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Abstract

We introduced another point of view of population dynamics using the theory
of fuzzy differential inclusions. We give an application example as well as a
study of stability for this example.
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1 Introduction

The deterministics models formulated for the study of the populational dy-
namic consider, invariably, constant or temporals parameters, obtained as
averages of analyzed situations. Such models don’t contain types of subjec-
tivities that are inherent to the process of the populational variation. The
individuals are considered homogeneous and everybody possesses the same
characteristics of the evolution. However, in fact, when we analyze each ele-
ment of a community, we verify that the individual or a group of individuals
possesses differentiated characteristics of the remaining that can influence in
the population dynamic. In this case, we should consider differentiated states
variables according to the pertinence of these characteristics. On the other
hand, the populational dynamic can also be influenced by independent char-
acteristics of the state variables: habitation, amusement, wage, atmosphere
of work, violence, etc . The specific value of these characteristics not always
can be evaluated or measured in the traditional sense,which are “uncertains”
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that we can only conjecture intuitively. Hence, we can affirm, always with
some uncertainty, that exist uncertainties in the dynamic due to noises in
the demography or in the environment.

Like this being, when we make analysis of more realists biological models
we should contain the own uncertainties of the studied phenomenon.

Let us consider the deterministic model described by differential equation

x′ = f(t, x). (1)

Given (1), we can insert the uncertainty or noise, introducing one param-
eter u in the dynamics, that is,

x′ = f(t, x, u) (2)

There are two distinct approaches for (2).
1) If the nature of those uncertainties is aleatory, then the deterministic

problem takes us to an stochastic differential equation . In this case, due to
the complexity of the resulting equations to the stochastic models, generally,
it is done the insertion of noises in a linear way in u, that is, assuming that
the noise enters in the dynamic linearly,with a probabilistic distribution

x′ = f(t, x) + g(t, x)u (3)

In this case, u is denominated white noise, derivation of the stochastic dif-
ferential of the Brownian motion.

2) If the noise doesn’t possess probabilistic structure, or such structure
cannot be evaluated , then it can be more appropriated the use of the fuzzy
variational systems or of the fuzzy differential inclusions for the formulation
of the mathematical models.

Let us suppose that U is a compact set of functions sufficiently regular,
then (2) can be written as the following differential inclusion

x′ ∈ F (t, x) = {f(t, x, u)/u ∈ U} (4)

Let us observe that in the deterministic model (1) , the speed is known
for each (t, x), while in the differential inclusion (4) the speed is not given,
but we know that it is in the set F (t, x), generating the uncertainty.

In [6], Krivan considers noise u bounded unknown, possessing determin-
istic nature , that is,

F (t, x) = h(t, x, c[−1, 1])
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and takes the metric of “ likelihood ” to evaluate the as a solution is better
than another.

Analyzing the propososal methodologies by May for the noise of the
aleatory nature [7], the theory of differential inclusions and the proposal
by Krivan [6], we consider that a reasonable generalization of the problem
(1), to model dynamic systems with uncertainties, is to substitute, in the
model (4), the set-valued mapping F by a fuzzy set-valued mapping , that is,
F (t, x) is a fuzzy set for each (t, x). This took us to use of the concept of the
fuzzy differential inclusion formulated by Zhu and Rhao [8] who consider the
differential inclusions given by the levels which depend on the state variable
x.

In this work, we study a model with proportional variation, using the
theory of fuzzy differential inclusions and we analyzed the stability of the
equilibrium states, using the concept of differenciability of the fuzzy set-
valued mappings[4].

2 Preliminaries

We denote by K(Rn) (KC(Rn)) the family of all non empty compact subsets
of R

n (compact and convex). For A,B ∈ K(Rn) and λ ∈ R we define the
operations of sum and scalar product as

A + B = {a + b/a ∈ A, b ∈ B} λA = {λa/a ∈ A}

The space K(Rn) with the operations defined above and the inclusion rela-
tionship, is a quasilinear space with neutral element {0} (see [5]). The metric
of Hausdorff defined on K(Rn) is given by

H(A,B) = inf{r ≥ 0 / A ⊂ B + rS1(0) B ⊂ A + rS1(0)},

where S1(0) is the closed ball of ratio 1 and center 0.
A fuzzy set on R

n is a function u : R
n → [0; 1]. For 0 < α ≤ 1 we

will denote by [u]α = {x ∈ R
n / u(x) ≥ α} the α−level of u and [u]0 =

suppu = {x ∈ Rn/u(x) > 0}, is called the support of u.
A fuzzy set u is called compact (compact, convex) if [u]α ∈ K(Rn), ∀α ∈

