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Abstract

The idea of volatility is fundamental to precise definition of risk and, hence, its
estimation (or prediction) is a very important task in finance applications. We present
some ideas on nonparamateric estimation of volatility function in diffusion models. A
nonlinear wavelet estimate of the volatiltiy function is proposed and its performance
is compared to three kernel estimators in both simulated and real data. Simulation is
developed for eight volatility shapes and some interesting, but not unexpected, results
are presented. Some issues such as online estimation and prediction, robustness to
oversmoothing and performance under sudden changes in pattern of volatility are also
discussed.

Keywords: wavelets estimation, diffusion process estimation, volatiltiy estimation,

non-parametric function estimation.

1 Introduction

Conditional volatility estimation is of great importance in finance appplications. Para-
metric models such as the XARCH family are quite used as well as stochastic volatility
models. References on parametric volatility modelling are Ghysels et al. [1996], Bollerslev
et al. [1992] and Shephard [1996]. Eventhough parametric procedures are still the domi-
nating statistical tools in volatility estimation, non-parametric alternatives have increased
their presence in the last decade (Bosq [1998] and Antoniadis and Oppenheim [1995]).
The reason for that change in venues is the fast development of computational power and
new (and faster) paradigms such as the wavelet decomposition as well as the search for
more robust models.

Non-parametric applications range from historic simulations to sieves (Darolles and
Gouriéroux [2001]), passing through semiparametrics (Yang [2000]), local polinomial smooth-
ing (Hérdle and Tsybakov [1997] and Yang et al. [1999]) and conditional distribution
quantiles via kernel (Abberger [1997]).

A closely related paper is that of Hoffmann [1999], that uses nonlinear wavelet tech-
niques for discrete AR(1) models and shows the adaptative nature of those estimators, on
the sense of Donoho and Johnstone [1995].

High frequency data bring two additional challenges to statistical methodologies. The

dependence structure is amplified as well as the effects of computational costs can be dra-



matically increased. Computational efficiency is a big advantage for wavelets application
on those cases.

This work has as initial methodological motivations Bertrand [1996], Avesani and
Bertrand [1997] and specially Genon-Catalot et al. [1992], whose theoretical results both
motivated and challenged wavelet application in financial data. We compared kernel and
wavelet based procedures in both simulated and real data sets. Emphasis was put in struc-
tural changes and outliers effects on the volatiltiy function. We illustrate the natural and
automatic adaptation of wavelets to outliers (as can be seen for a simpler and theoretical
set-up in Walter [1992a] e Walter [1992b]). Some discrepancies between our results and
the one found in Bertrand [1996] and Avesani and Bertrand [1997] are pointed out and
discussed as well as some indications simulation provide of broader use of both wavelet
bases and kernel functions that are still not theoretically proved.

The text goes as follows. In section 2, diffusion models are presented. Non-parametric
estimators are presented in section 3 and their adaptations to diffusion models are made
in section 4 as well as presentation of some of their most relevant theoretical results. Illus-
trations by simulation and real data analysis are made in section 5. Some final remarks,

conclusions and directions for future research are presented in section 6.

2 Diffusion Models

Formal definition and mathematical treatment of diffusion models are fundamentally based
on the Wiener process and Ito’s integral and process. A very important process which is
the basis for the non-parametric volatility estimators we study in this paper is the so-called
Quadratic Variation. Let { Xy }er be some Ito’s process. Its quadratic variation process is
given by < X, X >;= limay, 0 Etkgt | X1 — th|2, where 0 =t; < --- < t, =t is some
partition of [0, ¢] and Aty = tj+1 —tg. For every b:[0,00) xw — Rand o : [0,00) xw — R

for which Ito’s integral exist, one defines the following diffusion model:
dX; = b(t,Xt)dt—i-O'(t,Xt)th, (1)

where b(-,-), known as drift, measures the [evel of the process while o(-,-), known as

diffusion coefficient, relates to the speed and size of the series oscillations. One can then



show that the volatility in diffusion models is given by Var(dX:/{X }s<t) = o?(t, Xy).
For diffusion model simulations, a discretisation of the continuous process is necessary.

We implemented the Euler’s method (see for details Oskendal [1995]).

3 Non-parametric Estimation

3.1 Kernel Estimation

Kernel function estimation origins are associated to densities as follows. Let { X1, ..., X, }
be a sample from Fx ([ fx) and ﬁ(x) its kernel density estimator. Some usual properties
of a kernel density estimator are its smoothness (of the same degree of the kernel function
itself), its optimal (or near optimal) asymptotic behavior, its partial adaptation to data
(via costly data-driven choices of h). Some of those properties will be inherited in the
financial data setup. The parameter h controls the estimate degree of smoothness and is
therefore called the smoothing parameter.

