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Abstract

We introduce a new concept of differentiability for fuzzy-valued mapping and we
study some of its properties. Using this concept, we give a result on stability of the
Lyapunov type for fuzzy differential inclusions and a simple application in Biology.
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1 Introduction

The concept of differentiability for fuzzy valued mappings has been considered
by many authors from different points of view. For instance, the concept of
H−differentiability due to Puri and Ralescu [17] has been studied and ap-
plied by several mathematicians in the context of fuzzy differential equations,
including Ding and Kandel [7], Kaleva [12,13] and Seikkala [21]. Goetschel
and Voxman [9] have introduced the notion of a derivative for fuzzy mappings
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of one variable. Basically, they viewed fuzzy numbers in a topological vector
space and then they defined differentiation of fuzzy mappings of one variable in
ways paralleling the definition of real-valued functions. Syau [22] extends such
definition for fuzzy mappings of several variables. Others concepts of differen-
tiability were introduced by Diamond and Kloeden [8] and Román-Flores and
Rojas-Medar [20], which extend to the fuzzy context, the concepts of Fréchet
differentiability (see De Blasi [6]) and Gâteaux differentiability (see Ibrahim
[10]) for set-valued mappings respectively.

As we know, the main idea of the classic differential calculus consists in local
approximation of a mapping by a linear operator. In this article we propose
a new notion of differentiability for fuzzy mappings, where the role of linear
operators is played, in the fuzzy context, by fuzzy quasilinear operators. The
theory of fuzzy quasilinear spaces and fuzzy quasilinear operators have been
introduced by the authors in [11], inspired in the concept of quasilinear spaces
and quasilinear operators given by Assev in [1].

This new concept of differentiability is followed by some properties, examples
and rules of calculus. As an application of our results we prove a theorem on
stability of a fuzzy differential inclusion. Zhu and Rao [23] have introduced a
notion of fuzzy differential inclusion and stated some results on existence of
solution. This work has motivated us to develop some ideas concerning stabil-
ity of fuzzy differential inclusion by using our new notion of differentiability
of fuzzy mappings.

The structure of this paper is as follows. In Section 2 we give the definitions and
previous results that will be used in this article. In Section 3 we introduce the
concepts of Fréchet and Gâteaux differentiability for fuzzy valued mappings
and we give some properties. In Section 4 we present some rules of calculus and
in the last Section we give some applications on stability of fuzzy differential
inclusions.

2 Preliminaries

Let Y be a real separable Banach space with norm ‖·‖ and dual Y ∗. Let K(Y )
and KC(Y ) be respectively, the class of all nonempty and compact subsets of
Y and the class of all nonempty compact and convex subsets of Y .

The Hausdorff metric H on K(Y ) is defined by

H(A,B) = inf{r ≥ 0 : A ⊂ B + rS1(θ), B ⊂ A + rS1(θ)},

where S1(θ) is the closed ball of radius 1 about θ ∈ Y . It is known that
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(K(Y ), H) is a complete and separable metric space and KC(Y ) is a closed
subspace of K(Y )(see [2], [4]). A linear structure is defined in K(Y ) by the
operations

A + B = {a + b/ a ∈ A, b ∈ B} and λA = {λa/a ∈ A} ,

where A,B ∈ K(Y ), λ ∈ R. We observe that K(Y ) is not linear space, but he
is a quasilinear space [1].

Let F(Y ) be the space of fuzzy compact sets, that is, F(Y ) is the set of u :
Y → [0, 1] with the following properties

(i) u is normal, i.e., there exists y0 ∈ Y such that u(y0) = 1,
(ii) u is upper semicontinuous, and
(iii) [u]0 = supp (u) = {y ∈ Y / u(y) > 0} ∈ K(Y ).

For each 0 < α ≤ 1, let [u]α = {y / u(y) ≥ α} denote the α-level set of u.
From (i)-(iii), it follows that [u]α ∈ K(Y ), ∀ α ∈ [0, 1].

