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Abstract: In this paper we introduce a new class of pseudoinvex func-
tions for variational problems. Using this mew concept, we obtain a sufficient
and necessary condition for a critical point of the variational problem to be
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1 Introduction and Preliminaries

The Variational Problem found renewed attention in the 1960’s. These
early studies of the Variational Problem were set in the context of calculus
of variations/optimal control theory and in connection with the solution of
boundary value problems posed in the form of partial differential equations.

It is known that an optimal solution of a constrained variational problem
verifies a critical point condition ([15], [2], [10]). But some conditions are
needed in order that a critical point is an optimal solution of a constrained
variational problem. In this sense, Chandra, Craven and Husain [2] proved
under convexity that critical point is an optimal solution; analogous results
were given by Mond and Hanson [10]; and Nahak and Nanda [13], under
pseudoinvexity.

In section 2 we will define the new concepts of L-(KT/FJ)-pseudoinvex
functions, enable us to establish a necessary and sufficient condition in order
that a critical point of the Variational Problem to be an optimal solution,
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i. e., it is obtained a characterization which has not been obtained to date.
In section 3 weak, strong and converse duality are established.

Let’s introduce the variational problem and definitions.

Let I = [a, b] be a real interval, and let f : I × Rn × Rn → R and
g : I ×Rn ×Rn → Rm continuously differentiable functions with respect to
each of their arguments. For notational convenience f(t, x(t), ẋ(t)) will be
written f(t, x, ẋ), where x : I → Rn, with derivative ẋ, denote the partial
derivative of f with respect to t, x, and ẋ, by ft, fx, fẋ, respectively, such
that

fx =

(

∂f

∂x1

,
∂f

∂x2,
. . . ,

∂f

∂xn

)

, fẋ =

(

∂f

∂ẋ1

,
∂f

∂ẋ2

, . . . ,
∂f

∂ẋn

)

Similary, we write the partial derivatives of gt, gx, gẋ, using matrices
with m rows instead of one.

Let X = C(I, Rn) denote the space of piecewise smooth functions x :
I → Rn with the norm

‖x‖ = ‖x‖∞ + ‖Dx‖∞

where the differentiation operator D is given by

u = Dx ⇔ x(t) = α +

∫ t

a
u(s)ds,

where α is a given boundary value. Therefor, D = d/dt except at disconti-
nuities.

Then, we can consider the scalar Constrained Variational Problem (CVP),

in which the objective function is F (x) =

∫ b

a
f(t, x, ẋ)dt,

(CV P )
Minimize

∫ b

a
f(t, x, ẋ)dt

subject to:

x(a) = α, x(b) = β

g(t, x(t), ẋ(t)) ≤ 0, t ∈ I
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Let K be the set of feasible solutions of (CVP), i. e.,

K = {x ∈ X = C(I, Rn) : x(a) = α, x(b) = β, g(t, x(t), ẋ(t)) ≤ 0, t ∈ I}

Under only boundary constrains, the Variational Problem can be written
as follows.

(V P )
Minimize

∫ b

a
f(t, x, ẋ)dt

subject to:

x(a) = α, x(b) = β

DEFINITION 1 x̄ ∈ K is said to be an optimal solution or global mini-
mum of (CVP) if

F (x̄) ≤ F (x),

for all x ∈ K.

This definition is equivalent to write F (x) < F (x̄) has no solution x ∈ K.

DEFINITION 2 x ∈ K is said to be a Fritz-John critical point if there
exists τ ∈ R, y : I → Rm a piecewise smooth function, such that

τfx(t, x, ẋ) + y(t)T gx(t, x, ẋ) =
d

dt

{

τfẋ(t, x, ẋ) + y(t)T gẋ(t, x, ẋ)
}

(1)

y(t)T g(t, x, ẋ) = 0 (2)

(τ, y(t)) ≥ 0, (τ, y(t)) 6= 0, (3)

∀t ∈ I, except at discontinuities.

If τ > 0, a Fritz-John critical point is said to be a Kuhn-Tucker critical
point , and we can write τ = 1 (then x can be called normal [1]), as follows.

