed-

ded in L2(0, T ; W 1,p(Ω)) ([10] Cor.4) and in Lp(Q), p ∈ [1,∞), it follows that
there exist a subsequence of φn (which we still denote by φn) strongly con-
verging to φ = Tλ(φ̂) in B. Therefore Tλ is continuous for all 0 ≤ λ ≤ 1. At
the same time, Tλ is bounded in W 2,1

2 (Q), and the embedding of this space
in B is compact. Thus, we conclude that Tλ is a compact operator for each
λ ∈ [0, 1].

To prove that for φ̂ in a bounded set of B, Tλ is uniformly continuous
with respect to λ, let 0 ≤ λ1, λ2 ≤ 1 and φi (i = 1, 2) be the corresponding
solutions of (21)-(23). For φ = φ1 − φ2 the following estimate holds

‖φ‖W 2,1
2

(Q) ≤ C|λ1 − λ2|
(

‖φ̂‖L2(Q) + ‖φ̂‖3
L6(Q) + ‖g‖L2(Q)

)

where C is independent of λi. Therefore, Tλ is uniformly continuous in λ.
Now we have to estimate the set of all fixed points of Tλ, let φ ∈ B be

such a fixed point, i.e., it is a solution of the problem

αǫ2φt + αǫ2v · ∇φ − ǫ2∆φ =
λ

2
(φ − φ3) + λg in Q, (24)

∂φ

∂n
= 0 on ∂Ω × (0, T ), (25)

φ(0) = φ0 in Ω. (26)

We multiply (24) successively by φ, φt and −∆φ, and integrate over Ω×(0, t).
After integration by parts and the use the Hölder’s, Young’s and interpolation
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inequalities, we obtain in the usual manner the following estimate
∫

Ω

(

φ2 + |∇φ|2
)

dx + ‖φ‖2
W 2,1

2
(Q)

≤ C
(

‖g‖2
L2(Q) + ‖φ0‖

2
H1(Ω)

)

+C
∫ t

0

(

1 + ‖v‖4
L4(Ω)

) (

‖φ‖2
L2(Ω) + ‖∇φ‖2

L2(Ω)

)

dt
(27)

where C is independent of λ. By applying Gronwall’s Lemma we get

‖φ‖L6(Q) ≤ C‖φ‖W 2,1
2

(Q) ≤ C ′

where C and C ′ are constants independent of λ. Therefore, all fixed points
of Tλ in B are bounded independently of λ ∈ [0, 1].

Finally, for λ = 0, it is clear that problem (21)-(23) has a unique solu-
tion. Therefore, we can apply Leray-Schauder’s fixed point theorem, and so
there is at least one fixed point φ ∈ B ∩ W 2,1

2 (Q) of the operator T1, i.e.,
φ = T1(φ). This corresponds to a solution of problem (17)-(19). Observe
that W 2,1

2 (Q) is embedded into Lp(Q) for any p ∈ [1,∞), this implies that

G =
1

2
(φ − φ3) + g ∈ Lq(Q) and further φ ∈ W 2,1

q (Q).

To prove estimate (20), observe that from Lp-theory of parabolic equa-
tions we have

‖φ‖W 2,1
q (Q) ≤ C

(

‖G‖Lq(Q) + ‖φ0‖W 2−2/q,q(Ω)

)

≤ C
(

‖g‖Lq(Q) + ‖φ‖Lq(Q) + ‖φ‖3
L3q(Q) + ‖φ0‖W 2−2/q,q(Ω)

)

≤ C
(

‖g‖Lq(Q) + ‖φ‖W 2,1
2

(Q) + ‖φ‖3
W 2,1

2
(Q)

+ ‖φ0‖W 2−2/q,q(Ω)

)

.

Using estimate (27) we deduce (20).
It remains to show uniqueness of the solution. Let us assume that φ1 and

φ2 are two solutions of problem (17)-(19). Then the difference φ = φ1 − φ2

satisfies the following initial boundary value problem

αǫ2φt + αǫ2v · ∇φ − ǫ2∆φ =
1

2
φ
(

1 − (φ2
1 + φ1φ2 + φ2

2)
)

in Q, (28)

∂φ

∂n
= 0 on ∂Ω × (0, T ), (29)

φ(0) = 0 in Ω, (30)

We remark that d := φ2
1 +φ1φ2 +φ2

2 ≥ 0. Multiplying (28) by φ and using the
usual method of Gronwall’s Lemma give us φ ≡ 0. Therefore, the solution of
problem (17)-(19) is unique and the proof of Theorem 2 is then complete.
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4 A regularized problem

In this section we introduce a regularized version of the original problem.
As in [1] and [9], the idea is to modify the problem in such way that the
Navier-Stokes equations will hold in the whole domain Ω instead of only in
a apriori unknown region. For technical reason, we also introduce a suit-
able regularization of the coefficients of the equations. For this regularized
problem, we prove an existence result by using Leray-Schauder Fixed Point
Theorem ([3] p. 189).

For this, we need to recall certain results. We start by recalling that there
is an extension operator Ext(·) taking any function w in the space W 2,1

2 (Q)
and extending it to a function Ext(w) ∈ W 2,1

2 (IR3) with compact support
satisfying

‖Ext(w)‖W 2,1
2

(IR3) ≤ C ‖w‖W 2,1
2

(Q),

with C independent of w (see [8] p.157).
For δ ∈ (0, 1), let ρδ ∈ C∞

0 (IR3) be a family of symmetric positive mol-
lifier functions converging to the Dirac delta function, and denote by ∗ the
convolution operation. Then, given a function w ∈ W 2,1

2 (Q), we define a
regularization ρδ(w) ∈ C∞

0 (IR3) of w by

ρδ(w) = ρδ ∗ Ext(w).

This sort of regularization will be used with the phase-field variable. We
will also need a regularization for the velocity, and for it we proceed as follows.

Given v ∈ L2(0, T ; V ), first we extend it as zero in IR3\Q. Then, as
in [8] p. 157, by using reflection and cutting-off, we extend the resulting
function to another one defined on IR3 and with compact support. Without
the danger of confusion, we again denote such extension operator by Ext(v).
Then, being δ > 0, ρδ and ∗ as above, operating on each component, we can
again define a regularization ρδ(v) ∈ C∞

0 (IR3) of v by

ρδ(v) = ρδ ∗ Ext(v).

