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Abstra
t

The study in this paper is devoted to the stability and 
onsisten
y analyses of an

adaptive multilevel time dis
retization proposed by Ba
ry, Mallat and Papani
olau [1℄.

The main idea is to evolve the 
omponents in a multirresolution representation of the

numeri
al solution by means of an expli
it algorithm, adapting the time step a

ording

to ea
h s
ale level. For a model problem, and in the 
ontext of biorthogonal wavelets,

it is proved that the stability 
ondition and 
onsisten
y order are the same as in the

original non-adapted s
heme.

Resumo

Este trabalho �e dedi
ado ao estudo de estabilidade e 
onsistên
ia para um esquema

em multin��vel, 
om adaptabilidade temporal, para equa�
~oes evolutivas. Em tal es-

quema, a solu�
~ao num�eri
a �e representada 
omo a soma de v�arias 
omponentes, em

diferentes n��veis de es
ala. Para fazer a evolu�
~ao temporal, adota-se um algoritmo

expl��
ito de referên
ia que seja est�avel. Mas o passo de tempo n~ao �e o mesmo para

todas as 
omponentes. Em 
ada n��vel, es
olhe-se um passo de tempo que satisfa�
a os

prin
��pios que regem a estabilidade do algoritmo de referên
ia em tal n��vel de es
ala.

Es
olhendo um problema modelo, e um 
ontexto de multies
ala de�nido por wavelets

biortogonais, prova-se que as 
ondi�
~oes de estabilidade e 
onsistên
ia do algortimo

expl��
ito de referên
ia s~ao mantidas no esquema adaptativo asso
iado.
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1 Introdu
tion

For stability or a

ura
y reasons, the 
omputation of approximate solutions to partial di�er-

ential equations for time-dependent problems requires the adjustment of the time dis
retiza-

tion to the spa
ial resolution. For instan
e, for paraboli
 problems, as for the heat equation,

a stable expli
it s
heme typi
ally requires the division of the time step by four if the spa
ial

resolution is in
reased by a fa
tor of two. For 
ow problems, the 
ompromise between time

and spa
e steps is usually done by introdu
ing a CFL number. The time step is then obtained

by multiplying the spa
e step by the CFL number divided by an estimate of the maximum

lo
al speed.

In many problems, the solutions may present all sort of features at di�erent s
ale lev-

els that pose 
onsiderable additional 
omputational 
hallenge. In su
h 
ases, a multilevel

framework may be helpful. Splitting the solutions into several 
omponents of di�erent s
ale

levels, ea
h 
omponent requires di�erent time steps to be stably evolved. Therefore, a time-

adaptivity strategy may improve the eÆ
ien
y of su
h methods. For instan
e, in the solution

of dissipative problems with multilevel s
heme of nonlinear Galerkin type [8℄, the main idea is

to 
ompute di�erently the low and high modes, sin
e their physi
al signi�
an
es are di�erent.

Nowadays, there is ample numeri
al eviden
e that signi�
ant improvements in a

ura
y

and 
omputational eÆ
ien
y may be obtained by e
onomi
ally adapting the mesh points

a

ording to the o

urren
e of lo
alized singular features, su
h as boundary layers, sho
ks or

rarefa
tion waves. Adaptivity may simplify the numeri
al simulation, with no waste of �ne

grid 
ells where the solution is smooth, and re�nement only 
lose to irregularities, where it

is a
tually needed. In su
h adaptive 
ontexts, it is also tempting to 
onsider a higher degree

of eÆ
ien
y by using lo
al time steps that depends on the level of re�nement, i.e. in some

parts a large time step may be satisfa
tory, but in other parts a small time step is ne
essary

[12℄.

In wavelet analysis, spa
e adaptivity appears naturally sin
e the wavelet 
oeÆ
ients 
an

be used as lo
al regularity indi
ators. In su
h 
ontext, time adaptivity, 
ombined with spa
e

dis
retization by means of adapted orthonormal wavelet expansion, was �rstly 
onsidered in

[1℄. The algorithm modi�es the time dis
retization at ea
h wavelet s
ale level in a way that

allows ea
h 
omponent to be evolved with the time step satisfying the 
orresponding stability


onstraint. Numeri
al results for the one-dimensional Burgers equation are presented in [1℄


on
erning the eÆ
ien
y of the method on a

ura
y, stability and 
omplexity.

In the present paper, we 
onsider the algorithm proposed in [1℄ in the extended 
ontext

of biorthogonal wavelets. Fo
alizing only the time-adaptation aspe
t, we develop a 
lassi
al


onsisten
y and stability analysis. For a simpler and more 
lear development of the general


on
epts and for the analysis of the method, we 
onsider the one-dimensional heat equation.

However, the analysis 
an be straightforward extended for general linear equations with


onstant 
oeÆ
ients and periodi
 boundary 
onditions in higher dimensions. We show that,

for the model problem, the same stability and 
onsisten
y 
onditions hold for the referen
e
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s
heme as for its time-adaptive version.