[0; 1] ([u]α ∈ KC(Rn), ∀α ∈ [0; 1] ).
We denoted by F(Rn) (FC(Rn)) the space of all the fuzzy compact sets

(fuzzy compact, convex sets). We can define the partial order inclusion ⊂ on
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F(X) as being

u ⊂ v ⇔ u(x) ≤ v(x) ∀x ∈ X ⇔ [u]α ⊆ [v]α ∀α ∈ [0, 1].

The operations of the sum and scalar product on F(Rn) are defined as being

(u+v)(x) = sup
y∈X

min{u(y), v(x−y)} and (λu)(x) =

{

u(x
λ
) if λ 6= 0

χ{0}(x) if λ = 0

With the previous definitions we obtain that [u + v]α = [u]α + [v]α and
[λu]α = λ[u] ∀α ∈ [0, 1] . The space F(Rn) with the operations defined
above and order partial ⊂ is a quasilinear space with neutral element χ{0}
(χ{0} denote the characteristic function of the set {0}) (ver [5]). We can also
define the metric on F(Rn)

D(u, v) = sup
α∈[0,1]

H([u]α, [v]α).

A fuzzy valued function F : R
n → F(Rn) is called quasilinear (see [4],

[5]) if

F (λx) = λF (x), ∀x ∈ R
n ∀λ ∈ R

F (x1 + x2) ⊂ F (x1) + F (x2) ∀x1,x2 ∈ R
n

F is bounded if there exists K > 0 such that D(F (x), {0}) ≤ K||x|| for any
t ∈ R.

Let F : U ⊂ R
n → F(Rn) be a fuzzy valued function, let α : R

n → [0; 1]
be a function and J a interval in R. We considere the following problem
of differential inclusion for fuzzy valued function (see [8]): determine x ∈
C(J, Rn) such that

x′(t) ∈ [F (x(t))]α(x(t)) , (5)

We said that (5) is a fuzzy differential inclusion . If F is a quasilinear
operator, then (5) is a quasilinear fuzzy differential inclusion.

Next we will give the concepts of differentiability and stability and, we
will enunciate the result of stability for fuzzy differential inclusions (see [4]).

Definition 1 A fuzzy valued function F : U ⊂ R
n → F(Rn) is called Fréchet

differentiable in x0 ∈ U if there exists a bounded quasilinear operator Dx0
(F ) :

R
n → FC(Rn) such that

D(F (x), F (x0) + Dx0
(F )(x − x0)) = o(‖x − x0‖).

The quasilinear operator Dx0
(F ) is called the Fréchet differential of F at x0.
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Proposition 1 Let F : U ⊂ R
n → F(Rn) be a quasilinear and bounded

operator. Then F is Fréchet differentiable at x = 0 and D0(F ) = F.

We considere the fuzzy differential inclusion (5), assuming the condition
F (0) = χ{0}. We say that the equilibrium position x = 0 of (5) is Lyapunov-
stable if the following conditions hold:

1. If ‖x(t0)‖ < δ0 for some δ0 > 0, then there exists a solution x(t) with
the initial condition x(t0) which is defined for any t ≥ t0;

2. For any ǫ > 0 there exists 0 < δ1 ≤ δ0 such that if ‖x(t0)‖ < δ1, then
‖x(t)‖ < ǫ for any t ≥ t0.

A Lyapunov-stable equilibrium position x = 0 is said to be asymp-
totically stable if there exists a positive number δ2 ≤ δ0 such that if
‖x(t0)‖ < δ2, then limt→∞ ‖x(t)‖ = 0.

Theorem 1 [4] Let 0 be the equilibrium position of the fuzzy differential
inclusion (5). Let us suppose that fuzzy valued function F : X → F(X)
is differentiable at 0 and that there exist δ0 > 0 such that if ‖x(0)‖ ≤ δ0,
then there always exists solution x(t) of (5) in [0, +∞) . Then if for some
α ∈ [0; 1] the equilibrium position x = 0 of quasilinear differential inclusion

x
′ ∈ [D0(F )(x)]α

is asymptotically stable, then this point is a stable asymptotically equilibrium
position of the fuzzy differential inclusion (5), that is , there exist σ > 0,
k > 0 and δ > 0 such that any solution x(t) of (5) satisfies the inequality

‖x(t)‖ ≤ k‖x(0)‖ exp(−σt)

∀ t ≥ 0 if ‖x(0)‖ < δ.