Under a regression setup, let {(X;,Y;)}"; be a sample from (X,Y), and m(z) =
E(Y/X = z). Suppose X and Y have a joint density fxy and respective marginals fx

and fy. The Nadaraya-Watson estimator for m is given by

For assessing m(z)’s global performance several error measures are proposed in the
literature. The integrated absolute error, IAE, the integrated squared error, ISE, the
integrated mean squared error, IMSE, the discrete squared error, DSE, and the discrete
mean squared error, DMSE, are usually considered to provide good performance indica-
tors. We restrict ourselves to the ISE and TAE measures due to their feasibility in real
applications. Under some regularity conditions on f, m and K, bounds and convergence
of IMSE, MSE and IAE results are available. Bosq [1998] and Hérdle [1990] provide the
reader with detailed information on properties of kernel based regression estimators for

iid and dependent data.



Among the techniques for choosing the optimal h, crossvalidation has very nice rea-
soning and some robustnes against oversmoothing. The optimal h by crossvalidation is
given by hopm = arg miny, CV(h), where CV(h) = n! Z?Zl[Yf, — i, (X;)Pw(X;) and

mp,j(-) is the Nadaraya-Watson estimator without the j-th observation.

3.2 Wavelets Estimation

There are several ways of defining wavelets analysis in Ly(R). The most constructive and

easier to interpret is the so-called Multiresolution Analysis (MRA), due to Mallat [1989].

Definition 3.1. A Multiresolution Analysis of La(R), {V;, j € Z}, in is an increasing

sequence of closed subespaces of Lo(R) which satisfies the following conditions:
(i) NjezV; = 0 and UjezV; is dense in La(R).
(ii) Vg € Lo(R) and Vj € Z, g(z) € V; <= ¢(2z) € Vjq1.
(i1i) Vg € Vo and Yk € Z, g(z — k) € V.
(iv) 3g € Vi such that {g(x — k)}r € Z is a Riesz basis of Vj.

Let ¢;i(-) = ¢#(2 - —k), j,k € Z. One can derive from a MRA that for each j €
Z, {¢jk,k € Z} is an ortonormal basis for Vj, the approzimation space of resolution
J- A detail space of resolution j, call it Wj;, can de defined by V;41 = V; @ W;. A
basis for W; is easily drawn fron the MRA and we will call it {¢;;},k € Z. Moreover,
UjezW; = Vjy U (Uj>;,W;) = limj_sVj, where jo € Z. Therefore, {t;;,j,k € Z} and
Hojok:k € Z},{4jk, 5 > jo,k € Z}} are both ortonormal bases for Ly(R). Finally, any

square integrable function can be written as

FO =D Bintin(®) =D djorbion® + D > Bikthik(t), (3)
JEL kEZ kEZ J>JoEL KEZ
where equalities are meaninful in Lo norm.
Desirable features of wavelets bases (from either the theoretical or applied point of
view) include compact support and adaptative smoothness. A family that has both prop-
erties is Daubechies wavelets, that we will be using here. The bases are indexed by the

number of nule moments (N > 1) and we will call them DAUB# N. In general (N > 2)



they have no closed form but fast filters are available and no practical problem rise from
that fact.

From (3) estimating f is equivalent to estimating its coefficients. Construction of
estimation algorithms is specific to the nature of the sample {X;}. For instance, suppose
the sample is regularly spaced (the fixed sampling interval called A) and that the sample
size n = 2/ for some J € N. There is a maximum number of coefficients that can be
estimated and that means also that there is a maximum level of resolution that can be

used. Therefore, the actual wavelet approximation for f is given by

J1
FO = D7 ajordione® + > Y Bixtix(t). (4)
keK;, j=jo kEK;

where jy and j; are, respectively, the minimum and maximum empirical levels of resolution
and K are finite sets whose union has cardinality n.

Defining the minimum level of resolution is easier and less determinant than choosing
J1. Since we use compactly supported wavelets, we can simply choose jg to be the largest
resolution for which ¢;, ;. still covers the sampled interval. In our case, it means that the
support of ¢;, 1(t) covers [0,T] and for DAUB# N, that jo = [logy(2N —1)]. The cascade
algorithm can be then employed for fast computation of the coefficients «; ;. e 3; .

Eventhough (4) is a nice approximation, specially for smooth f and ¢, linear pro-
jection estimators tend to be asymptotically biased. For that reason, nonlinear proce-
dures involving shrinkage are desirable. In practice shrinking the function in wavelets
domain is equivalent to smoothing it in time domain. Shrinkage in wavelet analysis
can be attained through level limitation and coefficients thresholding. Thresholding is
usually divided in two major categories. Choosing some A > 0, Hard thresholding is
given by a rule such as §%(c; ;,\) = ¢i,jl(j¢; ;|>x) and Soft thresholding has rules suchs as
6*(cij, A) = (cij — sign(cii)A)L(c; ;>0

The art in thresholding is choosing the value (or values) of A and proposing a rule
which poses as little weight as possible on that choice. In other words, one wants an opti-
mal A but do not want to be strongly penalized by a suboptimal choice. For thresholding
values, see Vidakovic [1999] and Donoho et al. [1996]. The so-called universal threshold-
ing, motivated by additive normal error is given by o+/2logn, where o is the empirical



coefficients standard deviation.
Pinheiro and Vidakovic [1997] proposed another thresholding procedure, based on
energy retention via Lorentz curve. One knows that the total empirical energy is given by

Ilf ||%2 =22k ik and it is easy to compute specific level by level energy.