The next se
tion 
ontains a brief overview of the main aspe
ts of biorthogonal multires-

olution analysis whi
h are required in the subsequent parts of this paper. In Se
tion 3, the

referen
e algorithm is des
ribed and analysed. Se
tion 4 is the main part of this paper. It is

dedi
ated to the de�nition of the adaptive s
heme and its 
onsisten
y and stability analyses.

Some 
on
luding remarks are presented in Se
tion 5.

2 Biorthogonal Multiresolution Analysis

In a multiresolution analysis, a sequen
e of embeded approximating spa
es V

j

� L

2

(R) are


onsidered with 
orresponding Riesz bases f�

j;k

(x); k 2 �

j

g. The index j is asso
iated with

the s
ale level and k indi
ates the lo
al position in spa
e. A fundamental aspe
t is the

possibility of multilevel representations in terms of dire
t sums

V

j

= V

J

�W

J

� � � � �W

j�1

;

where J is a 
hosen 
oarsest level and W

l


ontains the details between two 
onse
utive levels

l and l+1. Riesz bases f 

l;k

(x); k 2 �

l

g for the 
omplementary spa
es W

l

are usually 
alled

wavelets. For the appli
ations of this paper, we 
onsider shift invariant spa
es V

j

with basis

of the form

�

j;k

(x) = 2

j=2

�(2

j

x� k); k 2 Z:

The basi
 fun
tion �(x) is 
alled s
aling fun
tion and satis�es a s
ale relation

�(x) = 2

X

k2Z

h(k)�(2x� k): (1)

In the Fourier domain, the s
ale relation reads

b

�(�) = H(�=2)

b

�(�=2); (2)

where

H(�) =

X

k2Z

h(k)e

�ik�

: (3)

For the 
onstru
tion of the wavelets, a dual multiresolution analysis V

�

j

may be 
onsidered.

It is determined by a s
aling fun
tion �

�

(x), with 
orresponding s
ale relation

�

�

(x) = 2

X

k2Z

h

�

(k)�

�

(2x� k); (4)

satisfying the biorthogonal relation

Z

R

�

�

(x)�(x� k)dx = Æ

k

:
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Complementary spa
es W

l

and W

�

l

are de�ned, su
h that

V

l+1

= V

l

+W

l

V

�

l+1

= V

�

l

+W

�

l

by 
hoosing the bases  

l;k

(x) = 2

l=2

 (2

l

x � k) (respe
tively  

�

l;k

(x) = 2

l=2

 

�

(2

l

x � k)) asso-


iated to the mother wavelets

 (x) = 2

X

k2Z

g(k)�(2x� k) e  

�

(x) = 2

X

k2Z

g

�

(k)�

�

(2x� k);

where g

�

(k) = (�1)

k+1

h(1� k) e g(k) = (�1)

k+1

h

�

(1� k). Thus, the following biorthogonal

relations hold

Z

R

 

�

(x) (x� k)dx = Æ

k

; (5)

Z

R

�

�

(x) (x� k)dx =

Z

R

 

�

(x)�(x� k)dx = 0: (6)

In su
h framework, approximations P

j

f of fun
tions f are found in V

j

by means of the

biorthogonal proje
tion operator

P

j

f(x) :=

X

k2�

j




j

(k)�

j;k

(x); (7)

where




j

(k) := D

j

f(k) =

Z

R

f(x)�

�

j;k

(x)dx: (8)

It 
an also be represented in a multilevel setting

P

j

f(x) = P

J

f(x) +

j�1

X

l=J

Q

l

f(x)

=

X

k2�

J




J

(k)�

J;k

(x) +

j�1

X

l=J

X

k2�

l

d

l

(k) 

l;k

(x); (9)

where Q

l

f(x) are proje
tions on W

l

, and d

l

k

are the wavelet 
oeÆ
ients

d

l

k

:= G

l

f(k) =

Z

R

 

�

j;k

(x)f(x)dx: (10)

The transformations relating the information at the �nest level f


j

(k)g and its multilevel

representation f


J

(k)g [ fd

J

(k)g [ � � � [ fd

j�1

(k)g are known as Mallat algorithms and are

de�ned by the iterative appli
ation of the formulas




j�1

(k) = 2

X

s2Z

h

�

(s� 2k)


j

(s); (11)

d

j�1

(k) = 2

X

s2Z

g

�

(s� 2k)


j

(s): (12)
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Conversely,




j

(k) =

X

s2Z

h(h� 2s)


j�1

(s) +

X

s2Z

g(k � 2s)d

j�1

(s): (13)

