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ABSTRACT

It is considered in this paper the modeling and forecasting, through feedforward neural
networks, of a time series previously studied in the literature (Brubacher, 1974; Martin, 1980;
Stahlbut, 1985; Allende, 1989) called RESEX series, which presents seasonality and outliers.
Some elements of the network architecture such as the input variables definition are suggested
by a previous time series analysis and other elements such as the number of intermediate
layers and corresponding knots are defined through numerical methods. Not only traditional
backpropagation based algorithms are used but also a robust learning algorithm is considered
in order to deal more properly with the outliers. All models and methods (traditional and
NN based) are then compared considering different predictive performance measures and the
results are discussed.



Contents
1 Introduction

2 The RESEX Series and Its Preliminary Analysis
2.1 Data description and initial preparation . . . . . . ... ... ... ...
2.2 Basic Model Identification . . . . . .. . ... .. ... .. L

3 Feedforward Neural Networks for Time Series Data
3.1 Basicelements . . . . . . . .. e
3.2 Learning Algorithms . . . . . . . . .. ...
3.3 Network Arquitecture and Implementation . . . . . . ... .. ... .....

4 Comparative Results and Discussion

5 Bibliographic References

O =~

o -3 O &



1 Introduction

It is considered in this paper the modeling and forecasting, through feedforward neural
networks, of a time series previously studied in the literature, called RESEX series, which
presents seasonality and outliers. This series measures the monthly internal conections of
residential telephone extensions in a certain area of Canada. It has been considered as a
reference for evaluating robust estimation methods in time series analysis because of its very
prominent additive outliers.

Some authors have analysed these data considering different robust methods for dealing
with the outliers, among others, pre-filtering the extreme data before using more standard
methods (Brubacher, 1974; Martin, 1980; Stahlbut, 1985; Allende, 1989). Such previous
analysis of the RESEX data include the identification of a stationary second order auto-
regressive AR(2) model for the series after its seasonal differencing (Brubacher,1974). The
results of the RESEX data analysis using the seasonal AR(2) model and different outlier
correction or robust methods, are presented in Allende (1989).

We propose in this paper, an alternative approach for modeling and forecasting the RE-
SEX data, dealing with the outliers in a different way, through feedforward neural networks,
which present some interesting caracteristics or advantages.

First, the considered NN arquitecture (with 3 lagged variables as inputs and one inter-
mediate layer) is such that it can be interpreted as a non-linear extension of the previous
seasonal AR(2) model. That is, the feedforward NN considered can be seen as a way to
represent and implement a seasonal NAR (Non-linear Auto-Regressive) model to the se-
ries, generalizing the previously proposed models. Since the neural network can be seen as
an 'universal function aproximator’, according to the Kolmogorov-Nielsen theorem (Bishop,
1995), it express and approximate the unknow non-linear function associated to the NAR
model.

Second, the neural networks, and particularly the ones considered in this paper, are more
resistent to outliers in the data than traditional or standard time series methods, even if the
network is estimated or trained through standard procedures such as usual backpropagation
algorithms based on gradient methods.

This is shown in this paper and is related with the fact that the network is a two-stage
model with many parameters and great flexibility, restricting the outliers influence to a local
efect. In fact, the network parameters or weights are estimated here considering two different
algorithms , not only the standard backpropagation (Haykin, 1999) but also an alternative
learning algorithm, even more robust, based on iterative robust filtering (Connor, 1993).

The paper main objectives are to propose alternative methods based on neural networks
for the analysis of time series with outliers such as the RESEX data and to compare the



proposed models and corresponding estimation methods with some previous analysis based
on traditional time series methods presented in the literature for the mentioned data.

The organization of the paper is as follows. In section 2 we present the RESEX series and
its preliminary analysis based on previous literature and our re-analysis. The feedforward
neural networks are introduced in section 3, with the two learning algorithms considered and
the practical implementation with the time series data. The comparative results from both
methods (traditional and NN based) are presented and discussed in section 4, followed by
the bibliographic references in section 5.