Definition 3.2 (Lorentz Curve). Let {1 : j = 0,..,n k € Z} be the coefficients of a

signal f and d? => 5]27/%. The Lorentz curve based on their empirical level energies is:

[np] [np]
> 2.0 24
Lp =2 22 peo] (5)
YD B Y4
j=0 k& j=0

Theorem 3.1 (Meyer). A function f € C*(R) if and only if |5 x| < C279/29-3(r1s) o,
a r-regular MRA.

Notice that theorem 3.1 shows that wavelet analysis concentrate the energy of a signal
on very few low levels. Therefore, a good decomposition should have very few relevant

coefficients. However, one has also the following empirical version of theorem 3.1.

~2
Theorem 3.2. Let d; = n~! Zﬁ?kn and By = mingcg maxy, ¢§7k(x) > 0. Then
k

~2 BNQj
d; > . 6
J = Cn ( )

At first, theorems 3.1 and 3.2 look contradictory. However, the former claims that
wavelet decomposition is very parsimonious and shows that signal energies are concen-
trated in a very few low levels of resolution. On the other hand, theorem 3.2 shows that
empirical coefficients are actually arbitrarily large and, worst, coefficients estimates from
high levels tend to be even larger. The correct interpretation of that apparent contra-
diction is that estimated coefficients must be conformed to theorem 3.1. Based on that
apparent contradiction, Pinheiro and Vidakovic [1997] proposed the following thresholding
procedure.

Take the empirical Lorentz curve, i.e., L(p) = E]LZ%J c/l?/ > i=0 c/l?, p € [0,1]. One can

then adjust the maximum level of resolution for the empirical Lorentz curve to follow the



behavior in theorem 3.1. That means that levels are acceptable if they show a geometrical
decreasing. Theorem 3.2 tell us that eventually one will have the empirical Lorentz curve
showing an exponential increase. The first procedure is therefore to limit use to those
levels whose behavior conforms to theorem 3.1. After choosing j1, one aplies a coefficients

thresholding as follows.

Definition 3.3 (LC1 Thresh.). Suppose a sequence of estimated coefficients {Bj : j =
0,..,n k € Z} and a positive parameter k and let & =nt Z?:o Yok 532',19 . The LC1

thresholded coefficients (LC1) is given by ﬂ;’km = ﬂj,kl(ﬁ2 )’
b j,k

The cut-off parameter x in Definition 3.3 has a very simple interpretation.It balances
two conflicting measures: parsimonious and energy retention. If & < 1, one tends to
preserve energy retaining more coefficients whilst, for £ > 1, preference is given to fewer
coefficients over energy preservation.

This procedure does not take into account the level of resolution from which a coef-
ficient is taken. In this work, we present a slightly modified Lorentz curve thresholding
procedure as well as a hands-free maximum level choice. The level choice procedure is

presented in section 5.1. Coefficients thresholding is performed level by level as follows.

Definition 3.4 (LC2 Thresh.). Let k and x; be positive real numbers and {Bj : j =
0,...,n k € Z} be the sequence of estimated coefficients and E? =n! Dok 3219 The LC2

thresholded coefficients are given by Blim 2
J

ik = Piklige iy
Notice that

kd + ffﬁ; = (%m + /‘ij) 351 + 582,3-/, (7)

where n; is the number of coeffcients in level W, n is the total number of coefﬁcientsﬂ?/ =
2 72 2
>k 5j',k/" and d_ ;= E;‘L:O;jyéj’ >k B -
From (7), one sees that different thresholding levels for each resolution give the pro-
cedure more leverage to weight in or out coeffcients from specific levels. That is very
important because procedures can be tailored depending on the regularity supposed or

the piece of the function one intends to represent. Moreover, direct comparisons between



level energy and its coefficients can be done. The wavelet LC2 thresholded is written as:

)= @jordiok(t) + Z > Blimap; (1) (8)

keZ J=jo kEZ
4 Nonparametric Volatility Estimation

Suppose (1) and take o?(t, X;) = o2(t), i.e.,
dX: = b(t, Xy)dt + o(t)dWt, t e 0,7, 9)
where b(+,-) and o(-) are unknown and P (X, = z¢) = 1, for some unknown z;.

4.1 Kernel Estimator

Suppose X; is observed with T' = 1, at times (¢1,...,t,), t; = ¢A, where A is the sampling
interval. We define with no loss of generality (on T') the kernel estimator of o(-) as follows,

as originally proposed by Florens-Zmirou [1993].

Definition 4.1 (Volatility Kernel Estimator). The volatility function o%(t), as defined
by (9), can be estimated by:

§:K<t_%>nmﬁﬂ—&f

The estimator, defined by (10) is precisely the Nadaraya-Watson regression estimator

taking ¥; = AYX,, ., — X;]?, the empirical quadratic variation process. The following
theorem shows some of its most relevant asymptotic properties (due to Florens-Zmirou

[1993)).