Let FC(Y ) = {u ∈ F(Y ) / [u]α ∈ KC(Y ), ∀α ∈ [0, 1]}. For any u ∈ FC(Y ),
the support function of u, Su(·, ·) : [0, 1] × Y ∗ → R, is defined by

Su(y, α) = σ[u]α(y),

where σA(y∗) = supa∈A 〈y∗, a〉 is the support function of the set A ⊂ Y , 〈·, ·〉
denotes the duality between Y ∗ and Y .

The linear structure in F(Y ) is defined by the operations

(u + v)(x) = sup
y∈X

min{u(y), v(x − y)}, (λu)(x) =











u(xλ−1) if λ 6= 0,

χ{0}(x) if λ = 0,

where u, v ∈ F(Y ), λ ∈ R and χA denotes the characteristic function of A ⊆ Y .
Note that [u + v]α = [u]α + [v]α and [λu]α = λ[u]α, ∀ u, v ∈ F(Y ), ∀ α ∈ [0, 1],
∀ λ ∈ R.

We can endow F(Y ) with several metrics. Some usual distances between fuzzy
sets are

Dp(u, v) =



































1
∫

0

H([u]α, [v]α)pdα





1/p

if p ∈ [1,∞),

sup
α∈[0,1]

H([u]α, [v]α) if p = ∞.
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With each distance, we can also define the norm (in fact, a quasinorm) of a
fuzzy set u by

‖u‖p = Dp(χ{0}, u).

It is well known (see for example [8]) that the metric space (F(Y ), Dp) is
complete for each 1 ≤ p ≤ ∞, and that (F(Y ), Dp) is separable for each
1 ≤ p < ∞, but (F(Y ), D∞) is not.

From now on we will work with the metric D∞. To simplify notation, we will
suppress the subindex ∞ in the distance and in the induced norm. Note that
this way we use the same notation for the norm of a point y ∈ Y and for the
norm of a fuzzy set.

Also, we recall the following properties of fuzzy sets.

Remark 2.1 If u ∈ F(Y ), then the family {[u]α / α ∈ [0, 1]} satisfies the
following properties:

(a) [u]0 ⊇ [u]α ⊇ [u]β ∀ 0 ≤ α ≤ β.
(b) Se αn ↑ α ⇒ [u]α =

⋂∞
n=1 [u]αn

(i.e., the level-application is left-continuous).
(c) u = v ⇔ [u]α = [v]α ∀α ∈ [0, 1].
(d) [u]α 6= ∅ ∀α ∈ [0, 1], is equivalent to u(y) = 1 for some y ∈ Y .
(e) We can define a partial order ⊆ on F(Y ) by setting

u ⊆ v ⇔ u(y) ≤ v(y) ∀y ∈ Y ⇔ [u]α ⊆ [u]β; ∀α ∈ [0, 1].

(e) With the operations of addition, scalar multiplication and partial order ⊆
defined above, F(Y ) and FC(Y ) are normed quasilinear spaces (see [1],[11]).

Proposition 2.2 If u, v, w, u1, v1 ∈ F(Y ). Then

(a) D(λu, λv) = λD(u, v), for all λ ≥ 0.
(b) D(u + v, u1 + v1) ≤ D(u + u1, v + v1).

If u, v ∈ FC(Y ) we have
(c) D(u + w, v + w) = D(u, v).

An application F : X → F(Y ) is called a fuzzy valued mapping.

Definition 2.3 A fuzzy valued mapping F : X → F(Y ) will be called a quasi-

linear operator if it satisfies the following conditions:

F (λx) = λF (x) ∀x ∈ X ,∀λ ∈ R (1)

F (x1 + x2)⊆F (x1) + F (x2) ∀x1, x2 ∈ X. (2)
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A fuzzy valued mapping F : X → F(Y ) is said to be bounded if there exists
a number k > 0 such that ‖F (x)‖ ≤ k‖x‖ for any x ∈ X.

The importance of the quasilinear operator is well see in the next Theorem.

Theorem 2.4 ([11])The quasilinear operator F : X → F(Y ) is bounded if
and only if it is continuous at the point θ ∈ X. The continuity of F at θ
implies that it is uniformly continuous on X.

