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Abstrat

The idea of volatility is fundamental to preise de�nition of risk and, hene, its

estimation (or predition) is a very important task in �nane appliations. We present

some ideas on nonparamateri estimation of volatility funtion in di�usion models. A

nonlinear wavelet estimate of the volatiltiy funtion is proposed and its performane

is ompared to three kernel estimators in both simulated and real data. Simulation is

developed for eight volatility shapes and some interesting, but not unexpeted, results

are presented. Some issues suh as online estimation and predition, robustness to

oversmoothing and performane under sudden hanges in pattern of volatility are also

disussed.

Keywords: wavelets estimation, di�usion proess estimation, volatiltiy estimation,

non-parametri funtion estimation.

1 Introdution

Conditional volatility estimation is of great importane in �nane apppliations. Para-

metri models suh as the XARCH family are quite used as well as stohasti volatility

models. Referenes on parametri volatility modelling are Ghysels et al. [1996℄, Bollerslev

et al. [1992℄ and Shephard [1996℄. Eventhough parametri proedures are still the domi-

nating statistial tools in volatility estimation, non-parametri alternatives have inreased

their presene in the last deade (Bosq [1998℄ and Antoniadis and Oppenheim [1995℄).

The reason for that hange in venues is the fast development of omputational power and

new (and faster) paradigms suh as the wavelet deomposition as well as the searh for

more robust models.

Non-parametri appliations range from histori simulations to sieves (Darolles and

Gouri�eroux [2001℄), passing through semiparametris (Yang [2000℄), loal polinomial smooth-

ing (H�ardle and Tsybakov [1997℄ and Yang et al. [1999℄) and onditional distribution

quantiles via kernel (Abberger [1997℄).

A losely related paper is that of Ho�mann [1999℄, that uses nonlinear wavelet teh-

niques for disrete AR(1) models and shows the adaptative nature of those estimators, on

the sense of Donoho and Johnstone [1995℄.

High frequeny data bring two additional hallenges to statistial methodologies. The

dependene struture is ampli�ed as well as the e�ets of omputational osts an be dra-

2



matially inreased. Computational eÆieny is a big advantage for wavelets appliation

on those ases.

This work has as initial methodologial motivations Bertrand [1996℄, Avesani and

Bertrand [1997℄ and speially Genon-Catalot et al. [1992℄, whose theoretial results both

motivated and hallenged wavelet appliation in �nanial data. We ompared kernel and

wavelet based proedures in both simulated and real data sets. Emphasis was put in stru-

tural hanges and outliers e�ets on the volatiltiy funtion. We illustrate the natural and

automati adaptation of wavelets to outliers (as an be seen for a simpler and theoretial

set-up in Walter [1992a℄ e Walter [1992b℄). Some disrepanies between our results and

the one found in Bertrand [1996℄ and Avesani and Bertrand [1997℄ are pointed out and

disussed as well as some indiations simulation provide of broader use of both wavelet

bases and kernel funtions that are still not theoretially proved.

The text goes as follows. In setion 2, di�usion models are presented. Non-parametri

estimators are presented in setion 3 and their adaptations to di�usion models are made

in setion 4 as well as presentation of some of their most relevant theoretial results. Illus-

trations by simulation and real data analysis are made in setion 5. Some �nal remarks,

onlusions and diretions for future researh are presented in setion 6.

2 Di�usion Models

Formal de�nition and mathematial treatment of di�usion models are fundamentally based

on the Wiener proess and Ito's integral and proess. A very important proess whih is

the basis for the non-parametri volatility estimators we study in this paper is the so-alled

Quadrati Variation. Let fX

t

g

t2T

be some Ito's proess. Its quadrati variation proess is

given by < X;X >

t

= lim

�t

k

!0

P

t

k

�t

jX

t

k+1

�X

t

k

j

2

, where 0 = t

1

< � � � < t

n

= t is some

partition of [0; t℄ and �t

k

= t

k+1

� t

k

. For every b : [0;1)�! ! R and � : [0;1)�! ! R

for whih Ito's integral exist, one de�nes the following di�usion model:

dX

t

= b(t;X

t

)dt+ �(t;X

t

)dW

t

; (1)

where b(�; �), known as drift, measures the level of the proess while �(�; �), known as

di�usion oeÆient, relates to the speed and size of the series osillations. One an then
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show that the volatility in di�usion models is given by V ar(dX

t

=fX

s

g

s�t

) = �

2

(t;X

t

).

For di�usion model simulations, a disretisation of the ontinuous proess is neessary.

We implemented the Euler's method (see for details Oskendal [1995℄).

3 Non-parametri Estimation

3.1 Kernel Estimation

Kernel funtion estimation origins are assoiated to densities as follows. Let fX

1

; :::;X

n

g

be a sample from F

X

(

R

f

X

) and

b

f

h

(x) its kernel density estimator. Some usual properties

of a kernel density estimator are its smoothness (of the same degree of the kernel funtion

itself), its optimal (or near optimal) asymptoti behavior, its partial adaptation to data

(via ostly data-driven hoies of h). Some of those properties will be inherited in the

�nanial data setup. The parameter h ontrols the estimate degree of smoothness and is

therefore alled the smoothing parameter.