Theorem 4.1. Let 0%(t) be given by (9) and S, (t) by (10). Suppose that b(-) is limited,
twice differentiable, with limited derivatives and that o(-) has three limited and continuous

derivatives and that there are two constants k and K such that 0 < k < o(t) < K. If,



moreover, nh® — 0, then:

Vh (i’;g; - 1) B 1234z, (11)

where Z ~ N'(0,1) independent of L(t) = lims_,o 3 fol (1 x,—t|<5)ds-

To our knowledge there are no general asymptotic results such as Theorem 4.1 on
the IMSE. We present below some estimators due to Bertrand [1996] which reduce the
Nadaraya-Watson estimator to moving average, S 4 and centered moving average, SE MA

as follows.

1

—1 /A-
S%A(t) = (AA)_I Z ( [th7i+1 - thi]2> l[tj,tj.l,_l)(t) (12)

—1

=

(Xt — th—i]2 l[tjytj+1)(t)7 (13)

™Mt
gl

ST = (An)7!

where A is the number of observations used for estimating volatility in each point.

Consistency of S¢M4

which 02(t_) = lim, ~ 0?(z). Bertrand [1996] also showed that, if o(-) = EZ]\LI il 1) (),

is clear as long as ¢ is a continuity point and for those points for

for positive constants o; Vi, and w(-) some weight function, an also if A — 0, A — oo and

AA — 0, then IMSEAA — 0.

4.2 Wavelet Estimators

Consider a sample of size n, with ¢; = 27", where 1 = 0,1,..., N = [2"T], i.e., one
observes the diffusion in [0, 7] with sampling interval A, = 2~". Some theoretical asymp-
totic results are known for a linear wavelet estimator of o(-) under conditions (14), on

b(-,-) and o(+), as seen in Genon-Catalot et al. [1992].

(i) b(-,-) € CH([0,+0) x R);
(ii) VT, 3Ky s.t. YVt e [0,7], | b(t,u) |< Kpr(1+ | u |); (14)
(iii) o(-) € C™([0,00)), with m > 1, and o(t) > 0 Vt > 0.

Under (14), and m > 0, solution of (1) is unique in [0,00). As we use a regular MRA

10



in Ly(R) and o?(-) is not necessarily an element of that space, we can replace it with
a new function 52(-) € Lo(R), such that 5(t) = o(t), Vt € [0,7]. Suppose also that
a(t) € C"™(R) and that supp{c} C [—€,T + €, for some € > 0. We define a new diffusion
process X; as dX; = b(t, X;)dt + &(t)dW;, Xy = x, that would for all practical purposes
be identical to X;.

Therefore, from now on, we will consider o?(-) to be an element of Ly(R) and we
can project it in wavelets approximation and detail spaces. An empirical estimate of

approximation coefficient a(,)  is given by

and the wavelet linear estimator of o%() on level j; is given by

Za] k¢] ) (16)

keZ

The estimator (16) is proposed by Genon-Catalot et al. [1992] where the following IME
and IMSE properties are presented:

T
% 6’2 _0_2 n—o0 2 0_4
2 /Rh(t)( (t) (t)) dt "= N(O,Q/O h*(t) (t)dt), (17)

R, = E ( / (62(t) — aZ(t))%(t)dt> < ¢(29m)=2n 4 9=2i(n)(mAr) 4 9=n) 4
R

sup(¢) (2j<n>—n2 /0 " Ay + O(Zj(n)_”)> , (18)

teR

where C is a constant depending only on ¢, v and 2.
As for iid observations, the linear wavelet estimator helps us as benchmark but some

kind of thresholding should be performed. We propose the following nonlinear estimator.

Definition 4.2 (Nonlinear Wavelet Estimator). The nonlinear wavelet estimator for

11



the volatility function o is given by

~ ali
Z aj():k('bj()y + Z Z B]lm’l'b]a (]‘9)
keZ J=jo kEZ
where jg, j1 are respectively the minimum and mazimum resolutions given by the Lorentz
curve, Qj, . are the empirical approzimation coeffcients and ,B\]“km are the LC2 thresholded

estimates for the detail coeffcients.

5 Applications

We study the non-parametric estimators on a real series and on simulations. In the
simulations, we used the wavelet estimators and three kernel estimators: Gaussian, MA
and CMA. Crossvalidations were performed only for MA and CMA, due to computational
costs. In pre-simulation studies, Gaussian smoothing parameter was chosen in order to
minimize ISE, as seen in Hirdle [1990]. Another comment on the Gaussian kernel is
that, although it violates conditions for results presented in section 3.1, its known good
properties motivate its use and simulation results show that its behavior is quite excellent.

Wavelets estimators used three different bases: DAUB#2, DAUB#5 and DAUB#8
and LC2 thresholding procedures. For the automatic definition of maximum levels, we
used two different ratio criteria. Three levels were always maintained and, after the third,
as long as the i-th level empirical energy would be the at most the same (or at most
three times as much) as the (i — 1)-th level’s the i-th level would stay. For the coefficients
thresholding we used four different combinations of parameters {«;};—1 23 and &, described

in table 1. For levels higher then 3, k; = k3.

