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Summary

In this paper we dis
uss the appli
ation of lo
al in
uen
e in measurement

error regression model with null inter
epts under a Student t model with

dependent populations. The Student t distribution is a robust alternative

to modeling data sets involving errors with longer than Normal tails. We

derive the appropriate matri
es for assessing the lo
al in
uen
e for di�erent

perturbation s
hemes and use a real data as an illustration of the usefulness

of the appli
ation.
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1 Introdu
tion

In this paper, we dis
uss an appli
ation of the lo
al in
uen
e method (Cook,

1986) in the measurement error regression models with null inter
ept. The

motivation 
omes from the need of su
h a model for dependent populations

involving errors with longer than normal tails. This approa
h is applied to the

data from a pretest/posttest study presented in Singer and Andrade (1997).

In that study, designed to 
ompare two types of toothbrushes with respe
t to

the eÆ
a
y in removing dental plaque, 26 pres
hoolers were evaluated with

respe
t to a dental plaque index before and after toothbrushing either with

a 
onventional or with an experimental (hugger) toothbrush. The reason for


onsidering null inter
epts is that null pretest dental plaque indi
es imply

null expe
ted posttest values. As the same individuals were evaluated under

two di�erent experimental 
onditions (toothbrushes), we need a model whi
h

takes into a

ount the possible within subje
ts 
orrelation stru
ture. The

analysis of su
h a model 
onsidering the Normal Distribution was studied

in Aoki (2001). See also Aoki et al. (2001). The extension of the model


onsidering Student t distribution is dis
ussed in detail in the next se
tion.

In
uen
e diagnosti
 is an important step in the analysis of a data set, as

it provides us indi
ation of bad model �tting or of in
uential observations.

This analysis has re
eived a great deal of attention sin
e the paper by Cook

(1977). Usually the analysis is based on the 
ase-weight perturbation s
heme

where the 
ase (observation) is either deleted or retained, so that the indi-

vidual impa
t of 
ases is assessed in the estimation pro
ess (see, for example,

Cook (1986)), however deletion 
an be viewed as one of the many ways of per-

turbing a problem formulation. Cook (1986) proposed a method of assessing

the lo
al in
uen
e of minor perturbations of a statisti
al model. Sin
e then

several papers have been written with respe
t to the lo
al in
uen
e, but little

work has been found in the literature for the measurement error regression

models. Lee and Zhao (1996) employed lo
al in
uen
e approa
h in gener-

alized linear measurement error models, while Abdullah (1995) 
ompared

several methods for dete
ting in
uential observations in fun
tional measure-

ment error models. Re
ently, Kim (2000) applied the lo
al in
uen
e method

in stru
tural measurement error models. Se
tion 2 presents the model. Se
-

tion 3 reviews the 
on
ept of the lo
al in
uen
e, as well as, the appli
ation

to the model de�ned in Se
tion 2 and the appropriate matri
es ne
essary to
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onstru
t the in
uen
e graphs are given in 
losed form expressions. Finally,

in Se
tion 4 we present the illustrative appli
ation using a real data from

pretest/posttest study des
ribed earlier in this se
tion.

2 Null Inter
ept Measurement Error Regres-

sion under a Student t Model

The basi
 model is given by

Y

ij

= �

i

x

ij

+ e

ij

; (2.1)

X

ij

= x

ij

+ u

ij

; (2.2)

where Y

ij

and X

ij

, respe
tively, denote the observed values of the response

and explanatory variables for population i and subje
t j, (i = 1; � � � ; p,

j = 1;� � � ;n), x

ij

; 
orrespond to the true values of the latter, �

i

; i = 1; � � � ; p

stand for the (unknown) slopes. Let us denote by Z

j

, the ve
tor of observa-

tions, i.e., Z

j

= (X

>

j

, Y

>

j

)

>

; with X

j

=(X

1j

; � � � ; X

pj

)

>

, Y

j

=(Y

1j

; � � � ; Y

pj

)

>

and assume that Z

j

� t

2p

(�;�; �), where t

k

(�;�; �) denotes a k-variate

Student t distribution with lo
ation ve
tor �, s
ale matrix � and � degrees

of freedom and � = �b, � = �

2

x

bb

>

+ �

2

D(1

p

;�), with b = (1

>

p

;�

>

)