Under a regression setup, let f(X

i

; Y

i

)g

n

i=1

be a sample from (X;Y ), and m(x) =

E(Y=X = x). Suppose X and Y have a joint density f

X;Y

and respetive marginals f

X

and f

Y

. The Nadaraya-Watson estimator for m is given by

bm(x) =

n

X

i=1

K

�

X

i

� x

h

�

Y

i

n

X

i=1

K

�

X

i

� x

h

�

; x 2 R: (2)

For assessing bm(x)'s global performane several error measures are proposed in the

literature. The integrated absolute error, IAE, the integrated squared error, ISE, the

integrated mean squared error, IMSE, the disrete squared error, DSE, and the disrete

mean squared error, DMSE, are usually onsidered to provide good performane india-

tors. We restrit ourselves to the ISE and IAE measures due to their feasibility in real

appliations. Under some regularity onditions on f , m and K, bounds and onvergene

of IMSE, MSE and IAE results are available. Bosq [1998℄ and H�ardle [1990℄ provide the

reader with detailed information on properties of kernel based regression estimators for

iid and dependent data.
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Among the tehniques for hoosing the optimal h, rossvalidation has very nie rea-

soning and some robustnes against oversmoothing. The optimal h by rossvalidation is

given by

b

h

otm

= argmin

h

CV (h), where CV (h) = n

�1

P

n

j=1

[Y

j

� bm

h;j

(X

j

)℄

2

w(X

j

) and

bm

h;j

(�) is the Nadaraya-Watson estimator without the j-th observation.

3.2 Wavelets Estimation

There are several ways of de�ning wavelets analysis in L

2

(R). The most onstrutive and

easier to interpret is the so-alled Multiresolution Analysis (MRA), due to Mallat [1989℄.

De�nition 3.1. A Multiresolution Analysis of L

2

(R), fV

j

; j 2 Zg, in is an inreasing

sequene of losed subespaes of L

2

(R) whih satis�es the following onditions:

(i) \

j2Z

V

j

= 0 and [

j2Z

V

j

is dense in L

2

(R).

(ii) 8g 2 L

2

(R) and 8j 2 Z, g(x) 2 V

j

() g(2x) 2 V

j+1

.

(iii) 8g 2 V

0

and 8k 2 Z, g(x� k) 2 V

0

.

(iv) 9g 2 V

0

suh that fg(x� k)g

k

2 Z is a Riesz basis of V

0

.

Let �

jk

(�) = �(2 � �k), j; k 2 Z. One an derive from a MRA that for eah j 2

Z, f�

jk

; k 2 Zg is an ortonormal basis for V

j

, the approximation spae of resolution

j. A detail spae of resolution j, all it W

j

, an de de�ned by V

j+1

= V

j

� W

j

. A

basis for W

j

is easily drawn fron the MRA and we will all it f 

jk

g; k 2 Z. Moreover,

[

j2Z

W

j

= V

j

0

[ ([

j�j

0

W

j

) = lim

j!1

V

j

, where j

0

2 Z. Therefore, f 

jk

; j; k 2 Zg and

ff�

j

0

k

; k 2 Zg; f 

jk

; j � j

0

; k 2 Zgg are both ortonormal bases for L

2

(R). Finally, any

square integrable funtion an be written as

f(t) =

X

j2Z

X

k2Z

�

j;k

 

j;k

(t) =

X

k2Z

�

j

0

;k

�

j

0

;k

(t) +

X

j�j

0

2Z

X

k2Z

�

j;k

 

j;k

(t); (3)

where equalities are meaninful in L

2

norm.

Desirable features of wavelets bases (from either the theoretial or applied point of

view) inlude ompat support and adaptative smoothness. A family that has both prop-

erties is Daubehies wavelets, that we will be using here. The bases are indexed by the

number of nule moments (N � 1) and we will all them DAUB# N. In general (N � 2)
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they have no losed form but fast �lters are available and no pratial problem rise from

that fat.

From (3) estimating f is equivalent to estimating its oeÆients. Constrution of

estimation algorithms is spei� to the nature of the sample fX

t

g. For instane, suppose

the sample is regularly spaed (the �xed sampling interval alled �) and that the sample

size n = 2

J

for some J 2 N. There is a maximum number of oeÆients that an be

estimated and that means also that there is a maximum level of resolution that an be

used. Therefore, the atual wavelet approximation for f is given by

f(t) '

X

k2K

j

0

�

j

0

;k

�

j

0

;k

(t) +

j

1

X

j=j

0

X

k2K

j

�

j;k

 

j;k

(t): (4)

where j

0

and j

1

are, respetively, the minimum and maximum empirial levels of resolution

and K

j

are �nite sets whose union has ardinality n.

De�ning the minimum level of resolution is easier and less determinant than hoosing

j

1

. Sine we use ompatly supported wavelets, we an simply hoose j

0

to be the largest

resolution for whih �

j

0

;k

still overs the sampled interval. In our ase, it means that the

support of �

j

0

;k

(t) overs [0; T ℄ and for DAUB# N, that j

0

= dlog

2

(2N �1)e. The asade

algorithm an be then employed for fast omputation of the oeÆients �

j;k

e �

j;k

.

Eventhough (4) is a nie approximation, speially for smooth f and �, linear pro-

jetion estimators tend to be asymptotially biased. For that reason, nonlinear proe-

dures involving shrinkage are desirable. In pratie shrinking the funtion in wavelets

domain is equivalent to smoothing it in time domain. Shrinkage in wavelet analysis

an be attained through level limitation and oeÆients thresholding. Thresholding is

usually divided in two major ategories. Choosing some � > 0, Hard thresholding is

given by a rule suh as Æ

d

(

i;j

; �) = 

i;j

1

(j

i;j

j>�)

and Soft thresholding has rules suhs as

Æ

s

(

i;j

; �) = (

i;j

� sign(

i;j

)�)1

(j

i;j

j>�)

.