2 The RESEX Series and Its Preliminary Analysis

2.1 Data description and initial preparation

The RESEX series measures the monthly internal conections of residential telephone
extensions in a certain area of Canada, from January 1966 to May 1973, with a total of 89
observations. The more prominent caracteristics of this time series are its yearly seasonality
and the presence of a couple of outliers ( extremely large values) near the end of the series. In
fact, as we can see from the time series plot presented in Fig. 1 below, the outliers correspond
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Figure 1: RESEX series



to the months of November and December 1972. The reason for that was a special promotion
(low prices) offered by the telephone company at that months.

The seasonality, with period of one year or 12 months is very clear from the figure above,
and could be easily verified using other exploratory tools (such as a periodogram) although
it is not necessary.

Another caracteristic possibly suggested by the graphic, although not so clear as the
other 2 elements just discussed, would be an eventual small trend component. However, we
have tested the hypothesis of stationarity versus the presence of unit root or trend, using
the Dickey & Fuller (1979, 1981) test after a seasonal differencing, and it was not detected
evidence (at a 5% level of significance) of the presence of a trend component. Therefore,
after the seasonal differencing, the series can be considered as stationary (for details, see
Joekes, S.,2002), what is consistent with some previous work, as for instance, Brubacher,
1974, and others.

In order to identify a stationary model for the data, a preliminary filtering and inter-
polation of the extreme data points is recommendable in order to avoid a possible model
mispecification.

In this way, the series extreme values were corrected using the Kalman filter (Joekes,
S.,2002), resulting in an outliers free version of RESEX, presented below in Fig. 2.
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Figure 2: RESEX series using Kalman filter



As we can see from the picture above, the seasonal pattern shown is not stable or station-
ary, suggesting the application of a seasonal differencing. After this data initial preparation

(outlier correction and seasonal differencing), we can now look for a stationary time series
model for the corrected RESEX.

2.2 Basic Model Identification

A standard auto-correlation analysis of the (free of outliers) seasonaly differenced RE-
SEX series through simple and partial correlogram graphics suggest an AR(2) model (auto-
regressive of order 2) for the data. Or, using the Box-Jenkins notation for seasonal ARIMA
models, we have identified an ARIMA(2,0,0)(0,1,0)12 model for the series, which is in accor-
dance with the literature (Brubacher,1974 and others).

The parameter estimates (ML) and corresponding standard errors, are in accordance
with previous results from the mentioned literature, and also, the obtained residuals can
be considered satisfactory (residual auto-correlations non significative, etc.), confirming the
identified model.

The standard seasonal AR(2) model is considered here as a reference, in order to assess
the predictive performance of the proposed NN methods. In this way, the reference model is
fitted to the first 7 years of data (84 observations), leaving the last 5 months for predictive
purposes . The predictive results (one step ahead and multi step ahead) will be measured
through the RSE (Residual Standard Error) and MAPE (Mean Absolute Percentage Error)
and presented at section 4, jointly with the NN results.

3 Feedforward Neural Networks for Time Series Data

3.1 Basic elements

In its simplest form, a feedforward NN relates a response or output variable to n predictors
or input variables through a non-linear relationship represented as a two level composition
of generalized linear relations-GLR’s. (A GLR is a non-linear transformation applied to a
linear combination of its inputs). That is, the output is a GLR of intermmediate variables,
where each one is a GLR of the input variables (Haykin, S., 1999).

In a time series context, it is common to relate a given series to its past (lags) through
a linear auto-regressive process, which can be extended to a non-linear form (NAR model),
with an implementation via FNN, as represented in Fig. 3 below,
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Figure 3: Feedforward network for NAR(p) modeling

The network arquitecture specification involves the definition of the input variables (the
number p of lags: the NAR order), the number of GLR’s or nodes in the intermmediate
layer, and the non-linear transformations in the intermmediate layer (called link or activation
function, usually taken as a sigmoidal function ), since the activation for the output is usually
identity for time series data. Once fully defined the network arquitecture, the objective is to
estimate the weights based on data.

3.2 Learning Algorithms

The more common iterative learning methods for estimating the NN parameters or
weights, are known as backpropagation algorithms (Bishop, C., 1995; Haykin, S., 1999)
and are based on gradient methods, mainly stepest descent or conjugate gradient.

