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Summary

In this paper we discuss the application of local influence in measurement
error regression model with null intercepts under a Student_t model with
dependent populations. The Student_t distribution is a robust alternative
to modeling data sets involving errors with longer than Normal tails. We
derive the appropriate matrices for assessing the local influence for different
perturbation schemes and use a real data as an illustration of the usefulness
of the application.
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1 Introduction

In this paper, we discuss an application of the local influence method (Cook,
1986) in the measurement error regression models with null intercept. The
motivation comes from the need of such a model for dependent populations
involving errors with longer than normal tails. This approach is applied to the
data from a pretest/posttest study presented in Singer and Andrade (1997).
In that study, designed to compare two types of toothbrushes with respect to
the efficacy in removing dental plaque, 26 preschoolers were evaluated with
respect to a dental plaque index before and after toothbrushing either with
a conventional or with an experimental (hugger) toothbrush. The reason for
considering null intercepts is that null pretest dental plaque indices imply
null expected posttest values. As the same individuals were evaluated under
two different experimental conditions (toothbrushes), we need a model which
takes into account the possible within subjects correlation structure. The
analysis of such a model considering the Normal Distribution was studied
in Aoki (2001). See also Aoki et al. (2001). The extension of the model
considering Student_t distribution is discussed in detail in the next section.

Influence diagnostic is an important step in the analysis of a data set, as
it provides us indication of bad model fitting or of influential observations.
This analysis has received a great deal of attention since the paper by Cook
(1977). Usually the analysis is based on the case-weight perturbation scheme
where the case (observation) is either deleted or retained, so that the indi-
vidual impact of cases is assessed in the estimation process (see, for example,
Cook (1986)), however deletion can be viewed as one of the many ways of per-
turbing a problem formulation. Cook (1986) proposed a method of assessing
the local influence of minor perturbations of a statistical model. Since then
several papers have been written with respect to the local influence, but little
work has been found in the literature for the measurement error regression
models. Lee and Zhao (1996) employed local influence approach in gener-
alized linear measurement error models, while Abdullah (1995) compared
several methods for detecting influential observations in functional measure-
ment error models. Recently, Kim (2000) applied the local influence method
in structural measurement error models. Section 2 presents the model. Sec-
tion 3 reviews the concept of the local influence, as well as, the application
to the model defined in Section 2 and the appropriate matrices necessary to



construct the influence graphs are given in closed form expressions. Finally,
in Section 4 we present the illustrative application using a real data from
pretest /posttest study described earlier in this section.

2 Null Intercept Measurement Error Regres-
sion under a Student_t Model

The basic model is given by

Yij = Bizij + ey, (2.1)
Xz'j = -Tij + Uz'j, (22)
where Y;; and Xj;, respectively, denote the observed values of the response
and explanatory variables for population i and subject j, (i = 1,---,p,
j=1,---,n), x;;, correspond to the true values of the latter, §;, i =1,---,p

stand for the (unknown) slopes. Let us denote by Z;, the vector of observa-
tions, ie., Z; = (X, Y])", with X;=(X1;,---, Xp;) ", Y;=(Vij, -+, Ypy) "
and assume that Z; ~ t9,(p, 3;v), where t;(p, X;v) denotes a k-variate
Student_t distribution with location vector u, scale matrix 3 and v degrees
of freedom and g = pb, ¥ = o2bb’ + 02D(1,,A), with b = (IJ,BT)T,
B = Bi,-B)", A= (A,---,A,) ", D denotes the diagonal matrix, 1,
the vector composed by p ones, so that D(1,, A) denotes the diagonal ma-
trix with diagonal elements 1,---1, Ay, -+, A,. The log-likelihood function of
model (2.1)-(2.2) is given by

10) =Y 1,(6), (2.3)

=1
where ) )
1;(0) = const — §log|2| — 5(1/ + 2p)log(v + d;(0)), (2.4)
with
dij(0) =d; = (Z; — p) 7 (Z; — p), (2.5)

j=1,..,nand 8 = (u,B",02,02,A7)T.
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Maximum Likelihood estimates for the vector of parameters & may be ob-
tained by using iterative procedures, based on EM algorithm (which are
described in the Appendix A), for example.