The art in thresholding is hoosing the value (or values) of � and proposing a rule

whih poses as little weight as possible on that hoie. In other words, one wants an opti-

mal � but do not want to be strongly penalized by a suboptimal hoie. For thresholding

values, see Vidakovi [1999℄ and Donoho et al. [1996℄. The so-alled universal threshold-

ing, motivated by additive normal error is given by �

p

2 log n, where � is the empirial
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oeÆients standard deviation.

Pinheiro and Vidakovi [1997℄ proposed another thresholding proedure, based on

energy retention via Lorentz urve. One knows that the total empirial energy is given by

kfk

2

L

2

=

P

j

P

k

�

2

j;k

and it is easy to ompute spei� level by level energy.

De�nition 3.2 (Lorentz Curve). Let f�

j;k

: j = 0; ::; n k 2 Zg be the oeÆients of a

signal f and d

2

j

=

P

k

�

2

j;k

. The Lorentz urve based on their empirial level energies is:

L(p) =

bnp

X

j=0

X

k

�

2

j;k

n

X

j=0

X

k

�

2

j;k

=

bnp

X

j=0

d

2

j

n

X

j=0

d

2

j

; p 2 [0; 1℄: (5)

Theorem 3.1 (Meyer). A funtion f 2 C

s

(R) if and only if j�

j;k

j � C2

�j=2

2

�j(r^s)

on

a r-regular MRA.

Notie that theorem 3.1 shows that wavelet analysis onentrate the energy of a signal

on very few low levels. Therefore, a good deomposition should have very few relevant

oeÆients. However, one has also the following empirial version of theorem 3.1.

Theorem 3.2. Let

b

d

2

j

= n

�1

X

k

b

�

2

j;k

n and B

N

= min

x2R

max

k

 

2

0;k

(x) > 0. Then

b

d

2

j

�

B

N

2

j

Cn

: (6)

At �rst, theorems 3.1 and 3.2 look ontraditory. However, the former laims that

wavelet deomposition is very parsimonious and shows that signal energies are onen-

trated in a very few low levels of resolution. On the other hand, theorem 3.2 shows that

empirial oeÆients are atually arbitrarily large and, worst, oeÆients estimates from

high levels tend to be even larger. The orret interpretation of that apparent ontra-

dition is that estimated oeÆients must be onformed to theorem 3.1. Based on that

apparent ontradition, Pinheiro and Vidakovi [1997℄ proposed the following thresholding

proedure.

Take the empirial Lorentz urve, i.e.,

b

L(p) =

P

bnp

j=0

b

d

2

j

=

P

n

j=0

b

d

2

j

; p 2 [0; 1℄. One an

then adjust the maximum level of resolution for the empirial Lorentz urve to follow the
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behavior in theorem 3.1. That means that levels are aeptable if they show a geometrial

dereasing. Theorem 3.2 tell us that eventually one will have the empirial Lorentz urve

showing an exponential inrease. The �rst proedure is therefore to limit use to those

levels whose behavior onforms to theorem 3.1. After hoosing j

1

, one aplies a oeÆients

thresholding as follows.

De�nition 3.3 (LC1 Thresh.). Suppose a sequene of estimated oeÆients f�

j;k

: j =

0; ::; n k 2 Zg and a positive parameter � and let d

2

= n

�1

P

n

j=0

P

k

�

2

j;k

. The LC1

thresholded oeÆients (LC1) is given by �

lim

j;k

= �

j;k

1

(�

2

j;k

>�d

2

)

.

The ut-o� parameter � in De�nition 3.3 has a very simple interpretation.It balanes

two oniting measures: parsimonious and energy retention. If k � 1, one tends to

preserve energy retaining more oeÆients whilst, for k > 1, preferene is given to fewer

oeÆients over energy preservation.

This proedure does not take into aount the level of resolution from whih a oef-

�ient is taken. In this work, we present a slightly modi�ed Lorentz urve thresholding

proedure as well as a hands-free maximum level hoie. The level hoie proedure is

presented in setion 5.1. CoeÆients thresholding is performed level by level as follows.

De�nition 3.4 (LC2 Thresh.). Let � and �

j

be positive real numbers and f�

j;k

: j =

0; ::; n k 2 Zg be the sequene of estimated oeÆients and d

2

j

= n

�1

P

k

�

2

j;k

. The LC2

thresholded oeÆients are given by

^

�

lim

j;k

= �

j;k

1

(�

2

j;k

>�d

2

+�

j

d

2

j

)

.

Notie that

�d

2

+ �

j

d

2

j

0

=

�

n

j

0

n

�+ �

j

�

d

2

j

0

+ �d

2

�j

0

; (7)

where n

j

is the number of oe�ients in levelW

j

, n is the total number of oeÆients,d

2

j

0

=

P

k

�

2

j

0

;k

=n and d

2

�j

0

=

P

n

j=0;j 6=j

0

P

k

�

2

j;k

=n.

From (7), one sees that di�erent thresholding levels for eah resolution give the pro-

edure more leverage to weight in or out oe�ients from spei� levels. That is very

important beause proedures an be tailored depending on the regularity supposed or

the piee of the funtion one intends to represent. Moreover, diret omparisons between
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level energy and its oeÆients an be done. The wavelet LC2 thresholded is written as:

^

f(t) =

X

k2Z

b�

j

0

;k

�

j

0

;k

(t) +

j

1

X

j=j

0

X

k2Z

b

�

lim

j;k

 

j;k

(t): (8)

4 Nonparametri Volatility Estimation

Suppose (1) and take �

2

(t;X

t

) = �

2

(t), i.e.,

dX

t

= b(t;X

t

)dt+ �(t)dWt; t 2 [0; T ℄; (9)

where b(�; �) and �(�) are unknown and P (X

0

= x

0

) = 1, for some unknown x

0

.