Besides having properties of control of Sobolev norms in terms of the corre-
sponding norms of the original function (exactly as above), such extension
has the property described below.

For 0 < δ ≤ 1, define firstly the following family of uniformly bounded
open sets

Ωδ = {x ∈ IR2 : d(x, Ω) < δ}. (31)
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We also define the associated space-time cylinder Qδ = Ωδ × (0, T ).
Obviously, for any 0 < δ1 < δ2, we have Ω ⊂ Ωδ1 ⊂ Ωδ2 , Q ⊂ Qδ1 ⊂ Qδ2 .

Also, by using properties of convolution, we conclude that ρδ(v)|∂Ωδ = 0.
In particular, for v ∈ L∞(0, T ; H) ∩ L2(0, T ; V ), we conclude that ρδ(v) ∈
L∞(0, T ; H) ∩ L2(0, T ; V (Ωδ)).

Moreover, since Ω is of class C3, there exists δ(Ω) > 0 such that for
0 < δ ≤ δ(Ω), we conclude that Ωδ is of class C2 and such that the C2 norms
of the maps defining ∂Ωδ are uniformly estimated with respect to δ in terms
of the C3 norms of the maps defining ∂Ω.

Since we will be working with the sets Ωδ, the main objective of this last
remark is to ensure that the constants associated to Sobolev immersions and
interpolations inequalities, involving just up to second order derivatives and
used with Ωδ, are uniformly bounded for 0 < δ ≤ δ(Ω). This will be very
important to guarantee that certain estimates will be independent of δ.

Finally, let f δ
s be any regularization of fs.

Now, we are in position to define the regularized problem. For δ ∈
(0, δ(Ω)], we consider the system

d

dt
(vδ, u) + ν(∇vδ,∇u) + (vδ · ∇vδ, u) + (k(f δ

s (φδ) − δ)vδ, u)

= (F(cδ, θδ), u) for all u ∈ V, t ∈ (0, T ), (32)

αǫ2φδ
t + αǫ2ρδ(v

δ) · ∇φδ − ǫ2∆φδ −
1

2
(φδ − (φδ)3)

= β
(

θδ + (θB − θA)cδ − θB

)

in Qδ, (33)

Cvθ
δ
t + Cvρδ(v

δ) · ∇θδ = ∇ ·
(

K1(ρδ(φ
δ))∇θδ

)

+
l

2
f δ

s (φδ)t in Qδ, (34)

cδ
t − K2∆cδ + ρδ(v

δ) · ∇cδ = K2M∇ ·
(

cδ(1 − cδ)∇ρδ(φ
δ)
)

in Qδ, (35)

∂φδ

∂n
= 0,

∂θδ

∂n
= 0,

∂cδ

∂n
= 0 on ∂Ωδ × (0, T ), (36)

vδ(0) = vδ
0 in Ω, φδ(0) = φδ

0, θδ(0) = θδ
0, cδ(0) = cδ

0 in Ωδ. (37)

We then have the following existence result.

Proposition 1 For each δ ∈ (0, δ(Ω)], let vδ
0 ∈ H, φδ

0 ∈ H1+γ(Ωδ), θδ
0 ∈

H1+γ(Ωδ), 1/2 < γ ≤ 1, and cδ
0 ∈ C1(Ω̄δ), 0 < cδ

0 < 1 in Ω̄δ satisfying the
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compatibility conditions
∂φδ

0

∂n
=

∂θδ
0

∂n
=

∂cδ
0

∂n
= 0 on ∂Ωδ. Assume that (H1)-

(H4) hold. Then there exist functions (vδ, φδ, θδ, cδ) which satisfy (32)-(37)
for any T > 0 and

i) vδ ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), vδ
t ∈ L2(0, T ; V ′),

ii) φδ ∈ L2(0, T ; H2(Ωδ)), φδ
t ∈ L2(Qδ),

iii) θδ ∈ L2(0, T ; H2(Ωδ)), θδ
t ∈ L2(Qδ),

iv) cδ ∈ C2,1(Qδ), 0 < cδ < 1.

Proof: For simplicity we shall omit the superscript δ at vδ, φδ, θδ, cδ.
First of all, we consider the following family of operators, indexed by the
parameter 0 ≤ λ ≤ 1,

Tλ : B → B,

where B is the Banach space

B = L2(0, T ; H)× L2(Qδ) × L2(Qδ) × L2(Qδ),

and defined as follows: given (v̂, φ̂, θ̂, ĉ) ∈ B, let Tλ(v̂, φ̂, θ̂, ĉ) = (v, φ, θ, c),
where (v, φ, θ, c) is obtained by solving the problem

d

dt
(v, u) + ν(∇v,∇u) + (v · ∇v, u) = λ(F(ĉ, θ̂), u)

− λ(k(f δ
s (φ̂) − δ)v̂, u) for all u ∈ V, t ∈ (0, T ), (38)

αǫ2φt + αǫ2ρδ(v) · ∇φ − ǫ2∆φ −
1

2
(φ − φ3)

= λβ
(

θ̂ + (θB − θA)ĉ − θB

)

in Qδ, (39)

Cvθt + Cvρδ(v) · ∇θ = ∇ · (K1(ρδ(φ))∇θ) +
l

2
f δ

s (φ)t in Qδ, (40)

ct − K2∆c + ρδ(v) · ∇c = K2M∇ · (c(1 − c)∇ρδ(φ)) in Qδ, (41)

∂φ

∂n
= 0,

∂θ

∂n
= 0,

∂c

∂n
= 0 on ∂Ωδ × (0, T ), (42)

v(0) = vδ
0 in Ω, φ(0) = φδ

0, θ(0) = θδ
0, c(0) = cδ

0 in Ωδ. (43)
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We observe that clearly (v, φ, θ, c) is a solution of (32)-(37) if and only if
it is a fixed point of the operator T1. In the following, we prove that T1 has
at least one fixed point by using the Leray-Schauder fixed point theorem ([3]
p.189).

To verify that Tλ is well defined, observe that equation (38) is the classical
Navier-Stokes equation and since k(f δ

s (φ̂)−δ)v̂ ∈ L2(Q), there exist a unique
solution v ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) ([11] p.198).