DEFINITION 3 x ∈ K is said to be a Kuhn-Tucker critical point if there
exists y : I → Rm a piecewise smooth function, such that

fx(t, x, ẋ) + y(t)T gx(t, x, ẋ) =
d

dt

{

fẋ(t, x, ẋ) + y(t)T gẋ(t, x, ẋ)
}

(4)

y(t)T g(t, x, ẋ) = 0 (5)

y(t) ≥ 0, t ∈ I (6)
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In the Constrain Variational Problem (CVP), a critical point condition
on x̄ is a necessary condition in order that x̄ is an optimal solution [15]. In
this way, Chandra, Craven and Husain [2] introduced the next result, based
on results from Craven [4], Craven and Mond [6], Mond [9], and Valentine
[15]:

THEOREM 1 If x̄ is an optimal solution for (CVP) then x̄ is a Fritz-John
critical point.

And therefore, it is obtained the next consequence.

THEOREM 2 If x̄ is an optimal normal solution for (CVP) then x̄ is a
Kuhn-Tucker type critical point.

From theorem 2, if x̄ is an optimal normal solution of (VP), then

fx(t, x, ẋ) =
d

dt
{fẋ(t, x, ẋ)} (7)

2 Necessary and Sufficient Condition: L-(KT/FJ)-
pseudoinvexity

In classical scalar optimization theory, the Kuhn-Tucker conditions are suf-
ficient for optimality if the functions involved are convex. In the last few
years, many effort has been made to weaken the convexity hypotheses and
thus to explore the extent of optimality conditions applicability.

As it is known, invexity has been introduced in optimization theory by
Hanson [7] as a substitute for convexity in constrained optimization. Craven
and Glover [5] showed that any differentiable scalar function is invex if and
only if every stationary point is a global minimizer. For constrained prob-
lems, the invexity defined by Hanson is a sufficient condition but not a
necessary condition for every Kuhn-Tucker stationary point to be a global
minimizer. Martin [8] defined a weaker invexity notion, called Kuhn-Tucker
invexity of KT-invexity, which is both necessary and sufficient to establish
the Kuhn-Tucker optimality conditions in scalar programming problems. In-
vexity was extended to variational problems by Mond, Chandra and Husain
[9]:
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DEFINITION 4 The function f(t, x, ẋ) is said to be invex at x̄ ∈ X with
respect to η if there exists a vector function η(t, x̄, x) , with η(t, x, x) = 0 if
for all x ∈ X

f(t, x, ẋ) − f(t, x̄, ˙̄x)

≥ fx(t, x̄, ˙̄x)η(t, x̄, x) + fẋ(t, x̄, ˙̄x)
d

dt
η(t, x̄, x)

Here dη
dt

is the vector whose i-th component is d
dt

ηi(t, x̄, x). If f does
not depend explicitly on t, the previous definition essentially reduce to be
the definition of invexity given by Hanson [7]. Nahak and Nanda [13] used
pseudoinvexity instead of invexity. Later, Nahak and Nanda [14] extend
pseudoinvexity to a functional.

Let the functional F (x) =

∫ b

a
f(t, x, ẋ)dt.

Definition of invexity was extended from a function f to a functional F
([12], [11]).

DEFINITION 5 F is invex at x̄ ∈ K, with respect to η if there exists a
vector function η(t, x̄, x) , with η(t, x, x) = 0 if for all x ∈ X

F (x) − F (x̄) ≥

∫ b

a

{

fx(t, x̄, ˙̄x)η(t, x̄, x) + fẋ(t, x̄, ˙̄x)
d

dt
η(t, x̄, x)

}

dt

We have the following characterization result for the class of invex func-
tions, given in [12]:

THEOREM 3 F is invex on the feasible set of (VP) if and only if all
critical points are optimal solutions for (VP).

Looking for optimality sufficient conditions for (CVP), Mond and Husain
[11] resorted to generalize convexity:

DEFINITION 6 F is pseudoinvex at x̄ ∈ X, with respect to η if there
exists a vector function η(t, x̄, x) , with η(t, x, x) = 0 if for all x ∈ X

F (x) − F (x̄) < 0 ⇒

∫ b

a

{

fx(t, x̄, ˙̄x)η(t, x̄, x) + fẋ(t, x̄, ˙̄x)
d

dt
η(t, x̄, x)

}

dt < 0
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Under these generalized invexity conditions, Mond and Husain [11] got
sufficient Kuhn-Tucker conditions.