>

,

� = (�

1

; � � � ; �

p

)

>

, � = (�

1

; � � � ; �

p

)

>

, D denotes the diagonal matrix, 1

p

the ve
tor 
omposed by p ones, so that D(1

p

;�) denotes the diagonal ma-

trix with diagonal elements 1; � � �1; �

1

; � � � ; �

p

. The log-likelihood fun
tion of

model (2.1)-(2.2) is given by

L(�) =

n

X

j=1

l

j

(�); (2.3)

where

l

j

(�) = 
onst�

1

2

logj�j �

1

2

(� + 2p)log(� + d

j

(�)); (2.4)

with

d

j

(�) = d

j

= (Z

j

� �)

>

�

�1

(Z

j

� �); (2.5)

j = 1; :::; n and � = (�;�

>

; �

2

x

; �

2

;�

>

)

>

.
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Maximum Likelihood estimates for the ve
tor of parameters � may be ob-

tained by using iterative pro
edures, based on EM algorithm (whi
h are

des
ribed in the Appendix A), for example.

Several authors have 
onsidered the Student t distribution as an alternative

to the normal distribution as it 
an naturally a

ommodate outliers present

in the data. Lange et. al. (1989) dis
ussed the use of the Student t distri-

bution in regression models, as well as in problems related to multivariate

analysis; Bolfarine and Arellano-Valle (1994) introdu
ed Student t fun
tional

and stru
tural measurement error models, Bolfarine and Galea (1996) 
onsid-

ered the Student t distribution in 
omparative 
alibration models and Aoki

et al. (2003) studied the null inter
ept stru
tural measurement error model

de�ned in (2.1) and (2.2) 
onsidering a bayesian approa
h.

The Student t distribution in
orporates an additional parameter, �, namely

the degrees of freedom, whi
h allows adjusting for the kurthosis of the distri-

bution. This parameter 
an be �xed previously. In Lange et al. (1989) and

Berkane et al. (1994) it was re
ommended to take � = 4 or, otherwise, to get

information about it from the data set. For some diÆ
ulty in the estimation

of �, see Fern�andez and Steel (1999).

3 Lo
al in
uen
e diagnosti
s

Case deletion is a popular way to asses the individual impa
t of 
ases on

the estimation pro
ess. This approa
h 
an be regarded as a global measure

of in
uen
e. An alternative methodology for the identi�
ation of groups of


ases whi
h may require some 
on
ern is lo
al in
uen
e wi
h is based on

di�erential geometry instead of 
omplete deletion. It employs a di�erential


omparison of parameter estimates before and after perturbation to data

values or model assumptions. As 
onsidered in Cook (1986), the likelihood

displa
ement is used as the metri
 to assess the lo
al in
uen
e.

Let L(�) denote the log-likelihood fun
tion given in (2.3), !, q � 1, the

perturbation introdu
ed in the model, where ! 2 
 � R

q

, 
 an open subset

and L(�j!) the log-likelihood fun
tion 
orresponding to the perturbed data

or model. Let

b

� and

b

�

!

denote the maximum likelihood estimates under the
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model de�ned by L(�) and L(�j!), respe
tively, and assume that there is

an !

0

2 
 representing no perturbation, su
h that L(�)=L(�j!

0

) for all �.

The in
uen
e of ! 
an be assessed by the log-likelihood displa
ement

LD(!) = 2[L(

b

�)� L(

b

�

!

)℄; (3.1)

where

b

� =

b

�

!

0

. Be
ause evaluation of LD(!) for all ! is pra
ti
ally unfea-

sible, Cook (1986) proposed to study the lo
al behaviour of LD(!) around

!

0

, whi
h 
an be performed by evaluating the normal 
urvature C

l

of LD(!)

at !

0

in the dire
tion of some unit ve
tor l.

Cook (1986) showed that the normal 
urvature in the dire
tion l takes the

form

C

l

= 2jl

>

�

>

I

�1

�lj; (3.2)

where klk = 1, I = �

�

2

L(�)

����

>

is a (2p + 3) � (2p + 3) observed information

matrix, and

� =

�

2

L(�=!)