Since θ̂, ĉ ∈ L2(Qδ) and ρδ(v) ∈ L4(Qδ) we infer from Theorem 2 that
there is a unique solution φ of equation (39) with φ ∈ W 2,1

2 (Qδ).
Since K1 is a bounded Lipschitz continuous function and ρδ(φ) ∈ C∞(Qδ),

we have that K1(ρδ(φ)) ∈ W 1,1
r (Qδ), 1 ≤ r ≤ ∞, and since ρδ(v) ∈ L4(Qδ)

and f δ
s (φ)t = f δ

s
′

(φ)φt ∈ L2(Qδ), we infer from Lp-theory of parabolic equa-
tions ([6], Thm. 9.1 in Chapter IV, p. 341 and the remark at the end of
Section 9 of the same chapter, p. 351) that there is a unique solution θ of
equation (40) with θ ∈ W 2,1

2 (Qδ).
We observe that equation (41) is a semilinear parabolic equation with

smooth coefficients and growth conditions on the non-linear forcing terms to
apply semigroup results of Henry [4], p.75. Thus, there is a unique global
classical solution c. In addition, note that equation (41) does not admit
constant solutions, except c ≡ 0 and c ≡ 1. Thus, by using Maximum

Principles together with conditions 0 < cδ
0 < 1 and

∂cδ

∂n
= 0, we can deduce

that
0 < c(x, t) < 1, ∀ (x, t) ∈ Qδ. (44)

Therefore, the mapping Tλ is well defined from B into B.
To prove continuity of Tλ let (v̂k, φ̂k, θ̂k, ĉk), k ∈ IN be a sequence in B

such that converges strongly in B to (v̂, φ̂, θ̂, ĉ) and let (vk, φk, θk, ck) the
solution of the problem:

d

dt
(vk, u) + ν(∇vk,∇u) + (vk · ∇vk, u) = λ(F(ĉk, θ̂k), u)

− λ(k(f δ
s (φ̂k) − δ)v̂k, u) for all u ∈ V, t ∈ (0, T ), (45)

αǫ2φk
t + αǫ2ρδ(v

k) · ∇φk − ǫ2∆φk −
1

2
(φk − (φk)3)

= λβ
(

θ̂k + (θB − θA)ĉk − θB

)

in Qδ, (46)

Cvθ
k
t + Cvρδ(v

k) · ∇θk = ∇ ·
(

K1(ρδ(φ
k))∇θk

)

+
l

2
f δ

s (φk)t in Qδ, (47)
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ck
t − K2∆ck + ρδ(v

k) · ∇ck = K2M∇ ·
(

ck(1 − ck)∇ρδ(φ
k)
)

in Qδ, (48)

∂φk

∂n
= 0,

∂θk

∂n
= 0,

∂ck

∂n
= 0 on ∂Ωδ × (0, T ), (49)

vk(0) = vδ
0 in Ω, φk(0) = φδ

0, θk(0) = θδ
0, ck(0) = cδ

0 in Ωδ. (50)

We show that the sequence (vk, φk, θk, ck) converges strongly in B to
(v, φ, θ, c) = Tλ(v̂, φ̂, θ̂, ĉ). For that purpose, we will obtain estimates to
(vk, φk, θk, ck) independent of k. We denote by Ci any positive constant in-
dependent of k.

We take u = vk in equation (45). Using Hölder’s and Young’s inequalities
we obtain

d

dt

∫

Ω
|vk|2dx + ν

∫

Ω
|∇vk|2dx ≤ C1

∫

Ω

(

|F |2 + |v̂k|2 + |θ̂k|2 + |ĉk|2 + |vk|2
)

dx.

Then, by the usual method of Gronwall’s inequality, we get

‖vk‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ C1. (51)

From the equation (45) we infer that

‖vk
t ‖V ′ ≤ C1

(

‖vk‖V + ‖vk‖2
L4(Ω) + ‖F‖L2(Ω)

+‖v̂k‖L2(Ω) + ‖θ̂k‖L2(Ωδ) + ‖ĉk‖L2(Ωδ)

)

,

then, using (51) we obtain

‖vk
t ‖L2(0,T ;V ′) ≤ C1. (52)

From estimate (20) we have that

‖φ‖W 2,1
2

(Qδ) ≤ C
(

‖φ0‖H1(Ωδ) + ‖θ̂k‖L2(Qδ) + ‖ĉk‖L2(Qδ)

+‖φ0‖
3
H1(Ωδ) + ‖θ̂k‖3

L2(Qδ) + ‖ĉk‖3
L2(Qδ) + 1

)

where C depends on ‖ρδ(v
k)‖L4(Qδ). Therefore, using (51) we conclude that

‖φ‖W 2,1
2

(Qδ) ≤ C1. (53)

Now, multiplying (47) by θk one obtains

∫

Ωδ
|θk|2dx +

∫ t

0

∫

Ωδ
|∇θk|2dxdt ≤ C1 + C2

∫ t

0

∫

Ωδ

(

|φk
t |

2 + |θk|2
)

dxdt (54)
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and we infer from (53) and Gronwall’s Lemma that

‖θk‖L∞(0,T ;L2(Ωδ)) ≤ C1, (55)

hence, it follows from (54) that

‖θk‖L2(0,T ;H1(Ωδ)) ≤ C2. (56)

We take scalar product of (47) with η ∈ H1(Ωδ), integrating by parts and
using Hölder’s and Young’s inequalities, we obtain

‖θk
t ‖H1(Ωδ)′ ≤ C1

(

‖∇θk‖L2(Ωδ) + +‖vk‖L4(Ω)‖θ
k‖L4(Ωδ) + ‖φk

t ‖L2(Ωδ)

)

and we infer from (51),(53) and (56) that

‖θk
t ‖L2(0,T ;H1(Ωδ)′) ≤ C1. (57)

Next, multiplying (48) by ck we conclude by analogous reasoning and using
(44) that

∫

Ωδ
|ck|2dx +

∫ t

0

∫

Ωδ
|∇ck|2dxdt ≤ C1 + C2

∫ t

0

∫

Ωδ
|∇φk|2dxdt,

hence, from (53) we have,

‖ck‖L2(0,T ;H1(Ωδ))∩L∞(0,T ;L2(Ωδ)) ≤ C1. (58)

In order to get an estimate for (ck
t ) in L2(0, T ; H1(Ωδ)′), we return to the

equation (48) and use similar techniques, then

‖ck
t ‖L2(0,T ;H1(Ωδ)′) ≤ C1. (59)

We now infer from (51)-(59) that the sequence (vk) is bounded (uniformly
with respect to k) in

W1 =
{

w ∈ L2(0, T ; V ), wt ∈ L2(0, T ; V ′)
}

and in
W2 =

{

w ∈ L∞(0, T ; H), wt ∈ L2(0, T ; V ′)
}

,

the sequence (φk) is bounded in W 2,1
2 (Qδ) and the sequences (θk) and (ck)

are bounded in

W3 =
{

w ∈ L2(0, T ; H1(Ωδ)), wt ∈ L2(0, T ; H1(Ωδ)′)
}
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and in

W4 =
{

w ∈ L∞(0, T ; L2(Ωδ)), wt ∈ L2(0, T ; H1(Ωδ)′)
}

.