In the appli
ations of this paper, the fun
tions are 1-periodi
. All the 
on
epts of biorthog-

onal multiresolution analysis hold for 1-periodi
 fun
tions by simply 
onsidering 2

j

-periodi


sequen
es 


j

in the expansions

f(x) =

X

k2Z




j

(k)�

j;k

(x)

de�ning of the spa
es V

j

. In su
h 
ase, the Riesz basis property implies that there exist


onstants 0 < A < B su
h that, for all 2

j

-periodi
 sequen
es 


j

,

Ak


j

k

j

� k

X

k2Z




j

(k)�

j;k

(x)k

L

2

� Bk


j

k

j

;

where k:k

L

2

stands for the norm in L

2

([0; 1℄) and

k


j

k

j

= 2

�j

2

j

�1

X

k=0

j


j

(k)j

2

:

2.1 A

ura
y

For shift-invariant approximating spa
es, the approximation power is determined by the

Strang-Fix 
ondition. A fun
tion �(x) is said to satisfy the Strang-Fix 
ondition of order p if

b

�(0) 6= 0 and

b

�(�) has zeros of order p+ 1 at � = 2k�; k 2 Z. In su
h 
ase, the polynomials

of degree less or equal to p 
an be lo
ally reprodu
ed by linear 
ombinations of the s
aling

fun
tions �

j;k

(x). If � and �

�

are integrable s
aling fun
tions of 
ompa
t support, and �

satis�es a Strang-Fix 
ondition of order p, then for fun
tions in the Sobolev spa
e H

p+1

(R)

the biorthogonal proje
tion P

j

f on V

j

veri�es the a

ura
y property [5, 10℄

kf � P

j

fk

H

s

. 2

�j(p+1�s)

jjf jj

H

p+1

; (14)

for 0 � s � minfr; p + 1g, where r is degree of regularity of �, so that � 2 H

r

(R). Conse-

quently, the following estimate also holds

kQ

j

fk

H

s

. 2

�j(p+1�s)

jjf jj

H

p+1

; (15)

Similar results are valid in the periodi
 
ase [9℄.
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2.2 Cases of Interest

We have parti
ular interest in the family of biorthogonal multiresolution analyses introdu
ed

by Cohen, Daube
hies and Feauveau [6℄. Let N

�

and N be two positive integers of same

parity su
h that N

�

+N =M is an even integer. �

�

= �

N

�

is 
hosen as the B-spline de order

N

�

. For even N

�

= 2l

�

the 
orresponding s
aling �lter is

H(�) =

�


os

�

2

�

N

�

:

If N = 2l, then s
aling fun
tions �(x) = �

N

�

;N

(x) may be found with s
aling �lters

H(�) =

�


os

�

2

�

N

l+l

�

�1

X

k=0

�

l + l

�

� 1 + k

k

��

sin

�

2

�

2k

:

Similarly, for odd N

�

= 2l

�

+ 1, and N = 2l + 1, the 
orresponding �lters are

H

�

(�) = e

�i�=2

�


os

�

2

�

N

�

and

H(�) = e

�i�=2

�


os

�

2

�

N

l+l

�

X

k=0

�

l + l

�

+ k

k

��

sin

�

2

�

2k

:

For these families, all the basi
 fun
tions have 
ompa
t support. �

�

is a C

N

�

�2

pie
ewise

polynomials of degree N

�

� 1, and � has in
reasing regularity with in
reasing N . �

�

and �

are symmetri
 fun
tions 
entered at x = 0, for even N

�

and N , and 
entered at x =

1

2

, for

odd N

�

and N . They satisfy Strang-�x 
onditions or order N

�

� 1 and N � 1, respe
tively.

In the extreme 
ase N

�

= 0, �

�

(x) = Æ(x) is the Dira
 distribution and �

M

(x) = �

0;M


orrespond to the interpolating s
aling fun
tions de�ned by Delauries and Dubu
 [7℄. It 
an

be shown that

�

M

(x) =

Z

R

�

N

�

(y)�

N;N

�

(y + x)dy;

independently of the 
hoi
es of N;N

�

su
h that M = N +N

�

[11℄.

3 The Referen
e Numeri
al S
heme

In this paper, we are 
on
erned with the numeri
al solution of evolution equations

8

>

<

>

:

�u(t; x)

�t

= Lu(t; x); x 2 R; t � 0;

u(0; x) = u

0

(x);

(16)
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with periodi
 boundary 
ondition u(t; x + 1) = u(t; x), where L is a di�erential operator

a
ting in the x variable.

We 
onsider pairs of shift-invariant spa
es fV

j

; V

�

j

g forming a biorthogonal multiresolu-

tion analysis, and having suÆ
ient regularity. We de�ne the dis
retization of problem (16)

by following two basi
 steps.

? Spa
e dis
retization.

At ea
h time step, an approximate solution u

j

(t; x) is sought in the approximating spa
e

V

j

. It is de�ned by imposing a Petrov-Galerkin orthogonally property (the residual is or-

thogonal to V

�

j

). The result is the semidis
rete ODE problem

�u

j

(t; x)

�t

= [L

j

u

j

(t; �)℄(x); (17)

where L

j

is the dis
rete version of L given by

L

j

u

j

(t; �) = P

j

Lu

j

(t; �): (18)

? Time dis
retization.