3 Population Dynamic with noise

Let x(t) be the density of the population in the time t and we considere the
classic models of the exponential growth and the logistic, that is,

f(x) = rx , f(x) = rx
(

1 − x

k

)

.
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In theoritical populational biology there are two sources of perturbations
of the type (3), which are environmental (abiotic variations) and demo-
graphic (distinct individual ability) noise . Nisbet and Gurney proposed the
following approach for the demographic noise

g(x) =
√

(b(x) + d(x)) x

where b(x) and d(x) are the reasons of the birth and death, respectively.
In populations with big density the demographic noise is not important

and in this case it is more natural to consider just the noise in the parameters.
We consider that only the growth rate r is affected. Hence for the exponential
model we have:

x′ = rx + xu = x(r + u), (6)

and for the logistic model

x′ = rx
(

1 − x

k

)

+ x
(

1 − x

k

)

= x
(

1 − x

k

)

(r + u)

Let us suppose still the noise is bounded by a constant c > 0, then we
can consider the following differential inclusion

x′ ∈ f(x) + cg(x)[−1, 1]. (7)

A detailed study of the problem (7) is done in [6].
Based on the previous concepts and on the naturalness of uncertainty

of the constant r, we introduce a new model for the exponential problem,
where we will take the constant r as a fuzzy set u. This fuzzy set should
represent the fuzziness of some characteristic of the population that disturbs
its variation.

Let x(t) be the density of the population in the instant t and α : R →
[0, 1] be a function. We will considere the differential inclusions of type

x′ ∈ [u · x]α(x) (8)

where

u is a fuzzy set, and

u · x is scalar product in the space F(R).
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In the fuzzy differential inclusion (8) we have that fuzzy valued mapping
F : R → F(R) is given by F (x) = u · x.

F is the quasilinear operator and bounded and therefore differentiable in
x = 0. We also have that x = 0 is a equilibrium point (F (0) = χ{0}) of fuzzy
differential inclusion (8).

In the next we will give a relative application to (8) and the regarding
results on the stability of Lyapunov.

Example 1 (life expectation)
Let us suppose that A be a set of the workers with x(t) individuals in the

instant t. We will consider the problem of life expectation of the elements of
the A, supposing that the poverty be a factor that contributes to the increase
of the rate of the individuals mortality.

To model the “poverty ”, we could use any indicator for the same, for
example, consumption of vitamins, income, etc. In [2] it is made a complete
study of the differential model for the life expectation of a group of workers,
using the salary (income) as factor of the uncertainty in the mortality rate

x′(t) = −(λ1 + λ2.u(r))x(t).

In this case, the fuzzy set that evaluates the pertinence degree of the poverty
was defined by

u(r) =







[

1 −
(

r
r0

)2
]k

se 0 < r < r0

0 se r ≥ r0

where, k is a parameter that gives some characteristic of the group, r is
a proportional parameter to the individual’s income and r0 is a minimum
income starting from which the individuals are not more differentiated with
relationship to the poverty and therefore, not more influence in the mortality
rate.

We define α : R →[0, 1] by

α(x) =







0 se x < 0
xk se 0 ≤ x ≤ 1
1 se x > 1.

We are considering the normalized model, that is, x = 1 is a total population
of the individuals.
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Considering (8), we have the following differential inclusion

x′ ∈ −[(λ1 + λ2 · u)x]α(x), (9)

where

λ1 is rate of natural mortality (obtained in a group that has satisfactory
conditions of survival);

λ2 · u indicates the influence of the poverty in the increase of the rate of
mortality of the group;

u is the fuzzy set of the poor individuals in agreement with the income r.

Let us notice that if r ≥ r0, then u(r) = 0 and (9) is reduced to deter-
ministic model

x′ = −λ1x.

Now for r ≤ r0

[u]α(x) = {r / u(r) ≥ α(x)}

=







r /

[

1 −
(

r

r0

)2
]k

≥ xk







= r0[0,
√

1 − x].

