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Abstra
t

The idea of volatility is fundamental to pre
ise de�nition of risk and, hen
e, its

estimation (or predi
tion) is a very important task in �nan
e appli
ations. We present

some ideas on nonparamateri
 estimation of volatility fun
tion in di�usion models. A

nonlinear wavelet estimate of the volatiltiy fun
tion is proposed and its performan
e

is 
ompared to three kernel estimators in both simulated and real data. Simulation is

developed for eight volatility shapes and some interesting, but not unexpe
ted, results

are presented. Some issues su
h as online estimation and predi
tion, robustness to

oversmoothing and performan
e under sudden 
hanges in pattern of volatility are also

dis
ussed.

Keywords: wavelets estimation, di�usion pro
ess estimation, volatiltiy estimation,

non-parametri
 fun
tion estimation.

1 Introdu
tion

Conditional volatility estimation is of great importan
e in �nan
e apppli
ations. Para-

metri
 models su
h as the XARCH family are quite used as well as sto
hasti
 volatility

models. Referen
es on parametri
 volatility modelling are Ghysels et al. [1996℄, Bollerslev

et al. [1992℄ and Shephard [1996℄. Eventhough parametri
 pro
edures are still the domi-

nating statisti
al tools in volatility estimation, non-parametri
 alternatives have in
reased

their presen
e in the last de
ade (Bosq [1998℄ and Antoniadis and Oppenheim [1995℄).

The reason for that 
hange in venues is the fast development of 
omputational power and

new (and faster) paradigms su
h as the wavelet de
omposition as well as the sear
h for

more robust models.

Non-parametri
 appli
ations range from histori
 simulations to sieves (Darolles and

Gouri�eroux [2001℄), passing through semiparametri
s (Yang [2000℄), lo
al polinomial smooth-

ing (H�ardle and Tsybakov [1997℄ and Yang et al. [1999℄) and 
onditional distribution

quantiles via kernel (Abberger [1997℄).

A 
losely related paper is that of Ho�mann [1999℄, that uses nonlinear wavelet te
h-

niques for dis
rete AR(1) models and shows the adaptative nature of those estimators, on

the sense of Donoho and Johnstone [1995℄.

High frequen
y data bring two additional 
hallenges to statisti
al methodologies. The

dependen
e stru
ture is ampli�ed as well as the e�e
ts of 
omputational 
osts 
an be dra-
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mati
ally in
reased. Computational eÆ
ien
y is a big advantage for wavelets appli
ation

on those 
ases.

This work has as initial methodologi
al motivations Bertrand [1996℄, Avesani and

Bertrand [1997℄ and spe
ially Genon-Catalot et al. [1992℄, whose theoreti
al results both

motivated and 
hallenged wavelet appli
ation in �nan
ial data. We 
ompared kernel and

wavelet based pro
edures in both simulated and real data sets. Emphasis was put in stru
-

tural 
hanges and outliers e�e
ts on the volatiltiy fun
tion. We illustrate the natural and

automati
 adaptation of wavelets to outliers (as 
an be seen for a simpler and theoreti
al

set-up in Walter [1992a℄ e Walter [1992b℄). Some dis
repan
ies between our results and

the one found in Bertrand [1996℄ and Avesani and Bertrand [1997℄ are pointed out and

dis
ussed as well as some indi
ations simulation provide of broader use of both wavelet

bases and kernel fun
tions that are still not theoreti
ally proved.

The text goes as follows. In se
tion 2, di�usion models are presented. Non-parametri


estimators are presented in se
tion 3 and their adaptations to di�usion models are made

in se
tion 4 as well as presentation of some of their most relevant theoreti
al results. Illus-

trations by simulation and real data analysis are made in se
tion 5. Some �nal remarks,


on
lusions and dire
tions for future resear
h are presented in se
tion 6.

2 Di�usion Models

Formal de�nition and mathemati
al treatment of di�usion models are fundamentally based

on the Wiener pro
ess and Ito's integral and pro
ess. A very important pro
ess whi
h is

the basis for the non-parametri
 volatility estimators we study in this paper is the so-
alled

Quadrati
 Variation. Let fX

t

g

t2T

be some Ito's pro
ess. Its quadrati
 variation pro
ess is

given by < X;X >

t

= lim

�t

k

!0

P

t

k

�t

jX

t

k+1

�X

t

k

j

2

, where 0 = t

1

< � � � < t

n

= t is some

partition of [0; t℄ and �t

k

= t

k+1

� t

k

. For every b : [0;1)�! ! R and � : [0;1)�! ! R

for whi
h Ito's integral exist, one de�nes the following di�usion model:

dX

t

= b(t;X

t

)dt+ �(t;X

t

)dW

t

; (1)

where b(�; �), known as drift, measures the level of the pro
ess while �(�; �), known as

di�usion 
oeÆ
ient, relates to the speed and size of the series os
illations. One 
an then
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show that the volatility in di�usion models is given by V ar(dX

t

=fX

s

g

s�t

) = �

2

(t;X

t

).

For di�usion model simulations, a dis
retisation of the 
ontinuous pro
ess is ne
essary.

We implemented the Euler's method (see for details Oskendal [1995℄).

3 Non-parametri
 Estimation

3.1 Kernel Estimation

Kernel fun
tion estimation origins are asso
iated to densities as follows. Let fX

1

; :::;X

n

g

be a sample from F

X

(

R

f

X

) and

b

f

h

(x) its kernel density estimator. Some usual properties

of a kernel density estimator are its smoothness (of the same degree of the kernel fun
tion

itself), its optimal (or near optimal) asymptoti
 behavior, its partial adaptation to data

(via 
ostly data-driven 
hoi
es of h). Some of those properties will be inherited in the

�nan
ial data setup. The parameter h 
ontrols the estimate degree of smoothness and is

therefore 
alled the smoothing parameter.