Since W1 is compactly embedded in L2(Q), W2 in C([0, T ]; V ′), W 2,1
2 (Qδ) in

L2(0, T ; W 1,p(Ωδ)), p ∈ [1,∞), W3 in L2(Qδ) and W4 in C([0, T ]; H1(Ωδ)′)
([10] Cor.4), it follows that there exist

v ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) with vt ∈ L2(0, T ; V ′),
φ ∈ L2(0, T ; H2(Ωδ)) with φt ∈ L2(Qδ),
θ ∈ L2(0, T ; H1(Ωδ)) ∩ L∞(0, T ; L2(Ωδ)) with θt ∈ L2(0, T ; H1(Ωδ)′),
c ∈ L2(0, T ; H1(Ωδ)) ∩ L∞(0, T ; L2(Ωδ)) with ct ∈ L2(0, T ; H1(Ωδ)′),

and a subsequence of (vk, φk, θk, ck) (which we still denote by (vk, φk, θk, ck)
), such that, as k → +∞,

vk → v in L2(Q) ∩ C([0, T ]; V ′) strongly,
vk ⇀ v in L2(0, T ; V ) weakly,
φk → φ in L2(0, T ; W 1,p(Ωδ)) ∩ C([0, T ]; L2(Ωδ)), p ∈ [1,∞) strongly,
φk ⇀ φ in L2(0, T ; H2(Ωδ)) weakly,
θk → θ in L2(Qδ) ∩ C([0, T ]; H1(Ωδ)′) strongly,
θk ⇀ θ in L2(0, T ; H1(Ωδ)) weakly,
ck → c in L2(Qδ) ∩ C([0, T ]; H1(Ωδ)′) strongly,
ck ⇀ c in L2(0, T ; H1(Ωδ)) weakly.

(60)
It now remains to pass to the limit as k tends to +∞ in (45)-(50).

We observe that k(f δ
s (·) − δ) is bounded Lipschitz continuous function

from IR in IR then k(f δ
s (φ̂k)− δ) converges to k(f δ

s (φ̂)− δ) in Lp(Q), for any
p ∈ [1,∞). We then pass to the limit in standard ways as k tends to +∞ in
(45) and get

d

dt
(v, u) +ν(∇v,∇u) + (v · ∇v, u) = λ(F(ĉ, θ̂), u)

−λ(k(f δ
s (φ̂) − δ)v̂, u) for all u ∈ V, t ∈ (0, T ).

Since the embedding of W 2,1
2 (Qδ) into Lp(Qδ) for any p ∈ [1,∞) is com-

pact ([7] p.15), and (φk) is bounded in W 2,1
2 (Qδ), we infer that (φk)3 converges

to φ3 in Lp/3(Qδ). Also, since vk converges to v in L2(Q) we have that ρδ(v
k)
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converges to ρδ(v) in L2(Qδ). We then pass to the limit as k tends to +∞ in
(46) and get

αǫ2φt +αǫ2ρδ(v) ·∇φ− ǫ2∆φ−
1

2
(φ−φ3) = λβ

(

θ̂ + (θB − θA)ĉ − θB

)

in Qδ.

Since K1(ρδ) and f δ
s
′

are bounded Lipschitz continuous functions and φk

converges to φ in Lp(Qδ), p ∈ [1,∞) we have that K1(ρδ(φ
k)) converges to

K1(ρδ(φ)) and f δ
s
′

(φk) converges to f δ
s
′

(φ) in Lp(Qδ) for any p ∈ [1,∞). These
facts and (60) yield the weak convergence of K1(ρδ(φ

k))∇θk to K1(ρδ(φ))∇θ
and f δ

s
′

(φk)φk
t to f δ

s
′

(φ)φt in L3/2(Qδ). Now, multiplying (47) by η ∈ D(Qδ),
integrating over Ωδ × (0, T ) and by parts, we obtain

∫ T

0

∫

Ωδ
Cv

(

θk
t + ρδ(v

k) · ∇θk
)

η + K1(ρδ(φ
k))∇θk · ∇η dxdt

=
∫ T

0

∫

Ωδ

l

2
f δ

s

′

(φk)φk
t η dxdt,

then we may pass to the limit and find that,

Cvθt + Cvρδ(v) · ∇θ = ∇ · (K1(ρδ(φ))∇θ) +
l

2
f δ

s

′

(φ)φt in D′(Qδ), (61)

and using Lp-theory of parabolic equations we conclude that (61) holds al-
most everywhere in Qδ.

It remains to pass to the limit in (48). We infer from (60) that ∇ρδ(φ
k)

converges to ∇ρδ(φ) in L2(Qδ) and since ‖ck‖L∞(Qδ) is bounded, it follows
that ck(1 − ck) converges to c(1 − c) in Lp(Qδ) for any p ∈ [1,∞). Thus, we
may pass to the limit in (48) to obtain

ct − K2∆c + ρδ(v) · ∇c = K2M∇ · (c(1 − c)∇ρδ(φ)) in Qδ.

Therefore Tλ is continuous for all 0 ≤ λ ≤ 1.
At the same time, Tλ is bounded in W1 × W 2,1

2 (Qδ) × W3 × W3 but, the
embedding of this space in B is compact, then we conclude that Tλ is a
compact operator.