The ODE system (17) is dis
retized by an appropriate ODE solver. For instan
e, when

adopting the forward Euler s
heme, we get

u

j

(t+�

t

; x) = [(I +�

t

L

j

)u

j

(t; �)℄(x) =: [K

j

u

j

(t; �)℄(x): (19)

The analysis of this paper holds for 
onstant 
oeÆ
ients di�erential operators

Lu =

m

X

�=0

A

�

�

�

u

�x

�

:

Their dis
rete version may be expressed in terms of the 2

j

-periodi
 
oeÆ
ients u

n;j

(s) in the

expansion

u

j

(t

n

; x) =

X

s2Z

u

n;j

(s)�(2

j

x� s)

by the formula

(L

j

u

n;j

)(s) =

m

X

�=0

A

�

2

j�

X

k2Z

u

n;j

(k)�

�

(s� k);

with

�

�

(q) =

Z

R

�

�

(x)

d

�

�

dx

�

(x)dx:

7



Therefore, the dis
rete formulation (19) 
an also be expressed in matrix form by

u

n+1;j

(k) = [(I +�

t

L

j

)u

n;j

℄(k)

= [K

j

u

n;j

℄(k); (20)

where K

j

= K(�

t

; 2

�j

) = (I + �

t

L

j

). This referen
e s
heme 
an be interpreted as a �nite

di�eren
e approximation.

In the appli
ations of this paper, we shall also adopt the spline multiresolution framework.

In su
h 
ase, the 
oeÆ
ients �

�

(q) depend on the 
hoi
e of the parameter M , but are inde-

pendent of the parti
ular 
hoi
e of basi
 dual fun
tions f�

N

�

;N

; �

N

�

g su
h that M = N +N

�

[11℄. Pre
isely

�

�

(q) =

d

�

�

M

dx

�

(q);

whi
h also 
orresponds to the 
ollo
ation s
heme based on the interpolating s
aling fun
tions

�

M

(x). It 
an also be proved that, under the posed 
onditions on L, apart from the 
hoi
e of

the initial data, the numeri
al s
heme (20) is also equivalent to the Galerkin method based

on the orthogonal Daube
hies' s
aling fun
tions supported on [0;M � 1℄ [2℄. However, if

the dis
rete operator L

j

is represented in the multilevel 
ontext, then the formulations di�er

a

ording to the 
onsidered multiresolution analysis.

3.1 Stability

Given the periodi
 
onditions and the 
onstant 
oeÆ
ients in L, K

j

results to be a 
ir
ulant

matrix. Therefore, the system (20) 
an be diagonalized by the Fourier matrix. This means

that

bu

n+1;j

(k) =

"

1 + �

t

m

X

�=0

2

�j

e

�

(�)

(�

j

k

)

#

bu

n;j

(k) =

b

K(�

j

k

)bu

n;j

(k)

=

h

b

K(�

j

k

)

i

n

bu

0;j

(k); (21)

where bu

n;j

stands for the dis
rete Fourier transform of order 2

j

of the numeri
al solution


oeÆ
ients u

n:j

, and

e

�

(�)

(�) =

X

s2Z

�

(�)

(s)e

�is�

; �

j

k

= 2�k2

�j

:

The symbol

b

K(�) =

b

K(�;�

t

; 2

�j

) is the ampli�
ation fa
tor, sin
e its magnitude indi
ates

how the amplitude bu

n;j

(k) of ea
h frequen
y present in the numeri
al solution is ampli�ed

during one time step.

As indi
ated in [3℄,Theorem 5.2.1, the s
heme is stable if, and only if, there are 
onstants

C

e

; �

e

su
h that

j

b

K

n

(�)j � C

e

e

�

e

t

n

; � 2 [0; 2�℄:

8



As an example, with Lu = u

xx

for the heat equation, 
onsider

b

K(�) = 1 + �

e

�

(2)

(�);

where � = 2

2j

�

t

. If � is kept 
onstant, them stability is attained if j

b

K(�)j � 1, that is,

�

�

�

1 + �

e

�

(2)

(�)

�

�

�

� 1; � 2 [0; 2�℄: (22)

As shown in Figure 1(a), �

(2)

(�) is a negative fun
tion, with minimum value at � = �.

Therefore, stability o

urs if

0 < � �

2

max

�2[0;2�℄

j

e

�

(2)

(�)j

=

2

j

e

�

(2)

(�)j

= �

max

: (23)

In Table 1, the numeri
al values for j

e

�

(2)

(�)j are displayed for M = 6; 8 e 10 and the 
orre-

sponding �

max

. The 
urves in Figures 1b-1d illustrate the behaviour of the symbol j

b

K(�)j, for

M = 6, M = 8 and M = 10, with � within the stability region (23).