4.1 Kernel Estimator

Suppose X

t

is observed with T = 1, at times (t

1

; :::; t

n

), t

i

= i�, where � is the sampling

interval. We de�ne with no loss of generality (on T ) the kernel estimator of �

2

(�) as follows,

as originally proposed by Florens-Zmirou [1993℄.

De�nition 4.1 (Volatility Kernel Estimator). The volatility funtion �

2

(t), as de�ned

by (9), an be estimated by:

S

n

(t) =

n�1

X

i=1

K

�

X

t

i

� t

h

�

n

�1

[X

t

i+1

�X

t

i

℄

2

n

X

i=1

K

�

X

t

i

� t)

h

�

: (10)

The estimator, de�ned by (10) is preisely the Nadaraya-Watson regression estimator

taking Y

i

= �

�1

[X

t

i+1

� X

t

i

℄

2

, the empirial quadrati variation proess. The following

theorem shows some of its most relevant asymptoti properties (due to Florens-Zmirou

[1993℄).

Theorem 4.1. Let �

2

(t) be given by (9) and S

n

(t) by (10). Suppose that b(�) is limited,

twie di�erentiable, with limited derivatives and that �(�) has three limited and ontinuous

derivatives and that there are two onstants k and K suh that 0 < k � �(t) � K. If,
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moreover, nh

3

! 0, then:

p

nh

�

S

n

(t)

�

2

(t)

� 1

�

D

! L

�1=2

(t)Z; (11)

where Z � N (0; 1) independent of L(t) = lim

Æ!0

1

2Æ

R

1

0

1

(jX

s

�tj<Æ)

ds.

To our knowledge there are no general asymptoti results suh as Theorem 4.1 on

the IMSE. We present below some estimators due to Bertrand [1996℄ whih redue the

Nadaraya-Watson estimator to moving average, S

MA

n

, and entered moving average, S

CMA

n

,

as follows.

S

MA

n

(t) = (A�)

�1

n�1

X

j=0

 

A�1

X

i=1

[X

t

j�i+1

�X

t

j�i

℄

2

!

1

[t

j

;t

j+1

)

(t) (12)

S

CMA

n

(t) = (A�)

�1

n�1

X

j=0

0

B

�

A

2

�1

X

i=�

A

2

[X

t

j�i+1

�X

t

j�i

℄

2

1

C

A

1

[t

j

;t

j+1

)

(t); (13)

where A is the number of observations used for estimating volatility in eah point.

Consisteny of S

CMA

n

is lear as long as t is a ontinuity point and for those points for

whih �

2

(t

�

) = lim

x%t

�

2

(x). Bertrand [1996℄ also showed that, if �(�) =

P

N

i=1

�

i

1

[t

i

;t

i+1

)

(�),

for positive onstants �

i

8i, and w(�) some weight funtion, an also if �! 0, A!1 and

A�! 0, then IMSE

A;�

! 0.

4.2 Wavelet Estimators

Consider a sample of size n, with t

i

= i2

�n

, where i = 0; 1; :::; N = [2

n

T ℄, i.e., one

observes the di�usion in [0; T ℄ with sampling interval 4

n

= 2

�n

. Some theoretial asymp-

toti results are known for a linear wavelet estimator of �(�) under onditions (14), on

b(�; �) and �(�), as seen in Genon-Catalot et al. [1992℄.

(i) b(�; �) 2 C

1

([0;+1) � R);

(ii) 8T , 9K

T

s.t. 8t � [0; T ℄, j b(t; u) j� K

T

(1+ j u j);

(iii) �(�) 2 C

m

([0;1)), with m � 1, and �(t) > 0 8t � 0.

9

>

>

=

>

>

;

(14)

Under (14), and m � 0, solution of (1) is unique in [0;1). As we use a regular MRA
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in L

2

(R) and �

2

(�) is not neessarily an element of that spae, we an replae it with

a new funtion ��

2

(�) 2 L

2

(R), suh that ��(t) = �(t); 8t 2 [0; T ℄. Suppose also that

��(t) 2 C

m

(R) and that suppf��g � [��; T + �℄, for some � � 0. We de�ne a new di�usion

proess

�

X

t

as d

�

X

t

= b(t;

�

X

t

)dt+ ��(t)dW

t

;

�

X

0

= x, that would for all pratial purposes

be idential to X

t

.

Therefore, from now on, we will onsider �

2

(�) to be an element of L

2

(R) and we

an projet it in wavelets approximation and detail spaes. An empirial estimate of

approximation oeÆient �

j(n);k

is given by

�̂

j(n);k

=

N�1

X

i=0

�

j(n);k

(t

i

)(X

t

i+1

�X

t

i

)

2

: (15)

and the wavelet linear estimator of �

2

(t) on level j

1

is given by

�̂

2

(t) =

X

k�Z

�̂

j(n);k

�

j(n);k

(t): (16)

The estimator (16) is proposed by Genon-Catalot et al. [1992℄ where the following IME

and IMSE properties are presented:

2

n

2

Z

R

h(t)

�

�̂

2

(t)� �

2

(t)

�

dt

n!1

! N

�

0; 2

Z

T

0

h

2

(t)�

4

(t)dt

�

; (17)

R

n

= E

�

Z

R

(�̂

2

(t)� �

2

(t))

2

(t)dt

�

� C(2

4j(n)�2n

+ 2

�2j(n)(m^r)

+ 2

�n

) +

sup

t�R

(t)

�

2

j(n)�n

2

Z

T

0

�

4

(t)dt+ o(2

j(n)�n

)

�

; (18)

where C is a onstant depending only on �,  and �

2

.

