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Abstract

The paper considers the problem of homogeneity among groups by
comparison of genomic sequences. Among the problems in that kind of
analysis two points are specially addressed here. Genetic data perceives
information as categorical variables and as a consequence the overall view
of it generates strong dependence between genetic sites. The second prob-
lem is that usually models are built on the cleaned data (functional ge-
netic such as genes) and the rest of the data that also carries information
is dismissed as useless. We proceed here with emphasis on the available
heuristic evidences of great diversity in statistical distributions for the cat-
egorical data available. A fully operational parametric statistical model is
proposed. The model is built with flexibility to withstand use in several
different organisms and adapt itself to that usually dismissed material
and the dependence between sites. Consistency of the estimators and of
derived test procedures are shown.
Keywords: Amino Acid; Asymptotic distribution; Maximum Likelihood
Estimation; Categorical Data; Genome; Nucleotide; Statistical Genetics.

1 Introduction

Nowadays, a great interest in research is the understanding of the structure
and evolution of genes and genomes. In order to understand these biological
structures, it is important to know the general statistical characteristics of the
intron-exon structures of eukaryotic genes. In view of this, a brief biological
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background is given on section 2. Previous massive analysis of genetic data are
used as motivation for a fully parametric model which is developed in section 3.
Maximum likelihood estimators are found for that model are found in section 4.
In section 5 asymptotic properties are investigated while in section 6 biologically
hypotheses procedures are suggested on the spirit of maximum likelihood ratio
tests.

2 Biological Motivation

A gene, in a general concept, can be defined as a sequence of genomic
DNA (Deoxyribonucleic acid) or RNA (Ribonucleic acid) that is essential for
a specific function. Gene, in the Mendelian setup, is the basic unit of inheri-
tance. Genes occur at definite sites or loci, on chromosomes, which are strings
of DNA, the basic genetic material in a cell and the carrier of genetic informa-
tion for all organisms, except for some viruses. DNA is a double-helical model;
it is a polymer, made up of nucleotides which are four in number, and can be
distinguished by the four bases: A (adenine), C (cytosine), G (guanine) and T
(thymine). Like the DNA, RNA and proteins are also macromolecules of a cell,
though they differ in their forms and constitution. RNA differs from DNA by
having ribose, instead of deoxyribose, also the T is replaced by U (uracil) in the
RNA, and it has a single strand. Proteins are also polymers, and there are 20
amino acids. Most human cells contain 46 chromosomes, in 23 pairs; one pair
relates to the sex chromosomes, while the other 22 homologous pairs are termed
autosomes. There are about 50,000 genes embedded within the human genome.
Genetic data, for diploid organisms, relate to traits determined by autosomal
Mendelian loci, so that DNA plays a basic role in genetic data analysis (Li
(1991), Waterman (1995), Lange (1997), Ewens and Grant (2001)).

Principles of molecular genetics, such as the central dogma that DNA makes
RNA makes protein, govern computational sequence analysis (CSA). The trans-
fer of genetic information from DNA to DNA (called replication) means that
the molecule can be copied; the loop from DNA to RNA called transcription
precedes the loop from RNA to protein, called translation. The RNA which
is translated into protein is termed the messenger RNA (or mRNA), and the
transfer RNA (or tRNA) translates the genetic code into amino acids. If we
accept the basic role of DNA as the genetic information carrier, then it is nat-
ural to conclude that evolution is directly related to changes in DNA. This is
the genesis of molecular evolution. Substitutions between purines only (A ↔ G)
or pyrimidines only (C ↔ T ) are called transitions, while substitutions between
a purine and a pyrimidine (A ↔ C, A ↔ T , G ↔ C, or G ↔ T ) are called
transversions (recall that in a DNA, A pairs with T and G pairs with C).

Next, note that amino acids are encoded by triplets of nucleotides, called
codons. Let us define NR = {A, C, G, U}, and let C = {(x1, x2, x3) : xj ∈
NR, j = 1, 2, 3} be the codon. Finally, let X be the set of aminoacids and
termination codon, which can be seen on Table 1. The codon AUG specifies
the aminoacid Methinonine (Met/M) and also serves as the starting codon for
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polypeptide synthesis. Any of the codons - UAA, UAG, or UGA - specifies
the end, or termination of polypeptide synthesis. There are 23 = 64 possible
codons, but only 20 aminoacids. Then the genetic code can be defined as a map:
g : C → X , g ∈ G, so that G is the set of all genetic codes. As the human genome
project is heading for a completion, there are some formidable statistical tasks
which are surfacing into the research efforts to fathom out the mystery of the
genomic code.