Table 1: j

e

�

(2)

(�)j and 
orresponding �

max

M j

e

�

(2)

(�)j �

max

6

1472

105

� 14:019047619 0.142663043

8

1339264

119945

� 11:165650923 0.179120770

10

21066447454208

2028319032915

� 10:386160713 0.192563937

3.2 Consisten
y

The trun
ation error is de�ned by

(ET

n;j

)(k) =

1

�

t

�

u(t

n

+�

t

; x

j

k

)� (K

j

u)(t

n

; x

j

k

)

�

=

1

�

t

�

u(t

n

+�

t

; x

j

k

)� u(t

n

; x

j

k

)

�

� (L

j

u)(t

n

; x

j

k

)

=

�

1

�

t

�

u(t

n

+�

t

; x

j

k

)� u(t

n

; x

j

k

)

�

�

�u

�t

(t

n

; x

j

k

)

�

+

�

(L � L

j

)u

�

(t

n

; x

j

k

):
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max
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Figure 1: (a)

e

�

(2)

(�);M = 6; 8; 10; Symbol j

b

K(�)j for: (b) M = 6; (
) M = 8; (d) M = 10.

It is the result of two kinds of di
retization errors. The �rst part being

1

�

t

�

u(t

n

+�

t

; x

j

k

)� u(t

n

; x

j

k

)

�

�

�u

�t

(t

n

; x

j

k

)

gives the error in the time dis
retization by the Euler s
heme, whi
h is of �rst order. The

se
ond part

�

(L � L

j

)u

�

(t

n

; x

j

k

)

is the trun
ation error in the dis
retization of L in the biorthogonal framework. As shown in

[9, 4℄, its 
onsisten
y is of order M �m + �, where � = 0 for even m, and � = 1 otherwise.
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Therefore,

jET

n;j

j = O(�

t

) +O(2

�j(M�m+�)

);

whi
h means that the s
heme is 
onsistent of order (1;M � m + �). A

ording to Lax-

Ri
htmyer Equivalen
e Theorem [13℄, 
onvergen
e holds in the stability region.

4 The Multilevel S
heme: Time-Adaptivity

In an biorthogonal multiresolution analysis framework, there is the possibility of representing

the numeri
al solution u

j

(t; x) in a multilevel setting. Therefore, we may 
onsider the idea of

modifying the referen
e s
heme in the same way as proposed in [1℄. For a simplier and more


lear development of the general 
on
epts, and for the analysis of the method, we 
onsider

the one-dimensional heat equation. As des
ribed in the previous se
tion, for stability of the

s
heme with spa
ial resolution 2

�j

, we must 
hoose the time step �

j

t

in the stability region

�

j

t

� 4

�j

�

max

. At the next 
oarser level j � 1, �

j�1

t

= 4�

j

t

. This means that, at level j � 1,

the solution 
an be updated at t+�

j�1

t

by the expression

u

j�1

(t +�

j�1

t

; x) =

�

I +�

j�1

t

L

j�1

�

u

j�1

(t; x): (24)

At level j, the time step is four times smaller, an thus requires four iterations to update the

solution at t+�

j�1

t

. That is,

u

j

(t+�

j�1

t

; x) = u

j

(t + 4�

j

t

; x) = (I +�

j

t

L

j

)

4

u

j

(t; x): (25)

Using the two-level de
omposition V

j

= V

j�1

+W

j�1

, the 
omponent in W

j�1

needs to be

evolved with the time step �

j

t

, but it is natural to 
onsider the evolution of the 
omponent

in V

j�1

with time step �

j�1

t

. Using the representation P

j

= P

j�1

+Q

j�1

, the di
retization

L

j

= P

j

LP

j

may be de
omposed as

L

j

= P

j�1

LP

j�1

+ P

j�1

LQ

j�1

+Q

j�1

LP

j�1

+Q

j�1

LQ

j�1

= L

j�1

+ T

j

; (26)

where L

j�1

is the dis
retization of L at level j � 1 and T

j

is the operator

T

j

= P

j�1

LQ

j�1

+Q

j�1

LP

j�1

+Q

j�1

LQ

j�1

whi
h a
ts on or returns detail 
omponents. Equations (24), (25) and (26) imply that

u

j

(t + 4�

j

t

; x) = [(I +�

j

t

T

j

) + �

j

t

L

j�1

℄

4

u

j

(t; x): (27)

Following [1℄, we modify the s
heme by negle
ting high order terms involving powers greater

than one of �

j

t

L

j�1

. The result is the modi�ed s
heme

11



u

j

(t+ 4�

j

t

; x) = [(I +�

j

t

T

j

)

4

+ 4�

j

t

L

j�1

℄u

j

(t; x)

=: K

j

a

u

j

(t; x): (28)

For this modi�ed s
heme, the solution u

j

(t+4�

j

t

; x) at t + 4�

j

t

is obtained by the evolution of

L

j�1

u

j

(t; x) with time step �

j�1

t

= 4�

j

t

, while the 
omponents of higher s
ale level T

j

u

j

(t; x)

uses the appropriate time step �

j

t

.