Let’s consider the problem (CVP) and f , g, F (x) =

∫ b

a
f(t, x, ẋ)dt and

G(x) =

∫ b

a
g(t, x, ẋ)dt.

DEFINITION 7 The pair (F, G) is said to be L-KT-pseudoinvex at x̄ ∈
X, if for all x ∈ X, ȳ : I → Rm piecewise smooth function, which verify
(5) and (6), there exists a differentiable vector function η(t, x, x̄, ȳ), with
η(a, x, x̄, ȳ) = 0 = η(b, x, x̄, ȳ), such that

F (x) − F (x̄) < 0 ⇒

∫ b

a

{

(fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, ȳ)

+ (fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x̄, ˙̄x, ȳ)

}

dt < 0

or equivalently,

∫ b

a
{ (fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, ȳ)

+(fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x, x̄, ȳ) } dt ≥ 0

⇒ F (x) − F (x̄) ≥ 0

Note that given x̄, x ∈ X, there exists ȳ verifying (5) and (6). For
example, consider ȳ(t) = 0, t ∈ I.

DEFINITION 8 The pair (F, G) is said to be L-FJ-pseudoinvex at x̄ ∈ X,
if for all x ∈ X, τ̄ ∈ R, ȳ : I → Rm piecewise smooth function, which verify
(2) and (3), there exists a differentiable vector function η(t, x, x̄, τ̄ , ȳ), with
η(a, x, x̄, τ̄ , ȳ) = 0 = η(b, x, x̄, τ̄ , ȳ), such that

F (x) − F (x̄) < 0 ⇒

∫ b

a

{

(τ̄ fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, τ̄ , ȳ)

+ (τ̄ fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x̄, ˙̄x, τ̄ , ȳ)

}

dt < 0
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or equivalently,

∫ b

a
{ (τ̄ fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, τ̄ , ȳ)

+(τ̄ fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x, x̄, τ̄ , ȳ) } dt ≥ 0

⇒ F (x) − F (x̄) ≥ 0

Note that given x̄, x ∈ X, there exists τ̄ , ȳ verifying (2) and (3). For
example, consider τ̄ = 1, ȳ(t) = 0, t ∈ I.

If the previous definition are reduced on the set of feasible solutions of
(CVP) K, we establish the following concepts:

DEFINITION 9 The Constrained Variational Problem (CVP) is said to
be L-KT-pseudoinvex if it is verified definition 9 for x, x̄ ∈ K.

DEFINITION 10 The Constrained Variational Problem (CVP) is said to
be L-FJ-pseudoinvex if it is verified definition 10 for x, x̄ ∈ K.

Some of the relationships between these definitions are as follows.

PROPOSITION 1 It is verified:
a) If (F, G) is L-FJ-pseudoinvex with respect to η1, then (F, G) is L-KT-
pseudoinvex with respect to η2, with η2(t, x, x̄, ȳ) = η1(t, x, x̄, 1, ȳ).
b) If (CVP) is L-FJ-pseudoinvex with respect to η1, then (CVP) is L-KT-
pseudoinvex with respect to η2, with η2(t, x, x̄, ȳ) = η1(t, x, x̄, 1, ȳ).

Proof. Consider τ̄ = 1 in definitions of (F, G) L-FJ-pseudoinvex and
(CVP) L-FJ-pseudoinvex.

Let’s see some relationships between L-KT-pseudoinvexity and other
classes of functions.

PROPOSITION 2 If (F, G) is L-KT-pseudoinvex at x̄ ∈ X, then F is
pseudoinvex at x̄.

Proof. That is enough to consider ȳ(t) = 0, t ∈ I, in definition 9.

In relation to the concept of pseudoinvexity on the suggestion of [11], we
propose the following result:
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PROPOSITION 3 Let x̄ ∈ K. If for all ȳ : I → Rm piecewise smooth
function such that (x̄, ȳ) verifies (5) and (6), the Lagrangian function φ(x, ȳ) =
∫ b

a
{f(t, x, ẋ) + ȳ(t)T g(t, x, ẋ)}dt, with x ∈ K, is pseudoinvex at x̄, then

(CVP) is L-KT-pseudoinvex.