Several authors have considered the Student_t distribution as an alternative
to the normal distribution as it can naturally accommodate outliers present
in the data. Lange et. al. (1989) discussed the use of the Student_t distri-
bution in regression models, as well as in problems related to multivariate
analysis; Bolfarine and Arellano-Valle (1994) introduced Student_t functional
and structural measurement error models, Bolfarine and Galea (1996) consid-
ered the Student_t distribution in comparative calibration models and Aoki
et al. (2003) studied the null intercept structural measurement error model
defined in (2.1) and (2.2) considering a bayesian approach.

The Student_t distribution incorporates an additional parameter, v, namely
the degrees of freedom, which allows adjusting for the kurthosis of the distri-
bution. This parameter can be fixed previously. In Lange et al. (1989) and
Berkane et al. (1994) it was recommended to take v = 4 or, otherwise, to get
information about it from the data set. For some difficulty in the estimation
of v, see Ferndndez and Steel (1999).

3 Local influence diagnostics

Case deletion is a popular way to asses the individual impact of cases on
the estimation process. This approach can be regarded as a global measure
of influence. An alternative methodology for the identification of groups of
cases which may require some concern is local influence wich is based on
differential geometry instead of complete deletion. It employs a differential
comparison of parameter estimates before and after perturbation to data
values or model assumptions. As considered in Cook (1986), the likelihood
displacement is used as the metric to assess the local influence.

Let L(0) denote the log-likelihood function given in (2.3), w, ¢ x 1, the
perturbation introduced in the model, where w € €2 C R?, €2 an open subset
and L(@|w) the log-likelihood function corresponding to the perturbed data
or model. Let § and @, denote the maximum likelihood estimates under the



model defined by L(0) and L(@|w), respectively, and assume that there is
an wy € Q representing no perturbation, such that L(0)=L(0|w,) for all 6.
The influence of w can be assessed by the log-likelihood displacement

LD(w) = 2[L(8) — L(B,,)], (3.1)

where 6 = Bwo. Because evaluation of LD (w) for all w is practically unfea-
sible, Cook (1986) proposed to study the local behaviour of LD(w) around
wy, which can be performed by evaluating the normal curvature C; of LD (w)
at wyp in the direction of some unit vector [.

Cook (1986) showed that the normal curvature in the direction I takes the
form

C,=20TAT I'Al|, (3.2)
O*L(0) . : .
where ||I|| =1, I = ~SgaeT 52 (2p +3) x (2p + 3) observed information
matrix, and
O*L(0/w)
A=22V0%) .
000w T (3:3)

are both evaluated at @ = 8 and w = Wo.

There are many ways of studying the influence of minor perturbations con-
sidering C. Let Il be the direction of the maximum normal curvature
(Cinaz)- Then, it is the perturbation that produces the greatest local change
in @. The most influential elements of the data may be identified by looking
at the components of the vector .., which are relatively large. Furthermore,
Imax 18 the eigenvector corresponding to the largest eigenvalue of AT I A,
which is Cj4,. Other important direction is I = e;, denoting that the ele-
ment of the jth position is one. In that case, the normal curvature, called
the total local influence of individual j, is given by C; = QA;FI_lAj, where
A is the jth column of A, j =1, ...,n. We use I, and Cj,,, as diagnostics
for local influence. From (2.3), it follows that I takes the form

== [( o )]
oyor’ ’
where, v, 7 = 1, 3,02%,0% X. The elements of the matrix I are presented in
the Appendix B.




When a subset 6, from the partition @ = (8,0, )7 is of interest, influence
diagnostics can be based on (Cook, 1986)

AT(I'' - By)A,

0O O
BQQ—<0 1221>

and Iy is determined by the partition of I accordingly with the partition of
0. We consider several perturbation schemes for the model defined in (2.1)
and (2.2), which is given in the next subsections.

with

3.1 Perturbation of case weights

Consider the vector w = (w1, ..., w,) " of case-weights, so that the perturbed
log-likelihood function is given by

L(6/w) = ijlj(O),

where [;(0) is as in (2.4). The vector of no perturbations is denoted by
wy = 1,. Under this perturbation scheme the matrix A defined in (3.3) is
a (2p+ 3) x n matrix and given by A = (A;(8), ..., A,(0)), where A;(0) =

8[57(:) with individual elements given by
ol;(0)  1ologl®| 1wv+2p
oy 2 Oy 2(v+d;) 7T
with dj~y = 8—?’ v =, B,02,0°, X and d; as given in (2.5), j = 1,...,n.

The components of matrix A is presented in Appendix B.