To prove that for (v̂, φ̂, θ̂, ĉ) in a bounded set of B, Tλ is uniformly con-
tinuous in λ, let 0 ≤ λ1, λ2 ≤ 1 and (vi, φi, θi, ci) (i = 1, 2) the corresponding
solutions of (38)-(43). We observe that v = v1 − v2, φ = φ1 − φ2, θ = θ1 − θ2
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and c = c1 − c2, satisfy the following problem:

d

dt
(v, u) + ν(∇v,∇u) + (v1 · ∇v, u) − (v · ∇v2, u)

= (λ1 − λ2)(F(ĉ, θ̂), u) + (λ2 − λ1)(k(f δ
s (φ̂) − δ)v̂, u), (62)

for all u ∈ V, t ∈ (0, T ),

αǫ2φt − ǫ2∆φ + αǫ2ρδ(v1) · ∇φ −
1

2
φ
(

1 − (φ2
1 + φ1φ2 + φ2

2)
)

= αǫ2ρδ(v) · ∇φ2 + (λ1 − λ2)β
(

θ̂ + (θB − θA)ĉ − θB

)

in Qδ,(63)

Cvθt − ∇ · (K1(ρδ(φ1))∇θ) −∇ · [K1(ρδ(φ1)) − K1(ρδ(φ2))]∇θ2

+ Cvρδ(v1) · ∇θ = Cvρδ(v) · ∇θ2

+
l

2
f δ

s

′

(φ1)φt +
l

2

[

f δ
s

′

(φ1) − f δ
s

′

(φ2)
]

φ2t in Qδ, (64)

ct − K2∆c + ρδ(v1) · ∇c = K2M∇ · (c1(1 − c1) [∇ρδ(φ1) −∇ρδ(φ2)])

+ ρδ(v) · ∇c2 + K2M∇ · (c(1 − (c1 + c2))∇ρδ(φ2)) in Qδ, (65)

∂φ

∂n
= 0,

∂θ

∂n
= 0,

∂c

∂n
= 0 on ∂Ωδ × (0, T ), (66)

v(0) = 0 in Ω, φ(0) = 0, θ(0) = 0, c(0) = 0 in Ωδ. (67)

Taking u = v in equation (62), using Hölder’s, Young’s and interpolation
inequalities we obtain

1

2

d

dt

∫

Ω
|v|2dx +

∫

Ω
ν|∇v|2dx

≤
∫

Ω
|v||∇v2||v|dx

+ |λ1 − λ2|
∫

Ω

(

|F(ĉ, θ̂)||v| + k(f δ
s (φ̂) − δ)|v̂||v|

)

dx

≤ C1‖v2‖
2
V ‖v‖

2
L2(Ω) +

ν

2
‖v‖2

V + C3

∫

Ω
|v|2dx

+ C2|λ1 − λ2|
2
(
∫

Ω
|F |2 + |v̂|2dx +

∫

Ωδ
|θ̂|2 + |ĉ|2dx

)

.

Then, integration with respect t and Gronwall’s Lemma give us

‖v‖2
L∞(0,T ;H)∩L2(0,T ;V ) ≤ C1 |λ1 − λ2|

2. (68)
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Applying Lp-theory of parabolic equations ([6] p. 341) to equation (63),
the following estimate holds

‖φ‖W 2,1
2

(Qδ) ≤ C1

(

‖ρδ(v) · ∇φ2‖L2(Qδ) + |λ1 − λ2|
(

‖θ̂‖L2(Qδ) + ‖ĉ‖L2(Qδ) + 1
))

where C1 depends on ‖ρδ(v1)‖L4(Qδ) and ‖φ2
1 + φ1φ2 + φ2

2‖L2+η(Qδ), η > 0,
which are independent of λi. Therefore, using (68) we arrive at

‖φ‖2
W 2,1

2
(Qδ)

≤ C1 |λ1 − λ2|
2. (69)

Multiplying (64) by θ, integrating over Ωδ using Hölder’s inequality and
that K1 and f δ

s
′

are bounded Lipschitz continuous functions, we have

d

dt

∫

Ωδ
|θ|2dx + a

∫

Ωδ
|∇θ|2dx

≤ C1

∫

Ωδ
|ρδ(φ)||∇θ2||∇θ| + |ρδ(v)||∇θ2||θ|dx

+ C2

∫

Ωδ
|φt||θ| + |φ||φ2t| |θ|dx

≤ C1‖φ‖
2
L∞(0,T ;L2(Ωδ))‖∇θ2‖L2(Ωδ)

+ C2‖v‖
2
L∞(0,T ;H)‖∇θ2‖

2
L2(Ωδ) + C3

∫

Ωδ

(

|φt|
2 + |θ|2

)

dx

+ C4‖φ‖
2
L∞(0,T ;H1(Ωδ))‖φ2t‖

2
L2(Ωδ) +

a

2

∫

Ωδ
|∇θ|2dx.

Integration with respect to t and the use of Gronwall’s Lemma and (68)-(69)
lead to the estimate

‖θ‖2
L∞(0,T ;L2(Ωδ)) ≤ C1 |λ1 − λ2|

2. (70)

We multiply (65) by c, integrate over Ωδ × (0, t) and by parts, and we use
Hölder’s and Young’s inequalities and (44) to obtain

∫

Ωδ
|c|2dx +

∫ t

0

∫

Ωδ
|∇c|2dxdt

≤ C1

∫ t

0

∫

Ωδ

(

|∇ρδ(φ1) −∇ρδ(φ2)|
2 + |ρδ(v)|2 + |c|2

)

dxdt

≤ C1

∫ t

0

∫

Ωδ

(

|∇φ|2 + |c|2
)

dxdt + C1

∫ t

0

∫

Ω
|v|2dxdt.

