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Abstrat

The study in this paper is devoted to the stability and onsisteny analyses of an

adaptive multilevel time disretization proposed by Bary, Mallat and Papaniolau [1℄.

The main idea is to evolve the omponents in a multirresolution representation of the

numerial solution by means of an expliit algorithm, adapting the time step aording

to eah sale level. For a model problem, and in the ontext of biorthogonal wavelets,

it is proved that the stability ondition and onsisteny order are the same as in the

original non-adapted sheme.

Resumo

Este trabalho �e dediado ao estudo de estabilidade e onsistênia para um esquema

em multin��vel, om adaptabilidade temporal, para equa�~oes evolutivas. Em tal es-

quema, a solu�~ao num�eria �e representada omo a soma de v�arias omponentes, em

diferentes n��veis de esala. Para fazer a evolu�~ao temporal, adota-se um algoritmo

expl��ito de referênia que seja est�avel. Mas o passo de tempo n~ao �e o mesmo para

todas as omponentes. Em ada n��vel, esolhe-se um passo de tempo que satisfa�a os

prin��pios que regem a estabilidade do algoritmo de referênia em tal n��vel de esala.

Esolhendo um problema modelo, e um ontexto de multiesala de�nido por wavelets

biortogonais, prova-se que as ondi�~oes de estabilidade e onsistênia do algortimo

expl��ito de referênia s~ao mantidas no esquema adaptativo assoiado.
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1 Introdution

For stability or auray reasons, the omputation of approximate solutions to partial di�er-

ential equations for time-dependent problems requires the adjustment of the time disretiza-

tion to the spaial resolution. For instane, for paraboli problems, as for the heat equation,

a stable expliit sheme typially requires the division of the time step by four if the spaial

resolution is inreased by a fator of two. For ow problems, the ompromise between time

and spae steps is usually done by introduing a CFL number. The time step is then obtained

by multiplying the spae step by the CFL number divided by an estimate of the maximum

loal speed.

In many problems, the solutions may present all sort of features at di�erent sale lev-

els that pose onsiderable additional omputational hallenge. In suh ases, a multilevel

framework may be helpful. Splitting the solutions into several omponents of di�erent sale

levels, eah omponent requires di�erent time steps to be stably evolved. Therefore, a time-

adaptivity strategy may improve the eÆieny of suh methods. For instane, in the solution

of dissipative problems with multilevel sheme of nonlinear Galerkin type [8℄, the main idea is

to ompute di�erently the low and high modes, sine their physial signi�anes are di�erent.

Nowadays, there is ample numerial evidene that signi�ant improvements in auray

and omputational eÆieny may be obtained by eonomially adapting the mesh points

aording to the ourrene of loalized singular features, suh as boundary layers, shoks or

rarefation waves. Adaptivity may simplify the numerial simulation, with no waste of �ne

grid ells where the solution is smooth, and re�nement only lose to irregularities, where it

is atually needed. In suh adaptive ontexts, it is also tempting to onsider a higher degree

of eÆieny by using loal time steps that depends on the level of re�nement, i.e. in some

parts a large time step may be satisfatory, but in other parts a small time step is neessary

[12℄.

In wavelet analysis, spae adaptivity appears naturally sine the wavelet oeÆients an

be used as loal regularity indiators. In suh ontext, time adaptivity, ombined with spae

disretization by means of adapted orthonormal wavelet expansion, was �rstly onsidered in

[1℄. The algorithm modi�es the time disretization at eah wavelet sale level in a way that

allows eah omponent to be evolved with the time step satisfying the orresponding stability

onstraint. Numerial results for the one-dimensional Burgers equation are presented in [1℄

onerning the eÆieny of the method on auray, stability and omplexity.

In the present paper, we onsider the algorithm proposed in [1℄ in the extended ontext

of biorthogonal wavelets. Foalizing only the time-adaptation aspet, we develop a lassial

onsisteny and stability analysis. For a simpler and more lear development of the general

onepts and for the analysis of the method, we onsider the one-dimensional heat equation.

However, the analysis an be straightforward extended for general linear equations with

onstant oeÆients and periodi boundary onditions in higher dimensions. We show that,

for the model problem, the same stability and onsisteny onditions hold for the referene
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sheme as for its time-adaptive version.

The next setion ontains a brief overview of the main aspets of biorthogonal multires-

olution analysis whih are required in the subsequent parts of this paper. In Setion 3, the

referene algorithm is desribed and analysed. Setion 4 is the main part of this paper. It is

dediated to the de�nition of the adaptive sheme and its onsisteny and stability analyses.