Under a regression setup, let f(X

i

; Y

i

)g

n

i=1

be a sample from (X;Y ), and m(x) =

E(Y=X = x). Suppose X and Y have a joint density f

X;Y

and respe
tive marginals f

X

and f

Y

. The Nadaraya-Watson estimator for m is given by

bm(x) =

n

X

i=1

K

�

X

i

� x

h

�

Y

i

n

X

i=1

K

�

X

i

� x

h

�

; x 2 R: (2)

For assessing bm(x)'s global performan
e several error measures are proposed in the

literature. The integrated absolute error, IAE, the integrated squared error, ISE, the

integrated mean squared error, IMSE, the dis
rete squared error, DSE, and the dis
rete

mean squared error, DMSE, are usually 
onsidered to provide good performan
e indi
a-

tors. We restri
t ourselves to the ISE and IAE measures due to their feasibility in real

appli
ations. Under some regularity 
onditions on f , m and K, bounds and 
onvergen
e

of IMSE, MSE and IAE results are available. Bosq [1998℄ and H�ardle [1990℄ provide the

reader with detailed information on properties of kernel based regression estimators for

iid and dependent data.
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Among the te
hniques for 
hoosing the optimal h, 
rossvalidation has very ni
e rea-

soning and some robustnes against oversmoothing. The optimal h by 
rossvalidation is

given by

b

h

otm

= argmin

h

CV (h), where CV (h) = n

�1

P

n

j=1

[Y

j

� bm

h;j

(X

j

)℄

2

w(X

j

) and

bm

h;j

(�) is the Nadaraya-Watson estimator without the j-th observation.

3.2 Wavelets Estimation

There are several ways of de�ning wavelets analysis in L

2

(R). The most 
onstru
tive and

easier to interpret is the so-
alled Multiresolution Analysis (MRA), due to Mallat [1989℄.

De�nition 3.1. A Multiresolution Analysis of L

2

(R), fV

j

; j 2 Zg, in is an in
reasing

sequen
e of 
losed subespa
es of L

2

(R) whi
h satis�es the following 
onditions:

(i) \

j2Z

V

j

= 0 and [

j2Z

V

j

is dense in L

2

(R).

(ii) 8g 2 L

2

(R) and 8j 2 Z, g(x) 2 V

j

() g(2x) 2 V

j+1

.

(iii) 8g 2 V

0

and 8k 2 Z, g(x� k) 2 V

0

.

(iv) 9g 2 V

0

su
h that fg(x� k)g

k

2 Z is a Riesz basis of V

0

.

Let �

jk

(�) = �(2 � �k), j; k 2 Z. One 
an derive from a MRA that for ea
h j 2

Z, f�

jk

; k 2 Zg is an ortonormal basis for V

j

, the approximation spa
e of resolution

j. A detail spa
e of resolution j, 
all it W

j

, 
an de de�ned by V

j+1

= V

j

� W

j

. A

basis for W

j

is easily drawn fron the MRA and we will 
all it f 

jk

g; k 2 Z. Moreover,

[

j2Z

W

j

= V

j

0

[ ([

j�j

0

W

j

) = lim

j!1

V

j

, where j

0

2 Z. Therefore, f 

jk

; j; k 2 Zg and

ff�

j

0

k

; k 2 Zg; f 

jk

; j � j

0

; k 2 Zgg are both ortonormal bases for L

2

(R). Finally, any

square integrable fun
tion 
an be written as

f(t) =

X

j2Z

X

k2Z

�

j;k

 

j;k

(t) =

X

k2Z

�

j

0

;k

�

j

0

;k

(t) +

X

j�j

0

2Z

X

k2Z

�

j;k

 

j;k

(t); (3)

where equalities are meaninful in L

2

norm.

Desirable features of wavelets bases (from either the theoreti
al or applied point of

view) in
lude 
ompa
t support and adaptative smoothness. A family that has both prop-

erties is Daube
hies wavelets, that we will be using here. The bases are indexed by the

number of nule moments (N � 1) and we will 
all them DAUB# N. In general (N � 2)
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they have no 
losed form but fast �lters are available and no pra
ti
al problem rise from

that fa
t.

From (3) estimating f is equivalent to estimating its 
oeÆ
ients. Constru
tion of

estimation algorithms is spe
i�
 to the nature of the sample fX

t

g. For instan
e, suppose

the sample is regularly spa
ed (the �xed sampling interval 
alled �) and that the sample

size n = 2

J

for some J 2 N. There is a maximum number of 
oeÆ
ients that 
an be

estimated and that means also that there is a maximum level of resolution that 
an be

used. Therefore, the a
tual wavelet approximation for f is given by

f(t) '

X

k2K

j

0

�

j

0

;k

�

j

0

;k

(t) +

j

1

X

j=j

0

X

k2K

j

�

j;k

 

j;k

(t): (4)

where j

0

and j

1

are, respe
tively, the minimum and maximum empiri
al levels of resolution

and K

j

are �nite sets whose union has 
ardinality n.

De�ning the minimum level of resolution is easier and less determinant than 
hoosing

j

1

. Sin
e we use 
ompa
tly supported wavelets, we 
an simply 
hoose j

0

to be the largest

resolution for whi
h �

j

0

;k

still 
overs the sampled interval. In our 
ase, it means that the

support of �

j

0

;k

(t) 
overs [0; T ℄ and for DAUB# N, that j

0

= dlog

2

(2N �1)e. The 
as
ade

algorithm 
an be then employed for fast 
omputation of the 
oeÆ
ients �

j;k

e �

j;k

.

Eventhough (4) is a ni
e approximation, spe
ially for smooth f and �, linear pro-

je
tion estimators tend to be asymptoti
ally biased. For that reason, nonlinear pro
e-

dures involving shrinkage are desirable. In pra
ti
e shrinking the fun
tion in wavelets

domain is equivalent to smoothing it in time domain. Shrinkage in wavelet analysis


an be attained through level limitation and 
oeÆ
ients thresholding. Thresholding is

usually divided in two major 
ategories. Choosing some � > 0, Hard thresholding is

given by a rule su
h as Æ

d

(


i;j

; �) = 


i;j

1

(j


i;j

j>�)

and Soft thresholding has rules su
hs as

Æ

s

(


i;j

; �) = (


i;j

� sign(


i;j

)�)1

(j


i;j

j>�)

.