Denote by L(X, F(Y )) the space of all bounded quasilinear operators from X
to F(Y ). We write F1 ≤ F2 if F1(x) ≤ F2(x) for any x ∈ X. Multiplication
by real numbers is defined on L(X, F(Y )) by the equality (λF )(x) = λΓ(x).
Moreover, it is assumed that the operation of algebraic sum is defined on
L(X, F(Y )) by the equality (F1+F2)(x) = F1(x)+F2(x). The space L(X, F(Y ))
is closed under these operation of algebraic sum and multiplication by real
numbers. Then L(X, F(Y )) is a quasilinear space.

The norm on L(X, F(Y )) is defined by

‖F‖L = sup
‖x‖=1

‖F (x)‖.

Thus, L(X, F(Y )) is a normed quasilinear space.

3 Differentiability of fuzzy mappings

In this Section we extend the notion of Fréchet differentiability to the fuzzy-
valued context, by using the concept of bounded quasilinear operator.

Definition 3.1 A fuzzy valued mapping F : X → F(Y )is said to be Fréchet

differentiable at x0 ∈ X if exists a bounded quasilinear operator DF
x0

(F ) :
X → FC(Y ) such that

D(F (x), F (x0) + DF
x0

(F )(x − x0)) = o(‖x − x0‖).

The quasilinear operator DF
x0

(F ) is called the Fréchet differential of F at x0.

Example 3.2 Let X = R be given. Consider the fuzzy valued mapping F :
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R → F(R) defined by

F (x)(y) =



























− 1
x2 (y − x2) if 0 ≤ y ≤ x2

1
x2 (y + x2) if −x2 ≤ y ≤ 0

0 otherwise,

if x 6= 0, and F (0) = χ{0}. It is easily seen that

[F (x)]α =
[

−(1 − α)x2, (1 − α)x2
]

for each α ∈ [0, 1]. Now,

D(F (t), F (0) + χ{0}) = sup
α∈[0,1]

H
([

−(1 − α)x2, (1 − α)x2
]

, {0} + {0}
)

= sup
α∈[0,1]

∣

∣

∣(1 − α)x2
∣

∣

∣ =
∣

∣

∣x2
∣

∣

∣ .

It follows that F is Fréchet differentiable at x = 0 and DF
0 (F )(x) = χ{0}.

We shall now establish the uniqueness of the Fréchet derivative.

Theorem 3.3 The fuzzy valued mapping F has at most one Fréchet derivative
at a point.

Proof: Let DF
x0

(F ) and DF
x0

(F ) be two differentials of F at x0. Then, by
Proposition 2.2, we have that

D(DF
x0

(F )(x − x0),DF
x0

(F )(x − x0))

= D(F (x0) + DF
x0

(F )(x − x0), F (x0) + DF
x0

(F )(x − x0))

≤D(F (x), F (x0) + DF
x0

(F )(x − x0))

+D(F (x), F (x0) + DF
x0

(F )(x − x0))

= o(‖x − x0‖).

Thus, D(DF
x0

(F )(x − x0),DF
x0

(F )(x − x0)) = o(‖x − x0‖) for all x ∈ X. This

prove que DF
x0

(F ) = DF
x0

(F ).

Proposition 3.4 A fuzzy valued application F : X → F(Y ) is constant if and
only if, for every x0 ∈ X, DF

x0
(F )(x) = χ{θ} ∀x ∈ X.

Proof: First we assume that F is constant i.e. F (x) = K ∀x. Then for any
x ∈ X, we have
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D
(

F (x), F (x0) + DF
x0

(F )(x − x0)
)

= D
(

(K,K + DF
x0

(F )(x − x0)
)

= D
(

χ{θ},DF
x0

(F )(x − x0)
)

.

Therefore, DF
x0

(F )(x − x0) = χ{θ} ∀x ∈ X. Conversely, if

DF
x0

(F )(x − x0) = χ{θ}∀x ∈ X

then for any x ∈ X

D(F (x), F (x0)) = o(‖x − x0‖),

thus F (x) = F (x0) ≡ K.