Proof. Let ȳ be such that (x̄, ȳ) verifies (5) and (6), and let’s suppose
x ∈ K such that F (x) − F (x̄) < 0, i.e.,

∫ b

a
f(t, x, ẋ)dt <

∫ b

a
f(t, x̄, ˙̄x)dt

Since x is feasible and (6), it happens ȳ(t)T g(t, x, ẋ) ≤ 0, t ∈ I; and moreover
from (5), it follows

∫ b

a
(f(t, x, ẋ) + ȳ(t)T g(t, x, ẋ))dt <

∫ b

a
(f(t, x̄, ˙̄x) + ȳ(t)T g(t, x̄, ˙̄x))dt

Since φ(·, ȳ) is pseudoinvex at x̄, there exists a differentiable function η(t, x, x̄)
such that

∫ b

a

{

(fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄)

+(fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x, x̄) } dt < 0,

and therefore, (CVP) is L-KT-pseudoinvex at x̄ with respect to η(t, x, x̄, ȳ) =
η(t, x, x̄).

Before optimality conditions, and on the lines of Courant ([3], Lemma
2, pp. 500-1), we have the following result.

LEMMA 1 Let z1, z2 be scalar piecewise continuous functions such that
∫ b

a
(z1(t)ϕ(t) + z2(t)ϕ̇(t))dt = 0, ∀ϕ differentiable, ϕ(a) = 0 = ϕ(b), then z2

is piecewise smooth and Dz2 = z1 on I.

From this lemma, it follows the next result.

PROPOSITION 4 Let w1, w2 be vector piecewise continuous functions

such that

∫ b

a
(wT

1 (t)ψ(t) + wT
2 (t)ψ̇(t))dt = 0, ∀ψ differentiable, ψ(a) = 0 =

ψ(b), then w2 is piecewise smooth and Dw2 = w1 on I.
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Proof. Let i ∈ {1, . . . , n}. Let ψ = (ψ1, . . . , ψn), ψi differentiable,
ψi(a) = 0 = ψi(b), and ψj = 0 ∀j 6= i. Then ψ is differenciable, ψ(a) =
0 = ψ(b), and then

0 =

∫ b

a
(wT

1 (t)ψ(t) + wT
2 (t)ψ̇(t))dt =

∫ b

a
(w1,i(t)ψi(t) + w2,i(t)ψ̇i(t))dt,

∀ψi differentiable, ψi(a) = 0 = ψi(b). By lemma 1, w2,i is differentiable and
ẇ2,i = w1,i on I, i = 1, . . . , n. Therefore, w2 is differentiable and ẇ2 = w1

on I.

Let’s prove that L-KT-pseudoinvexity of (CVP) is necessary for its crit-
ical points to be optimal solutions:

THEOREM 4 If all Kuhn-Tucker critical points are optimal solutions for
(CVP) then (CVP) is L-KT-pseudoinvex.

Proof. Let x, x̄ ∈ K, (x̄, ȳ) verifies (5) and (6), such that F (x) −
F (x̄) < 0. We have to find η(t, x, x̄, ȳ) differentiable, with η(a, x, x̄, ȳ) = 0 =
η(b, x, x̄, ȳ), such that

P (η(·, x, x̄, ȳ)) =

∫ b

a
{ (fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, ȳ)

+(fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x, x̄, ȳ) } dt < 0

And thus, suppose P (η(·, x, x̄, ȳ)) < 0 has no solution η(t, x, x̄, ȳ), and then
P (η(·, x, x̄, ȳ)) > 0 has no solution too, since we could consider −η(t, x, x̄, ȳ).
Therefore,

P (η(·, x, x̄, ȳ)) =

∫ b

a
{ (fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, ȳ)

+(fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x, x̄, ȳ) } dt = 0

∀η(t, x, x̄, ȳ) differentiable, with η(a, x, x̄, ȳ) = 0 = η(b, x, x̄, ȳ). From propo-
sition 4,

fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x)

is piecewise smooth and

fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x) =
d

dt

{

fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x)
}

,
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and therefore, (x̄, ȳ) verifies (4), (5) and (6), i.e., x̄ is a Kuhn-Tucker critical
point,and then x̄ is an optimal solution for (CVP), which stands in con-
tradiction to F (x) − F (x̄) < 0. So, there exists η(t, x, x̄, ȳ) differentiable,
with η(a, x, x̄, ȳ) = 0 = η(b, x, x̄, ȳ), such that P (η(·, x, x̄, ȳ)) < 0, and then,
(CVP) is L-KT-pseudoinvex.