Table 1: Thresholding Parameters

Combinations | k1 | ko | k3 | K
Comb 1 2 2 2 |2
Comb 2 1 2 311
Comb 3 1 3 513
Comb 4 510751 |1

12



5.1 Simulation Study

We use in this simulation study the following model

dX, = b(X,)dt + 0(H)h(X,)dWt, te[0,T], Xo = w0, (20)

where h =1, b = 0.75 — X; and 0 has eight different types, illustrated in figures 5.1-5.1,
and with no loss of generality, T' = 1.

As nonparametric estimators tend to differ mainly on jumps, we used two almost
norm-equivalent groups of volatility functions, one with smooth and the other with their
respective irregular versions. Figures 5.1 and 5.1 shows respectively the #rregular and

regular volatility functions.

oal
oa|
oz

0.1 0z 03 0.2

Figure 1: Irregular 6(-) Functions (with jumps): (a) Voll (b) Vol2 (c) Vol3 (d) Vol4

The eight models were generated in 4096 time points with 1000 simulated data series
each. Because of the massive output we illustrate mainly the results from volatilities Vol2
and Vol4. They represent respectively level changes and functions with local perturbations.
Discussions are however carried out for all eight models.

It is important to observe that Vol2 and Vol4 do not satisfy some of the regularity

conditions required for either the kernel or linear wavelet estimators theoretical results.
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Figure 2: Regular 6(-) Functions: (a) Vol5 (b) Vol6 (c) Vol7 (d) Vol8

For error comparisons we used two of the previously defined measures, ISE and TAE.
Those measures are very global and hinder finer comparisons of estimators performance
exactly at the points (or regions) of most interest such as jumps, cusps or high curvatures.
Therefore, two other error measures (weighed ISE and IAE) were considered. Three weight

functions were used:

e Quant100, that puts uniform weight on change points and on its 200 nearest neigh-

bors and zero on the rest.

e Quants0, that puts uniform weight on change points and on its 100 nearest neighbors

and zero on the rest.

e Quant0, that puts uniform weight on change points and zero on the rest.

Results are summarized in tables and plots, using means and medians as descriptive
tools. In all tables, the smallest IE’s are highlighted. Smoothed histograms for each
estimator empirical error distribution are presented as well as some computing performance
considerations.

The overall picture of the tables and plots indicates that for volatilities types 1,2,3,5,6
and 7, the Gaussian kernel shows the best ISE and IAE empirical distributions. Wavelets

14



however have a very close performance and both techniques clearly outperform the MA
and CMA techniques.

Among wavelet estimators, ratio 1 and thresholding combination 4 show slight superi-
ority in some volatilities (1,2,5 and 6) but the procedures show some robustness to energy

ratio and thresholding cutoff points specifications.

3000 T T T T T T 3000
aussian

2500 2500

2000 [ B 2000
|

L

i
. K i S _
c) % Y R Y TRy T os X TR Y7eaanar Tt 5 oz o o5 0% 3 s e

Figure 3: Vol2 ISE: (a) Quant0 (b) Quant50 (¢) Quant100 (d) Total ISE

For Vol8, wavelets have a far superior performance specially when analising the weighed
error measures. As expected, MA and CMA showed poor performances. For Vol4, MA
and CMA showed better global performances than wavelets and much better than normal
kernel estimators. That however changes (in favor of wavelets) when local performance is
considered. The unexpected result is that MA outperforms CMA for Vol8, what contra-
dicts Bertrand [1996], for jumping diffusion functions.

For Vol8, with local measures, wavelets integrated errors are less than half as big as
Gaussian’s whilst for Vol4 they are more than four times smaller. For the other volatilities

Gaussian kernel outperforms wavelets but never close to the advantage wavelets have for

15
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Figure 4: Vol4 ISE: (a) Quant0 (b) Quant50 (¢) Quant100 (d) Total ISE
Table 2: Quant0 ISE Medians and Means - Voll-Vol8 (x10~%)

Type Wavelets Gaussian CMA MA

Median | Mean | Median | Mean | Median | Mean | Median | Mean
Voll 1.23 1.68 0.83 0.88 2.38 2.41 2.30 2.49
Vol2 | 191.50 | 204.44 | 164.10 | 166.66 | 516.11 | 5.20.31 | 463.75 | 471.48
Vol3 0.65 0.76 0.52 0.59 0.98 1.03 1.00 1.06
Vol4 2.97 3.01 13.24 13.19 14.18 13.93 14.00 14.17
Volb 0.85 1.15 0.43 0.47 1.68 1.79 1.73 1.83
Vol6 | 333.33 | 343.97 | 169.16 | 174.51 | 502.78 | 510.80 | 527.21 | 535.13
Vol7 0.29 0.51 0.22 0.28 0.93 1.07 0.94 1.056
Vol8 2.48 2.72 6.81 6.85 8.26 8.27 8.66 8.89

16
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Figure 5: Vol2 ISE: (a) Wavelets (b) Gaussian (c) CMA (d) MA

those two irreqular situations.

Another contradiction to results in Bertrand [1996] is that here wavelets outperform
MA and CMA. In Bertrand [1996], Haar based procedures were outperformed by CMA
and MA and CMA was found to be uniformly the best procedure. We should point out
that we are using more regular wavelets and drawing conclusions from a broader set of
volatility functions.