4.1 Matrix Stru
ture

The adaptive s
heme (28) 
an be formulated in terms of the multiresolution 
oeÆ
ients of the

numeri
al solution. To simplify the analysis, we shall 
onsider the multiresolution analysis

V

j

de�ned by the interpolating s
aling fun
tions �

M

(x), with regularity r � 2. A fun
tion

v 2 V

j

may be expressed as

v(x) =

X

k2Z

v

j

(k)�(2

j

x� k)

=

X

k2Z

v

j�1

(k)�(2

j�1

x� k) +

X

k2Z

d

j�1

(k) (2

j�1

x� k);

where v

j

(k) = v(k2

�j

) and d

j�1

(k) = G

j�1

v(k). Developing ea
h term in (26), we get

(L

j�1

v)(x) = (P

j�1

LP

j�1

v)(x) (29)

= 2

2j

X

k2Z

�

0;0

(k)�(2

j�1

x� k); (30)

where

�

0;0

(k) =

1

4

X

s2Z

v

j�1

(s)�

(2)

(s� k):

Similarly, using the Mallat's formulas (11) and (12), we obtain

(T

j

v)(x) = (P

j�1

LQ

j�1

v)(x) + (Q

j�1

LP

j�1

v)(x) + (Q

j�1

LQ

j�1

v)(x)

= 2

2j

(

X

k2Z

�

0;1

(k)�(2

j�1

x� k) (31)

+

X

k2Z

[�

1;0

(k) + �

1;1

(k)℄ (2

j�1

x� k)

)

; (32)
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where the 
oeÆ
ients are

�

0;1

(k) =

1

4

X

s2Z

d

j�1

(s)#

(2)

(s� k);

�

1;0

(k) =

1

4

X

s2Z

v

j�1

(s)�

1

(s� k);

�

1;1

(k) =

1

4

X

s2Z

d

j�1

(s)�

2

(s� k);

and

#

(m)

(k) =

d

m

 

dx

m

(k);

�

1

(s) =

X

n2Z

g

�

(n)�

(2)

(n=2 + s);

�

2

(s) =

X

n2Z

g

�

(n)#

(2)

(n=2 + s):

Therefore, I +�

j

t

T

j

has the form

(I +�

j

t

T

j

v)(x) =

X

k2Z

a

j�1

(k)�(2

j�1

x� k) +

X

k2Z

b

j�1

(k) (2

j�1

x� k);

with

a

j�1

(k) = v

j�1

(k) + ��

0;1

(k); (33)

b

j�1

(k) = d

j�1

(k) + �(�

1;0

(k) + �

1;1

(k)): (34)

To des
ribe the a
tion of the operator I+�

j

t

T

j

in matrix form, we 
onsider a ve
tor 
ontaining

the multilevel 
oeÆ
ients of v(x), sorted in the following order

[v

j�1

(0); d

j�1

(0); : : : ; v

j�1

(k); d

j�1

(k); : : : ; v

j�1

(2

j�1

� 1); d

j�1

(2

j�1

� 1)℄

T

:

Let

[a

j�1

(0); b

j�1

(0); : : : ; a

j�1

(k); b

j�1

(k); : : : ; a

j�1

(2

j�1

� 1); b

j�1

(2

j�1

� 1)℄

T

;

be the 
orresponding ve
tor for the multiresolution dis
rete values of (I +�

j

t

T

j

)v

j

. Bearing

in mind the formulas (33)-(34), the 
onvolution form of the expressions for �

0;1

; �

1;0

and �

1;1

,

while 
onsidering this kind of data sorting, then (I +�

j

t

T

j

) has a blo
k 
ir
ulant stru
ture,

with 2� 2 blo
ks. Namely, I +�

j

t

T

j

= 
ir
(A

0

; A

1

; : : : ; A

2

j�1

�1

), where

A

k

=

�

Æ

k

#(k)

�

1

(k) Æ

k

+ �

2

(k)

�

:

Consequently, in the Fourier domain, (I+�

j

t

T

j

) is transformed into a blo
k diagonal matrix,

with 2� 2 blo
ks pla
ed in the diagonal, as stated in the next lemma.
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Lemma 4.1 Let ba

j�1

and

b

b

j�1

be the dis
rete Fourier transform of order 2

j�1

of the 
oeÆ-


ients a

j�1

(k) and b

j�1

(k) given in (33) and (34). Then

�

ba

j�1

(k)

b

b

j�1

(k)

�

=

0

�

1

�

4

e

#

(2)

(2�

j

k

)

�

4

e�

1

(2�

j

k

) 1 +

�

4

e�

2

(2�

j

k

)

1

A

�

bv

j�1

(k)

b

d

j�1

(k)

�

;

where

e�

1

(�) = G

�

P

(�)

e

�

(2)

(�) +G

�

I

(�)

e

�

(2)

1=2

(�);

e�

2

(�) = G

�

P

(�)

e

#

(2)

(�) +G

�

I

(�)

e

#

(2)

1=2

(�);

e

�

(2)

(�) =

X

s2Z

�

(2)

(s)e

�i�s

;

e

#

(2)

(�) =

X

s2Z

#

(2)

(s)e

�i�s

;

G

�

P

(�) =

X

s2Z

g

�

(2s)e

�i�s

;

G

�

I

(�) =

X

s2Z

g

�

(2s+ 1)e

�i�ks

:

As a 
onsequen
e of Lemma 4.1, the following results hold for the adaptive operator

K

j

a

= (I +�

j

t

T

j

)

4

+ 4�

j

t

L

j�1

.