Applying Gronwall’s Lemma and using (68)-(69) we arrive at

‖c‖2
L∞(0,T ;L2(Ωδ)) ≤ C1 |λ1 − λ2|

2. (71)

19



Therefore, it follows from (68)-(71) that Tλ is uniformly continuous in λ.
To estimate the set of all fixed points of Tλ let (v, φ, θ, c) ∈ B be such a

fixed point, i.e., it is a solution of the problem

d

dt
(v, u) + ν(∇v,∇u) + (v · ∇v, u) = λ(F(c, θ), u)

− λ(k(f δ
s (φ) − δ)v, u) for all u ∈ V, t ∈ (0, T ), (72)

αǫ2φt + αǫ2ρδ(v) · ∇φ − ǫ2∆φ −
1

2
(φ − φ3)

= λβ (θ + (θB − θA)c − θB) in Qδ, (73)

Cvθt + Cvρδ(v) · ∇θ = ∇ · (K1(ρδ(φ))∇θ) +
l

2
f δ

s (φ)t in Qδ, (74)

ct − K2∆c + ρδ(v) · ∇c = K2M∇ · (c(1 − c)∇ (ρδ(φ))) in Qδ, (75)

∂φ

∂n
= 0,

∂θ

∂n
= 0,

∂c

∂n
= 0 on ∂Ωδ × (0, T ), (76)

v(0) = vδ
0 in Ω, φ(0) = φδ

0, θ(0) = θδ
0, c(0) = cδ

0 in Ωδ. (77)

We take u = v in equation (72). Then

1

2

d

dt

∫

Ω
|v|2dx +

∫

Ω

(

ν|∇v|2 + λk(f δ
s (φ) − δ)|v|2

)

dx

≤ C1

∫

Ω
|F |2 + |θ|2 + |c|2 + |v|2dx

≤ C1

∫

Ω
|F |2 + |v|2dx + C1

∫

Ωδ
|θ|2 + |c|2dx.

(78)

Multiplying equation (73) by φ, integrating over Ωδ and by parts, using
Hölder’s and Young’s inequalities we obtain,

αǫ2

2

d

dt

∫

Ωδ
|φ|2dx+

∫

Ωδ

(

ǫ2|∇φ|2 +
1

2
φ4
)

dx ≤ C1+C1

∫

Ωδ

(

|θ|2 + |c|2 + |φ|2
)

dx.

(79)

By multiplying (74) by e = Cvθ −
l

2
f δ

s (φ) and (75) by c, arguments sim-

ilar to the previous ones lead to the following estimates

1

2

d

dt

∫

Ωδ
|e|2dx +

Cva

2

∫

Ωδ
|∇θ|2dx ≤ C2

∫

Ωδ
|∇φ|2dx + C1

∫

Ω
|v|2dx,(80)

1

2

d

dt

∫

Ωδ
|c|2dx +

K2

2

∫

Ωδ
|∇c|2dx ≤ C2

∫

Ωδ
|∇φ|2dx, (81)
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where (44) was used to obtain the last inequality.
Now, multiplying (79) by A and adding the result to (78),(80)-(81), gives

us

d

dt

∫

Ω

1

2
|v|2dx +

d

dt

∫

Ωδ

(

Aαǫ2

4
|φ|2 +

1

2
|e|2 +

1

2
|c|2

)

dx

+
∫

Ω

(

ν|∇v|2 + λk(f δ
s (φ) − δ)|v|2

)

+
∫

Ωδ

(

(Aǫ2 − 2C2)|∇φ|2 +
A

2
φ4 +

Cva

2
|∇θ|2 +

K2

2
|∇c|2

)

dx

≤ C1 + C1

∫

Ω
|v|2dx + C1

∫

Ωδ

(

|φ|2 + |θ|2 + |c|2
)

dx (82)

where C1 is independent of λ and δ, being A ∈ IR an arbitrary parameter.
Taking A large enough and using Gronwall’s Lemma we obtain

‖v‖L∞(0,T ;H) + ‖φ‖L∞(0,T ;L2(Ωδ)) + ‖e‖L∞(0,T ;L2(Ωδ)) + ‖c‖L∞(0,T ;L2(Ωδ)) ≤ C1,

where C1 is independent of λ. Since θ =
1

Cv

(

e +
l

2
f δ

s (φ)

)

and f δ
s (φ) is bounded

in L∞(Qδ), we also have that ‖θ‖L∞(0,T ;L2(Ωδ)) ≤ C1. Therefore, all fixed
points of Tλ in B are bounded independently of λ ∈ [0, 1].

Finally, for λ = 0, we can reason as in the proof that Tλ is well defined
to conclude that the problem (38)-(43) has a unique solution. Therefore, we
can apply Leray-Schauder’s Theorem and so there is at least one fixed point
(v, φ, θ, c) ∈ B∩{L2(0, T ; V )∩L∞(0, T ; H)}×W 2,1

2 (Qδ)×W 2,1
2 (Qδ)×C2,1(Qδ)

of the operator T1, i.e. (v, φ, θ, c) = T1(v, φ, θ, c). These functions are a
solution of problem (32)-(37) and the proof of Proposition 1 is complete.

5 Proof of Theorem 1

To prove Theorem 1, let 0 < δ ≤ δ(Ω) be as in the statement of Theorem 1
and take φδ

0 ∈ W 2−2/q,q(Ωδ)∩H1+γ(Ωδ), vδ
0 ∈ H , θδ

0 ∈ H1+γ(Ω), 1/2 < γ ≤ 1,

cδ
0 ∈ C1(Ωδ), satisfying

∂φδ
0

∂n
=

∂θδ
0

∂n
=

∂cδ
0

∂n
= 0 on ∂Ωδ, ‖θδ

0‖L2(Qδ) ≤ C,

0 < cδ
0 < 1 in Ωδ, vδ

0 → v0 in the norm of H(Ωml(0), and such that the
restrictions of these functions to Ω (recall that Ω ⊂ Ωδ) satisfy as δ → 0+
the following: φδ

0 → φ0 in the norm of W 2−2/q,q(Ω) ∩ H1+γ(Ω), θδ
0 → θ0 in

the norm of L2(Ω), cδ
0 → c0 in the norm of L2(Ω).
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We then infer from Proposition 1 that there exists (φδ, vδ, θδ, cδ) solution
the regularized problem (32)-(37). We will derive bounds, independent of
δ, for this solution and then use compactness arguments and passage to the
limit procedure for δ tends to 0 to establish the desired existence result. They
are stated in following in a sequence of lemmas; however, most of them are
ease consequence of the previous estimates (those that are independent of δ)
and the fact that Ω ⊂ Ωδ. We begin with the following:

Lemma 1 There exists a constant C1 such that, for any δ ∈ (0, δ(Ω)]

‖vδ‖L∞(0,T ;H)∩L2(0,T ;V ) +
∫ T

0

∫

Ω
k(f δ

s (φδ) − δ)|vδ|2dxdt ≤ C1, (83)

‖φδ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ ‖φδ‖L∞(0,T ;L2(Ωδ))∩L2(0,T ;H1(Ωδ)) ≤ C1, (84)

‖θδ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ ‖θδ‖L∞(0,T ;L2(Ωδ))∩L2(0,T ;H1(Ωδ)) ≤ C1, (85)

‖cδ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ ‖cδ‖L∞(0,T ;L2(Ωδ))∩L2(0,T ;H1(Ωδ)) ≤ C1. (86)

Proof: Observe that it follows from inequality (82).