Table 1: The standard Genetic Code - Codon and correspondent aminoacid

Glycine (GLY) Serine (SER) Arginine (ARG) Phenylalanine (PHE)
Alanine (ALA) Threonine (THR) Asparagine (ASN) Tyrosine (TYR)
Valine (VAL) Aspartic Acid (ASP) Glutamine (GLN) Tryptophan (TRP)
Leucine (LEU) Glutamic Acid (GLU) Cysteine (CYS) Histidine (HIS)
Isoleucine (ILE) Lysine (LYS) Methionine (MET) Proline (PRO)

UUU Phe/F UCU Ser/S UAU Tyr/Y UGU Cys/C
UUC Phe/F UCC Ser/S UAC Tyr/Y UGC Cys/C
UUA Leu/L UCA Ser/S UAA Stop UGA Stop
UUG Leu/L UCG Ser/S UAG Stop UGG Trp/W

CUU Leu/L CCU Pro/P CAU His/H CGU Arg/R
CUC Leu/L CCC Pro/P CAC His/H CGC Arg/R
CUA Leu/L CCA Pro/P CAA Gln/Q CGA Arg/R
CUG Leu/L CCG Pro/P CAG Gln/Q CGG Arg/R
AUU Ile/I ACU Thr/T AAU Asn/N AGU Ser/S
AUC Ile/I ACC Thr/T AAC Asn/N AGC Ser/S
AUA Ile/I ACA Thr/T AAA Lys/K AGA Arg/R
AUG Met/M ACG Thr/T AAG Lys/K AGG Arg/R
GUU Val/V GCU Ala/A GAU Asp/D GGU Gly/G
GUC Val/V GCC Ala/A GAC Asp/D GGC Gly/G
GUA Val/V GCA Ala/A GAA Glu/E GGA Gly/G
GUG Val/V GCG Ala/A GAG Glu/E GGG Gly/G

The transcribed RNA contains untranslated regions, exons and introns. In-
trons, or intervening sequences, are those transcribed sequences that are excised
during the processing of the pre-messenger RNA (pre-mRNA) molecule. All ge-
nomic sequences that remain in the mature mRNA following splicing are referred
as exons. Exons that are translated are referred as coding regions. The distri-
bution of intron-exon structures of eukaryotic genes was studied by Deusch and
Long (1999) and some interesting statistical phenomena was pointed out by
them: ”Genome size seems to be correlated with total intron length per gene.
For example, invertebrate introns are smaller than those of human genes. How-
ever, this correlation is weak, suggesting that other factors besides genome size
may also affect intron size.” For humans, the size of exons ranges from 1-1644,
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with mean 50.9 and standard deviation 58.7. The size of introns, for humans,
ranges from 25-54916, with mean 34131.1 and standard deviation 6552.6. The
exon and total intron length distributions are both skewed to the left. For
those with smaller length, the exon length distribution has large concentration
between 1 and 75. For those smaller sequences one does find again left skewness.

Some empirically supported aspects of genetic sequences must be taken into
account in order to assure correct probabilistic modelling and statistical analysis.
One of those aspects is that exons and intron related distribution form a very
rich class which poses some hard task in modelling. Even skewness and relative
dispersion (taken here as the ratio std. dev./mean) can vary from group to
group being studied. Control regions tend to have higher rate of substitutions.
For that reason models must present certain versatility to those variations.

The model formulation we will discuss here can also be applied to mitochon-
drial sequences. In this case, some notational changes ought to be done. There
are no introns in those sequences. One has promoter regions and exons. Pro-
moter regions, as happens in usual DNA sequences with introns, are not very
selective in their mutation process. Therefore, they tend to pass substitutions in
higher rates when compared to exons. For our model which deals with introns
(or promoter regions) only as distance between exons, no adaptation other than
notational needs to be done when dealing with introns or promoter regions.

As one can see on Table 1 there are many codons that specify the same
aminoacid, i.e., synonymous codon usage. One of the measures for synonymous
codon usage is the effective number of codons (ENC), which is a measure of de-
parture from equal codon usage that is independent of gene length, aminoacid
composition and any reference set of genes (Wright (1990)). A low ENC cor-
responds to high codon usage bias, a high ENC to low codon usage bias. The
minimum value of 20 occurs when on codon is used exclusively for each amino
acid, and the maximum is 61 when synonymous codons are used equally. The
typical range of ENC is 25 − 55 (Hartl (2000)).