One should also notice that in a sense both Vol4 and Vol8 represent local outliers but
Vol8 is more regular, where Gaussian kernels can perform well while Vol4 represents a

pure jump where wavelets higher performance will be enhanced.
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Figure 6: Vol4 ISE: (a) Wavelets (b) Gaussian (¢) CMA (d) MA

Table 3: IE Mean and Median - Vol2 and Vol4 (x1072)
Mean and Vol2 Vol4
Median TAE ISE IAE
Mean Med. Mean Med. Mean Med. Mean Med.
C1 4.69 4.36 13.8 13.5 0.039 0.037 0.524 0.500
Ratio Cc2 3.73 3.53 11.9 11.7 0.039 0.037 0.521 0.509
1 C3 3.93 3.78 12.2 12.2 0.038 0.037 0.503 0.497
C4 3.64 3.33 11.4 11.2 0.0407 0.038 0.598 0.532
DB2 C1 8.89 10.6 20.7 23.3 0.0382 0.037 0.479 0.466
Ratio C2 8.60 10.6 20.1 23.3 0.0383 0.037 0.494 0.483
3 C3 8.68 10.6 20.2 23.3 0.0383 0.037 0.494 0.483
C4 8.55 10.6 19.9 23.3 0.0383 0.037 0.505 0.494
w C1 6.44 6.33 14.3 14.3 0.0445 0.042 0.988 0.982
A Ratio C2 6.44 6.33 14.3 14.3 0.0447 0.042 0.994 0.983
\4 1 C3 6.44 6.33 14.3 14.3 0.0446 0.042 0.991 0.983
E C4 6.44 6.33 14.3 14.3 0.0451 0.042 1.004 0.983
L DB5 C1 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980
E Ratio Cc2 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980
T 3 C3 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980
S C4 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980
C1 6.41 6.31 14.3 14.3 0.0437 0.042 0.995 0.987
Ratio Cc2 6.41 6.31 14.3 14.3 0.0440 0.042 1.002 0.987
1 C3 6.41 6.31 14.3 14.3 0.0438 0.042 0.998 0.987
C4 6.41 6.31 14.3 14.3 0.0445 0.042 1.014 0.987
DB8 C1 6.41 6.31 14.3 14.3 0.0428 0.042 0.987 0.983
Ratio Cc2 6.40 6.31 14.3 14.3 0.0428 0.042 0.987 0.983
3 C3 6.40 6.31 14.3 14.3 0.0428 0.042 0.987 0.983
C4 6.40 6.31 14.3 14.3 0.0428 0.042 0.987 0.983
MA 108.8 108.4 76.4 76.3 0.0100 0.0091 0.647 0.688
Kernel CMA 102.0 101.6 74.6 74.6 0.0098 0.0089 0.644 0.686
Function Gaussian 3.26 3.23 10.0 9.96 0.135 0.1345 0.779 0.774
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Table 4: ISE Means - Vol2 and Vol4 (x10~2)