Some onluding remarks are presented in Setion 5.

2 Biorthogonal Multiresolution Analysis

In a multiresolution analysis, a sequene of embeded approximating spaes V

j

� L

2

(R) are

onsidered with orresponding Riesz bases f�

j;k

(x); k 2 �

j

g. The index j is assoiated with

the sale level and k indiates the loal position in spae. A fundamental aspet is the

possibility of multilevel representations in terms of diret sums

V

j

= V

J

�W

J

� � � � �W

j�1

;

where J is a hosen oarsest level and W

l

ontains the details between two onseutive levels

l and l+1. Riesz bases f 

l;k

(x); k 2 �

l

g for the omplementary spaes W

l

are usually alled

wavelets. For the appliations of this paper, we onsider shift invariant spaes V

j

with basis

of the form

�

j;k

(x) = 2

j=2

�(2

j

x� k); k 2 Z:

The basi funtion �(x) is alled saling funtion and satis�es a sale relation

�(x) = 2

X

k2Z

h(k)�(2x� k): (1)

In the Fourier domain, the sale relation reads

b

�(�) = H(�=2)

b

�(�=2); (2)

where

H(�) =

X

k2Z

h(k)e

�ik�

: (3)

For the onstrution of the wavelets, a dual multiresolution analysis V

�

j

may be onsidered.

It is determined by a saling funtion �

�

(x), with orresponding sale relation

�

�

(x) = 2

X

k2Z

h

�

(k)�

�

(2x� k); (4)

satisfying the biorthogonal relation

Z

R

�

�

(x)�(x� k)dx = Æ

k

:
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Complementary spaes W

l

and W

�

l

are de�ned, suh that

V

l+1

= V

l

+W

l

V

�

l+1

= V

�

l

+W

�

l

by hoosing the bases  

l;k

(x) = 2

l=2

 (2

l

x � k) (respetively  

�

l;k

(x) = 2

l=2

 

�

(2

l

x � k)) asso-

iated to the mother wavelets

 (x) = 2

X

k2Z

g(k)�(2x� k) e  

�

(x) = 2

X

k2Z

g

�

(k)�

�

(2x� k);

where g

�

(k) = (�1)

k+1

h(1� k) e g(k) = (�1)

k+1

h

�

(1� k). Thus, the following biorthogonal

relations hold

Z

R

 

�

(x) (x� k)dx = Æ

k

; (5)

Z

R

�

�

(x) (x� k)dx =

Z

R

 

�

(x)�(x� k)dx = 0: (6)

In suh framework, approximations P

j

f of funtions f are found in V

j

by means of the

biorthogonal projetion operator

P

j

f(x) :=

X

k2�

j



j

(k)�

j;k

(x); (7)

where



j

(k) := D

j

f(k) =

Z

R

f(x)�

�

j;k

(x)dx: (8)

It an also be represented in a multilevel setting

P

j

f(x) = P

J

f(x) +

j�1

X

l=J

Q

l

f(x)

=

X

k2�

J



J

(k)�

J;k

(x) +

j�1

X

l=J

X

k2�

l

d

l

(k) 

l;k

(x); (9)

where Q

l

f(x) are projetions on W

l

, and d

l

k

are the wavelet oeÆients

d

l

k

:= G

l

f(k) =

Z

R

 

�

j;k

(x)f(x)dx: (10)

The transformations relating the information at the �nest level f

j

(k)g and its multilevel

representation f

J

(k)g [ fd

J

(k)g [ � � � [ fd

j�1

(k)g are known as Mallat algorithms and are

de�ned by the iterative appliation of the formulas



j�1

(k) = 2

X

s2Z

h

�

(s� 2k)

j

(s); (11)

d

j�1

(k) = 2

X

s2Z

g

�

(s� 2k)

j

(s): (12)
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Conversely,



j

(k) =

X

s2Z

h(h� 2s)

j�1

(s) +

X

s2Z

g(k � 2s)d

j�1

(s): (13)

In the appliations of this paper, the funtions are 1-periodi. All the onepts of biorthog-

onal multiresolution analysis hold for 1-periodi funtions by simply onsidering 2

j

-periodi

sequenes 

j

in the expansions

f(x) =

X

k2Z



j

(k)�

j;k

(x)

de�ning of the spaes V

j

. In suh ase, the Riesz basis property implies that there exist

onstants 0 < A < B suh that, for all 2

j

-periodi sequenes 

j

,

Ak

j

k

j

� k

X

k2Z



j

(k)�

j;k

(x)k

L

2

� Bk

j

k

j

;

where k:k

L

2

stands for the norm in L

2

([0; 1℄) and

k

j

k

j

= 2

�j

2

j

�1

X

k=0

j

j

(k)j

2

:

2.1 Auray

For shift-invariant approximating spaes, the approximation power is determined by the

Strang-Fix ondition. A funtion �(x) is said to satisfy the Strang-Fix ondition of order p if

b

�(0) 6= 0 and

b

�(�) has zeros of order p+ 1 at � = 2k�; k 2 Z. In suh ase, the polynomials

of degree less or equal to p an be loally reprodued by linear ombinations of the saling

funtions �

j;k

(x). If � and �

�

are integrable saling funtions of ompat support, and �

satis�es a Strang-Fix ondition of order p, then for funtions in the Sobolev spae H

p+1

(R)

the biorthogonal projetion P

j

f on V

j

veri�es the auray property [5, 10℄

kf � P

j

fk

H

s

. 2

�j(p+1�s)

jjf jj

H

p+1

; (14)

for 0 � s � minfr; p + 1g, where r is degree of regularity of �, so that � 2 H

r

(R). Conse-

quently, the following estimate also holds

kQ

j

fk

H

s

. 2

�j(p+1�s)

jjf jj

H

p+1

; (15)

Similar results are valid in the periodi ase [9℄.
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2.2 Cases of Interest

We have partiular interest in the family of biorthogonal multiresolution analyses introdued

by Cohen, Daubehies and Feauveau [6℄. Let N

�

and N be two positive integers of same

parity suh that N

�

+N =M is an even integer. �

�

= �

N

�

is hosen as the B-spline de order

N

�

. For even N

�

= 2l

�

the orresponding saling �lter is

H(�) =

�

os

�

2

�

N

�

:

If N = 2l, then saling funtions �(x) = �

N

�

;N

(x) may be found with saling �lters

H(�) =

�

os

�

2

�

N

l+l

�

�1

X

k=0

�

l + l

�

� 1 + k

k

��

sin

�

2

�

2k

:

Similarly, for odd N

�

= 2l

�

+ 1, and N = 2l + 1, the orresponding �lters are

H

�

(�) = e

�i�=2

�

os

�

2

�

N

�

and

H(�) = e

�i�=2

�

os

�

2

�

N

l+l

�

X

k=0

�

l + l

�

+ k

k

��

sin

�

2

�

2k

:

For these families, all the basi funtions have ompat support. �

�

is a C

N

�

�2

pieewise

polynomials of degree N

�

� 1, and � has inreasing regularity with inreasing N . �

�

and �

are symmetri funtions entered at x = 0, for even N

�

and N , and entered at x =

1

2

, for

odd N

�

and N . They satisfy Strang-�x onditions or order N

�

� 1 and N � 1, respetively.

In the extreme ase N

�

= 0, �

�

(x) = Æ(x) is the Dira distribution and �

M

(x) = �

0;M

orrespond to the interpolating saling funtions de�ned by Delauries and Dubu [7℄. It an

be shown that

�

M

(x) =

Z

R

�

N

�

(y)�

N;N

�

(y + x)dy;

independently of the hoies of N;N

�

suh that M = N +N

�

[11℄.

3 The Referene Numerial Sheme

In this paper, we are onerned with the numerial solution of evolution equations

8

>

<

>

:

�u(t; x)

�t

= Lu(t; x); x 2 R; t � 0;

u(0; x) = u

0

(x);

(16)
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with periodi boundary ondition u(t; x + 1) = u(t; x), where L is a di�erential operator

ating in the x variable.

We onsider pairs of shift-invariant spaes fV

j

; V

�

j

g forming a biorthogonal multiresolu-

tion analysis, and having suÆient regularity. We de�ne the disretization of problem (16)

by following two basi steps.

? Spae disretization.

At eah time step, an approximate solution u

j

(t; x) is sought in the approximating spae

V

j

. It is de�ned by imposing a Petrov-Galerkin orthogonally property (the residual is or-

thogonal to V

�

j

). The result is the semidisrete ODE problem

�u

j

(t; x)

�t

= [L

j

u

j

(t; �)℄(x); (17)

where L

j

is the disrete version of L given by

L

j

u

j

(t; �) = P

j

Lu

j

(t; �): (18)

? Time disretization.