3 Notation and Model Formulation

Most problems in genomic sequence analysis are essentially statistical. For
instance, stochastic evolutionary forces act on genomes. In genomic sequence
analysis, typically, we encounter data on a large number (K) of positions or sites,
and in each position, we have a purely qualitative (nucleotides or amino acid
labels) categorical response with 4 to 20 categories depending on the DNA or
protein sequence. The spatial (functional as well as stochastic) dependence (or
association) patterns of these sites may not be known, nor can they be taken to
be stochastically independent. Also, as has been mentioned before, regular and
nearly identical structures of DNA calls for statistical appraisal based on other
variational properties which exhibit more statistical variation and information
too.

Some notation will be introduced here. The model concerns statistical com-
parisons of some characteristic(s) from several sequences. The difference in
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those characteristics is supposed to be due to some biologically natural group-
ing. There will G groups, and from each group will be sampled ng sequences,
g = 1, 2, . . . , G. The sequences are divided in introns and exons. The i-th se-
quence from the g-th group for example has kgi +1 codons. In between the j-th
and [j + 1]-th codon there is an intron of length dgij say. The total length of
introns on the i-th sequence of the g-th group is written as N⋆

gi. Let’s consider
X to be the set of codon configurations as seen in Table 1 and take ‖X‖ as
its cardinality. Notice that ‖X‖ is not 64 because there are three stop codons.
Let also xgij = (xgij1 , xgij2 , xgij3)

′ be the categorical variable representing the
configuration of the j-th codon on the i-th sequence of the g-th group. With no
loss of generality, take x⋆ = GGG and X ⋆ = X \ {x⋆}.

Since one is interested in modelling DNA sequences taking into account
intron structure a natural approach (used here) is to consider the number of
substitutions from the j-th to the [j + 1]-th codon on the i-th sequence of the
g-th group (observable and known) which will be called mxgi[j+1]

and assumes
one out of the possible values {0, 1, 2, 3} . The average number of feasible
substitutions from a codon of type x is µx and the probability of the next codon
be y given that its previous is x and the gap noncodant material in between

them has length d on the g-th group is said to be π
(g)
xy (d). Finally, there is a

mixing parameter for the πxy’s on the g-th group, say β(g).
A typical configuration of a sampled sequence would be as follows

x1 d1 x2 d2 · · · dk xk+1, (3.1)

where xj = (xj1, xj2, xj3)
′ ∈ X , X = {x[1], . . . , x[64]}.

πxy(d) = P (Y = y|X = x, d) = πxy(0)e−βd + πy

(

1 − e−βd
)

i.e., πxx(d) ↑ πx as d ↑ ∞, since πxx(d) = πx + (πxx(0) − πx) e−βd and πxx(0)
is very small, by empirical evidence, which means that the RHS is strict smaller
than πx and hence πxx(d) converges to πx as stated, when d gets large. On the
other hand,

πxy(d) = πy + (πxy(0) − πy) e−βd,

for which there are no empirical evidences favoring monotonicity in d, but it
still easy to see that πxy(d) converges to πy when d gets large.

When codons are adjacent, i.e., the intron inbetween them has length zero
the modelling of the transition probabilities will be given by

πxy(0) = πy (1 + α (my − µx)) ,

where µx will vary on the ‖X‖ x’s configurations but it will still be known.
The number of introns and total number of codons need a somewhat flexible

modelling. Empirical evidences for the number of introns itself vary on the
species and on the part of genome considered. For that reason we will be
considering a generalization of the negative binomial as follows. For the sake of
simplifying notation, we will take K and N⋆ to be respectively the number of
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introns and the total length of introns on a given sequence, and we will suppose
K obeys the following law:

P (K = k) =

(

r + k − 2

k − 1

)

(1 − θ)
r
θk−1, for k = 1, 2, . . . ,

where 0 < θ < 1 and r > 0 are both unknown parameters and are allowed to
vary among groups.

One can show that

E(K) = 1 + r
θ

1 − θ
and V ar(K) = r

θ

(1 − θ)2
.