3.2 Perturbation of the response variables
One way of perturbing the response variable, when our interest is to detect
the sensitivity of the model when this kind of perturbation happens, we can

consider for example, a sequence of scale factors Sy, ..., S,,, where
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ij:Yj+S*'wj,

with § = (S1,...,9,) ", w; = (wy;, ..., w,;) " and * denotes Rademaker prod-
uct. The scale factor S; can be taken as S; = Sy,, where Sy, denotes for exam-
ple, the sample standard deviation of Y;,....Y;,, 2 = 1,...,p. The perturbed

log-likelihood function is given by L(6/w) = Z 1;(6/w;), where [;(0/w;) is
j=1

as given in (2.4), switching Y,,; with Y; and w = (w],...,w,})". Under this

perturbation scheme the vector wg, representing no perturbation is given by

wo = 0 and the (2p + 3) x np matrix A, which is given in (3.3) can be

expressed as A = (A(0; w,), ..., An(6; w,)), where A;(6,w;) is given by

0°1;(0/w;) 5 o
A;(0,w;) = < W > . Y=1,08,0,,07 A,
with
82l]‘(9/’w]-) 1 v+2p - 1 v+2p
Tovow] 20+ o e ) = 5Ty e ()
and
0d;(w) dd; (w) &2d,(w)
by () = 57 » djw, (w) = 8JTj7dj7wj (w) = 875710;-“ (3.4)

and d;(w) as defined in (2.5), switching Y, with Y';, j = 1,...,n. The
elements that compose the matrix A, can be found in Appendix B1.

3.3 Perturbation of the explanatory variables

If we are interested in investigating the sensitivity of minor perturbation in
the explanatory variable, we can define the following perturbation scheme
for the explanatory variable in the same way that was defined in the last
subsection for the response variable. Let

ij:Xj—i—S*'wj,



where S = (Sy,...,5,) T, w; = (wyj, ..., wp;) " and * denotes the Rademaker
product. The scale factor S; can be defined as S; = Sy,, with Sx, denoting
the sample standard deviation of X;q, ..., X;,, i = 1,...,p. The log-likelihood

function for the perturbed model is denoted by L(0/w) = le(e/wj),
j=1

where [;(6/w;) is as defined in (2.4), switching X,,; with Xj.iThe vector
wy representing no perturbation is given by wy = 0 and the (2p + 3) X np
matrix A defined in (3.3) is given by

0%1:(0/w;
A]-(O,wj):<%>, ~=upB,0%0° X j=1,....n, and
j

9°1,(6/w,) L
))QdJ’Y( )d]wj( )

1 Lvk
oyow;T  2(v+di(w ) YW

C2v+dj(w
where djy(w), djw,(w) and djyw,(w) are as defined in (3.4) and d;(w) as
given in (2.5), switching X ,,; with X, j = 1,...,n. The components of the
matrix A are given in the Appendix B2.

3.4 Perturbation of the degrees of freedom

When we assume a fixed known value of the degree of freedom, it is of interest
to study the effect of the minor perturbation in the degree of freedom in the
estimation process. In that way, we are going to consider a known value of
the degree of freedom parameter, namely 14 and the vector of observed data
Zj,j=1,---,n as defined in Section 2. The perturbation is introduced in
the model by considering

ind
Zj ~ t2p(“72;l/09(wj))7 (35)

where ¢ is a differentiable positive function and we assume the existence of
wo,, such that g(wo;)=1 and q (wo;) # 0, j = 1,...,n. Under the perturbed
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model the log-likelihood function is as given in (2.3), switching v with v; =
vg(w;), j =1,...,n. The matrix A defined in (3.3) is given by

A = (A1(0;9(w1)), -, An(0; g(wn))),
where A (0, g(w;)) is given by

140 _ 8d
2,00, 5)) = g/, ) (s~ 20) (0 + ) 20,
j=1,...,n, evaluated at 6. The function g can be chosen, for example, as in
Escobar and Meeker (1992), where g(w;) = a“/, with a > 0 and w; € [—1, 1],
j = 1,..,n. In that case, v; = ryg(w;) € [/a,ary]. For instance, if we
assume that a = 2, g(w;) = 27 and ¢'(wp,) = log2, for j = 1,...,n.