As for iid observations, the linear wavelet estimator helps us as benhmark but some

kind of thresholding should be performed. We propose the following nonlinear estimator.

De�nition 4.2 (Nonlinear Wavelet Estimator). The nonlinear wavelet estimator for
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the volatility funtion �

2

is given by

�̂

2

(t) =

X

k�Z

b�

j

0

;k

�

j

0

;k

(t) +

j

1

X

j=j

0

X

k2Z

b

�

lim

j;k

 

j;k

(t); (19)

where j

0

, j

1

are respetively the minimum and maximum resolutions given by the Lorentz

urve, b�

j

0

;k

are the empirial approximation oe�ients and

b

�

lim

j;k

are the LC2 thresholded

estimates for the detail oe�ients.

5 Appliations

We study the non-parametri estimators on a real series and on simulations. In the

simulations, we used the wavelet estimators and three kernel estimators: Gaussian, MA

and CMA. Crossvalidations were performed only for MA and CMA, due to omputational

osts. In pre-simulation studies, Gaussian smoothing parameter was hosen in order to

minimize ISE, as seen in H�ardle [1990℄. Another omment on the Gaussian kernel is

that, although it violates onditions for results presented in setion 3.1, its known good

properties motivate its use and simulation results show that its behavior is quite exellent.

Wavelets estimators used three di�erent bases: DAUB#2, DAUB#5 and DAUB#8

and LC2 thresholding proedures. For the automati de�nition of maximum levels, we

used two di�erent ratio riteria. Three levels were always maintained and, after the third,

as long as the i-th level empirial energy would be the at most the same (or at most

three times as muh) as the (i� 1)-th level's the i-th level would stay. For the oeÆients

thresholding we used four di�erent ombinations of parameters f�

j

g

j=1;2;3

and �, desribed

in table 1. For levels higher then 3, �

j

= �

3

.

Table 1: Thresholding Parameters

Combinations �

1

�

2

�

3

�

Comb 1 2 2 2 2

Comb 2 1 2 3 1

Comb 3 1 3 5 3

Comb 4 .5 0.75 1 1

12



5.1 Simulation Study

We use in this simulation study the following model

dX

t

= b(X

t

)dt+ �(t)h(X

t

)dWt; t�[0; T ℄; X

0

= x

0

; (20)

where h = 1, b = 0:75 �X

t

and � has eight di�erent types, illustrated in �gures 5.1-5.1,

and with no loss of generality, T = 1.

As nonparametri estimators tend to di�er mainly on jumps, we used two almost

norm-equivalent groups of volatility funtions, one with smooth and the other with their

respetive irregular versions. Figures 5.1 and 5.1 shows respetively the irregular and

regular volatility funtions.
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Figure 1: Irregular �(�) Funtions (with jumps): (a) Vol1 (b) Vol2 () Vol3 (d) Vol4

The eight models were generated in 4096 time points with 1000 simulated data series

eah. Beause of the massive output we illustrate mainly the results from volatilities Vol2

and Vol4. They represent respetively level hanges and funtions with loal perturbations.

Disussions are however arried out for all eight models.

It is important to observe that Vol2 and Vol4 do not satisfy some of the regularity

onditions required for either the kernel or linear wavelet estimators theoretial results.
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Figure 2: Regular �(�) Funtions: (a) Vol5 (b) Vol6 () Vol7 (d) Vol8

For error omparisons we used two of the previously de�ned measures, ISE and IAE.

Those measures are very global and hinder �ner omparisons of estimators performane

exatly at the points (or regions) of most interest suh as jumps, usps or high urvatures.

Therefore, two other error measures (weighed ISE and IAE) were onsidered. Three weight

funtions were used:

� Quant100, that puts uniform weight on hange points and on its 200 nearest neigh-

bors and zero on the rest.

� Quant50, that puts uniform weight on hange points and on its 100 nearest neighbors

and zero on the rest.

� Quant0, that puts uniform weight on hange points and zero on the rest.

Results are summarized in tables and plots, using means and medians as desriptive

tools. In all tables, the smallest IE's are highlighted. Smoothed histograms for eah

estimator empirial error distribution are presented as well as some omputing performane

onsiderations.

The overall piture of the tables and plots indiates that for volatilities types 1,2,3,5,6

and 7, the Gaussian kernel shows the best ISE and IAE empirial distributions. Wavelets

14



however have a very lose performane and both tehniques learly outperform the MA

and CMA tehniques.

Among wavelet estimators, ratio 1 and thresholding ombination 4 show slight superi-

ority in some volatilities (1,2,5 and 6) but the proedures show some robustness to energy

ratio and thresholding uto� points spei�ations.
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Figure 3: Vol2 ISE: (a) Quant0 (b) Quant50 () Quant100 (d) Total ISE

For Vol8, wavelets have a far superior performane speially when analising the weighed

error measures. As expeted, MA and CMA showed poor performanes. For Vol4, MA

and CMA showed better global performanes than wavelets and muh better than normal

kernel estimators. That however hanges (in favor of wavelets) when loal performane is

onsidered. The unexpeted result is that MA outperforms CMA for Vol8, what ontra-

dits Bertrand [1996℄, for jumping di�usion funtions.