The ODE system (17) is disretized by an appropriate ODE solver. For instane, when

adopting the forward Euler sheme, we get

u

j

(t+�

t

; x) = [(I +�

t

L

j

)u

j

(t; �)℄(x) =: [K

j

u

j

(t; �)℄(x): (19)

The analysis of this paper holds for onstant oeÆients di�erential operators

Lu =

m

X

�=0

A

�

�

�

u

�x

�

:

Their disrete version may be expressed in terms of the 2

j

-periodi oeÆients u

n;j

(s) in the

expansion

u

j

(t

n

; x) =

X

s2Z

u

n;j

(s)�(2

j

x� s)

by the formula

(L

j

u

n;j

)(s) =

m

X

�=0

A

�

2

j�

X

k2Z

u

n;j

(k)�

�

(s� k);

with

�

�

(q) =

Z

R

�

�

(x)

d

�

�

dx

�

(x)dx:

7



Therefore, the disrete formulation (19) an also be expressed in matrix form by

u

n+1;j

(k) = [(I +�

t

L

j

)u

n;j

℄(k)

= [K

j

u

n;j

℄(k); (20)

where K

j

= K(�

t

; 2

�j

) = (I + �

t

L

j

). This referene sheme an be interpreted as a �nite

di�erene approximation.

In the appliations of this paper, we shall also adopt the spline multiresolution framework.

In suh ase, the oeÆients �

�

(q) depend on the hoie of the parameter M , but are inde-

pendent of the partiular hoie of basi dual funtions f�

N

�

;N

; �

N

�

g suh that M = N +N

�

[11℄. Preisely

�

�

(q) =

d

�

�

M

dx

�

(q);

whih also orresponds to the olloation sheme based on the interpolating saling funtions

�

M

(x). It an also be proved that, under the posed onditions on L, apart from the hoie of

the initial data, the numerial sheme (20) is also equivalent to the Galerkin method based

on the orthogonal Daubehies' saling funtions supported on [0;M � 1℄ [2℄. However, if

the disrete operator L

j

is represented in the multilevel ontext, then the formulations di�er

aording to the onsidered multiresolution analysis.

3.1 Stability

Given the periodi onditions and the onstant oeÆients in L, K

j

results to be a irulant

matrix. Therefore, the system (20) an be diagonalized by the Fourier matrix. This means

that

bu

n+1;j

(k) =

"

1 + �

t

m

X

�=0

2

�j

e

�

(�)

(�

j

k

)

#

bu

n;j

(k) =

b

K(�

j

k

)bu

n;j

(k)

=

h

b

K(�

j

k

)

i

n

bu

0;j

(k); (21)

where bu

n;j

stands for the disrete Fourier transform of order 2

j

of the numerial solution

oeÆients u

n:j

, and

e

�

(�)

(�) =

X

s2Z

�

(�)

(s)e

�is�

; �

j

k

= 2�k2

�j

:

The symbol

b

K(�) =

b

K(�;�

t

; 2

�j

) is the ampli�ation fator, sine its magnitude indiates

how the amplitude bu

n;j

(k) of eah frequeny present in the numerial solution is ampli�ed

during one time step.

As indiated in [3℄,Theorem 5.2.1, the sheme is stable if, and only if, there are onstants

C

e

; �

e

suh that

j

b

K

n

(�)j � C

e

e

�

e

t

n

; � 2 [0; 2�℄:
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As an example, with Lu = u

xx

for the heat equation, onsider

b

K(�) = 1 + �

e

�

(2)

(�);

where � = 2

2j

�

t

. If � is kept onstant, them stability is attained if j

b

K(�)j � 1, that is,

�

�

�

1 + �

e

�

(2)

(�)

�

�

�

� 1; � 2 [0; 2�℄: (22)

As shown in Figure 1(a), �

(2)

(�) is a negative funtion, with minimum value at � = �.

Therefore, stability ours if

0 < � �

2

max

�2[0;2�℄

j

e

�

(2)

(�)j

=

2

j

e

�

(2)

(�)j

= �

max

: (23)

In Table 1, the numerial values for j

e

�

(2)

(�)j are displayed for M = 6; 8 e 10 and the orre-

sponding �

max

. The urves in Figures 1b-1d illustrate the behaviour of the symbol j

b

K(�)j, for

M = 6, M = 8 and M = 10, with � within the stability region (23).