4 Application

Considering the real data described in the Introduction and the model defined
by (2.1) and (2.2), it follows that the observed vectors X ;=(X;, Xo;)" and
Y ;=(Y1;,Y5)", j =1,--+,n, corresponds respectiverly, to the dental plaque
index before and after toothbrushing with the hugger toothbrush (i = 1)
and the conventional toothbrush (i = 2), for the jth preschooler. First,
we are going to apply the perturbation of case weights, where each case
is represented by the vector Z, = (X]-T,Y]-T)T. Figure 1 corresponds to
the index plot of I,,,, to assess the influence of the perturbation w on the
maximum likelihood estimator of the full parameter vector 8, considering the
degree of freedom parameter v=1, 4 and 50.

If we refer to the influence graph in the model using 50 degrees of freedom,
we note that the observations 4 and 13 stand out. The same has happened
for 250, 500 and 10000 degrees of freedom and as expected for the normal
distribution. On the other hand, if we consider the model using low degrees
of freedom there are no influent observations, which means that the Student_t
model with low degrees of freedom can accomodate these observations. In
Aoki et al. (2003) the model defined by the equations (2.1) and (2.2) was
analysed, considering the Bayesian approach and Student_t distribution, as
well as the normal distribution. It was concluded that the Student_t distri-
bution with low degrees of freedom, more specifically 4 degrees of freedom

9
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Figure 1: Perturbation of case weights for v = 1,4 and 50.

are more appropriate for this data set. Considering the normal distribution,
the most influential observation in the data set is the observation 13, which
is not the case if we consider the Student_t distribution. In that way we
estimated the parameter values considering the normal and Student_t distri-
bution with 4 degrees of freedom with the complete data set and excluding
the observation 13 from the data set, wich is given in Table 1. As expected,
considering the normal distribution, the observation 13 influences the pa-
rameters estimation, while if we consider the student_t distribution with 4
degrees of freedom the same observation has litte influence in the estimation
process.

Next, we illustrate the perturbation of the degrees of freedom considering
g(wj) =2%,j=1,...,n. In this case, we obtained the following influence
graphs (Figure 2) for v= 1, 2 and 4 degrees of freedom.

1df 2df 4df
. [ ] I'. . . .. ") ~
Hoo e o= u
£ *e e, £ " L £
g L] ...'.. |. .. -..'I i.. g .u...o. e ‘e

o5 0 15 W % o5 10 15 I o5 10 t§ 0 4

Index Index Index

Figure 2: Perturbation of degree of freedom for v = 1,2, and 4.
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Table 1: Maximum likelihood estimates

Normal Distribution
51 52 ﬂ o :% o? A1 A2

complete 0,147 0,454 1,759 0,540 0,481 0,102 0,267
data set
without 0,135 0,464 1,760 0,594 0,367 0,091 0,310
obs. 13

Student_t Distribution with 4 degrees of freedom
61 62 /l a'% 6'2 )\1 )\2

complete 0,130 0,441 1,654 0,594 0,384 0,083 0,263
data set
without 0,125 0,447 1,652 0,608 0,390 0,075 0,278
obs. 13

Considering these graphis, we conclude that there are no influent observa-
tions and as we assumed a fixed known value of the degree of freedom it is
important to know the effect of a minor perturbation in the degree of freedom
in the estimation process.

Appendix A: EM Algorithm

Considering the model defined in Section 2, we are going to present an itera-
tive procedure to obtain the maximum likelihood estimates of the parameter
0, as the log likelihood function given by (2.3) has no explicit solutions for
the likelihood equations. In that way, we are going to implement the EM
algorithm. Let us define by T; = (z;,Z))", with Z; = (X, Y])". As
defined in Section 2, Z; ~ to, (0, X;v) and T; ~ topiq (pbp, Xp; v) where

2 2bT 2
Oy Og X()

Hr = (NaMT)T, X = < b 5 > Let us define by Qj ~ iy >
0, j = 1,---,n and Ty)[(Q; = ¢;) ~ N2p+1(uT;q;12T), so that T; ~

11



t2p+1(uT, 3r;v). Note that if f(;,¢;) denotes the joint density of (T}, Q;),
j=1,---,n, then f(t;,q;) = fi1(t;/q¢;)f2(q;), so that the complete log likeli-
hood funct10n is given by

L.(0) = const — —log QPH)\O' qu{(xja;Jl)
7=1

x

(2~ ba) D (1, A)(Z; — b))+ S log falgs), (3.6)

o) .
J=1

where 8 = (11, 87,02,02,AT)T. Each cycle of the EM algorithm has two

b T

steps, namely the E and M steps.
E Step

The E step is defined by the equations

R v+ 2p
1) ¢ = E(gl|Z,0) = ,
J J U—|—d]