���!

>

(3.3)

are both evaluated at � =

b

� and ! = !

0

.

There are many ways of studying the in
uen
e of minor perturbations 
on-

sidering C

l

. Let l

max

be the dire
tion of the maximum normal 
urvature

(C

max

). Then, it is the perturbation that produ
es the greatest lo
al 
hange

in

b

�. The most in
uential elements of the data may be identi�ed by looking

at the 
omponents of the ve
tor l

max

, whi
h are relatively large. Furthermore,

l

max

is the eigenve
tor 
orresponding to the largest eigenvalue of �

>

I

�1

�,

whi
h is C

max

. Other important dire
tion is l = e

j

, denoting that the ele-

ment of the jth position is one. In that 
ase, the normal 
urvature, 
alled

the total lo
al in
uen
e of individual j, is given by C

j

= 2�

>

j

I

�1

�

j

, where

�

j

is the jth 
olumn of �, j = 1; :::; n. We use l

max

and C

max

as diagnosti
s

for lo
al in
uen
e. From (2.3), it follows that I takes the form

I = �

��

�

2

L(�)

�
��

>

��

;

where, 
; � = �;�; �

2

x

; �

2

;�. The elements of the matrix I are presented in

the Appendix B.
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When a subset �

1

from the partition � = (�

>

1

; �

>

2

)

>

is of interest, in
uen
e

diagnosti
s 
an be based on (Cook, 1986)

�

>

(I

�1

�B

22

)�;

with

B

22

=

�

0 0

0 I

�1

22

�

and I

22

is determined by the partition of I a

ordingly with the partition of

�. We 
onsider several perturbation s
hemes for the model de�ned in (2.1)

and (2.2), whi
h is given in the next subse
tions.

3.1 Perturbation of 
ase weights

Consider the ve
tor w = (w

1

; :::; w

n

)

>

of 
ase-weights, so that the perturbed

log-likelihood fun
tion is given by

L(�=w) =

n

X

j=1

w

j

l

j

(�);

where l

j

(�) is as in (2.4). The ve
tor of no perturbations is denoted by

w

0

= 1

n

. Under this perturbation s
heme the matrix � de�ned in (3.3) is

a (2p+ 3)� n matrix and given by � = (�

1

(�); :::;�

n

(�)), where �

j

(�) =

�l

j

(�)

��

with individual elements given by

�l

j

(�)

�


= �

1

2

�logj�j

�


�

1

2

� + 2p

(� + d

j

)

d

j


;

with d

j


=

�d

j

�


; 
 = �;�; �

2

x

; �

2

;� and d

j

as given in (2.5), j = 1; :::; n:

The 
omponents of matrix � is presented in Appendix B.

3.2 Perturbation of the response variables

One way of perturbing the response variable, when our interest is to dete
t

the sensitivity of the model when this kind of perturbation happens, we 
an


onsider for example, a sequen
e of s
ale fa
tors S

1

; :::; S

n

, where
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Y

wj

= Y

j

+ S �w

j

;

with S = (S

1

; :::; S

p

)

>

, w

j

= (w

1j

; :::; w

pj

)

>

and � denotes Rademaker prod-

u
t. The s
ale fa
tor S

i


an be taken as S

i

= S

Y

i

, where S

Y

i

denotes for exam-

ple, the sample standard deviation of Y

i1

; :::; Y

in

, i = 1; :::; p. The perturbed

log-likelihood fun
tion is given by L(�=w) =

n

X

j=1

l

j

(�=w

j

), where l

j

(�=w

j

) is

as given in (2.4), swit
hing Y

wj

with Y

j

and w = (w

>

1

; :::;w

>

n

)

>

. Under this

perturbation s
heme the ve
tor w

0

, representing no perturbation is given by

w

0

= 0 and the (2p + 3) � np matrix �, whi
h is given in (3.3) 
an be

expressed as � = (�

1

(�;w

1

); :::;�

n

(�;w

n

)), where �

j

(�;w

j

) is given by

�

j

(�;w

j

) =

�

�

2

l

j

(�=w

j

)