Table 1: j

e

�

(2)

(�)j and orresponding �

max

M j

e

�

(2)

(�)j �

max

6

1472

105

� 14:019047619 0.142663043

8

1339264

119945

� 11:165650923 0.179120770

10

21066447454208

2028319032915

� 10:386160713 0.192563937

3.2 Consisteny

The trunation error is de�ned by

(ET

n;j

)(k) =

1

�

t

�

u(t

n

+�

t

; x

j

k

)� (K

j

u)(t

n

; x

j

k

)

�

=

1

�

t

�

u(t

n

+�

t

; x

j

k

)� u(t

n

; x

j

k

)

�

� (L

j

u)(t

n

; x

j

k

)

=

�

1

�

t

�

u(t

n

+�

t

; x

j

k

)� u(t

n

; x

j

k

)

�

�

�u

�t

(t

n

; x

j

k

)

�

+

�

(L � L

j

)u

�

(t

n

; x

j

k

):
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0.3
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0.5

0.6

0.7

0.8

0.9

1

τ=0.04
τ=0.12
τ=τ

max

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ=0.04
τ=0.13
τ=τ

max

() (d)

Figure 1: (a)

e

�

(2)

(�);M = 6; 8; 10; Symbol j

b

K(�)j for: (b) M = 6; () M = 8; (d) M = 10.

It is the result of two kinds of diretization errors. The �rst part being

1

�

t

�

u(t

n

+�

t

; x

j

k

)� u(t

n

; x

j

k

)

�

�

�u

�t

(t

n

; x

j

k

)

gives the error in the time disretization by the Euler sheme, whih is of �rst order. The

seond part

�

(L � L

j

)u

�

(t

n

; x

j

k

)

is the trunation error in the disretization of L in the biorthogonal framework. As shown in

[9, 4℄, its onsisteny is of order M �m + �, where � = 0 for even m, and � = 1 otherwise.

10



Therefore,

jET

n;j

j = O(�

t

) +O(2

�j(M�m+�)

);

whih means that the sheme is onsistent of order (1;M � m + �). Aording to Lax-

Rihtmyer Equivalene Theorem [13℄, onvergene holds in the stability region.

4 The Multilevel Sheme: Time-Adaptivity

In an biorthogonal multiresolution analysis framework, there is the possibility of representing

the numerial solution u

j

(t; x) in a multilevel setting. Therefore, we may onsider the idea of

modifying the referene sheme in the same way as proposed in [1℄. For a simplier and more

lear development of the general onepts, and for the analysis of the method, we onsider

the one-dimensional heat equation. As desribed in the previous setion, for stability of the

sheme with spaial resolution 2

�j

, we must hoose the time step �

j

t

in the stability region

�

j

t

� 4

�j

�

max

. At the next oarser level j � 1, �

j�1

t

= 4�

j

t

. This means that, at level j � 1,

the solution an be updated at t+�

j�1

t

by the expression

u

j�1

(t +�

j�1

t

; x) =

�

I +�

j�1

t

L

j�1

�

u

j�1

(t; x): (24)

At level j, the time step is four times smaller, an thus requires four iterations to update the

solution at t+�

j�1

t

. That is,

u

j

(t+�

j�1

t

; x) = u

j

(t + 4�

j

t

; x) = (I +�

j

t

L

j

)

4

u

j

(t; x): (25)

Using the two-level deomposition V

j

= V

j�1

+W

j�1

, the omponent in W

j�1

needs to be

evolved with the time step �

j

t

, but it is natural to onsider the evolution of the omponent

in V

j�1

with time step �

j�1

t

. Using the representation P

j

= P

j�1

+Q

j�1

, the diretization

L

j

= P

j

LP

j

may be deomposed as

L

j

= P

j�1

LP

j�1

+ P

j�1

LQ

j�1

+Q

j�1

LP

j�1

+Q

j�1

LQ

j�1

= L

j�1

+ T

j

; (26)

where L

j�1

is the disretization of L at level j � 1 and T

j

is the operator

T

j

= P

j�1

LQ

j�1

+Q

j�1

LP

j�1

+Q

j�1

LQ

j�1

whih ats on or returns detail omponents. Equations (24), (25) and (26) imply that

u

j

(t + 4�

j

t

; x) = [(I +�

j

t

T

j

) + �

j

t

L

j�1

℄

4

u

j

(t; x): (27)

Following [1℄, we modify the sheme by negleting high order terms involving powers greater

than one of �

j

t

L

j�1

. The result is the modi�ed sheme

11



u

j

(t+ 4�

j

t

; x) = [(I +�

j

t

T

j

)

4

+ 4�

j

t

L

j�1

℄u

j

(t; x)

=: K

j

a

u

j

(t; x): (28)

For this modi�ed sheme, the solution u

j

(t+4�

j

t

; x) at t + 4�

j

t

is obtained by the evolution of

L

j�1

u

j

(t; x) with time step �

j�1

t

= 4�

j

t

, while the omponents of higher sale level T

j

u

j

(t; x)

uses the appropriate time step �

j

t

.