Mean Vol2 Vol4
Quant0 Quant50 Quant100 Quant0 Quant50 Quant100
C1 2.46 3.57 4.14 0.036 0.037 0.037
Ratio Cc2 2.13 3.24 3.57 0.035 0.037 0.037
1 C3 2.04 3.26 3.74 0.035 0.037 0.037
C4 2.23 3.36 3.51 0.036 0.037 0.038
DB2 C1 4.22 5.98 7.20 0.035 0.035 0.036
Ratio Cc2 4.13 5.89 7.03 0.035 0.035 0.036
3 C3 4.12 5.92 7.10 0.353 0.035 0.036
C4 4.13 5.90 6.99 0.352 0.035 0.036
w C1 5.62 6.40 6.41 0.310 0.036 0.036
A Ratio Cc2 5.62 6.40 6.42 0.310 0.036 0.036
Y 1 C3 5.62 6.40 6.42 0.310 0.036 0.036
E C4 5.62 6.40 6.42 0.311 0.036 0.036
L DB5 C1 5.61 6.38 6.40 0.313 0.035 0.035
E Ratio Cc2 5.61 6.38 6.40 0.313 0.035 0.035
T 3 C3 5.61 6.38 6.40 0.313 0.035 0.035
S C4 5.61 6.38 6.40 0.313 0.035 0.035
C1 5.63 6.37 6.39 0.308 0.035 0.036
Ratio Cc2 5.63 6.37 6.39 0.308 0.035 0.036
1 C3 5.63 6.37 6.39 0.308 0.035 0.036
C4 5.63 6.37 6.39 0.309 0.035 0.036
DB8 C1 5.62 6.37 6.38 0.301 0.034 0.035
Ratio Cc2 5.62 6.37 6.38 0.301 0.0344 0.035
3 C3 5.62 6.37 6.38 0.301 0.0344 0.035
C4 5.62 6.37 6.38 0.301 0.0344 0.035
MA 4.71 7.042 7.28 0.142 0.146 0.146
Kernel CMA 5.20 8.80 10.07 0. 139 0.143 0.144
Function Gaussian 1.67 2.93 3.25 0.139 0.143 0.144
Table 5: ISE Medians - Vol2 and Vol4 (x10~2)
Median Voll Vol2
Quant0 Quant50 Quant100 Quant0 Quant50 Quant100
C1 2.15 3.25 3.84 0.0353 0.0355 0.0356
Ratio C2 1.94 3.03 3.37 0.0352 0.0354 0.0356
1 C3 1.91 3.10 3.58 0.0352 0.0354 0.0356
C4 1.97 3.11 3.27 0.0351 0.0354 0.0356
DB2 C1 4.80 6.81 8.36 0.0353 0.0355 0.0356
Ratio C2 4.79 6.81 8.36 0.0353 0.0355 0.0356
3 C3 4.79 6.81 8.36 0.0353 0.0354 0.0356
C4 4.79 6.81 8.36 0.0352 0.0354 0.0356
w C1 5.53 6.29 6.30 0.0306 0,000334 0.0339
A Ratio C2 5.53 6.29 6.30 0.0306 0.0334 0.0339
Y 1 C3 5.53 6.29 6.30 0.0306 0.0334 0.0339
E C4 5.53 6.29 6.30 0.0306 0.0334 0.0340
L DB5 C1 5.52 6.29 6.30 0.0307 0.0334 0.0340
E Ratio C2 5.52 6.29 6.30 0.0307 0.0334 0.0340
T 3 C3 5.52 6.29 6.30 0.0307 0.0334 0.0340
S C4 5.52 6.29 6.30 0.0307 0.0334 0.0340
C1 5.54 6.28 6.29 0.0298 0.0332 0.0338
Ratio C2 5.54 6.28 6.29 0.0298 0.0332 0.0338
1 C3 5.54 6.28 6.29 0.0298 0.0332 0.0338
C4 5.54 6.28 6.29 0.0298 0.0332 0.0338
DB8 C1 5.54 6.28 6.29 0.0297 0.0332 0.0339
Ratio C2 5.54 6.28 6.29 0.0297 0.0332 0.0339
3 C3 5.54 6.28 6.29 0.0297 0.0332 0.0339
C4 5.54 6.28 6.29 0.0297 0.0332 0.0339
MA 4.64 6.97 7.22 0.1418 0.1449 0.1454
Kernel CMA 5.16 8.95 10.45 0.1400 0.1428 0.1434
Function Gaussian 1.64 2.91 3.22 0.1324 0.1329 0.1331
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Table 6: TAE Means - Vol2 and Vol4 (x10~2)

Mean Vol2 Vol4
Quant0 Quant50 Quant100 Quant0 Quant50 Quant100
C1 7.78 9.76 10.93 0.194 0.227 0.248
Ratio Cc2 7.05 9.05 9.98 0.193 0.227 0.248
1 C3 6.93 9.05 10.26 0.190 0.223 0.244
C4 7.21 9.20 9.79 0.204 0.2429 0.269
DB2 C1 10.19 12.94 15.14 0.181 0.203 0.223
Ratio Cc2 9.98 12.74 14.86 0.182 0.206 0.228
3 C3 9.97 12.76 14.96 0.182 0.206 0.228
C4 9.98 12.74 14.76 0.183 0.208 0.232
w C1 12.24 13.62 13.82 0.289 0.363 0.405
A Ratio Cc2 12.25 13.62 13.82 0.290 0.365 0.407
Y 1 C3 12.25 13.62 13.82 0.290 0.364 0.406
E C4 12.25 13.62 13.82 0.292 0.367 0.409
L DB5 C1 12.23 13.61 13.81 0.291 0.363 0.405
E Ratio Cc2 12.23 13.61 13.81 0.291 0.363 0.405
T 3 C3 12.23 13.61 13.81 0.291 0.363 0.405
S C4 12.23 1.361 13.81 0.291 0.363 0.405
C1 12.27 13.62 13.83 0.285 0.367 0.411
Ratio Cc2 12.27 13.62 13.83 0.286 0.368 0.412
1 C3 12.27 13.62 13.83 0.286 0.367 0.411
C4 12.27 13.62 13.84 0.288 0.371 0.415
DB8& C1 12.26 13.62 13.83 0.283 0.367 0.410
Ratio Cc2 12.26 13.62 13.83 0.283 0.367 0.410
3 C3 12.26 13.62 13.83 0.283 0.367 0.410
C4 12.26 13.62 13.83 0.283 0.367 0.410
MA 10.78 13.03 13.42 0.479 0.569 0.605
Kernel CMA 9.90 13.07 14.47 0.475 0.559 0.596
Function Gaussian 6.35 8.65 9.65 0.449 0.490 0.515
Table 7: TAE Medians - Vol2 and Vol4 (x10~2)
Median Vol2 Vol4
Quant0 Quant50 Quant100 Quant0 Quant50 Quant100
C1 7.47 9.46 10.66 0.188 0.214 0.235
Ratio Cc2 6.90 8.91 9.84 0.188 0.215 0.238
1 C3 6.87 8.95 10.19 0.186 0.212 0.234
C4 6.96 8.97 9.58 0.191 0.220 0.246
DB2 C1 10.81 13.88 16.56 0.178 0.199 0.217
Ratio Cc2 10.80 13.88 16.56 0.177 0.201 0.222
3 C3 10.80 13.88 16.56 0.177 0.201 0.222
C4 10.80 13.88 16.56 0.178 0.203 0.226
w C1 12.22 13.64 13.84 0.287 0.360 0.399
A Ratio Cc2 12.22 13.64 13.84 0.288 0.360 0.401
Y 1 C3 12.22 13.64 13.84 0.288 0.360 0.400
E C4 12.22 13.64 13.84 0.289 0.361 0.402
L DB5 C1 12.22 13.63 13.83 0.288 0.360 0.399
E Ratio Cc2 12.22 13.63 13.83 0.288 0.360 0.399
T 3 C3 12.22 13.63 13.83 0.288 0.360 0.399
S C4 12.22 13.63 13.83 0.288 0.360 0.399
C1 12.31 13.65 13.87 0.282 0.362 0.405
Ratio Cc2 12.31 13.65 13.87 0.282 0.363 0.405
1 C3 12.31 13.65 13.87 0.282 0.362 0.405
C4 12.31 13.65 13.87 0.282 0.364 0.406
DB8 C1 12.31 13.65 13.87 0.280 0.362 0.403
Ratio Cc2 12.31 13.65 13.87 0.280 0.362 0.403
3 C3 12.31 13.65 13.87 0.280 0.362 0.403
C4 12.31 13.65 13.87 0.280 0.362 0.403
MA 10.80 13.06 13.44 0.483 0.573 0.609
Kernel CMA 9.87 12.99 14.39 0.477 0.564 0.599
Function Gaussian 6.31 8.61 9.59 0.446 0.487 0.512
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5.2 Real Series