2
. o .
2) &; = E(%|Z,0) = M+PbTD (15, A)(Z; — ub)

2
~2 2 L2, 0 VHd;
3) xj = E(ZL’AZ,O)—S%"F;m,

with d; as defined in (2.5), j =1,---,n.
M Step

In this step the complete data log likelihood function given in (3.6) is max-
imized. Equating the likelihood equations to zero, we obtain after algebraic
manipulations

Zquﬂ] 5 1 <
=S5 Z%

ﬂ_ n =
Z] 1 G

Ms

—28;X;;+32), & Zq]i — i)

=

12



DY Y TN
fi= <L~ and YQ—A252 t=1,---,p.
> i1 45 21

The EM algorithm cycles between equations given in the E step and the
equations given in M step until convergence (Dempster et.al., 1977). Note
that as no additional iterative procedure is requered to solve the M step
within each cycle of the algorithm, this procedure is extremely simple to
implement and computationally inexpensive. Considering the model defined
in Section 2, the following maximum likelihood estimates were obtained for
fixed values of the degrees of freedom.

Table 3: Maximum likelihood estimates (MLE) of the parameters under the
model defined in Section 2, via EM algorithmith for the data presented in
Singer and Andrade (1997).

degrees of Parameter
freedom I3} B L o2 o? A\ Ao
1 0.123 0.431 1.614 0.900 0.588 0.066 0.245
2 0.126 0.436 1.628 0.676 0.434 0.074 0.254
3 0.128 0.439 1.642 0.617 0.397 0.080 0.259
4 0.130 0.441 1.654 0.594 0.384 0.084 0.263

20 0.140 0.450 1.724 0.559 0.414 0.098 0.274
50 0.143 0.453 1.744 0.551 0.446 0.101 0.272
10000 0.147 0.454 1.759 0.539 0.481 0.102 0.267
Normal  0.147 0.454 1.758 0.539 0.482 0.102 0.267

Appendix B: Computing the observed information ma-
trix in the Student_t structural model

In this appendix we present the elements of the observed information matrix.
From (2.3), it follows that

13



ol;(@) _ 10log|Z| 1 v+2p

oy 2 O 2(v+d;) 7T

(B.1)

ad;(0)
oy

After some algebraic manipulations it follows that

with djy = . Y= PB,02,0° X and d; as given in (2.5) j = 1,...,n.

Olog|X| Olog|X| 02 olog|®|  _c—1
g =) bl R =] bl QU PR e Y 5 SR TD s =) bl BRSNS B
Olog|X| ,c—1  2p OloglE| o2 L 1
_ et =—c'ZD(BYD (X D ()1
80-2 02 +0.2’ O\ ¢ 0.2 (13) ( ):8+ ( ) Y2
~1
c
djp = _Q?Aj
T
dg= —25D7 (Y, - Bp)
,gai 21 7103 -1
+2c EAJD (A)B —2c ;AjD (MY —28p),
_ C_2A2
R
1 720§ 2
djg2 = _ﬁd] +c gAj
1 _
dix= —=DY;=BuD*N(Y; - Bu)
o) _ _,02 _
—c QFA§D(5)D 2(N)B + 2¢ 1;AJ~D(B)D (MY — Bpu),

where ¢ = 1+§—?2§(p+,3TD71()\),3) and A; = (X,;—1,u)"1,+8 "D *(A\)(Y,—
Bu).

From (A.1) it follows that the per element observed information matrix is
given by

I; =1;(0/2Z;) = - ( gi%(? ) ’

14



where

0%1;(0) _ 1Plogl®| 1 v+2p T 11/—|—2pd'
oyorT 2 OyorT  2(v+d;)? T 2v+d; T
ith d 0d; and B,0% 0%, X. The component of I; ca
wi i~ = ——— an T = ol 0% . mponen . can
]77- 8787_ 77 H, 9, X ) p 7

be expressed as

G;L()ag‘liﬂ =0, v=u,RB 020X
e - 201 %D () — 4D (NBBTD ! (A)
O~ s =D s,

’logl=| o?

0BT o?