4.1 Matrix Struture

The adaptive sheme (28) an be formulated in terms of the multiresolution oeÆients of the

numerial solution. To simplify the analysis, we shall onsider the multiresolution analysis

V

j

de�ned by the interpolating saling funtions �

M

(x), with regularity r � 2. A funtion

v 2 V

j

may be expressed as

v(x) =

X

k2Z

v

j

(k)�(2

j

x� k)

=

X

k2Z

v

j�1

(k)�(2

j�1

x� k) +

X

k2Z

d

j�1

(k) (2

j�1

x� k);

where v

j

(k) = v(k2

�j

) and d

j�1

(k) = G

j�1

v(k). Developing eah term in (26), we get

(L

j�1

v)(x) = (P

j�1

LP

j�1

v)(x) (29)

= 2

2j

X

k2Z

�

0;0

(k)�(2

j�1

x� k); (30)

where

�

0;0

(k) =

1

4

X

s2Z

v

j�1

(s)�

(2)

(s� k):

Similarly, using the Mallat's formulas (11) and (12), we obtain

(T

j

v)(x) = (P

j�1

LQ

j�1

v)(x) + (Q

j�1

LP

j�1

v)(x) + (Q

j�1

LQ

j�1

v)(x)

= 2

2j

(

X

k2Z

�

0;1

(k)�(2

j�1

x� k) (31)

+

X

k2Z

[�

1;0

(k) + �

1;1

(k)℄ (2

j�1

x� k)

)

; (32)

12



where the oeÆients are

�

0;1

(k) =

1

4

X

s2Z

d

j�1

(s)#

(2)

(s� k);

�

1;0

(k) =

1

4

X

s2Z

v

j�1

(s)�

1

(s� k);

�

1;1

(k) =

1

4

X

s2Z

d

j�1

(s)�

2

(s� k);

and

#

(m)

(k) =

d

m

 

dx

m

(k);

�

1

(s) =

X

n2Z

g

�

(n)�

(2)

(n=2 + s);

�

2

(s) =

X

n2Z

g

�

(n)#

(2)

(n=2 + s):

Therefore, I +�

j

t

T

j

has the form

(I +�

j

t

T

j

v)(x) =

X

k2Z

a

j�1

(k)�(2

j�1

x� k) +

X

k2Z

b

j�1

(k) (2

j�1

x� k);

with

a

j�1

(k) = v

j�1

(k) + ��

0;1

(k); (33)

b

j�1

(k) = d

j�1

(k) + �(�

1;0

(k) + �

1;1

(k)): (34)

To desribe the ation of the operator I+�

j

t

T

j

in matrix form, we onsider a vetor ontaining

the multilevel oeÆients of v(x), sorted in the following order

[v

j�1

(0); d

j�1

(0); : : : ; v

j�1

(k); d

j�1

(k); : : : ; v

j�1

(2

j�1

� 1); d

j�1

(2

j�1

� 1)℄

T

:

Let

[a

j�1

(0); b

j�1

(0); : : : ; a

j�1

(k); b

j�1

(k); : : : ; a

j�1

(2

j�1

� 1); b

j�1

(2

j�1

� 1)℄

T

;

be the orresponding vetor for the multiresolution disrete values of (I +�

j

t

T

j

)v

j

. Bearing

in mind the formulas (33)-(34), the onvolution form of the expressions for �

0;1

; �

1;0

and �

1;1

,

while onsidering this kind of data sorting, then (I +�

j

t

T

j

) has a blok irulant struture,

with 2� 2 bloks. Namely, I +�

j

t

T

j

= ir(A

0

; A

1

; : : : ; A

2

j�1

�1

), where

A

k

=

�

Æ

k

#(k)

�

1

(k) Æ

k

+ �

2

(k)

�

:

Consequently, in the Fourier domain, (I+�

j

t

T

j

) is transformed into a blok diagonal matrix,

with 2� 2 bloks plaed in the diagonal, as stated in the next lemma.
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Lemma 4.1 Let ba

j�1

and

b

b

j�1

be the disrete Fourier transform of order 2

j�1

of the oeÆ-

ients a

j�1

(k) and b

j�1

(k) given in (33) and (34). Then

�

ba

j�1

(k)

b

b

j�1

(k)

�

=

0

�

1

�

4

e

#

(2)

(2�

j

k

)

�

4

e�

1

(2�

j

k

) 1 +

�

4

e�

2

(2�

j

k

)

1

A

�

bv

j�1

(k)

b

d

j�1

(k)

�

;

where

e�

1

(�) = G

�

P

(�)

e

�

(2)

(�) +G

�

I

(�)

e

�

(2)