The art in thresholding is 
hoosing the value (or values) of � and proposing a rule

whi
h poses as little weight as possible on that 
hoi
e. In other words, one wants an opti-

mal � but do not want to be strongly penalized by a suboptimal 
hoi
e. For thresholding

values, see Vidakovi
 [1999℄ and Donoho et al. [1996℄. The so-
alled universal threshold-

ing, motivated by additive normal error is given by �

p

2 log n, where � is the empiri
al
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oeÆ
ients standard deviation.

Pinheiro and Vidakovi
 [1997℄ proposed another thresholding pro
edure, based on

energy retention via Lorentz 
urve. One knows that the total empiri
al energy is given by

kfk

2

L

2

=

P

j

P

k

�

2

j;k

and it is easy to 
ompute spe
i�
 level by level energy.

De�nition 3.2 (Lorentz Curve). Let f�

j;k

: j = 0; ::; n k 2 Zg be the 
oeÆ
ients of a

signal f and d

2

j

=

P

k

�

2

j;k

. The Lorentz 
urve based on their empiri
al level energies is:

L(p) =

bnp


X

j=0

X

k

�

2

j;k

n

X

j=0

X

k

�

2

j;k

=

bnp


X

j=0

d

2

j

n

X

j=0

d

2

j

; p 2 [0; 1℄: (5)

Theorem 3.1 (Meyer). A fun
tion f 2 C

s

(R) if and only if j�

j;k

j � C2

�j=2

2

�j(r^s)

on

a r-regular MRA.

Noti
e that theorem 3.1 shows that wavelet analysis 
on
entrate the energy of a signal

on very few low levels. Therefore, a good de
omposition should have very few relevant


oeÆ
ients. However, one has also the following empiri
al version of theorem 3.1.

Theorem 3.2. Let

b

d

2

j

= n

�1

X

k

b

�

2

j;k

n and B

N

= min

x2R

max

k

 

2

0;k

(x) > 0. Then

b

d

2

j

�

B

N

2

j

Cn

: (6)

At �rst, theorems 3.1 and 3.2 look 
ontradi
tory. However, the former 
laims that

wavelet de
omposition is very parsimonious and shows that signal energies are 
on
en-

trated in a very few low levels of resolution. On the other hand, theorem 3.2 shows that

empiri
al 
oeÆ
ients are a
tually arbitrarily large and, worst, 
oeÆ
ients estimates from

high levels tend to be even larger. The 
orre
t interpretation of that apparent 
ontra-

di
tion is that estimated 
oeÆ
ients must be 
onformed to theorem 3.1. Based on that

apparent 
ontradi
tion, Pinheiro and Vidakovi
 [1997℄ proposed the following thresholding

pro
edure.

Take the empiri
al Lorentz 
urve, i.e.,

b

L(p) =

P

bnp


j=0

b

d

2

j

=

P

n

j=0

b

d

2

j

; p 2 [0; 1℄. One 
an

then adjust the maximum level of resolution for the empiri
al Lorentz 
urve to follow the
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behavior in theorem 3.1. That means that levels are a

eptable if they show a geometri
al

de
reasing. Theorem 3.2 tell us that eventually one will have the empiri
al Lorentz 
urve

showing an exponential in
rease. The �rst pro
edure is therefore to limit use to those

levels whose behavior 
onforms to theorem 3.1. After 
hoosing j

1

, one aplies a 
oeÆ
ients

thresholding as follows.

De�nition 3.3 (LC1 Thresh.). Suppose a sequen
e of estimated 
oeÆ
ients f�

j;k

: j =

0; ::; n k 2 Zg and a positive parameter � and let d

2

= n

�1

P

n

j=0

P

k

�

2

j;k

. The LC1

thresholded 
oeÆ
ients (LC1) is given by �

lim

j;k

= �

j;k

1

(�

2

j;k

>�d

2

)

.

The 
ut-o� parameter � in De�nition 3.3 has a very simple interpretation.It balan
es

two 
on
i
ting measures: parsimonious and energy retention. If k � 1, one tends to

preserve energy retaining more 
oeÆ
ients whilst, for k > 1, preferen
e is given to fewer


oeÆ
ients over energy preservation.

This pro
edure does not take into a

ount the level of resolution from whi
h a 
oef-

�
ient is taken. In this work, we present a slightly modi�ed Lorentz 
urve thresholding

pro
edure as well as a hands-free maximum level 
hoi
e. The level 
hoi
e pro
edure is

presented in se
tion 5.1. CoeÆ
ients thresholding is performed level by level as follows.

De�nition 3.4 (LC2 Thresh.). Let � and �

j

be positive real numbers and f�

j;k

: j =

0; ::; n k 2 Zg be the sequen
e of estimated 
oeÆ
ients and d

2

j

= n

�1

P

k

�

2

j;k

. The LC2

thresholded 
oeÆ
ients are given by

^

�

lim

j;k

= �

j;k

1

(�

2

j;k

>�d

2

+�

j

d

2

j

)

.

Noti
e that

�d

2

+ �

j

d

2

j

0

=

�

n

j

0

n

�+ �

j

�

d

2

j

0

+ �d

2

�j

0

; (7)

where n

j

is the number of 
oe�
ients in levelW

j

, n is the total number of 
oeÆ
ients,d

2

j

0

=

P

k

�

2

j

0

;k

=n and d

2

�j

0

=

P

n

j=0;j 6=j

0

P

k

�

2

j;k

=n.