Proposition 3.5 Let F : X → FC(Y ) be a bounded quasilinear operator.
Then F is Fréchet differentiable at θ ∈ X and DF

θ (F ) = F .

Proof: It is sufficient to observe that F (θ) = χ{θ} when F is quasilinear.

Theorem 3.6 If F : X → F(Y ) is differentiable at x0, then F is continuous
at x0.

Proof: Suppose that xi → x0, then

D(F (xi), F (x0))≤D(F (xi), F (x0) + DF
x0

(F )(xi − x0))

+D(F (x0), F (x0) + DF
x0

(F )(xi − x0))

= o(‖xi − x0‖) + ‖DF
x0

(F )‖F‖xi − x0‖ → 0

as i → ∞. The Theorem is proved.

Let F : X → F(Y ) be a fuzzy-valued mapping. The level set-valued mapping
Fα : X → K(Y ), with α ∈ [0, 1], is defined by

Fα(x) = [F (x)]α .

Now, we study the relation between the derivative of F and their associated
level set-valued mapping.

Proposition 3.7 If F is differentiable at x0, then the level set-valued mapping
Fα is differential at x0 for each α ∈ [0, 1] and

DF
x0

(Fα) =
[

DF
x0

(F )
]α

.
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Proof: Let α ∈ [0, 1] be arbitrary. Then

H
(

[F (x)]α , [F (x0)]
α +

[

DF
x0

(F )(x − x0)
]α)

= H
(

[F (x)]α ,
[

F (x0) + DF
x0

(F )(x − x0)
]α)

≤D(F (x), F (x0) + DF
x0

(F )(x − x0)

= o(‖x − x0‖).

Consequently, the Proposition is proved.

We observe that the converse of the Proposition is false without supplementary
hypotheses. The following example show this fact.

Example 3.8 We consider the fuzzy valued mapping F : (−1/2, 1/2) →
FC(R) defined through its levels,

Fα(t) =











[−t, 1 + t] if 0 < α ≤ 1

[−1/2, 1] if α = 0

for −1/2 < t < 0 and F (t) = χ{[0,1]} for 0 ≤ t < 1/2. Each level set-valued
mapping Fα is differentiable at t = 0 with derivative

DF
0 (Fα)(t) =











[−1, 1]t if 0 < α ≤ 1

{t} if α = 0

We observe that F is not Fréchet differentiable, since the following inclusion
would be true

DF
0 (Fβ)(1) ⊂ DF

0 (Fα)(1)

∀ 0 ≤ α ≤ β ≤ 1.

The Gateâux derivative has the following generalization.

Definition 3.9 A fuzzy valued mapping F : X → F(Y ) is Gâteaux differ-

entiable at x0 ∈ X if exists an bounded quasilinear operator DG
x0

(F ) : X →
FC(Y ) such that, for all z ∈ X

D(F (x0 + tz), F (x0) + tDG
x0

(F )(z)) = o(t) as t → +0.

DG
x0

(F )(z) is called the Gâteaux derivative of F at x0.
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Theorem 3.10 The Gâteaux derivative is unique if it exists.

Proof: Let DG
x0

(F ) and DG
x0

(F ) two Gateâux derivatives of F at x0. Then,
from Proposition 2.2 follows that

D(DG
x0

(Γ)(tz),DG
x0

(F )(tz)) = D(F (x0) + DG
x0

(F )(tz), F (x0) + DG
x0

(F )(tz))

≤D(F (x0 + tz), F (x0) + DG
x0

(F )(tz))

+D(F (x0 + tz), F (x0) + DG
x0

(F )(tz))

= o(t) as t → +0

Consequently,

D(DG
x0

(F )(z),DG
x0

(F )(z)) =
o(t)

t
as t → +0.

Therefore, DG
x0

(F )(z) = DG
x0

(F )(z) for all z ∈ X.

A relation between Fréchet derivative and Gâteaux derivative is given in the
next Theorem.