Therefore, the fuzzy differential inclusion (9), for 0 < x ≤ 1, is equivalent
to differential inclusion

x′ ∈ −λ1x − λ2r0x
[

0,
√

1 − x
]

or
x′ ∈ −λ1x − λ2r0x

√
1 − x [0, 1] (10)

Remark 1 We can see that the differential inclusion (10) is similar to the
problem (7). For this reason, this new idea of focusing the problems of popu-
lation dynamic, using the fuzzy differential inclusion, is a good generalization
of the previous studies.
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To find solutions of (10), one of the techniques is to find selections of the
set-valued mappings, that is, to obtain functions f such that f(x) ∈ G(x)
∀x. Imediately the solutions of (10) are those which solve the differential
equation (see [1])

x′ = f(x).

Hence for set-valued mapping G(x) = −λ1x − λ2r0x
[

0,
√

1 − x
]

in (10),
we have that:

f1(x) = min
m∈[0,1]

{−λ1x−
(

λ2r0x
√

1 − x
)

m/ m ∈ [0; 1]} = −λ1x−λ2r0x
√

1 − x

f2(x) = max
m∈[0,1]

{−λ1x −
(

λ2r0x
√

1 − x
)

m/ m ∈ [0, 1]} = −λ1x,

and any f(x) ∈ G(x) is such that f1(x) ≤ f(x) ≤ f2(x). Therefore, for
example,

f3(x) = −λ1x − λ2r0x(1 − x)

f4(x) = −λ1x − λ2r0x
√

1 − x
∣

∣sin(1/x2)
∣

∣

are elements of G(x).
For each f(x) ∈ G(x) we have a solution of Cauchy problem

x′(t) = f(x(t))

x(0) = x0.

In this case, the attainability set (ver [6]) is given by

R(t) = [x1(t), x2(t)] .

where

x1(t) =
(λ1 + λ2r0)x0

[(λ1 + λ2r0) − λ2r0x0]e(λ1+λ2r0)t + λ2r0x0

;

x2(t) = x0e
−λ1t;

9



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0
Selections

X

Y

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1
Solutions

t

X

f2 

f4 f1 

x2 
x4 x1 

Figure 1: graph of the selections and of the attainability set for λ1 = 0.05,
λ2 = 0.001 and r0 = 50.

We have that x = 0 is asymptotically stable for the problem (9), because:

(1) In this fuzzy differential inclusion we have that F (x) = −(λ1 + λ2u)x
and therefore x = 0 is a solution of equilibrium (F (0) = χ{0});

(2) F is a quasilinear and bounded operator. It follows from the Propo-
sition 1 that F is Fréchet differentiable and D0(F )(x) = −(λ1 + λ2u)x.

We will prove that x = 0 is asymptotically stable, for some α ∈ [0, 1].
From fuzzy quasilinear differential inclusion

x′ ∈ [D0(F )(x)]α. (11)

Let us take α = (1
2
)k , then (11) is given by

x′ ∈ −
(

λ1 + λ2r0

[

0,
1√
2

])

x (12)

1. The solutions of (12) are of the type x(t) = x(0) exp(−(λ1 + aλ2r0)t),

with a ∈
[

0, 1√
2

]

and there exist for any t ≥ 0.
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2. Given ǫ > 0 there exists δ1 = ǫ such that

‖x(t)‖ = ‖x(0) exp(−(λ1 + aλ2r0)t)‖ ≤ ‖x(0)‖ ∀t > 0.

3. limt→∞ ‖x(t)‖ = 0.

It follows from (1), (2) and (3) that x = 0 is asintotically stable for the
inclusion (11). Soon, by Theorem 1 we have that x = 0 is stable asintoticaly
for the fuzzy differential inclusion (9), that is, there exists σ > 0, k > 0 and
δ > 0 such that any solution x(t) of (9) satisfies the inequality

‖x(t)‖ ≤ k ‖x(0)‖ exp(−σt)

∀ t ≥ 0 if ‖x(0)‖ < δ.
Conclusion : Given f(x) = rx, let us suposed that r it is perturbated by

a fuzzy set U , then the fuzzy valued mapping is given by F (x) = (r + U)x.
In this way, if 0 ∈ [U ]1, we have that f(x) ∈ [F (x)]α,∀α ∈ [0, 1]. Therefore,
for any α(x) we have that

{

x′ ∈ rx + [U ]α(x)

X(0) = X0,

that is, the deterministic solution always is in solution set of differential
inclusion.
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