From (7), one sees that di�erent thresholding levels for ea
h resolution give the pro-


edure more leverage to weight in or out 
oe�
ients from spe
i�
 levels. That is very

important be
ause pro
edures 
an be tailored depending on the regularity supposed or

the pie
e of the fun
tion one intends to represent. Moreover, dire
t 
omparisons between
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level energy and its 
oeÆ
ients 
an be done. The wavelet LC2 thresholded is written as:

^

f(t) =

X

k2Z

b�

j

0

;k

�

j

0

;k

(t) +

j

1

X

j=j

0

X

k2Z

b

�

lim

j;k

 

j;k

(t): (8)

4 Nonparametri
 Volatility Estimation

Suppose (1) and take �

2

(t;X

t

) = �

2

(t), i.e.,

dX

t

= b(t;X

t

)dt+ �(t)dWt; t 2 [0; T ℄; (9)

where b(�; �) and �(�) are unknown and P (X

0

= x

0

) = 1, for some unknown x

0

.

4.1 Kernel Estimator

Suppose X

t

is observed with T = 1, at times (t

1

; :::; t

n

), t

i

= i�, where � is the sampling

interval. We de�ne with no loss of generality (on T ) the kernel estimator of �

2

(�) as follows,

as originally proposed by Florens-Zmirou [1993℄.

De�nition 4.1 (Volatility Kernel Estimator). The volatility fun
tion �

2

(t), as de�ned

by (9), 
an be estimated by:

S

n

(t) =

n�1

X

i=1

K

�

X

t

i

� t

h

�

n

�1

[X

t

i+1

�X

t

i

℄

2

n

X

i=1

K

�

X

t

i

� t)

h

�

: (10)

The estimator, de�ned by (10) is pre
isely the Nadaraya-Watson regression estimator

taking Y

i

= �

�1

[X

t

i+1

� X

t

i

℄

2

, the empiri
al quadrati
 variation pro
ess. The following

theorem shows some of its most relevant asymptoti
 properties (due to Florens-Zmirou

[1993℄).

Theorem 4.1. Let �

2

(t) be given by (9) and S

n

(t) by (10). Suppose that b(�) is limited,

twi
e di�erentiable, with limited derivatives and that �(�) has three limited and 
ontinuous

derivatives and that there are two 
onstants k and K su
h that 0 < k � �(t) � K. If,

9



moreover, nh

3

! 0, then:

p

nh

�

S

n

(t)

�

2

(t)

� 1

�

D

! L

�1=2

(t)Z; (11)

where Z � N (0; 1) independent of L(t) = lim

Æ!0

1

2Æ

R

1

0

1

(jX

s

�tj<Æ)

ds.

To our knowledge there are no general asymptoti
 results su
h as Theorem 4.1 on

the IMSE. We present below some estimators due to Bertrand [1996℄ whi
h redu
e the

Nadaraya-Watson estimator to moving average, S

MA

n

, and 
entered moving average, S

CMA

n

,

as follows.

S

MA

n

(t) = (A�)

�1

n�1

X

j=0

 

A�1

X

i=1

[X

t

j�i+1

�X

t

j�i

℄

2

!

1

[t

j

;t

j+1

)

(t) (12)

S

CMA

n

(t) = (A�)

�1

n�1

X

j=0

0

B

�

A

2

�1

X

i=�

A

2

[X

t

j�i+1

�X

t

j�i

℄

2

1

C

A

1

[t

j

;t

j+1

)

(t); (13)

where A is the number of observations used for estimating volatility in ea
h point.

Consisten
y of S

CMA

n

is 
lear as long as t is a 
ontinuity point and for those points for

whi
h �

2

(t

�

) = lim

x%t

�

2

(x). Bertrand [1996℄ also showed that, if �(�) =

P

N

i=1

�

i

1

[t

i

;t

i+1

)

(�),

for positive 
onstants �

i

8i, and w(�) some weight fun
tion, an also if �! 0, A!1 and

A�! 0, then IMSE

A;�

! 0.

4.2 Wavelet Estimators

Consider a sample of size n, with t

i

= i2

�n

, where i = 0; 1; :::; N = [2

n

T ℄, i.e., one

observes the di�usion in [0; T ℄ with sampling interval 4

n

= 2

�n

. Some theoreti
al asymp-

toti
 results are known for a linear wavelet estimator of �(�) under 
onditions (14), on

b(�; �) and �(�), as seen in Genon-Catalot et al. [1992℄.

(i) b(�; �) 2 C

1

([0;+1) � R);

(ii) 8T , 9K

T

s.t. 8t � [0; T ℄, j b(t; u) j� K

T

(1+ j u j);

(iii) �(�) 2 C

m

([0;1)), with m � 1, and �(t) > 0 8t � 0.

9

>

>

=

>

>

;

(14)

Under (14), and m � 0, solution of (1) is unique in [0;1). As we use a regular MRA
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in L

2

(R) and �

2

(�) is not ne
essarily an element of that spa
e, we 
an repla
e it with

a new fun
tion ��

2

(�) 2 L

2

(R), su
h that ��(t) = �(t); 8t 2 [0; T ℄. Suppose also that

��(t) 2 C

m

(R) and that suppf��g � [��; T + �℄, for some � � 0. We de�ne a new di�usion

pro
ess

�

X

t

as d

�

X

t

= b(t;

�

X

t

)dt+ ��(t)dW

t

;

�

X

0

= x, that would for all pra
ti
al purposes

be identi
al to X

t

.

Therefore, from now on, we will 
onsider �

2

(�) to be an element of L

2

(R) and we


an proje
t it in wavelets approximation and detail spa
es. An empiri
al estimate of

approximation 
oeÆ
ient �

j(n);k

is given by

�̂

j(n);k

=

N�1

X

i=0

�

j(n);k

(t

i

)(X

t

i+1

�X

t

i

)

2

: (15)

and the wavelet linear estimator of �

2

(t) on level j

1

is given by

�̂

2

(t) =

X

k�Z

�̂

j(n);k

�

j(n);k

(t): (16)

The estimator (16) is proposed by Genon-Catalot et al. [1992℄ where the following IME

and IMSE properties are presented:

2

n

2

Z

R

h(t)

�

�̂

2

(t)� �

2

(t)

�

dt

n!1

! N

�

0; 2

Z

T

0

h

2

(t)�

4

(t)dt

�

; (17)

R

n

= E

�

Z

R

(�̂

2

(t)� �

2

(t))

2


(t)dt

�

� C(2

4j(n)�2n

+ 2

�2j(n)(m^r)

+ 2

�n

) +

sup

t�R


(t)

�

2

j(n)�n

2

Z

T

0

�

4

(t)dt+ o(2

j(n)�n

)

�

; (18)

where C is a 
onstant depending only on �, 
 and �

2

.