1=2

(�);

e�

2

(�) = G

�

P

(�)

e

#

(2)

(�) +G

�

I

(�)

e

#

(2)

1=2

(�);

e

�

(2)

(�) =

X

s2Z

�

(2)

(s)e

�i�s

;

e

#

(2)

(�) =

X

s2Z

#

(2)

(s)e

�i�s

;

G

�

P

(�) =

X

s2Z

g

�

(2s)e

�i�s

;

G

�

I

(�) =

X

s2Z

g

�

(2s+ 1)e

�i�ks

:

As a onsequene of Lemma 4.1, the following results hold for the adaptive operator

K

j

a

= (I +�

j

t

T

j

)

4

+ 4�

j

t

L

j�1

.

Corollary 4.2 Consider the vetor
b
u

n;j

MR

formed by the omponents of the disrete Fourier

transforms
b
u

n;j�1

and

b

d

n;j�1

, sorted in the following order

[bu

n;j�1

(0);

b

d

n;j�1

(0); bu

n;j�1

(1);

b

d

n;j�1

(1) : : : ; bu

n;j�1

(2

j�1

� 1);

b

d

n;j�1

(2

j�1

� 1)℄

T

:

On this form, the ation of the operator K

j

a

= (I +�

j

t

T

j

)

4

+ 4�

j

t

L

j�1

, orresponding to the

adaptive sheme (28), an be expressed by the formula

b
u

n+1;j

MR

=

b

K

j

a

b
u

n;j

MR

;

where

b

K

j

a

is a blok diagonal matrix, with 2�2 bloks in the diagonal, de�ned by

b

K

a

(2�

j

k

; �); 0 �

k � 2

j�1

� 1, suh that

�

bu

n+1;j�1

(k)

b

d

n+1;j�1

(k)

�

=

b

K

a

(2�

j

k

; �)

�

bu

n;j�1

(k)

b

d

n;j�1

(k)

�

:
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The ampli�ation matries

b

K

a

(�; �) have the formula as follows

b

K

a

(�; �) =

2

4

0

�

1

�

4

e

#

(2)

(�)

�

4

e�

1

(�) 1 +

�

4

e�

2

(�)

1

A

4

+ �

�

e

�

(2)

(�) 0

0 0

�

3

5

:

4.2 Stability Analysis

As desribed in the setion 3.1, the stability region for the referene sheme is � � �

max

. The

question here is to see whether the same haraterization holds for the adaptive sheme.

As proved in Corollary 4.2, the adaptive sheme (28) an be formulated, in the Fourier

domain, by the relation

b
u

n+1;j

MR

=

b

K

j

a

b
u

n;j

MR

:

Therefore, the stability analysis an be stated in terms of spetral properties of the ampli�-

ation matrix

b

K

a

. As desribed in [3℄, Theorem 5.2.2, a neessary ondition for stability is

that the eigenvalues �

k

of

b

K

a

satisfy the von Neumann ondition

j�

k

j � e

�

e

�

t

: (35)

Theorem 5.2.3 in [3℄ shows that suh ondition is suÆient in the ase where

b

K

a

an be

uniformly diagonalized in the sense that there is a matrix T = T (2

�j

; �) suh that

T

�1

b

K

a

T = diag(�

1

; �

2

; : : : ; �

2

j

); (36)

with kTk kT

�1

k � C, for C independent of � and the resolution level j.

For the adaptive sheme under study,

b

K

j

a

is a blok diagonal matrix, with 2 � 2 bloks

b

K

a

(2�

j

k

; �); 0 � k � 2

j�1

� 1 plaed in the diagonal. Therefore, we simply need to analyse

the spetral properties of suh bloks.

The eigenvalues �

k;`

; ` = 1; 2 of eah blok

b

K

a

(�

j

k

; �) may be obtained diretly from the

blok entries, and the spetral radius �(

b

K

a

(�; �)) an be expressed as a funtion of � and � .

Numerial experiments show that, for �xed � , the maximum of �(

b

K

a

(�; �)) ours at � = �.

In Figure 2 the graphs of �(

b

K

a

(�; �)) are plotted as funtions of � , for M = 6; 8; 10 e 12. In

eah ase, it and an be notied that, for � > �

max

; �(

b

K

a

(�; �)) > 1. Therefore, for � > �

max

the adaptive sheme, as well as its referene sheme, is unstable.