Theorem 3.11 Suppose that a fuzzy valued mapping F : X → F(Y ) is
Fréchet differentiability at x0 ∈ X. Then, F is Gâteaux differentiable and

DG
x0

(F ) = DF
x0

(F ).

Proof: In fact, we have

D(F (x0 + tz), F (x0) + tDF
x0

(F )(z))

= D(F (x0 + tz), F (x0) + DF
x0

(F )(tz))

= o(t‖z‖) = o(t) as t → +∞.

We recall that a fuzzy valued mapping F : X → F(Y ) is upper semicontinuous
at x0 if ∀ǫ > 0,∃δ = δ(x0, ǫ) > 0 such that

sup
α∈[0,1]

D∗(F (x), F (x0)) < ǫ

when ‖x − x0‖ < δ, where

D∗(u, v) = sup
α∈[0,1]

h∗([u]α , [v]α),
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and

h∗(A,B) = inf
r≥0

{r ≥ 0 / A ⊂ B + rS1(θ)} .

Therefore, F is said to be homogeneous if F (λx) = λF (x) for λ ≥ 0, x ∈ X.
To more details see [20].

Definition 3.12 A fuzzy-valued mapping F : X → F(Y ) is De Blasi differ-
entiable at x0 ∈ X if exists an upper semicontinuous, positive homogeneous
mapping DF

x0
(F ) : X → FC(Y ) such that

D(F (x0 + x), F (x0) + DF
x0

(F )(x)) = o(‖x‖).

The mapping DF
x0

(F ) is called the De Blasi differential of F at x0.

Definition 3.13 A fuzzy-valued mapping F : X → F(Y ) is Ibrahim-Gâteaux
differentiable at x0 ∈ X if exists an upper semicontinuous, positive homoge-
neous mapping DG

x0
(F ) : X → FC(Y ) such that, for all z ∈ X

D(F (x0 + tz), F (x0) + tDG
x0

(F )(z)) = o(t) as t → +0.

DF
x0

(F ) is called the Ibrahim-Gâteaux differential of F at x0.

It is clear that if F : X → F(Y ) is Fréchet differentiable at x0 (Gâteaux
differential) then F is De Blasi differentiable at x0 (Ibrahim-Gâteaux differ-
ential, respectively) and DF

x0
(F )(x) = DF

x0
(F )(x) (DG

x0
(F )(x) = DG

x0
(F )(x)

respectively).

4 Rules of calculus

We shall first establish the basic algebraic relations concerning the derivative.

Theorem 4.1 Let F1 and F2 be two fuzzy valued mapping from X to F(Y ).
If F1 and F2 are Fréchet differentiable at x0 ∈ X, then the mapping F =
λF1 + βF2 with λ, β ∈ R, is Fréchet differentiable at x0, and

DF
x0

(λF1 + βF2) = λDF
x0

(F1) + βDF
x0

(F2).

Proof: We observe

D(F (x), F (x0) + (λDF
x0

(F1) + βDF
x0

(F2))(x − x0))
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≤D(λF1(x), λF1(x0) + λDF
x0

(F1)(x − x0))

+D(λF2(x), λF2(x0) + λDF
x0

(F2)(x − x0))

≤ |λ|o(‖x − x0‖) + |β|o(‖x − x0‖)
= o(‖x − x0‖).

This prove the Theorem.

Remark 4.2 Theorem 4.1 still holds if we suppose that F1 and F2 are Gâteaux
differentiable at x0.

Theorem 4.3 A fuzzy valued mapping F : X → FC(Y ) is Gâteaux differen-
tiable at x0 if and only if, the support function SF (x)(α, ψ) is Gâteaux differ-
entiable at x0 and DG

x0
(SF (x)) is a support function. Moreover, in this case

DG
x0

(SF (x))(α, ψ) = SDG
x0

(F )(x)(α, ψ).