In this section we estimate the volatiltiy of BOVESPA indexes (Sdo Paulo’s exchange
market), minute by minute, from 1lam on 12/18/01 to 6pm on 02/18/02. This series has
16348 observations for which some minor adjustments are made in order to use casacade

algorithms (since 2!* = 16384). One can see the returns series in figure 5.2.

o 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 7: BOVESPA returns - 12/18/01-02/18/02 (x1072)

The aim is to compare nonparametric estimates based on the returns. However, we
should point out that we were unable to compute normal kernel estimates due to computa-
tional memory issues. Therefore, we will compare MA, CMA and wavelets performances.

We observe that wavelets estimates produce, as seen in the simulation and expected
from theoretical results, higher peaks (closer to the real ones) than either MA or CMA
procedures. Moreover, wavelets estimated volatilty curve looks less noisy than either MA

or CMA manages to produce.

6 Final Remarks

From section 5.1 and 5.2, wavelets estimates are more efficient for estimating volatility
functions, whenever they present peaks, jumps or cusps. This efficiency is easily seen
with local error measures as well as by visual comparisons. For more regular volatility
functions, Gaussian kernel procedures have a better performance. This Gaussian kernel
performance is much better than MA and CMA but, although uniformly, only slightly

better than wavelets estimators. It is important to reinforce the fact that no asymptotic
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Figure 8: BOVESPA Square-root Volatility Estimates (x1072): (a) CMA (b) DAUB#1
(c) DAUB#5 (d) DAUB#8

results for Gaussin kernel estimators are known as well as for some of the most challenging
volatilities used in the simulations. Finally, on the performance issues, although MA and
CMA are theoretically consistent they do not perform up to wavelets in any situation or
Gaussian kernel in most situations (all but one). Our simulation studies also show a very
negative performance for the MA estimator.

It is also important to write a few lines concerning computational performance and
feasibility. Wavelets are clearly superior to any of the other methods. Some numbers
are that wavelets procedures are usually 100 times faster than either MA or CMA and
even faster when compared to Gaussian kernel. That difference can mean the feasibility
of online computation at ease. Moreover we should point that faster and more powerful
computers were used for Gaussian kernel estimators, because of time and memory issues.

We can summarize our conclusions on the following considerations

e Wayvelet estimators are exceptionally faster than any other one of the three; moreover,
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it needs much less memory resources. Those two properties make them very suitable

for online operations.

e Gaussian kernel estimators, eventhough having no theoretically proved performance,
present results that shows their ability in dealing with volatility functions with some

degree of regularity.

e Wavelet estimators Lorentz curve procedures can be automatized and generalized
with no major loss in performance, which confirms their versatility and robustness

to misspecification.

e Wavelet estimators have a clear capacity of representing irregular function with

parsimony as illustrated in Vol4 and Vol8.

e Differences in wavelet and Gaussian kernel performances are small in regular func-
tions and favorable to kernel estimator; they are larger in irregular functions and

favorable to wavelets.

Those considerations gives us the understanding that theoretical incursions should be
made into the asymptotic performance of Gaussian kernel and wavelet estimators as well
as most nonparametric estimators for less regular (and more complex) volatility functions
and, from an applied point of view, wavelets should be seriously considered given its overall
good performance (with excellency in most cases) and its computational convenience.
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