Figure 3 displays level sets for the spetral radius �(

b

K

a

(�; �)), for M = 6; 8; 10; 12. The

horizontal red dotted line indiates � = �

max

, whih is the upper level for stability. As

expeted, for � � �

max

, the neessary ondition �(

b

K

a

(�; �)) � 1 is veri�ed. We an also note

that � = � is a ritial point in the sense that, for eah level urve, the minimum value for �

is reahed at � = �.
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Figure 2: The spetral radius �(

b

K

a

(�; �)).

Figure 4 is for �xed � = �

max

. It shows the behaviour of the eigenvalues of

b

K

a

(�; �

max

),

for di�erent hoies of the parameter M . As expeted,

j�

k;`

j � 1 for ` = 1; 2;

whih shows that the neessary ondition (35) for the stability is veri�ed with �

e

= 0.

>From Figure 4, we also onlude that the eigenvalues are distint for � 2 (0; 2�). Similar

behaviour holds for � � �

max

. This fat indiates that the matrix T mentioned in (36) may

be taken as a blok diagonal matrix, with 2� 2 bloks formed by eigenvetors of

^

K

a

(2�

j

k

; �).

For � = 0 and � = 2�,

b

K

a

(�) is simply the 2 � 2 identity matrix. The behaviour of the

Eulidian norm kT (�; �)k

2

is illustrated in Figure 5, for M = 6; 8; 10 e 12. It suggests that,

for � 2 [0; 2�℄ and 0 � � � �

max

, kT (�; �)k

2

is a bounded funtion whih is also bounded

away from zero. Therefore, based on this numerial evidene, we argue that the ondition

on T that guarantees stability is veri�ed by the adaptive sheme.

4.3 Consisteny

Let us onsider the trunation error for the adaptive sheme

4�

t

(ET

n;j

a

)(s) = u(t

n

+ 4�

t

; x

j

s

)� (K

j

a

u)(t

n

; x

j

s

);

where K

j

a

= (I +�

j

t

T

j

)

4

+ 4�

j

t

L

j�1

. It an be split into three terms
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The �rst and seond terms form the trunation error for the referene sheme. As we

shall prove next, the perturbation introdued by the adaptive strategy, orresponding to the

third term, produes errors or higher orders.

We shall give the estimates in terms of the norm in L

2

([0; 1℄), sine in V

j

it is equivalent

to norm k � k

j

of the oeÆients. Given the de�nition of T

j

, we get

kT

j
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2

+ kQ
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LQ

j�1

uk

L

2

:

Having in mind the estimates (14) and (15) for the projetions ourring in the interpolatory

multiresolution ontext de�ned by �

M

(x) (p =M � 1), we obtain
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�(j�1)(M�2)

kuk

H

M
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�(j�1)(M�2)

kuk

H

M ;

where 0 � s � r � 2, and r is the regularity order of �

M

. Similarly, for the seond term we

have
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Finally, for the last term
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Combining all the three estimations, we get
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Therefore, we onlude that in the adaptive sheme the order of trunation error is determined

by behaviour of the trunation error in the referene sheme. That is,

kET

n;j

a

k � O(�

t

) +O(2

�j(M�2)

):

The results of Setion 4.2 and Setion 4.3 are summarized in the following theorem.

Theorem 4.3 For the examples analysed in this paper, the adaptive sheme (28) present

the same stability and onsisteny properties of its referene sheme (20).

5 Conlusions

In this paper, the adaptive multilevel sheme proposed in [1℄ is onsidered in the biorthogonal

wavelet ontext. The adaptive sheme is formulated in terms of the multiresolution oeÆ-

ients of the numerial solution. Using two levels, and having periodi boundary onditions

and onstant oeÆients, it turns out that the matrix making the onnetion between the

solution at one time step to the next one has a 2 � 2 blok irulant struture. So that,

in the Fourier domain, it is transformed into a blok-diagonal struture, with 2 � 2 bloks.

Therefore, the stability of the sheme is determined by the spetral properties of eah of these

simple bloks, whih an be derived from the behaviour of an easely omputable funtion of

two variables (�; �); � � 0; 0 � � � 2�. This is beause the four omponents of eah blok

are expressed as funtions of the parameter � = �(�

t

; 2

�j

) and the sample values of known

2�-periodi funtions, whih are de�ned in terms of the saling �lters and symbols assoiated

to the �nite di�erene oeÆients. The dependene on the sale level appears, expliitely, on

the sampling step.

As a model problem, we onsider the one-dimensional heat equation. In the adaptive

multilevel sheme, the advantage is that the time step used to update the omponents in a

ertain sale level is multiplied by four if the resolution is derased by a fator of two. We

show that this adaptive strategy does not a�et the stability ondition and onsisteny order,

whih are maintaned the same as in the original referene sheme.
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