Lemma 2 There exists a constant C1 such that, for any δ ∈ (0, δ(Ω)]

‖φδ‖W 2,1
q (Q) ≤ C1, for any 2 ≤ q < 4, (87)

‖θδ
t ‖L2(0,T ;H1

o (Ω)′) ≤ C1, (88)

‖cδ
t‖L2(0,T ;H1

o (Ω)′) ≤ C1, (89)

Proof: Note that (87) follows from estimate (20) of Theorem 2 and
Lemma 1.

Next, we take the scalar product of (34) with η ∈ H1
o (Ω), using Hölder’s

inequality and (H3) we find

Cv‖θ
δ
t ‖H1

o (Ω)′ ≤ C1

(

‖∇θδ‖L2(Ω) + ‖θδ‖L4(Ω)‖v
δ‖L4(Ω) + ‖φδ

t‖L2(Ω)

)

.

Then, (88) follows from Lemma 1 and (87).
Using that 0 < cδ < 1 in Q, we infer from (35) that,

‖cδ
t‖H1

o (Ω)′ ≤ C1

(

‖∇cδ‖L2(Ω) + ‖vδ‖L2(Ω) + ‖∇φδ‖L2(Ω)

)

.

Then, (89) follows from Lemma 1.

22



Lemma 3 There exist a constant C1 and δ0 ∈ (0, δ(Ω)] such that, for any
δ < δ0,

‖vδ
t ‖L2(t1,t2;V (U)′) ≤ C1 (90)

where 0 ≤ t1 < t2 ≤ T, U ⊆ Ωml(t1) and such that [t1, t2] × Ū ⊆ Qml ∪
Ωml(0) ∪ Ωml(T ).

Proof: Let 0 ≤ t1 < t2 ≤ T, U ⊆ Ωml(t1) be such that [t1, t2] × Ū ⊆
Qml∪Ωml(0)∪Ωml(T ). It is verified by means of (32) that for a.e. t ∈ (t1, t2),

(vδ
t , u) = −ν

∫

U
∇vδ · ∇udx −

∫

U
vδ · ∇vδudx −

∫

U
k(f δ

s (φδ) − δ)vδudx

+
∫

U
F(cδ, θδ)udx for u ∈ V (U).

In order to estimate ‖vδ
t ‖V (U)′ , we observe that the sequence (φδ) is bounded

in W 2,1
q (Q), for 2 ≤ q < 4, in particular, for q > 2 we have that W 2,1

q (Q) ⊆

Hτ,τ/2(Q̄) where τ = 2 − 4/q ([6] p.80). Consequently, because of Arzela-
Ascoli’s theorem, there exist φ and a subsequence of (φδ) (which we still
denote by φδ ), such that φδ converges uniformly to φ in Q̄. Recall that Qml =
{(x, t) ∈ Q /0 ≤ fs(φ(x, t)) < 1} and Ωml(t) = {x ∈ Ω /0 ≤ fs(φ(x, t)) < 1} .
Note that for a certain γ ∈ (0, 1) and for (x, t) ∈ [t1, t2] × Ū ,

fs(φ(x, t)) < 1 − γ.

Due to the uniform convergence of f δ
s towards fs on any compact subset,

there is an δ0 such that for all δ ∈ (0, δ0) and for all (x, t) ∈ [t1, t2] × Ū ,

f δ
s (φδ(x, t)) < 1 − γ/2.

By assumption (H1) we infer that

k(f δ
s (φδ(x, t)) − δ) < k(1 − γ/2) for (x, t) ∈ [t1, t2] × Ū and δ < δ0.

Thus,

‖vδ
t ‖V (U)′ ≤ C1

(

‖vδ‖V + ‖vδ‖2
L4(Ω) + ‖F‖L2(Ω) + ‖cδ‖L2(Ω) + ‖θδ‖L2(Ω)

+ ‖k(f δ
s (φδ(x, t)) − δ)‖L∞(U)‖v

δ‖L2(Ω)

)

.

Hence, (90) follows from Lemma 1.
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From (83) we conclude that the sequence (vδ) is bounded in L2(t1, t2; H
1(U)).

Then, by the compact embedding ([10] Cor. 4), there exist v and a subse-
quence of (vδ) (which we still denote by vδ), such that

vδ → v in L2((t1, t2) × U) strongly.

Observe that Qml is an open set and can be covered by a countable number
of open sets (ti, ti+1)×Ui such that Ui ⊆ Ωml(ti), then by means of a diagonal
argument, we obtain

vδ → v in L2
loc(Qml ∪ Ωml(0) ∪ Ωml(T )) strongly. (91)

Moreover, from (83) we have that v ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) and

vδ ⇀ v in L2(0, T ; V ) weakly,

vδ ∗

⇀ v in L∞(0, T ; H) weakly star.
(92)

We now infer from Lemma 1 and Lemma 2 using the compact embedding
([10] Cor.4) that there exist

φ ∈ W 2,1
q (Q) for 2 ≤ q < 4,

θ ∈ L2(0, T ; H1(Ω)) ∩ L∞(0, T ; L2(Ω)),
c ∈ L2(0, T ; H1(Ω)) ∩ L∞(0, T ; L2(Ω)),

and a subsequence of (φδ, θδ, cδ) (which we still denote by (φδ, θδ, cδ) ) such
that, as δ → 0,

φδ → φ uniformly in Q,
φδ → φ in Lq(0, T ; W 1,q(Ω)) strongly,
φδ

t ⇀ φt in Lq(Q) weakly,
θδ → θ in L2(Q) ∩ C([0, T ]; H1

o (Ω)′) strongly,
θδ ⇀ θ in L2(0, T ; H1(Ω)) weakly,
cδ → c in L2(Q) ∩ C([0, T ]; H1

o (Ω)′) strongly,
cδ ⇀ c in L2(0, T ; H1(Ω)) weakly.