Proof: Suppose that F is differentiable at x0 and z ∈ X. Then

1

t
‖SF (x0+t.z)(α, ψ) − SF (x0)(α, ψ) − t.SDG

x0
(F )(z)(α, ψ)‖

=
1

t
‖SF (x0+t.z)(α, ψ) − SF (x0)+t.DG

x0
(F )(z)(α, ψ)‖

≤ 1

t
D(F (x0 + t.z), F (x0) + t.DG

x0
(F )(z))‖(α, ψ)‖

=
o(t)

t
→ 0 as t → +0.

Thus, a support function SF (x)(α, ψ) is Gâteaux differentiable at x0 and

DG
x0

(SF (x)(α, ψ)) = SDG
x0

(F (x))(α, ψ).

Conversely, suppose that SF (x)(α, ψ) is differentiable at x0 and DG
x0

(SF (x))(α, ψ) =
SΛ(α, ψ). Then, for any z ∈ X

D(F (x0 + t.z), F (x0) + t.Λ)

= max
‖(α,ψ)‖=1

‖SF (x0+t.z)(α, ψ) − SF (x0)+t.Λ(α, ψ)‖

= max
‖(α,ψ)‖=1

‖SF (x0+t.z)(α, ψ) − SF (x0)(α, ψ) − t.SΛ(α, ψ)‖

= o(t)

as t → +0 and the Theorem is proved.
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5 Stability of Fuzzy Differential Inclusion

Let F : X → F(X) be a fuzzy-valued mapping. Let α : X → [0, 1] be a
function and J a interval in R. The problem (see [23]): find x ∈ C(J,X) such
that

x′(t) ∈ [F (x(t))]α(x(t)) (3)

is said a fuzzy differential inclusion.

A quasilinear differential inclusion is defined by a differential inclusion

x
′ ∈ F (x),

where F : X → KC(X) is a quasilinear operator.

Consider the fuzzy differential inclusion (3), assuming the condition F (θ) =
χ{θ}. We say that the equilibrium position x = θ of (3) is Lyapunov-stable
if the following conditions hold;

(a) There is a δ0 > 0 such that if ‖x(t0)‖ < δ0, then there exists a solution
x(t) with the initial condition x(t0), and it is defined for any t > t0.

(b) For any ǫ > 0 there exists a 0 < δ1 ≤ δ0 such that if ‖x(t0)‖ < δ1, then
‖x(t)‖ < ǫ for any t ≥ t0.

A Lyapunov-stable equilibrium position x = θ is said to be asymptotically
stable is there exists a positive number δ2 ≤ δ0 such that if ‖x(t0)‖ < δ2,
then limt→∞ ‖x(t)‖ = 0.

The next result was proved in [15].

Theorem 5.1 Suppose that the set-valued mapping F : X → KC(X) is
positive-homogeneous and upper semicontinuous. Assume that any solution
x(t) of the differential inclusions x

′ ∈ F (x) tends to θ as t → ∞. Let G : X →
KC(X) be an upper semicontinuous set-valued mapping, with ‖G(x)‖ = o(‖x‖)
as ‖x‖ → 0. Then there exist σ > 0, k > 0 and δ > 0 such that any solution
x(t) of the differential inclusion x

′ ∈ F (x) + G(x) with ‖x(0)‖ < δ satisfies
the inequality

‖x(t)‖ ≤ k‖x(0)‖ exp(−σt)

for all t ≥ 0.
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By using the above Theorem, we can prove the stability for Problem (3). In
fact, we have

Theorem 5.2 Suppose that the point θ is an equilibrium position of the fuzzy
differential inclusion (3). Moreover, suppose that the fuzzy-valued mapping F :
X → F(X) is differentiable at θ and that there exists a number δ0 > 0 such that
any solution x(t) of (3) exists on the whole interval [0, +∞) if ‖x(0)‖ ≤ δ0. If
for some α ∈ [0, 1] the equilibrium position x = θ of the quasilinear differential
inclusion

x
′ ∈ [DF

θ (F )(x)]α (4)

is asymptotically stable, then this point is an asymptotically stable equilibrium
position of the fuzzy differential inclusion (3), that is, there exist σ > 0, k > 0
and δ > 0 such that any solution x(t) of (3) satisfies the inequality

‖x(t)‖ ≤ k‖x(0)‖ exp(−σt)

for all t ≥ 0 if ‖x(0)‖ < δ.