�
�w

>

j

�

; 
 = �;�; �

2

x

; �

2

;�;

with

�

2

l

j

(�=w

j

)

�
�w

>

j

=

1

2

� + 2p

(� + d

j

(w))

2

d

j


(w)d

>

jw

j

(w)�

1

2

� + 2p

� + d

j

(w)

d

j
w

j

(w);

and

d

j


(w) =

�d

j

(w)

�


; d

jw

j

(w) =

�d

j

(w)

�w

j

; d

j
w

j

(w) =

�

2

d

j

(w)

�
�w

>

j

; (3.4)

and d

j

(w) as de�ned in (2.5), swit
hing Y

w

j

with Y

j

, j = 1; :::; n. The

elements that 
ompose the matrix �, 
an be found in Appendix B1.

3.3 Perturbation of the explanatory variables

If we are interested in investigating the sensitivity of minor perturbation in

the explanatory variable, we 
an de�ne the following perturbation s
heme

for the explanatory variable in the same way that was de�ned in the last

subse
tion for the response variable. Let

X

wj

=X

j

+ S �w

j

;
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where S = (S

1

; :::; S

p

)

>

, w

j

= (w

1j

; :::; w

pj

)

>

and � denotes the Rademaker

produ
t. The s
ale fa
tor S

i


an be de�ned as S

i

= S

X

i

, with S

X

i

denoting

the sample standard deviation of X

i1

; :::; X

in

, i = 1; :::; p. The log-likelihood

fun
tion for the perturbed model is denoted by L(�=w) =

n

X

j=1

l

j

(�=w

j

),

where l

j

(�=w

j

) is as de�ned in (2.4), swit
hing X

wj

with X

j

. The ve
tor

w

0

representing no perturbation is given by w

0

= 0 and the (2p + 3) � np

matrix � de�ned in (3.3) is given by

� = (�

1

(�;w

1

); :::;�

n

(�;w

n

)); with

�

j

(�;w

j

) =

�

�

2

l

j

(�=w

j

)

�
�w

>

j

�

; 
 = �;�; �

2

x

; �

2

;�; j = 1; : : : ; n; and

�

2

l

j

(�=w

j

)

�
�w

j

>

=

1

2

� + 2p

(� + d

j

(w))

2

d

j


(w)d

>

jw

j

(w)�

1

2

� + 2p

� + d

j

(w)

d

j
w

j

(w);

where d

j


(w), d

jw

j

(w) and d

j
w

j

(w) are as de�ned in (3.4) and d

j

(w) as

given in (2.5), swit
hing X

wj

with X

j

, j = 1; :::; n. The 
omponents of the

matrix � are given in the Appendix B2.

3.4 Perturbation of the degrees of freedom

When we assume a �xed known value of the degree of freedom, it is of interest

to study the e�e
t of the minor perturbation in the degree of freedom in the

estimation pro
ess. In that way, we are going to 
onsider a known value of

the degree of freedom parameter, namely �

0

and the ve
tor of observed data

Z

j

, j = 1; � � � ; n as de�ned in Se
tion 2. The perturbation is introdu
ed in

the model by 
onsidering

Z

j

ind

� t

2p

(�;�; �

0

g(!

j

)); (3.5)

where g is a di�erentiable positive fun
tion and we assume the existen
e of

!

0

j

, su
h that g(!

0

j

)=1 and g

0

(!

0

j

) 6= 0, j = 1; :::; n. Under the perturbed
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model the log-likelihood fun
tion is as given in (2.3), swit
hing � with �

j

=

�

0

g(!

j

), j = 1; :::; n. The matrix � de�ned in (3.3) is given by

� = (�

1

(�; g(w

1

)); :::;�

n

(�; g(w

n

)));

where �

j

(�; g(w

j

)) is given by

�

j

(�; g(w

j

)) =

�

0

2

g

0

(!

0

j

)(d

j

� 2p)(�

0

+ d

j

)

�2

�d

j

��

;

j = 1; :::; n, evaluated at

b

�. The fun
tion g 
an be 
hosen, for example, as in

Es
obar and Meeker (1992), where g(!

j

) = a

!

j

, with a > 0 and !

j

2 [�1; 1℄,

j = 1; :::; n. In that 
ase, �

j

= �

0

g(!

j

) 2 [�

0

=a; a�

0

℄. For instan
e, if we

assume that a = 2, g(!

j

) = 2

!

j

and g

0

(!