Among these, we consider the backpropagation algorithm based on conjugate gradient
as our basic method for NN implementation. This is because it has known advantages in
relation to its simpler version (Haykin, S., 1999), at the only extra computational cost of
calculating Hessian matrices.

One important practical aspect of implementation of these algorithms is the adequate



learning stopping in order to avoid overtraining, and the called ’early stopping’ criteria is
considered, that is, to stop when the validation error, monitored on line, reaches its minimum.

3.3 Network Arquitecture and Implementation

One of the first elements to be specified in the network are the input variables, and using
the information that a reference for the data is a seasonal AR(2) model, these variables
are defined as lagged versions (lags 1, 2 and 12 ) of the output. 77?7 of the series.
A second element is the specification of the number of intermmediate layers (one or two)
and corresponding nodes (between 1 and 4, since the expected optimal value would be 2).
A total of 8 or 9 possible cases or combinations of these values are considered in order
to choose the one with better performance for fitting and predicting. All the cases were
implemented, using the software SPSS (Statistical Package for the Social Science) and its
module for NN. Also, the sample data was divided in 3 parts: the trainning sample (first
72 observations), the validation sample (next 12 observations) and the test or prediction
sample (last 5 observations or months). The fitting and prediction (test set) results for each
plausible arquitecture are presented in terms of error measures such as the RSE and MAPE,
as shown in the Tab.1 below,

Tahle 1: Comparison of various feedforward neural models according to number of hadden layers and movherof hadden

neurons by layer. Measures of fit and predicting resuliz {(no correction for outliers)
[(The ESE wahies are expressed m 10° wrnits and MAPE i percents)

Humber Measures of fit Testing
of hidden "iﬁﬂiﬁm Humber of | L ining set Validation set set
layer Neurons parameters
RSE MAPE RSE MAPE RSE MAPE

1 1 G 166 728 155 758 1.44 475
1 2 11 160 716 156 756 1.20 414
1 3 16 167 7.3 154 7.49 173 596
1 4 21 1.49 .46 153 657 994 3667
2 1-1 g 182 g.22 1.59 817 312 10.70
2 2-2 17 1.86 .14 1.31 5.00 4.350 1513
2 2-3 Py 1.71 7.2 1457 7.az 222 g.76
2 3-2 23 1.49 6.65 153 723 734 2086
2 3-3 25 169 751 155 758 256 7.a2




From the table above it can be verified that the network with just one intermmediate
(hidden) layer and 2 nodes or neurones in this layer is the one with better predictive measures
and one of the best fitting measures; therefore, this is the chosen arquitecture for the RESEX
data. The results are very consistent in many ways, as for instance, the number of nodes in
the hidden layer is expected to be between 3 (inputs) and 1 (output). This arquitecture is
shown in Fig.4 below,
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Figure 4: Architecture of the neural network for the RESEX series

4 Comparative Results and Discussion

We present here a comparative table with the predictive results obtained from the ap-
plication of the 3 considered methods for the modeling of the RESEX data: the (linear)
seasonal AR(2) model with outlier correction, the FNN with standard learning (without
outlier correction) and the FNN with robust learning. The first method is not considered
without outlier correction because its fitting and predictive performance are too poor to be
compared.

The models were fitted considering the first 7 years or 84 observations, and they were
used to predict the last 5 months (multi step ahead). For one-step-ahead prediction, at
each point after the first prediction, a new data point is added to the learning sample. The
predictive performance measures considered were the RSE and the MAPE, as shown in Tab.
2 below,



Tahle 1: Comparative Resulis
(The RSE wvahes are exprassed in 10° units and MAPE in parcents)

Measures One step ahead Muhlti step ahead
Models Of fit prediction prediction
RSE MAPE RSE MAPE RSE MAPE
AR - with outlier correction 134 5785 1 48 5 40 112 420
FMM - without outlier correction 16N T4E 1 20 414 147 400
FNM - with robust learning 137 545 1.20 433 1.06 333
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