Corollary 4.2 Consider the ve
tor
b
u

n;j

MR

formed by the 
omponents of the dis
rete Fourier

transforms
b
u

n;j�1

and

b

d

n;j�1

, sorted in the following order

[bu

n;j�1

(0);

b

d

n;j�1

(0); bu

n;j�1

(1);

b

d

n;j�1

(1) : : : ; bu

n;j�1

(2

j�1

� 1);

b

d

n;j�1

(2

j�1

� 1)℄

T

:

On this form, the a
tion of the operator K

j

a

= (I +�

j

t

T

j

)

4

+ 4�

j

t

L

j�1

, 
orresponding to the

adaptive s
heme (28), 
an be expressed by the formula

b
u

n+1;j

MR

=

b

K

j

a

b
u

n;j

MR

;

where

b

K

j

a

is a blo
k diagonal matrix, with 2�2 blo
ks in the diagonal, de�ned by

b

K

a

(2�

j

k

; �); 0 �

k � 2

j�1

� 1, su
h that

�

bu

n+1;j�1

(k)

b

d

n+1;j�1

(k)

�

=

b

K

a

(2�

j

k

; �)

�

bu

n;j�1

(k)

b

d

n;j�1

(k)

�

:
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The ampli�
ation matri
es

b

K

a

(�; �) have the formula as follows

b

K

a

(�; �) =

2

4

0

�

1

�

4

e

#

(2)

(�)

�

4

e�

1

(�) 1 +

�

4

e�

2

(�)

1

A

4

+ �

�

e

�

(2)

(�) 0

0 0

�

3

5

:

4.2 Stability Analysis

As des
ribed in the se
tion 3.1, the stability region for the referen
e s
heme is � � �

max

. The

question here is to see whether the same 
hara
terization holds for the adaptive s
heme.

As proved in Corollary 4.2, the adaptive s
heme (28) 
an be formulated, in the Fourier

domain, by the relation

b
u

n+1;j

MR

=

b

K

j

a

b
u

n;j

MR

:

Therefore, the stability analysis 
an be stated in terms of spe
tral properties of the ampli�-


ation matrix

b

K

a

. As des
ribed in [3℄, Theorem 5.2.2, a ne
essary 
ondition for stability is

that the eigenvalues �

k

of

b

K

a

satisfy the von Neumann 
ondition

j�

k

j � e

�

e

�

t

: (35)

Theorem 5.2.3 in [3℄ shows that su
h 
ondition is suÆ
ient in the 
ase where

b

K

a


an be

uniformly diagonalized in the sense that there is a matrix T = T (2

�j

; �) su
h that

T

�1

b

K

a

T = diag(�

1

; �

2

; : : : ; �

2

j

); (36)

with kTk kT

�1

k � C, for C independent of � and the resolution level j.

For the adaptive s
heme under study,

b

K

j

a

is a blo
k diagonal matrix, with 2 � 2 blo
ks

b

K

a

(2�

j

k

; �); 0 � k � 2

j�1

� 1 pla
ed in the diagonal. Therefore, we simply need to analyse

the spe
tral properties of su
h blo
ks.

The eigenvalues �

k;`

; ` = 1; 2 of ea
h blo
k

b

K

a

(�

j

k

; �) may be obtained dire
tly from the

blo
k entries, and the spe
tral radius �(

b

K

a

(�; �)) 
an be expressed as a fun
tion of � and � .

Numeri
al experiments show that, for �xed � , the maximum of �(

b

K

a

(�; �)) o

urs at � = �.

In Figure 2 the graphs of �(

b

K

a

(�; �)) are plotted as fun
tions of � , for M = 6; 8; 10 e 12. In

ea
h 
ase, it and 
an be noti
ed that, for � > �

max

; �(

b

K

a

(�; �)) > 1. Therefore, for � > �

max

the adaptive s
heme, as well as its referen
e s
heme, is unstable.

Figure 3 displays level sets for the spe
tral radius �(

b

K

a

(�; �)), for M = 6; 8; 10; 12. The

horizontal red dotted line indi
ates � = �

max

, whi
h is the upper level for stability. As

expe
ted, for � � �

max

, the ne
essary 
ondition �(

b

K

a

(�; �)) � 1 is veri�ed. We 
an also note

that � = � is a 
riti
al point in the sense that, for ea
h level 
urve, the minimum value for �

is rea
hed at � = �.
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Figure 2: The spe
tral radius �(

b

K

a

(�; �)).