As for iid observations, the linear wavelet estimator helps us as ben
hmark but some

kind of thresholding should be performed. We propose the following nonlinear estimator.

De�nition 4.2 (Nonlinear Wavelet Estimator). The nonlinear wavelet estimator for

11



the volatility fun
tion �

2

is given by

�̂

2

(t) =

X

k�Z

b�

j

0

;k

�

j

0

;k

(t) +

j

1

X

j=j

0

X

k2Z

b

�

lim

j;k

 

j;k

(t); (19)

where j

0

, j

1

are respe
tively the minimum and maximum resolutions given by the Lorentz


urve, b�

j

0

;k

are the empiri
al approximation 
oe�
ients and

b

�

lim

j;k

are the LC2 thresholded

estimates for the detail 
oe�
ients.

5 Appli
ations

We study the non-parametri
 estimators on a real series and on simulations. In the

simulations, we used the wavelet estimators and three kernel estimators: Gaussian, MA

and CMA. Crossvalidations were performed only for MA and CMA, due to 
omputational


osts. In pre-simulation studies, Gaussian smoothing parameter was 
hosen in order to

minimize ISE, as seen in H�ardle [1990℄. Another 
omment on the Gaussian kernel is

that, although it violates 
onditions for results presented in se
tion 3.1, its known good

properties motivate its use and simulation results show that its behavior is quite ex
ellent.

Wavelets estimators used three di�erent bases: DAUB#2, DAUB#5 and DAUB#8

and LC2 thresholding pro
edures. For the automati
 de�nition of maximum levels, we

used two di�erent ratio 
riteria. Three levels were always maintained and, after the third,

as long as the i-th level empiri
al energy would be the at most the same (or at most

three times as mu
h) as the (i� 1)-th level's the i-th level would stay. For the 
oeÆ
ients

thresholding we used four di�erent 
ombinations of parameters f�

j

g

j=1;2;3

and �, des
ribed

in table 1. For levels higher then 3, �

j

= �

3

.

Table 1: Thresholding Parameters

Combinations �

1

�

2

�

3

�

Comb 1 2 2 2 2

Comb 2 1 2 3 1

Comb 3 1 3 5 3

Comb 4 .5 0.75 1 1

12



5.1 Simulation Study

We use in this simulation study the following model

dX

t

= b(X

t

)dt+ �(t)h(X

t

)dWt; t�[0; T ℄; X

0

= x

0

; (20)

where h = 1, b = 0:75 �X

t

and � has eight di�erent types, illustrated in �gures 5.1-5.1,

and with no loss of generality, T = 1.

As nonparametri
 estimators tend to di�er mainly on jumps, we used two almost

norm-equivalent groups of volatility fun
tions, one with smooth and the other with their

respe
tive irregular versions. Figures 5.1 and 5.1 shows respe
tively the irregular and

regular volatility fun
tions.
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Figure 1: Irregular �(�) Fun
tions (with jumps): (a) Vol1 (b) Vol2 (
) Vol3 (d) Vol4

The eight models were generated in 4096 time points with 1000 simulated data series

ea
h. Be
ause of the massive output we illustrate mainly the results from volatilities Vol2

and Vol4. They represent respe
tively level 
hanges and fun
tions with lo
al perturbations.

Dis
ussions are however 
arried out for all eight models.

It is important to observe that Vol2 and Vol4 do not satisfy some of the regularity


onditions required for either the kernel or linear wavelet estimators theoreti
al results.

13



(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

(
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Regular �(�) Fun
tions: (a) Vol5 (b) Vol6 (
) Vol7 (d) Vol8

For error 
omparisons we used two of the previously de�ned measures, ISE and IAE.

Those measures are very global and hinder �ner 
omparisons of estimators performan
e

exa
tly at the points (or regions) of most interest su
h as jumps, 
usps or high 
urvatures.

Therefore, two other error measures (weighed ISE and IAE) were 
onsidered. Three weight

fun
tions were used:

� Quant100, that puts uniform weight on 
hange points and on its 200 nearest neigh-

bors and zero on the rest.

� Quant50, that puts uniform weight on 
hange points and on its 100 nearest neighbors

and zero on the rest.

� Quant0, that puts uniform weight on 
hange points and zero on the rest.

Results are summarized in tables and plots, using means and medians as des
riptive

tools. In all tables, the smallest IE's are highlighted. Smoothed histograms for ea
h

estimator empiri
al error distribution are presented as well as some 
omputing performan
e


onsiderations.

The overall pi
ture of the tables and plots indi
ates that for volatilities types 1,2,3,5,6

and 7, the Gaussian kernel shows the best ISE and IAE empiri
al distributions. Wavelets

14



however have a very 
lose performan
e and both te
hniques 
learly outperform the MA

and CMA te
hniques.

Among wavelet estimators, ratio 1 and thresholding 
ombination 4 show slight superi-

ority in some volatilities (1,2,5 and 6) but the pro
edures show some robustness to energy

ratio and thresholding 
uto� points spe
i�
ations.
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Figure 3: Vol2 ISE: (a) Quant0 (b) Quant50 (
) Quant100 (d) Total ISE

For Vol8, wavelets have a far superior performan
e spe
ially when analising the weighed

error measures. As expe
ted, MA and CMA showed poor performan
es. For Vol4, MA

and CMA showed better global performan
es than wavelets and mu
h better than normal

kernel estimators. That however 
hanges (in favor of wavelets) when lo
al performan
e is


onsidered. The unexpe
ted result is that MA outperforms CMA for Vol8, what 
ontra-

di
ts Bertrand [1996℄, for jumping di�usion fun
tions.