?;iéga'f;' = —2(c—1)%/c",
(222?? = (- 1)/(0%?)
gzlsgl)? _ C—?Z_%gTD(B)DQ(A),
8521;5;%' — %1% D(8)D (M)A D (ND(B) - 2D~ (\) D*(8)]
—D~*(X),
Ajpp = 261(;%_ 1)’

15



-1

2
c _ o0, _
d,g = _zg(yj_zgwp L(A) + 4e QEAJ-BTD '),

c2(c—1)
Ajusz = 0202 Aj,

—2

c
Djug> = QFAJ"

cl, o2 - _
dur = 255172 4,8"DB)D*(N) — (Y; - Bu) ' D(B)D (A,

2

] -2 ‘732 2 —1‘72 -1 T -1 -1
+4c—QZ—%Aj(Dl(>\)(Yj —2Bu)B8" D' (A)
+D™'(N)B(Y; - 2Bu) "D (N))
9 2
~2¢7 D MY — 2B)(Y; — 281) D (N) + 4T ph A, D (),
2 —2
dig,y = 4 ZEAIDT(NB -2 A, D (N)(Y; — 2Bp),
4
L = 25D WY, =By =27+ 2 ZAD (N8
+2¢72(c + 1)Z—§AjD1(>\)(Yj —2Bp),
4 2
dign = 2{%1‘1? [20_1%17’1(A)ﬁBTD*Q(A)D(ﬁ) - D*(\)D(B)]
2 2
~2¢7 122 A, [2c ' 22D (NB(Y,; — Bu) D (X) D(B)
2
e ' EDT )Y, - 281)8T DN)D(B) — D(N)D(Y; — 28],

+201§_§D—1(A><Yj —28u)(Y; — Bu) " D2(A)D(B)

o2
d 20 3(0_ 1)
joko2 T 020t VAl
-3
c
- 2
djo—%o—z == 2 0-6 A],
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-2

2
doay = —20—3%A§5TD(5)D*2(>\)+2CU—4A]-(Yj—ﬁu)TD(B)D’2(>\),

2
dja2a2 = —dj — 2673(64-1) §A37

Ay = ¢ (c+2) xA%'TD(ﬁ)D 2(X)
2

_9c % (c+ 1)0—§Aj(Yj — Bp)'D(B)D7*(A)
F1 (Y5~ B DY~ B D (),
day = —2¢ —2"—;1142[ —1"_31)(5)1)*2(>\)55TD*2(>\)D(£*) — D*(X\)D*(B)]
4o % A e 12%17(3)020\)(1’]- ~ BB D*(X\)D(B)
—1%0(5)17 NB(Y; = Bu) D *(A)D(B)
—2D- (QA)D(Y - Bu)D(B)]
~2¢"'ZZD(B)D *(N)(Y; — Bu)(Y; — Bu) D *(N) D(B)

FIDAY; - B D),

j =1,...,n. The complete observed information matrix is I = Z 1,(0/Z,).
j=1
Appendix B1l: Perturbation of the response variables

Elements of the A matrix evaluated at w = 0.

2
dw = D(SV)D '\, ~ ) 2 2 4,D(8y)D " (N5,
—1
diw = —2C—5TD(SY)D*1(>\),
4
digw = —25D(SY)D () +4 2 A,D '(NBBTD ' (A)D(Sy)

_zc—la—ZDJ(A)(Yj—mu)BTD*I(A)D(Sy)—?c‘l Z 4,0 (ND(SY).
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2
c

diczw = _2?Aj:3TD(SY)D71(>‘)a

, R s 72‘7_920 AT 1

divoy = Jdew+2c UGAJB D(Sy)D '(\),

J

Aw = _%D(YJ_BM)D(SY)D_Q()\)_QCZ%AjD(B)D_Q()\)B,BTD(SY)D_l()\)

+201%D(B)D(N)(Y, ~ Bu)8" D(Sy) D~ ().

Appendix B2: Perturbation of the explanatory vari-
ables

Elements of the A matrix evaluated at w = 0.

dw — %D(SX)(X]-—1PM)—20—1§Ajp(sx)1p,
djyw = —2%;1;17(5)(),
gy = 4022—%,4]-0—1()\)3150(5)() —2012—%D—1(>\)(Yj —2Bp)1, D(Sx),
djppw = —z%fAj1;D(SX),
digrwy = —%d;w + 202Z—§Aj1;D(SX),
e = 2 *Z2A,D(B)D(NB1] D(Sy)
+2CI§D(3)D—2(A)(Yj — Bu)1, D(Sx),
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