(93)

It now remains pass to the limit as δ decreases to zero in (32)-(37).
Now, we take u = η(t) in (32) where η ∈ L2(0, T ; V (Ωml(t))) with compact

support contained in Qml ∪ Ωml(0) ∪ Ωml(T ) and ηt ∈ L2(0, T ; V (Ωml(t))
′);

after integration over (0, t), we find
∫ t

0

(

(vδ
t , η) + (∇vδ,∇η) + (vδ · ∇vδ, η) + (k(f δ

s (φδ) − δ)vδ, η)
)

ds

=
∫ t

0
(F(cδ, θδ), η)ds.

(94)
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Since supp η ⊆ Qml ∪ Ωml(0) ∪ Ωml(T ) we have that supp η(t) ⊆ Ωml(t) a.e.
t ∈ [0, T ]. Moreover, we observe that

∫ t

0
(vδ

t , η)ds = −
∫ t

0
(vδ, ηt)Ωml(s)ds + (vδ(t), η(t))Ωml(t) − (vδ

0, η(0))Ωml(0).

Because of uniform convergence of f δ
s to fs on compact subsets, as well as

the assumption (H1), it follows that k(f δ
s (φδ) − δ) converges to k(fs(φ))

uniformly on compact subsets of Qml∪Ωml(0)∪Ωml(T ). These facts together
with (91)-(93) ensure that we may pass to the limit in (94) and get (12).

To check that v = 0 a.e. in
o

Qs, take a compact set K ⊆
o

Qs . Then there
is an δK ∈ (0, 1) such that

f δ
s (φδ(x, t)) = 1 in K for δ < δK ,

hence, k(f δ
s (φδ(x, t) − δ) = k(1 − δ) in K for δ < δK . From (83) we infer

that
k(1 − δ)‖vδ‖2

L2(K) ≤ C1 for δ < δK

where C1 is independent of δ. As δ tends to 0, by assumption (H1), k(1− δ)
blows up and consequently ‖vδ‖L2(K) converges to 0. Therefore v = 0 a.e. in

K. Since K is an arbitrary subset, we conclude that v = 0 a.e. in
o

Qs .
It follows from (92)-(93) that we may pass to the limit in (33), and find

that (13) holds almost everywhere.
In order to pass to the limit in (34), we note that given ζ ∈ L2(0, T ; H1(Ω))

with ζt ∈ L2(0, T ; L2(Ω)) satisfying ζ(T ) = 0, we can consider an extension
of ζ such that ζδ ∈ L2(0, T ; H1(Ωδ)) with ζδ

t ∈ L2(0, T ; L2(Ωδ)) satisfying
ζδ(T ) = 0. Now, we take the scalar product of (34) with ζδ,

−Cv

∫

Ωδ
θδ
0ζ

δ(0)dx− Cv

∫ T

0

∫

Ωδ
θδζδ

t dxdt − Cv

∫ T

0

∫

Ωδ
ρδ(v

δ)θδ · ∇ζδdxdt

+
∫ T

0

∫

Ωδ
K1(ρδ(φ

δ))∇θδ · ∇ζδdxdt =
l

2

∫ T

0

∫

Ωδ
f δ

s

′

(φδ)φδ
tζ

δdxdt.(95)

Observe that since ρδ(v
δ) converges weakly to v in L2(0, T ; H1(Ω)) and θδ →

θ strongly in C([0, T ]; H1
o (Ω)′) we have that ρδ(v

δ)θδ converges to vθ in D′(Q).
Observe also that f δ

s
′

→ f ′

s in Lq(IR) for 2 ≤ q < ∞, then from (93) we
infer that f δ

s
′

(φδ)φδ
t converges weakly to f ′

s(φ)φt in Lq/2(Q). Moreover, from
Lemma 1 the integrals over Ωδ\Ω are bounded independent of δ and since
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|Ωδ\Ω| → 0 as δ → 0, we have that these integrals tend to zero as δ → 0.
Therefore, we may pass to the limit in (95) and obtain

−Cv

∫ T

0

∫

Ω
θζtdxdt − Cv

∫ T

0

∫

Ω
v θ · ∇ζ dxdt +

∫ T

0

∫

Ω
K1(φ)∇θ · ∇ζ dxdt

=
l

2

∫ T

0

∫

Ω
fs(φ)tζ dxdt + Cv

∫

Ω
θ0ζ(0)dx

for ζ ∈ L2(0, T ; H1(Ω)) with ζ ∈ L2(0, T ; L2(Ω)) and ζ(T ) = 0.
It remains to pass to the limit in (35). We proceed in similar ways as

before, taking the scalar product of it with ζδ ∈ L2(0, T ; H1(Ωδ)) with ζδ
t ∈

L2(0, T ; L2(Ωδ)) and ζδ(T ) = 0,

−
∫ T

0

∫

Ωδ
cδζδ

t dxdt −
∫ T

0

∫

Ωδ
ρδ(v

δ)cδ · ∇ζδdxdt + K2

∫ T

0

∫

Ωδ
∇cδ · ∇ζδdxdt

+K2M
∫ T

0

∫

Ωδ
cδ(1 − cδ)∇ρδ(φ

δ) · ∇ζδdxdt =
∫

Ωδ
cδ
0ζ

δ(0)dx,

then from (92),(93) and using that the sequence (cδ) is bounded in L∞(Q)
we may pass to the limit as δ → 0 and obtain

−
∫ T

0

∫

Ω
cζtdxdt −

∫ T

0

∫

Ω
v c · ∇ζ dxdt + K2

∫ T

0

∫

Ω
∇c · ∇ζ dxdt

+K2M
∫ T

0

∫

Ω
c(1 − c)∇φ · ∇ζ dxdt =

∫

Ω
c0ζ(0)dx

holds for any ζ ∈ L2(0, T ; H1(Ω)) with ζ ∈ L2(0, T ; L2(Ω)) and ζ(T ) = 0.
Observe that since 0 < cδ < 1 and cδ converges to c in L2(Q) we have that
0 ≤ c ≤ 1 a.e. in Q.

Finally, it follows from (93) that
∂φ

∂n
= 0, φ(0) = φ0, θ(0) = θ0 and c(0) =

c0. Furthermore, v(0) = v0 in Ωml(0) because vδ(0) → v(0) in V ′(U) for any
U such that Ū ⊆ Ωml(0). The proof of Theorem 1 is then complete.
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