For Vol8, with lo
al measures, wavelets integrated errors are less than half as big as

Gaussian's whilst for Vol4 they are more than four times smaller. For the other volatilities

Gaussian kernel outperforms wavelets but never 
lose to the advantage wavelets have for
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Figure 4: Vol4 ISE: (a) Quant0 (b) Quant50 (
) Quant100 (d) Total ISE

Table 2: Quant0 ISE Medians and Means - Vol1-Vol8 (x10

�4

)

Type Wavelets Gaussian CMA MA

Median Mean Median Mean Median Mean Median Mean

Vol1 1.23 1.68 0.83 0.88 2.38 2.41 2.30 2.49

Vol2 191.50 204.44 164.10 166.66 516.11 5.20.31 463.75 471.48

Vol3 0.65 0.76 0.52 0.59 0.98 1.03 1.00 1.06

Vol4 2.97 3.01 13.24 13.19 14.18 13.93 14.00 14.17

Vol5 0.85 1.15 0.43 0.47 1.68 1.79 1.73 1.83

Vol6 333.33 343.97 169.16 174.51 502.78 510.80 527.21 535.13

Vol7 0.29 0.51 0.22 0.28 0.93 1.07 0.94 1.05

Vol8 2.48 2.72 6.81 6.85 8.26 8.27 8.66 8.89
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Figure 5: Vol2 ISE: (a) Wavelets (b) Gaussian (
) CMA (d) MA

those two irregular situations.

Another 
ontradi
tion to results in Bertrand [1996℄ is that here wavelets outperform

MA and CMA. In Bertrand [1996℄, Haar based pro
edures were outperformed by CMA

and MA and CMA was found to be uniformly the best pro
edure. We should point out

that we are using more regular wavelets and drawing 
on
lusions from a broader set of

volatility fun
tions.

One should also noti
e that in a sense both Vol4 and Vol8 represent lo
al outliers but

Vol8 is more regular, where Gaussian kernels 
an perform well while Vol4 represents a

pure jump where wavelets higher performan
e will be enhan
ed.
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Figure 6: Vol4 ISE: (a) Wavelets (b) Gaussian (
) CMA (d) MA

Table 3: IE Mean and Median - Vol2 and Vol4 (x10

�2

)

Mean and Vol2 Vol4

Median ISE IAE ISE IAE

Mean Med. Mean Med. Mean Med. Mean Med.

C1 4.69 4.36 13.8 13.5 0.039 0.037 0.524 0.500

Ratio C2 3.73 3.53 11.9 11.7 0.039 0.037 0.521 0.509

1 C3 3.93 3.78 12.2 12.2 0.038 0.037 0.503 0.497

C4 3.64 3.33 11.4 11.2 0.0407 0.038 0.598 0.532

DB2 C1 8.89 10.6 20.7 23.3 0.0382 0.037 0.479 0.466

Ratio C2 8.60 10.6 20.1 23.3 0.0383 0.037 0.494 0.483

3 C3 8.68 10.6 20.2 23.3 0.0383 0.037 0.494 0.483

C4 8.55 10.6 19.9 23.3 0.0383 0.037 0.505 0.494

W C1 6.44 6.33 14.3 14.3 0.0445 0.042 0.988 0.982

A Ratio C2 6.44 6.33 14.3 14.3 0.0447 0.042 0.994 0.983

V 1 C3 6.44 6.33 14.3 14.3 0.0446 0.042 0.991 0.983

E C4 6.44 6.33 14.3 14.3 0.0451 0.042 1.004 0.983

L DB5 C1 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980

E Ratio C2 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980

T 3 C3 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980

S C4 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980

C1 6.41 6.31 14.3 14.3 0.0437 0.042 0.995 0.987

Ratio C2 6.41 6.31 14.3 14.3 0.0440 0.042 1.002 0.987

1 C3 6.41 6.31 14.3 14.3 0.0438 0.042 0.998 0.987

C4 6.41 6.31 14.3 14.3 0.0445 0.042 1.014 0.987

DB8 C1 6.41 6.31 14.3 14.3 0.0428 0.042 0.987 0.983

Ratio C2 6.40 6.31 14.3 14.3 0.0428 0.042 0.987 0.983

3 C3 6.40 6.31 14.3 14.3 0.0428 0.042 0.987 0.983

C4 6.40 6.31 14.3 14.3 0.0428 0.042 0.987 0.983

MA 108.8 108.4 76.4 76.3 0.0100 0.0091 0.647 0.688

Kernel CMA 102.0 101.6 74.6 74.6 0.0098 0.0089 0.644 0.686

Fun
tion Gaussian 3.26 3.23 10.0 9.96 0.135 0.1345 0.779 0.774
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Table 4: ISE Means - Vol2 and Vol4 (x10

�2

)