Figure 4 is for �xed � = �

max

. It shows the behaviour of the eigenvalues of

b

K

a

(�; �

max

),

for di�erent 
hoi
es of the parameter M . As expe
ted,

j�

k;`

j � 1 for ` = 1; 2;

whi
h shows that the ne
essary 
ondition (35) for the stability is veri�ed with �

e

= 0.

>From Figure 4, we also 
on
lude that the eigenvalues are distin
t for � 2 (0; 2�). Similar

behaviour holds for � � �

max

. This fa
t indi
ates that the matrix T mentioned in (36) may

be taken as a blo
k diagonal matrix, with 2� 2 blo
ks formed by eigenve
tors of

^

K

a

(2�

j

k

; �).

For � = 0 and � = 2�,

b

K

a

(�) is simply the 2 � 2 identity matrix. The behaviour of the

Eu
lidian norm kT (�; �)k

2

is illustrated in Figure 5, for M = 6; 8; 10 e 12. It suggests that,

for � 2 [0; 2�℄ and 0 � � � �

max

, kT (�; �)k

2

is a bounded fun
tion whi
h is also bounded

away from zero. Therefore, based on this numeri
al eviden
e, we argue that the 
ondition

on T that guarantees stability is veri�ed by the adaptive s
heme.

4.3 Consisten
y

Let us 
onsider the trun
ation error for the adaptive s
heme

4�

t

(ET

n;j

a

)(s) = u(t

n

+ 4�

t

; x

j

s

)� (K

j

a

u)(t

n

; x

j

s

);

where K

j

a

= (I +�

j

t

T

j

)

4

+ 4�

j

t

L

j�1

. It 
an be split into three terms
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The �rst and se
ond terms form the trun
ation error for the referen
e s
heme. As we

shall prove next, the perturbation introdu
ed by the adaptive strategy, 
orresponding to the

third term, produ
es errors or higher orders.

We shall give the estimates in terms of the norm in L

2

([0; 1℄), sin
e in V

j

it is equivalent

to norm k � k

j

of the 
oeÆ
ients. Given the de�nition of T

j

, we get

kT

j

uk
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2

+ kQ

j�1

LP

j�1

uk
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2

+ kQ

j�1

LQ

j�1

uk

L

2

:

Having in mind the estimates (14) and (15) for the proje
tions o

urring in the interpolatory

multiresolution 
ontext de�ned by �

M

(x) (p =M � 1), we obtain

kP
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j�1
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2
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uk

H

s+2

+ 2

�(j�1)(M�2)

kuk

H

M

. 2

�(j�1)(M�2)

kuk

H

M ;

where 0 � s � r � 2, and r is the regularity order of �

M

. Similarly, for the se
ond term we

have
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Finally, for the last term
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Combining all the three estimations, we get
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Therefore, we 
on
lude that in the adaptive s
heme the order of trun
ation error is determined

by behaviour of the trun
ation error in the referen
e s
heme. That is,

kET

n;j

a

k � O(�

t

) +O(2

�j(M�2)

):

The results of Se
tion 4.2 and Se
tion 4.3 are summarized in the following theorem.

Theorem 4.3 For the examples analysed in this paper, the adaptive s
heme (28) present

the same stability and 
onsisten
y properties of its referen
e s
heme (20).

5 Con
lusions

In this paper, the adaptive multilevel s
heme proposed in [1℄ is 
onsidered in the biorthogonal

wavelet 
ontext. The adaptive s
heme is formulated in terms of the multiresolution 
oeÆ-


ients of the numeri
al solution. Using two levels, and having periodi
 boundary 
onditions

and 
onstant 
oeÆ
ients, it turns out that the matrix making the 
onne
tion between the

solution at one time step to the next one has a 2 � 2 blo
k 
ir
ulant stru
ture. So that,

in the Fourier domain, it is transformed into a blo
k-diagonal stru
ture, with 2 � 2 blo
ks.

Therefore, the stability of the s
heme is determined by the spe
tral properties of ea
h of these

simple blo
ks, whi
h 
an be derived from the behaviour of an easely 
omputable fun
tion of

two variables (�; �); � � 0; 0 � � � 2�. This is be
ause the four 
omponents of ea
h blo
k

are expressed as fun
tions of the parameter � = �(�

t

; 2

�j

) and the sample values of known

2�-periodi
 fun
tions, whi
h are de�ned in terms of the s
aling �lters and symbols asso
iated

to the �nite di�eren
e 
oeÆ
ients. The dependen
e on the s
ale level appears, expli
itely, on

the sampling step.

As a model problem, we 
onsider the one-dimensional heat equation. In the adaptive

multilevel s
heme, the advantage is that the time step used to update the 
omponents in a


ertain s
ale level is multiplied by four if the resolution is de
rased by a fa
tor of two. We

show that this adaptive strategy does not a�e
t the stability 
ondition and 
onsisten
y order,

whi
h are maintaned the same as in the original referen
e s
heme.
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