We have proved that L-KT-pseudoinvexity is a necessary condition, and
now, we are going to prove that it is a sufficient condition.

THEOREM 5 If (CVP) is L-KT-pseudoinvex then all Kuhn-Tucker crit-
ical points are optimal solutions.

Proof. Let x̄ be a Kuhn-Tucker critical point, x̄ ∈ K, i. e., there exists
ȳ piecewise smooth function such that (x̄, ȳ) verifies (4), (5) and (6). Let x ∈
K. Since (CVP) is L-KT-pseudoinvex, there exists η(t, x, x̄, ȳ) differentiable,
with η(a, x, x̄, ȳ) = 0 = η(b, x, x̄, ȳ) which verifies the definition. It follows,

∫ b

a
{(fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, ȳ)

+(fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x, x̄, ȳ)}dt

=

∫ b

a

{

(fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, ȳ)

−
d

dt
(fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))η(t, x, x̄, ȳ)

}

dt

+(fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, ȳ)|t=b
t=a

(by integration by parts)

=

∫ b

a

{

fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x)

−
d

dt
(fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))

}

η(t, x, x̄, ȳ)dt = 0

(by (4))

Since (CVP) is L-KT-pseudoinvex it follows F (x)− F (x̄) ≥ 0, i. e., F (x) ≥
F (x̄), ∀x ∈ K. Therefore, x̄ is an optimal solution of (CVP).
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Therefore, we have proved that L-KT-pseudoinvexity of (CVP) is both
sufficient and necessary condition in order that a Kuhn-Tucker critical point
is an optimal solution of (CVP).

In the same way, let’s prove that L-FJ-pseudoinvexity of (CVP) is nec-
essary for its critical points to be optimal solutions.

THEOREM 6 If all Fritz-John critical points are optimal solutions for
(CVP) then (CVP) is L-FJ-pseudoinvex.

Proof. Let x, x̄ ∈ K, (x̄, τ̄ , ȳ) verifies (2) and (3), such that F (x) −
F (x̄) < 0. We need to find a differentiable function η(t, x, x̄, τ̄ , ȳ), with
η(a, x, x̄, τ̄ , ȳ) = 0 = η(b, x, x̄, τ̄ , ȳ), such that (CVP) verifies L-FJ-pseudoinvexity.
If there exists no function η, and proceeding in the same way as theorem 4,
it follows

∫ b

a
{ (τ̄ fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, τ̄ , ȳ)

+(τ̄ fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x, x̄, τ̄ , ȳ) } dt = 0

∀η(t, x, x̄, τ̄ , ȳ) differentiable, with η(a, x, x̄, τ̄ , ȳ) = 0 = η(b, x, x̄, τ̄ , ȳ). From
proposition 4,

τ̄ fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x)

is piecewise smooth and

τ̄ fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x) =
d

dt

{

τ̄ fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x)
}

,

and therefore, (x̄, τ̄ , ȳ) verifies (1), (2) and (3), i.e., x̄ is a Fritz-John critical
point, and then x̄ is an optimal solution of (CVP), which stands in contra-
diction to F (x) − F (x̄) < 0. Thus, there exists η(t, x, x̄, τ̄ , ȳ) differentiable,
with η(a, x, x̄, τ̄ ȳ) = 0 = η(b, x, x̄, τ̄ , ȳ), such that

∫ b

a
{ (τ̄ fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, τ̄ , ȳ)

+(τ̄ fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x, x̄, τ̄ , ȳ) } dt <, 0

and therefore, (CVP) is L-FJ-pseudoinvex.

Moreover let’s see that L-FJ-pseudoinvexity is a sufficient condition:

11



THEOREM 7 If (CVP) is L-FJ-pseudoinvex the all Fritz-John critical
points are optimal solutions.