0

j

) = log2, for j = 1; :::; n.

4 Appli
ation

Considering the real data des
ribed in the Introdu
tion and the model de�ned

by (2.1) and (2.2), it follows that the observed ve
tors X

j

=(X

1j

; X

2j

)

>

and

Y

j

=(Y

1j

; Y

2j

)

>

, j = 1; � � � ; n, 
orresponds respe
tiverly, to the dental plaque

index before and after toothbrushing with the hugger toothbrush (i = 1)

and the 
onventional toothbrush (i = 2), for the jth pres
hooler. First,

we are going to apply the perturbation of 
ase weights, where ea
h 
ase

is represented by the ve
tor Z

j

= (X

>

j

;Y

>

j

)

>

. Figure 1 
orresponds to

the index plot of l

max

to assess the in
uen
e of the perturbation ! on the

maximum likelihood estimator of the full parameter ve
tor �, 
onsidering the

degree of freedom parameter �=1, 4 and 50.

If we refer to the in
uen
e graph in the model using 50 degrees of freedom,

we note that the observations 4 and 13 stand out. The same has happened

for 250, 500 and 10000 degrees of freedom and as expe
ted for the normal

distribution. On the other hand, if we 
onsider the model using low degrees

of freedom there are no in
uent observations, whi
h means that the Student t

model with low degrees of freedom 
an a

omodate these observations. In

Aoki et al. (2003) the model de�ned by the equations (2.1) and (2.2) was

analysed, 
onsidering the Bayesian approa
h and Student t distribution, as

well as the normal distribution. It was 
on
luded that the Student t distri-

bution with low degrees of freedom, more spe
i�
ally 4 degrees of freedom

9



Figure 1: Perturbation of 
ase weights for � = 1; 4 and 50.

are more appropriate for this data set. Considering the normal distribution,

the most in
uential observation in the data set is the observation 13, whi
h

is not the 
ase if we 
onsider the Student t distribution. In that way we

estimated the parameter values 
onsidering the normal and Student t distri-

bution with 4 degrees of freedom with the 
omplete data set and ex
luding

the observation 13 from the data set, wi
h is given in Table 1. As expe
ted,


onsidering the normal distribution, the observation 13 in
uen
es the pa-

rameters estimation, while if we 
onsider the student t distribution with 4

degrees of freedom the same observation has litte in
uen
e in the estimation

pro
ess.

Next, we illustrate the perturbation of the degrees of freedom 
onsidering

g(!

j

) = 2

!

j

, j = 1; : : : ; n. In this 
ase, we obtained the following in
uen
e

graphs (Figure 2) for �= 1, 2 and 4 degrees of freedom.

Figure 2: Perturbation of degree of freedom for � = 1; 2; and 4.
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Table 1: Maximum likelihood estimates

Normal Distribution

^

�

1

^

�

2

�̂ �̂

2

x

�̂

2

^

�

1

^

�

2


omplete 0,147 0,454 1,759 0,540 0,481 0,102 0,267

data set

without 0,135 0,464 1,760 0,594 0,367 0,091 0,310

obs. 13

Student t Distribution with 4 degrees of freedom

^

�

1

^

�

2

�̂ �̂

2

x

�̂

2

^

�

1

^

�

2


omplete 0,130 0,441 1,654 0,594 0,384 0,083 0,263

data set

without 0,125 0,447 1,652 0,608 0,390 0,075 0,278

obs. 13

Considering these graphis, we 
on
lude that there are no in
uent observa-

tions and as we assumed a �xed known value of the degree of freedom it is

important to know the e�e
t of a minor perturbation in the degree of freedom

in the estimation pro
ess.