Mean Vol2 Vol4

Quant0 Quant50 Quant100 Quant0 Quant50 Quant100

C1 2.46 3.57 4.14 0.036 0.037 0.037

Ratio C2 2.13 3.24 3.57 0.035 0.037 0.037

1 C3 2.04 3.26 3.74 0.035 0.037 0.037

C4 2.23 3.36 3.51 0.036 0.037 0.038

DB2 C1 4.22 5.98 7.20 0.035 0.035 0.036

Ratio C2 4.13 5.89 7.03 0.035 0.035 0.036

3 C3 4.12 5.92 7.10 0.353 0.035 0.036

C4 4.13 5.90 6.99 0.352 0.035 0.036

W C1 5.62 6.40 6.41 0.310 0.036 0.036

A Ratio C2 5.62 6.40 6.42 0.310 0.036 0.036

V 1 C3 5.62 6.40 6.42 0.310 0.036 0.036

E C4 5.62 6.40 6.42 0.311 0.036 0.036

L DB5 C1 5.61 6.38 6.40 0.313 0.035 0.035

E Ratio C2 5.61 6.38 6.40 0.313 0.035 0.035

T 3 C3 5.61 6.38 6.40 0.313 0.035 0.035

S C4 5.61 6.38 6.40 0.313 0.035 0.035

C1 5.63 6.37 6.39 0.308 0.035 0.036

Ratio C2 5.63 6.37 6.39 0.308 0.035 0.036

1 C3 5.63 6.37 6.39 0.308 0.035 0.036

C4 5.63 6.37 6.39 0.309 0.035 0.036

DB8 C1 5.62 6.37 6.38 0.301 0.034 0.035

Ratio C2 5.62 6.37 6.38 0.301 0.0344 0.035

3 C3 5.62 6.37 6.38 0.301 0.0344 0.035

C4 5.62 6.37 6.38 0.301 0.0344 0.035

MA 4.71 7.042 7.28 0.142 0.146 0.146

Kernel CMA 5.20 8.80 10.07 0. 139 0.143 0.144

Fun
tion Gaussian 1.67 2.93 3.25 0.139 0.143 0.144

Table 5: ISE Medians - Vol2 and Vol4 (x10

�2

)

Median Vol1 Vol2

Quant0 Quant50 Quant100 Quant0 Quant50 Quant100

C1 2.15 3.25 3.84 0.0353 0.0355 0.0356

Ratio C2 1.94 3.03 3.37 0.0352 0.0354 0.0356

1 C3 1.91 3.10 3.58 0.0352 0.0354 0.0356

C4 1.97 3.11 3.27 0.0351 0.0354 0.0356

DB2 C1 4.80 6.81 8.36 0.0353 0.0355 0.0356

Ratio C2 4.79 6.81 8.36 0.0353 0.0355 0.0356

3 C3 4.79 6.81 8.36 0.0353 0.0354 0.0356

C4 4.79 6.81 8.36 0.0352 0.0354 0.0356

W C1 5.53 6.29 6.30 0.0306 0,000334 0.0339

A Ratio C2 5.53 6.29 6.30 0.0306 0.0334 0.0339

V 1 C3 5.53 6.29 6.30 0.0306 0.0334 0.0339

E C4 5.53 6.29 6.30 0.0306 0.0334 0.0340

L DB5 C1 5.52 6.29 6.30 0.0307 0.0334 0.0340

E Ratio C2 5.52 6.29 6.30 0.0307 0.0334 0.0340

T 3 C3 5.52 6.29 6.30 0.0307 0.0334 0.0340

S C4 5.52 6.29 6.30 0.0307 0.0334 0.0340

C1 5.54 6.28 6.29 0.0298 0.0332 0.0338

Ratio C2 5.54 6.28 6.29 0.0298 0.0332 0.0338

1 C3 5.54 6.28 6.29 0.0298 0.0332 0.0338

C4 5.54 6.28 6.29 0.0298 0.0332 0.0338

DB8 C1 5.54 6.28 6.29 0.0297 0.0332 0.0339

Ratio C2 5.54 6.28 6.29 0.0297 0.0332 0.0339

3 C3 5.54 6.28 6.29 0.0297 0.0332 0.0339

C4 5.54 6.28 6.29 0.0297 0.0332 0.0339

MA 4.64 6.97 7.22 0.1418 0.1449 0.1454

Kernel CMA 5.16 8.95 10.45 0.1400 0.1428 0.1434

Fun
tion Gaussian 1.64 2.91 3.22 0.1324 0.1329 0.1331
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Table 6: IAE Means - Vol2 and Vol4 (x10

�2

)

Mean Vol2 Vol4

Quant0 Quant50 Quant100 Quant0 Quant50 Quant100

C1 7.78 9.76 10.93 0.194 0.227 0.248

Ratio C2 7.05 9.05 9.98 0.193 0.227 0.248

1 C3 6.93 9.05 10.26 0.190 0.223 0.244

C4 7.21 9.20 9.79 0.204 0.2429 0.269

DB2 C1 10.19 12.94 15.14 0.181 0.203 0.223

Ratio C2 9.98 12.74 14.86 0.182 0.206 0.228

3 C3 9.97 12.76 14.96 0.182 0.206 0.228

C4 9.98 12.74 14.76 0.183 0.208 0.232

W C1 12.24 13.62 13.82 0.289 0.363 0.405

A Ratio C2 12.25 13.62 13.82 0.290 0.365 0.407

V 1 C3 12.25 13.62 13.82 0.290 0.364 0.406

E C4 12.25 13.62 13.82 0.292 0.367 0.409

L DB5 C1 12.23 13.61 13.81 0.291 0.363 0.405

E Ratio C2 12.23 13.61 13.81 0.291 0.363 0.405

T 3 C3 12.23 13.61 13.81 0.291 0.363 0.405

S C4 12.23 1.361 13.81 0.291 0.363 0.405

C1 12.27 13.62 13.83 0.285 0.367 0.411

Ratio C2 12.27 13.62 13.83 0.286 0.368 0.412

1 C3 12.27 13.62 13.83 0.286 0.367 0.411

C4 12.27 13.62 13.84 0.288 0.371 0.415

DB8 C1 12.26 13.62 13.83 0.283 0.367 0.410

Ratio C2 12.26 13.62 13.83 0.283 0.367 0.410

3 C3 12.26 13.62 13.83 0.283 0.367 0.410

C4 12.26 13.62 13.83 0.283 0.367 0.410

MA 10.78 13.03 13.42 0.479 0.569 0.605

Kernel CMA 9.90 13.07 14.47 0.475 0.559 0.596

Fun
tion Gaussian 6.35 8.65 9.65 0.449 0.490 0.515

Table 7: IAE Medians - Vol2 and Vol4 (x10

�2

)