Proof. Let x̄ be a Fritz-John critical point , x̄ ∈ K, i.e., there exists ȳ
piecewise smooth function and τ̄ ∈ R such that (x̄, τ̄ , ȳ) verifies (1), (2) and
(3). Let x ∈ K. Since (CVP) is L-FJ-pseudinvex, there exists η(t, x, x̄, τ̄ , ȳ)
differentiable, with η(a, x, x̄, τ̄ , ȳ) = 0 = η(b, x, x̄, τ̄ , ȳ) which verifies the
definition.
Then, and proceeding in the same way as theorem 5,

∫ b

a
{(τ̄ fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, τ̄ , ȳ)

+(τ̄ fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))
d

dt
η(t, x, x̄, τ̄ , ȳ)}dt

=

∫ b

a

{

(τ̄ fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, τ̄ , ȳ)

−
d

dt
(τ̄ fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))η(t, x, x̄, τ̄ , ȳ)

}

dt

+(τ̄ fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x))η(t, x, x̄, τ̄ , ȳ)|t=b
t=a

(by integration by parts)

=

∫ b

a

{

τ̄ fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x)

−
d

dt
(τ̄ fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x))

}

η(t, x, x̄, τ̄ , ȳ)dt = 0

(by (1))

Since (CVP) is L-FJ-pseudoinvex, it follows F (x) − F (x̄) ≥ 0, i.e., F (x) ≥
F (x̄), ∀x ∈ K. Therefore, x̄ is an optimal solution of (CVP).

So, we have proved that L-FJ-pseudoinvexity of (CVP) is both sufficient
and necessary condition in order that a Fritz-John critical point is an optimal
solution of (CVP).

3 Duality

We establish duality between (CVP) and the next dual problem (CVD1),
which is a modified Mond-Weir type dual problem formulated by Bector,
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Chandra and Husain [1].

(CV D1) Maximize

∫ b

a
f(t, u, u̇)dt

subject to:

u(a) = α, u(b) = β (8)

fx(t, u, u̇) + y(t)T gx(t, u, u̇) =
d

dt

{

fẋ(t, u, u̇) + y(t)T gẋ(t, u, u̇)
}

, t ∈ I (9)

y(t)T g(t, u, u̇) = 0 (10)

y(t) ≥ 0, t ∈ I (11)

Let H be the feasible set of (CVD1).

THEOREM 8 (weak duality) Let x ∈ K, (u, y) ∈ H. If (F, G) is L-

KT-pseudoinvex at u, then

∫ b

a
f(t, x, ẋ)dt ≥

∫ b

a
f(t, u, u̇)dt.

Proof. Suppose

∫ b

a
f(t, x, ẋ)dt ≥

∫ b

a
f(t, u, u̇)dt is not verified, i.e.,

F (x) − F (u) < 0. Since (u, y) verifies (10) y (11), and since (F,G) is
L-KT-pseudoinvex, there exists a differentiable function η(t, x, u, y), with
η(a, x, u, y) = 0 = η(b, x, u, y) such that

∫ b

a

{

(fx(t, u, u̇) + y(t)T gx(t, u, u̇))η(t, x, u, y)

+ (fẋ(t, u, u̇) + y(t)T gẋ(t, u, u̇))
d

dt
η(t, x, u, y)

}

dt < 0 (12)

On the other hand,

∫ b

a

{

(fx(t, u, u̇) + y(t)T gx(t, u, u̇))η(t, x, u, y)
1

+ (fẋ(t, u, u̇) + y(t)T gẋ(t, u, u̇))
d

dt
η(t, x, u, y)

}

dt

=

∫ b

a

{

(fx(t, u, u̇) + y(t)T gx(t, u, u̇))η(t, x, u, y)
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−

(

d

dt
(fẋ(t, u, u̇) + y(t)T gẋ(t, u, u̇))

)

η(t, x, u, y)

}

dt

+(fẋ(t, u, u̇) + y(t)T gẋ(t, u, u̇))η(t, x, u, y)|t=b
t=a

(by integration by parts)

=

∫ b

a

{

fx(t, u, u̇) + y(t)T gx(t, u, u̇)

−

(

d

dt
(fẋ(t, u, u̇) + y(t)T gẋ(t, u, u̇))

)}

η(t, x, u, y)dt = 0,

(by (9))

which stands in contradiction to (12). Therefore,

∫ b

a
f(t, x, ẋ)dt ≥

∫ b

a
f(t, u, u̇)dt.

As a consequence of this theorem, if (F, G) is L-KT-pseudoinvex, then

∫ b

a
f(t, x, ẋ)dt ≥

∫ b

a
f(t, u, u̇)dt, ∀x ∈ K, ∀(u, y) ∈ H.