Appendix A: EM Algorithm

Considering the model de�ned in Se
tion 2, we are going to present an itera-

tive pro
edure to obtain the maximum likelihood estimates of the parameter

�, as the log likelihood fun
tion given by (2.3) has no expli
it solutions for

the likelihood equations. In that way, we are going to implement the EM

algorithm. Let us de�ne by T

j

= (x

j

;Z

>

j

)

>

, with Z

j

= (X

>

j

;Y

>

j

)

>

. As

de�ned in Se
tion 2, Z

j

� t

2p

(�;�; �) and T

j

� t

2p+1

(�

T

;�

T

; �) where

�

T

= (�;�

>

)

>

, �

T

=

�

�

2

x

�

2

x

b

>

�

2

x

b �

�

. Let us de�ne by Q

j

�

�

2

(�)

�

, � >

0, j = 1; � � � ; n and T

j

j(Q

j

= q

j

) � N

2p+1

(�

T

; q

�1

j

�

T

), so that T

j

�
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t

2p+1

(�

T

;�

T

; �). Note that if f(t

j

; q

j

) denotes the joint density of (T

j

; Q

j

),

j = 1; � � � ; n, then f(t

j

; q

j

) = f

1

(t

j

=q

j

)f

2

(q

j

), so that the 
omplete log likeli-

hood fun
tion is given by

L




(�) = 
onst�

n

2

log[(�

2

)

2p

p

Y

i=1

�

i

�

2

x

℄�

1

2

n

X

j=1

q

j

f

(x

j

� �)

2

�

2

x

+

1

�

2

(Z

j

� bx

j

)

>

D

�1

(1

p

;�)(Z

j

� bx

j

)g+

n

X

j=1

log f

2

(q

j

); (3.6)

where � = (�;�

>

; �

2

x

; �

2

;�

>

)

>

. Ea
h 
y
le of the EM algorithm has two

steps, namely the E and M steps.

E Step

The E step is de�ned by the equations

1) q̂

j

= E(q

j

jZ; �) =

� + 2p

� + d

j

;

2) x̂

j

= E(x

j

jZ; �) = �

+

�

2

x


�

2

b

>

D

�1

(1

p

;�)(Z

j

� �b)

and

3) x̂

2

j

= E(x

2

j

jZ; �) = bx

2

j

+

�

2

x




� + d

j

� + 2p� 2

;

with d

j

as de�ned in (2.5), j = 1; � � � ; n.

M Step

In this step the 
omplete data log likelihood fun
tion given in (3.6) is max-

imized. Equating the likelihood equations to zero, we obtain after algebrai


manipulations

�̂ =

P

n

j=1

q̂

j

x̂

j

P

n

j=1

q̂

j

; �̂

2

=

1

np

n

X

j=1

q̂

j

p

X

i=1

(X

2

ij

�2x̂

j

X

ij

+x̂

2

j

); �̂

2

x

=

1

n

n

X

j=1

q̂

j

(x̂

2

j

��̂

2

);
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^

�

i

=

P

n

j=1

q̂

j

x̂

j

Y

ij

P

n

j=1

q̂

j

x̂

2

j

and

^

�

i

=

1

np�̂

2

n

X

j=1

q̂

j

(Y

2

ij

� x̂

2

j

^

�

2

i

); i = 1; � � � ; p:

The EM algorithm 
y
les between equations given in the E step and the

equations given in M step until 
onvergen
e (Dempster et.al., 1977). Note

that as no additional iterative pro
edure is requered to solve the M step

within ea
h 
y
le of the algorithm, this pro
edure is extremely simple to

implement and 
omputationally inexpensive. Considering the model de�ned

in Se
tion 2, the following maximum likelihood estimates were obtained for

�xed values of the degrees of freedom.

Table 3: Maximum likelihood estimates (MLE) of the parameters under the

model de�ned in Se
tion 2, via EM algorithmith for the data presented in

Singer and Andrade (1997).

degrees of Parameter

freedom �

1

�

2

� �

2

x

�

2

�

1

�

2

1 0.123 0.431 1.614 0.900 0.588 0.066 0.245

2 0.126 0.436 1.628 0.676 0.434 0.074 0.254

3 0.128 0.439 1.642 0.617 0.397 0.080 0.259

4 0.130 0.441 1.654 0.594 0.384 0.084 0.263

20 0.140 0.450 1.724 0.559 0.414 0.098 0.274

50 0.143 0.453 1.744 0.551 0.446 0.101 0.272

10000 0.147 0.454 1.759 0.539 0.481 0.102 0.267

Normal 0.147 0.454 1.758 0.539 0.482 0.102 0.267

Appendix B: Computing the observed information ma-

trix in the Student t stru
tural model

In this appendix we present the elements of the observed information matrix.