For Vol8, with loal measures, wavelets integrated errors are less than half as big as

Gaussian's whilst for Vol4 they are more than four times smaller. For the other volatilities

Gaussian kernel outperforms wavelets but never lose to the advantage wavelets have for
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Figure 4: Vol4 ISE: (a) Quant0 (b) Quant50 () Quant100 (d) Total ISE

Table 2: Quant0 ISE Medians and Means - Vol1-Vol8 (x10

�4

)

Type Wavelets Gaussian CMA MA

Median Mean Median Mean Median Mean Median Mean

Vol1 1.23 1.68 0.83 0.88 2.38 2.41 2.30 2.49

Vol2 191.50 204.44 164.10 166.66 516.11 5.20.31 463.75 471.48

Vol3 0.65 0.76 0.52 0.59 0.98 1.03 1.00 1.06

Vol4 2.97 3.01 13.24 13.19 14.18 13.93 14.00 14.17

Vol5 0.85 1.15 0.43 0.47 1.68 1.79 1.73 1.83

Vol6 333.33 343.97 169.16 174.51 502.78 510.80 527.21 535.13

Vol7 0.29 0.51 0.22 0.28 0.93 1.07 0.94 1.05

Vol8 2.48 2.72 6.81 6.85 8.26 8.27 8.66 8.89
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Figure 5: Vol2 ISE: (a) Wavelets (b) Gaussian () CMA (d) MA

those two irregular situations.

Another ontradition to results in Bertrand [1996℄ is that here wavelets outperform

MA and CMA. In Bertrand [1996℄, Haar based proedures were outperformed by CMA

and MA and CMA was found to be uniformly the best proedure. We should point out

that we are using more regular wavelets and drawing onlusions from a broader set of

volatility funtions.

One should also notie that in a sense both Vol4 and Vol8 represent loal outliers but

Vol8 is more regular, where Gaussian kernels an perform well while Vol4 represents a

pure jump where wavelets higher performane will be enhaned.
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Figure 6: Vol4 ISE: (a) Wavelets (b) Gaussian () CMA (d) MA

Table 3: IE Mean and Median - Vol2 and Vol4 (x10

�2

)

Mean and Vol2 Vol4

Median ISE IAE ISE IAE

Mean Med. Mean Med. Mean Med. Mean Med.

C1 4.69 4.36 13.8 13.5 0.039 0.037 0.524 0.500

Ratio C2 3.73 3.53 11.9 11.7 0.039 0.037 0.521 0.509

1 C3 3.93 3.78 12.2 12.2 0.038 0.037 0.503 0.497

C4 3.64 3.33 11.4 11.2 0.0407 0.038 0.598 0.532

DB2 C1 8.89 10.6 20.7 23.3 0.0382 0.037 0.479 0.466

Ratio C2 8.60 10.6 20.1 23.3 0.0383 0.037 0.494 0.483

3 C3 8.68 10.6 20.2 23.3 0.0383 0.037 0.494 0.483

C4 8.55 10.6 19.9 23.3 0.0383 0.037 0.505 0.494

W C1 6.44 6.33 14.3 14.3 0.0445 0.042 0.988 0.982

A Ratio C2 6.44 6.33 14.3 14.3 0.0447 0.042 0.994 0.983

V 1 C3 6.44 6.33 14.3 14.3 0.0446 0.042 0.991 0.983

E C4 6.44 6.33 14.3 14.3 0.0451 0.042 1.004 0.983

L DB5 C1 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980

E Ratio C2 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980

T 3 C3 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980

S C4 6.42 6.33 14.2 14.3 0.0428 0.042 0.983 0.980

C1 6.41 6.31 14.3 14.3 0.0437 0.042 0.995 0.987

Ratio C2 6.41 6.31 14.3 14.3 0.0440 0.042 1.002 0.987

1 C3 6.41 6.31 14.3 14.3 0.0438 0.042 0.998 0.987

C4 6.41 6.31 14.3 14.3 0.0445 0.042 1.014 0.987

DB8 C1 6.41 6.31 14.3 14.3 0.0428 0.042 0.987 0.983

Ratio C2 6.40 6.31 14.3 14.3 0.0428 0.042 0.987 0.983

3 C3 6.40 6.31 14.3 14.3 0.0428 0.042 0.987 0.983

C4 6.40 6.31 14.3 14.3 0.0428 0.042 0.987 0.983

MA 108.8 108.4 76.4 76.3 0.0100 0.0091 0.647 0.688

Kernel CMA 102.0 101.6 74.6 74.6 0.0098 0.0089 0.644 0.686

Funtion Gaussian 3.26 3.23 10.0 9.96 0.135 0.1345 0.779 0.774
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Table 4: ISE Means - Vol2 and Vol4 (x10

�2

)