Median Vol2 Vol4

Quant0 Quant50 Quant100 Quant0 Quant50 Quant100

C1 7.47 9.46 10.66 0.188 0.214 0.235

Ratio C2 6.90 8.91 9.84 0.188 0.215 0.238

1 C3 6.87 8.95 10.19 0.186 0.212 0.234

C4 6.96 8.97 9.58 0.191 0.220 0.246

DB2 C1 10.81 13.88 16.56 0.178 0.199 0.217

Ratio C2 10.80 13.88 16.56 0.177 0.201 0.222

3 C3 10.80 13.88 16.56 0.177 0.201 0.222

C4 10.80 13.88 16.56 0.178 0.203 0.226

W C1 12.22 13.64 13.84 0.287 0.360 0.399

A Ratio C2 12.22 13.64 13.84 0.288 0.360 0.401

V 1 C3 12.22 13.64 13.84 0.288 0.360 0.400

E C4 12.22 13.64 13.84 0.289 0.361 0.402

L DB5 C1 12.22 13.63 13.83 0.288 0.360 0.399

E Ratio C2 12.22 13.63 13.83 0.288 0.360 0.399

T 3 C3 12.22 13.63 13.83 0.288 0.360 0.399

S C4 12.22 13.63 13.83 0.288 0.360 0.399

C1 12.31 13.65 13.87 0.282 0.362 0.405

Ratio C2 12.31 13.65 13.87 0.282 0.363 0.405

1 C3 12.31 13.65 13.87 0.282 0.362 0.405

C4 12.31 13.65 13.87 0.282 0.364 0.406

DB8 C1 12.31 13.65 13.87 0.280 0.362 0.403

Ratio C2 12.31 13.65 13.87 0.280 0.362 0.403

3 C3 12.31 13.65 13.87 0.280 0.362 0.403

C4 12.31 13.65 13.87 0.280 0.362 0.403

MA 10.80 13.06 13.44 0.483 0.573 0.609

Kernel CMA 9.87 12.99 14.39 0.477 0.564 0.599

Fun
tion Gaussian 6.31 8.61 9.59 0.446 0.487 0.512
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5.2 Real Series

In this se
tion we estimate the volatiltiy of BOVESPA indexes (S~ao Paulo's ex
hange

market), minute by minute, from 11am on 12/18/01 to 6pm on 02/18/02. This series has

16348 observations for whi
h some minor adjustments are made in order to use 
asa
ade

algorithms (sin
e 2

14

= 16384). One 
an see the returns series in �gure 5.2.
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Figure 7: BOVESPA returns - 12/18/01-02/18/02 (x10

�2

)

The aim is to 
ompare nonparametri
 estimates based on the returns. However, we

should point out that we were unable to 
ompute normal kernel estimates due to 
omputa-

tional memory issues. Therefore, we will 
ompare MA, CMA and wavelets performan
es.

We observe that wavelets estimates produ
e, as seen in the simulation and expe
ted

from theoreti
al results, higher peaks (
loser to the real ones) than either MA or CMA

pro
edures. Moreover, wavelets estimated volatilty 
urve looks less noisy than either MA

or CMA manages to produ
e.

6 Final Remarks

From se
tion 5.1 and 5.2, wavelets estimates are more eÆ
ient for estimating volatility

fun
tions, whenever they present peaks, jumps or 
usps. This eÆ
ien
y is easily seen

with lo
al error measures as well as by visual 
omparisons. For more regular volatility

fun
tions, Gaussian kernel pro
edures have a better performan
e. This Gaussian kernel

performan
e is mu
h better than MA and CMA but, although uniformly, only slightly

better than wavelets estimators. It is important to reinfor
e the fa
t that no asymptoti
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Figure 8: BOVESPA Square-root Volatility Estimates (x10

�2

): (a) CMA (b) DAUB#1

(
) DAUB#5 (d) DAUB#8

results for Gaussin kernel estimators are known as well as for some of the most 
hallenging

volatilities used in the simulations. Finally, on the performan
e issues, although MA and

CMA are theoreti
ally 
onsistent they do not perform up to wavelets in any situation or

Gaussian kernel in most situations (all but one). Our simulation studies also show a very

negative performan
e for the MA estimator.

It is also important to write a few lines 
on
erning 
omputational performan
e and

feasibility. Wavelets are 
learly superior to any of the other methods. Some numbers

are that wavelets pro
edures are usually 100 times faster than either MA or CMA and

even faster when 
ompared to Gaussian kernel. That di�eren
e 
an mean the feasibility

of online 
omputation at ease. Moreover we should point that faster and more powerful


omputers were used for Gaussian kernel estimators, be
ause of time and memory issues.

We 
an summarize our 
on
lusions on the following 
onsiderations

� Wavelet estimators are ex
eptionally faster than any other one of the three; moreover,
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it needs mu
h less memory resour
es. Those two properties make them very suitable

for online operations.

� Gaussian kernel estimators, eventhough having no theoreti
ally proved performan
e,

present results that shows their ability in dealing with volatility fun
tions with some

degree of regularity.

� Wavelet estimators Lorentz 
urve pro
edures 
an be automatized and generalized

with no major loss in performan
e, whi
h 
on�rms their versatility and robustness

to misspe
i�
ation.

� Wavelet estimators have a 
lear 
apa
ity of representing irregular fun
tion with

parsimony as illustrated in Vol4 and Vol8.

� Di�eren
es in wavelet and Gaussian kernel performan
es are small in regular fun
-

tions and favorable to kernel estimator; they are larger in irregular fun
tions and

favorable to wavelets.

Those 
onsiderations gives us the understanding that theoreti
al in
ursions should be

made into the asymptoti
 performan
e of Gaussian kernel and wavelet estimators as well

as most nonparametri
 estimators for less regular (and more 
omplex) volatility fun
tions

and, from an applied point of view, wavelets should be seriously 
onsidered given its overall

good performan
e (with ex
ellen
y in most 
ases) and its 
omputational 
onvenien
e.
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