From (2.3), it follows that
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�l

j

(�)

�


= �

1

2

�logj�j

�


�

1

2

� + 2p

(� + d

j

)

d

j


; (B.1)

with d

j


=

�d

j

(�)

�


; 
 = �;�; �

2

x

; �

2

;� and d

j

as given in (2.5) j = 1; :::; n.

After some algebrai
 manipulations it follows that

�logj�j

��

= 0;

�logj�j

��

= 2


�1

�

2

x

�

2

D

�1

(�)�;

�logj�j

��

2

x

= 


�1


� 1

�

2

x

;

�logj�j

��

2

= �


�1


� 1

�

2

+

2p

�

2

;

�logj�j

��

= �


�1

�

2

x

�

2

D(�)D

�2

(�)� +D

�1

(�)1

p

;

d

j�

= �2




�1

�

2

A

j

d

j�

= �2

�

�

2

D

�1

(�)(Y

j

� ��)

+2


�2

�

4

x

�

6

A

2

j

D

�1

(�)� � 2


�1

�

2

x

�

4

A

j

D

�1

(�)(Y

j

� 2��);

d

j�

2

x

= �




�2

�

4

A

2

j

d

j�

2

= �

1

�

2

d

j

+ 


�2

�

2

x

�

6

A

2

j

d

j�

= �

1

�

2

D(Y

j

� ��)D

�2

(�)(Y

j

� ��)

�


�2

�

4

x

�

6

A

2

j

D(�)D

�2

(�)� + 2


�1

�

2

x

�

4

A

j

D(�)D

�2

(�)(Y

j

� ��);

where 
 = 1+

�

2

x

�

2

(p+�

>

D

�1

(�)�) and A

j

= (X

j

�1

p

�)

>

1

p

+�

>

D

�1

(�)(Y

j

�

��).

From (A.1) it follows that the per element observed information matrix is

given by

I

j

= I

j

(�=Z

j

) = �

�

�

2

l

j

(�)

�
��

>

�

;
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where

�

2

l

j

(�)

�
��

>

= �

1

2

�

2

logj�j

�
��

>

+

1

2

� + 2p

(� + d

j

)

2

d

j


d

>

j�

�

1

2

� + 2p

� + d

j

d

j
�

;

with d

j
�

=

�

2

d

j

�
��

>

and 
; � = �;�; �

2

x

; �

2

;�. The 
omponent of I

j


an

be expressed as

�

2

logj�j

���


>

= 0; 
 = �;�; �

2

x

; �

2

;�

�

2

logj�j

����

>

= 2


�1

�

2

x

�

2

D

�1

(�)� 4


�2

�

4

x

�

4

D

�1

(�)��

>

D

�1

(�)

�

2

logj�j

����

2

x
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�2

�

2

D

�1

(�)�;

�

2

logj�j

����

2

= �2


�2

�

2

x

�

4

D

�1

(�)�;

�

2

logj�j

����

>

= 2


�1

�

2

x

�

2

[


�1

�

2

x

�

2

D

�1

(�)��

>

D

�2

(�)D(�)�D

�2

(�)D(�)℄;

�

2

logj�j

��

2

x

��

2

x

= �


�2

(
� 1)

2

=�

4

x

;

�

2

logj�j

��

2

x

��

2

= �


�2

(
� 1)=(�

2

�

2

x

);

�

2

logj�j
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2

x
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>
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�2

�

2

�

>

D(�)D

�2
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�

2
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2
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2
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�
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2
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�

2
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2
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>
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�

2

x

�

4

�

>

D(�)D
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�

2
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I
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Appendix B1: Perturbation of the response variables

Elements of the � matrix evaluated at w = 0.
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Appendix B2: Perturbation of the explanatory vari-

ables

Elements of the � matrix evaluated at w = 0.
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