Mean Vol2 Vol4

Quant0 Quant50 Quant100 Quant0 Quant50 Quant100

C1 2.46 3.57 4.14 0.036 0.037 0.037

Ratio C2 2.13 3.24 3.57 0.035 0.037 0.037

1 C3 2.04 3.26 3.74 0.035 0.037 0.037

C4 2.23 3.36 3.51 0.036 0.037 0.038

DB2 C1 4.22 5.98 7.20 0.035 0.035 0.036

Ratio C2 4.13 5.89 7.03 0.035 0.035 0.036

3 C3 4.12 5.92 7.10 0.353 0.035 0.036

C4 4.13 5.90 6.99 0.352 0.035 0.036

W C1 5.62 6.40 6.41 0.310 0.036 0.036

A Ratio C2 5.62 6.40 6.42 0.310 0.036 0.036

V 1 C3 5.62 6.40 6.42 0.310 0.036 0.036

E C4 5.62 6.40 6.42 0.311 0.036 0.036

L DB5 C1 5.61 6.38 6.40 0.313 0.035 0.035

E Ratio C2 5.61 6.38 6.40 0.313 0.035 0.035

T 3 C3 5.61 6.38 6.40 0.313 0.035 0.035

S C4 5.61 6.38 6.40 0.313 0.035 0.035

C1 5.63 6.37 6.39 0.308 0.035 0.036

Ratio C2 5.63 6.37 6.39 0.308 0.035 0.036

1 C3 5.63 6.37 6.39 0.308 0.035 0.036

C4 5.63 6.37 6.39 0.309 0.035 0.036

DB8 C1 5.62 6.37 6.38 0.301 0.034 0.035

Ratio C2 5.62 6.37 6.38 0.301 0.0344 0.035

3 C3 5.62 6.37 6.38 0.301 0.0344 0.035

C4 5.62 6.37 6.38 0.301 0.0344 0.035

MA 4.71 7.042 7.28 0.142 0.146 0.146

Kernel CMA 5.20 8.80 10.07 0. 139 0.143 0.144

Funtion Gaussian 1.67 2.93 3.25 0.139 0.143 0.144

Table 5: ISE Medians - Vol2 and Vol4 (x10

�2

)

Median Vol1 Vol2

Quant0 Quant50 Quant100 Quant0 Quant50 Quant100

C1 2.15 3.25 3.84 0.0353 0.0355 0.0356

Ratio C2 1.94 3.03 3.37 0.0352 0.0354 0.0356

1 C3 1.91 3.10 3.58 0.0352 0.0354 0.0356

C4 1.97 3.11 3.27 0.0351 0.0354 0.0356

DB2 C1 4.80 6.81 8.36 0.0353 0.0355 0.0356

Ratio C2 4.79 6.81 8.36 0.0353 0.0355 0.0356

3 C3 4.79 6.81 8.36 0.0353 0.0354 0.0356

C4 4.79 6.81 8.36 0.0352 0.0354 0.0356

W C1 5.53 6.29 6.30 0.0306 0,000334 0.0339

A Ratio C2 5.53 6.29 6.30 0.0306 0.0334 0.0339

V 1 C3 5.53 6.29 6.30 0.0306 0.0334 0.0339

E C4 5.53 6.29 6.30 0.0306 0.0334 0.0340

L DB5 C1 5.52 6.29 6.30 0.0307 0.0334 0.0340

E Ratio C2 5.52 6.29 6.30 0.0307 0.0334 0.0340

T 3 C3 5.52 6.29 6.30 0.0307 0.0334 0.0340

S C4 5.52 6.29 6.30 0.0307 0.0334 0.0340

C1 5.54 6.28 6.29 0.0298 0.0332 0.0338

Ratio C2 5.54 6.28 6.29 0.0298 0.0332 0.0338

1 C3 5.54 6.28 6.29 0.0298 0.0332 0.0338

C4 5.54 6.28 6.29 0.0298 0.0332 0.0338

DB8 C1 5.54 6.28 6.29 0.0297 0.0332 0.0339

Ratio C2 5.54 6.28 6.29 0.0297 0.0332 0.0339

3 C3 5.54 6.28 6.29 0.0297 0.0332 0.0339

C4 5.54 6.28 6.29 0.0297 0.0332 0.0339

MA 4.64 6.97 7.22 0.1418 0.1449 0.1454

Kernel CMA 5.16 8.95 10.45 0.1400 0.1428 0.1434

Funtion Gaussian 1.64 2.91 3.22 0.1324 0.1329 0.1331
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Table 6: IAE Means - Vol2 and Vol4 (x10

�2

)

Mean Vol2 Vol4

Quant0 Quant50 Quant100 Quant0 Quant50 Quant100

C1 7.78 9.76 10.93 0.194 0.227 0.248

Ratio C2 7.05 9.05 9.98 0.193 0.227 0.248

1 C3 6.93 9.05 10.26 0.190 0.223 0.244

C4 7.21 9.20 9.79 0.204 0.2429 0.269

DB2 C1 10.19 12.94 15.14 0.181 0.203 0.223

Ratio C2 9.98 12.74 14.86 0.182 0.206 0.228

3 C3 9.97 12.76 14.96 0.182 0.206 0.228

C4 9.98 12.74 14.76 0.183 0.208 0.232

W C1 12.24 13.62 13.82 0.289 0.363 0.405

A Ratio C2 12.25 13.62 13.82 0.290 0.365 0.407

V 1 C3 12.25 13.62 13.82 0.290 0.364 0.406

E C4 12.25 13.62 13.82 0.292 0.367 0.409

L DB5 C1 12.23 13.61 13.81 0.291 0.363 0.405

E Ratio C2 12.23 13.61 13.81 0.291 0.363 0.405

T 3 C3 12.23 13.61 13.81 0.291 0.363 0.405

S C4 12.23 1.361 13.81 0.291 0.363 0.405

C1 12.27 13.62 13.83 0.285 0.367 0.411

Ratio C2 12.27 13.62 13.83 0.286 0.368 0.412

1 C3 12.27 13.62 13.83 0.286 0.367 0.411

C4 12.27 13.62 13.84 0.288 0.371 0.415

DB8 C1 12.26 13.62 13.83 0.283 0.367 0.410

Ratio C2 12.26 13.62 13.83 0.283 0.367 0.410

3 C3 12.26 13.62 13.83 0.283 0.367 0.410

C4 12.26 13.62 13.83 0.283 0.367 0.410

MA 10.78 13.03 13.42 0.479 0.569 0.605

Kernel CMA 9.90 13.07 14.47 0.475 0.559 0.596

Funtion Gaussian 6.35 8.65 9.65 0.449 0.490 0.515

Table 7: IAE Medians - Vol2 and Vol4 (x10

�2

)