Proof: Since F is differentiable at θ, then the application D̃F
θ (F ) : X →

KC(X) defined by

D̃F
θ (F )(x) = LαDF

θ (F )(x),

exists for all x ∈ X, is homogeneous and uniformly continuous. Also, since
the equilibrium position x = θ of the quasilinear differential inclusion (4) is
asymptotically stable, then any solution x(t) of (4) tends to θ as t → ∞.

Now, we denote F̄ (x) = [F (x)]α(x)

‖F̄ (x)‖= H([F (x)]α(x), θ)

≤D(F (x), χ{0})

≤D(F (x),DF
θ (F )(x)) + D(DF

θ (F )(x), χ{0})

≤ o(‖x‖) + ‖DF
θ (F )‖F‖x‖

= o(‖x‖) as ‖x‖ → 0.

Thus, due to Theorem 5.1, exist σ > 0, k > 0 and δ > 0 such that any solution
x(t) of (3) satisfies the inequality

‖x(t)‖ ≤ k‖x(0)‖ exp(−σt)
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for all t ≥ 0 if ‖x(0)‖ < δ and the theorem is proved.

As a simple application of ours results we give an example from Biology, to
more details see [5].

Example 1 (life expectation)

Let us suppose that A is the set of the workers with x(t) individuals in instant
t and consider the problem of life expectation of the elements of A, supposing
that the poverty is a factor that contributes to the increase of the mortality
individuals rate.

To model the level of poverty of a person, we use any poverty indicator, for
example, consumption of vitamins, basic cleaning up, income, etc. In [3] the
authors made a complete study of the differential model for the life expectation
of a group of workers, using the salary (income) as factor of the uncertainty
in the mortality rate. In this case, the fuzzy set that evaluates the pertinence
degree of the poverty was defined as follows

u(r) =















[

1 −
(

r
r0

)2
]k

if 0 < r < r0

0 if r ≥ r0

where, k is a parameter that gives some characteristic of the group, r is a
parameter proportional to the individual’s income and r0 is the minimum
income starting from which the individuals are not more differentiated with
relationship to the poverty and therefore, not more influence in the mortality
rate.

We define α : R →[0, 1] by

α(x) =



























0 if x < 0

xk if 0 ≤ x ≤ 1

1 if x > 1

We are considering the normalized model, that is, x = 1 is the total population
of the individuals.

Considering (3), we have the following differential inclusion

x′ ∈ −[(λ1 + λ2 · u)x]α(x), (5)
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where

λ1 is the rate of natural mortality (obtained in a group that has satisfactory
conditions of survival);

λ2 · u indicates the influence of the poverty in the increase of the rate of
mortality of the group;

u is the fuzzy set of the poor individuals in agreement with the income r.

Let us notice that if r ≥ r0, then u(r) = 0 and (5) is reduced to deterministic
model

x′ = −λ1x.

Now for r ≤ r0 , we have the following differential inclusions

x′ ∈ −λ1x − λ2r0x
√

1 − x [0, 1] (6)

We have that x = 0 is stable asymptotically for the problem (5), because:

(i) In this fuzzy differential inclusion we have that F (x) = −(λ1 + λ2u)x and
therefore x = 0 is a solution of equilibrium (F (0) = χ{0});

(ii) F is a bounded quasilinear operator. It proceeds of the Proposition 3.5
that F is Fréchet differentiable and DF

0 (F )(x) = −(λ1 + λ2u)x.

We will prove that x = 0 is stable asymptotically, for some α ∈ [0; 1] of fuzzy
quasilinear differential inclusion

x′ ∈ [DF
0 (F )(x)]α. (7)

Let us take α = (1
2
)k , then (3) is given for

x′ ∈ −
(

λ1 + λ2r0

[

0,
1√
2

])

x (8)

We have that x = 0 is stable asymptotically for the differential inclusion (8).
Therefore, by Theorem 5.2 we have that x = 0 is stable asymptotically for the
fuzzy differential inclusion (3).
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