Once weak duality has been established, strong and converse duality follows:

THEOREM 9 (Strong duality) Let x̄ be an optimal normal solution of
(CVP). If (F,G) is L-KT-pseudoinvex, then there exists ȳ : I → Rm piece-
wise smooth function such that (x̄, ȳ) is an optimal solution of (CVD1), and
their objective function values are equal at these points.

Proof. Since x̄ is an optimal normal solution of (CVP), from Valentine
necessary condition [15] there exists ȳ : I → Rm piecewise smooth function
such that (x̄, ȳ) verifies

fx(t, x̄, ˙̄x) + ȳ(t)T gx(t, x̄, ˙̄x) =
d

dt

{

fẋ(t, x̄, ˙̄x) + ȳ(t)T gẋ(t, x̄, ˙̄x)
}

ȳ(t)T g(t, x̄, ˙̄x) = 0

ȳ(t) ≥ 0, i ∈ I

Therefore, (x̄, ȳ) ∈ H. From theorem 8, (x̄, ȳ) is an optimal solution of
(CVD1), and obviously, the objective function values of (CVD1) and (CVP)
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are equal.

We now consider the converse dual problem, that is, of finding conditions
under which the existence of optimal solution to problem (CVD1) implies
the existence of an optimal solution to problem (CVP).

THEOREM 10 (Converse duality) Let (ū, ȳ) be an optimal solution of
(CVD1). If ū ∈ K and (F,G) is L-KT-pseudoinvex, then ū is an optimal
solution of (CVP) and their objective function values are equal at these
points.

Proof. Since (F, G) is L-KT-pseudoinvex, and from theorem 8, it follows
that

∫ b

a
f(t, x, ẋ)dt ≥

∫ b

a
f(t, ū, ˙̄u)dt,

∀x ∈ K. And since ū ∈ K, it follows that ū is an optimal solution of (CVP),
and their objective function values are equal at this point.

We continue our duality study with the dual problem (CVD2), as follows.

(CV D2) Maximize

∫ b

a
f(t, u, u̇)dt

subject to:

u(a) = α, u(b) = β (13)

τfx(t, u, u̇) + y(t)T gx(t, u, u̇) =
d

dt

{

τfẋ(t, u, u̇) + y(t)T gẋ(t, u, u̇)
}

, t ∈ I

(14)
y(t)T g(t, u, u̇) = 0 (15)

(τ, y(t)) ≥ 0, t ∈ I (16)

Again, let H be the feasible set of (CVD2). Proceeding in the same way
as proofs of theorem 8, 9 and 10, but under L-FJ-pseudoinvexity, we state
the following duality results between (CVP) and (CVD2).

THEOREM 11 (Weak duality) Let x ∈ K, (u, τ, y) ∈ H. If (F, G) is

L-FJ-pseudoinvex at u, then

∫ b

a
f(t, x, ẋ)dt ≥

∫ b

a
f(t, u, u̇)dt.
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As a consequence of this theorem, if (F, G) is L-FJ-pseudoinvex then

∫ b

a
f(t, x, ẋ)dt ≥

∫ b

a
f(t, u, u̇)dt, ∀x ∈ K, ∀(u, τ, y) ∈ H.

THEOREM 12 (Strong duality) Let x̄ be an optimal solution of (CVP).
If (F,G) is L-FJ-pseudoinvex, then there exists τ̄ ∈ R, ȳ : I → Rm piecewise
smooth function such that (x̄, τ̄ , ȳ) is an optimal solution of (CVD2), and
their objective function values are equal at this point.

THEOREM 13 (Converse duality) Let (ū, τ̄ , ȳ) be an optimal solution
of (CVD2). If ū ∈ K and (F,G) is L-FJ-pseudoinvex, then ū is an optimal
solution of (CVP) and their objective function values are equal.

4 Conclusion

In this paper, we have studied the properties of the functions of a constrained
variational problem, such that from a critical point it follows an optimal solu-
tion. These properties are L-KT-pseudoinvexity and L-KT-pseudoinvexity,
and we have proved that these are necessary and sufficient conditions for a
critical point to be an optimal solution of the variational problem: a char-
acterization.

Also, we have proved that the problems (CVP) and (CVD1) are a dual
pair subject to L-KT-pseudoinvexity conditions; and (CVP) and (CVD2),
under L-FJ-pseudoinvexity conditions.
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