Median Vol2 Vol4

Quant0 Quant50 Quant100 Quant0 Quant50 Quant100

C1 7.47 9.46 10.66 0.188 0.214 0.235

Ratio C2 6.90 8.91 9.84 0.188 0.215 0.238

1 C3 6.87 8.95 10.19 0.186 0.212 0.234

C4 6.96 8.97 9.58 0.191 0.220 0.246

DB2 C1 10.81 13.88 16.56 0.178 0.199 0.217

Ratio C2 10.80 13.88 16.56 0.177 0.201 0.222

3 C3 10.80 13.88 16.56 0.177 0.201 0.222

C4 10.80 13.88 16.56 0.178 0.203 0.226

W C1 12.22 13.64 13.84 0.287 0.360 0.399

A Ratio C2 12.22 13.64 13.84 0.288 0.360 0.401

V 1 C3 12.22 13.64 13.84 0.288 0.360 0.400

E C4 12.22 13.64 13.84 0.289 0.361 0.402

L DB5 C1 12.22 13.63 13.83 0.288 0.360 0.399

E Ratio C2 12.22 13.63 13.83 0.288 0.360 0.399

T 3 C3 12.22 13.63 13.83 0.288 0.360 0.399

S C4 12.22 13.63 13.83 0.288 0.360 0.399

C1 12.31 13.65 13.87 0.282 0.362 0.405

Ratio C2 12.31 13.65 13.87 0.282 0.363 0.405

1 C3 12.31 13.65 13.87 0.282 0.362 0.405

C4 12.31 13.65 13.87 0.282 0.364 0.406

DB8 C1 12.31 13.65 13.87 0.280 0.362 0.403

Ratio C2 12.31 13.65 13.87 0.280 0.362 0.403

3 C3 12.31 13.65 13.87 0.280 0.362 0.403

C4 12.31 13.65 13.87 0.280 0.362 0.403

MA 10.80 13.06 13.44 0.483 0.573 0.609

Kernel CMA 9.87 12.99 14.39 0.477 0.564 0.599

Funtion Gaussian 6.31 8.61 9.59 0.446 0.487 0.512
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5.2 Real Series

In this setion we estimate the volatiltiy of BOVESPA indexes (S~ao Paulo's exhange

market), minute by minute, from 11am on 12/18/01 to 6pm on 02/18/02. This series has

16348 observations for whih some minor adjustments are made in order to use asaade

algorithms (sine 2

14

= 16384). One an see the returns series in �gure 5.2.
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Figure 7: BOVESPA returns - 12/18/01-02/18/02 (x10

�2

)

The aim is to ompare nonparametri estimates based on the returns. However, we

should point out that we were unable to ompute normal kernel estimates due to omputa-

tional memory issues. Therefore, we will ompare MA, CMA and wavelets performanes.

We observe that wavelets estimates produe, as seen in the simulation and expeted

from theoretial results, higher peaks (loser to the real ones) than either MA or CMA

proedures. Moreover, wavelets estimated volatilty urve looks less noisy than either MA

or CMA manages to produe.

6 Final Remarks

From setion 5.1 and 5.2, wavelets estimates are more eÆient for estimating volatility

funtions, whenever they present peaks, jumps or usps. This eÆieny is easily seen

with loal error measures as well as by visual omparisons. For more regular volatility

funtions, Gaussian kernel proedures have a better performane. This Gaussian kernel

performane is muh better than MA and CMA but, although uniformly, only slightly

better than wavelets estimators. It is important to reinfore the fat that no asymptoti
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Figure 8: BOVESPA Square-root Volatility Estimates (x10

�2

): (a) CMA (b) DAUB#1

() DAUB#5 (d) DAUB#8

results for Gaussin kernel estimators are known as well as for some of the most hallenging

volatilities used in the simulations. Finally, on the performane issues, although MA and

CMA are theoretially onsistent they do not perform up to wavelets in any situation or

Gaussian kernel in most situations (all but one). Our simulation studies also show a very

negative performane for the MA estimator.

It is also important to write a few lines onerning omputational performane and

feasibility. Wavelets are learly superior to any of the other methods. Some numbers

are that wavelets proedures are usually 100 times faster than either MA or CMA and

even faster when ompared to Gaussian kernel. That di�erene an mean the feasibility

of online omputation at ease. Moreover we should point that faster and more powerful

omputers were used for Gaussian kernel estimators, beause of time and memory issues.

We an summarize our onlusions on the following onsiderations

� Wavelet estimators are exeptionally faster than any other one of the three; moreover,
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it needs muh less memory resoures. Those two properties make them very suitable

for online operations.

� Gaussian kernel estimators, eventhough having no theoretially proved performane,

present results that shows their ability in dealing with volatility funtions with some

degree of regularity.

� Wavelet estimators Lorentz urve proedures an be automatized and generalized

with no major loss in performane, whih on�rms their versatility and robustness

to misspei�ation.

� Wavelet estimators have a lear apaity of representing irregular funtion with

parsimony as illustrated in Vol4 and Vol8.

� Di�erenes in wavelet and Gaussian kernel performanes are small in regular fun-

tions and favorable to kernel estimator; they are larger in irregular funtions and

favorable to wavelets.

Those onsiderations gives us the understanding that theoretial inursions should be

made into the asymptoti performane of Gaussian kernel and wavelet estimators as well

as most nonparametri estimators for less regular (and more omplex) volatility funtions

and, from an applied point of view, wavelets should be seriously onsidered given its overall

good performane (with exelleny in most ases) and its omputational onveniene.
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