That means that SD(K) = (E(K) − 1)/
√

(rθ) and that convenient choices
of r and θ result in either SD(K) > E(K) or otherwise. That enables us to
model a larger class of genomic sequences. Moreover, N⋆ = D1 +D2 + · · ·+DK

and we assume that N⋆|K ∼ G(φK). So,

E(N⋆|K) =
1

1 − φK

, V ar(N⋆|K) =
φK

(1 − φK)2
and SD(N⋆|K) =

√
φK

1 − φK

.

Biological evidences suggest that the average lengths of introns and the aver-
age number of codons (3K) are both linear on the genome total size; therefore,
φK = 1− (γK)−1. Assuming the lengths in between codons, Di, are identically
distributed (given N⋆ and K), (D1, D2, . . . , DK |N⋆, K)′ ∼ Multinomial(N⋆, K−1)
and

E(Di|N⋆, K) = N⋆K−1 V ar(Di|N⋆, K) = (K − 1)K−2N⋆ E(Di|K) = γ

V ar(Di|K) = γK−1 ((γ + 1)K − 2) E(N⋆) = γ
(

rθ
1 − θ

+ 1
)

V ar(N⋆) = (E(N⋆))
2

(

1 − 1 − θ
γ ((r − 1)θ + 1)

+ 2rθ
((r − 1)θ + 1)2

)

for which it is also true that convenient choices of r, γ and θ result in wider
or narrower relative dispersions (for instance, for fixed θ and γ, choose r either
bigger or smaller than (−2θ +1+ θ2)(2γ − 1+ θ)/θ to get respectively standard
deviation smaller or larger than the expected value of N⋆).

4 The Likelihood

We will consider G different groups and ng (not necessarily balanced) sequences

sampled on the g-th group, on a total of n =
∑G

g=1 ng. Let Xgi be the i-th
sequence of the g-th group: it is formed by the codons xgij , j = 1, 2, . . . , Kgi+1,
with intermediate noncodant materials D1, D2, . . . , DKgi

on a configuration as
in (3.1). We will write the likelihood function as follows:

L(π(g), α(g), β(g), θ(g), γ(g)|X,K,N⋆,D) =

G
∏

g=1

ng
∏

i=1

L(Xgi, Kgi, N
⋆
gi,Dgi).
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Let’s initially look at one such sequence Xgi. There, using the hypotheses
on the distributions of total length of introns, number of exons, substitution
pattern, one can write L as:

L(Xgi, Kgi, N
⋆
gi,Dgi)

= L(Xgi|N⋆
gi,Dgi, Kgi) × L(Dgi|N⋆

gi, Kgi) × L(N⋆
gi|Kgi) × L(Kgi)

=





Kgi+1
∏

j=1

π(g)
xgij





Kgi
∏

j=1

(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

) N⋆
gi!K

−N⋆
gi

gi
∏Kgi

j=1 Dgij !

×
(

1 − φ
(g)
Kgi

)

φ
(g)
Kgi

N⋆
gi−1

(

r(g) + Kgi − 2

Kgi − 1

)

(

1 − θ
(g)
gi

)r(g)

θ(g)Kgi−1
.

Looking at the last RHS, one can factor L(Xgi, N
⋆
gi,Dgi, Kgi) as

L(Xgi, N
⋆
gi,Dgi, Kgi) ∝

L1

(

π(g)
x[1]

, . . . , π(g)
x[‖X⋆‖]

)

× L2

(

α(g), β(g)
)

× L3

(

γ(g)
)

× L4

(

θ(g)
)

,

where

L1

(

π(g)
x[1]

, . . . , π(g)
x[‖X⋆‖]

)

=

Kgi+1
∏

j=1

π(g)
xgij

, (4.2)

L2

(

α(g), β(g)
)

=

Kgi
∏

j=1

(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)

, (4.3)

L3

(

γ(g)

)

=

(

γ(g)Kgi − 1
)N⋆

gi−1

(

γ(g)Kgi

)N⋆
gi

and (4.4)

L4

(

θ(g)
)

=

(

r(g) + Kgi − 2

Kgi − 1

)

(

1 − θ(g)
)r(g)

θ(g)Kgi−1
. (4.5)

The decomposition of the log-likelihood ℓ can be written as:

ℓ(X,K,N⋆,D)

=

G
∑

g=1

ng
∑

i=1

ℓ(Xgi, Kgi, N
⋆
gi,Dgi) = ℓ1(X,K,N⋆,D)

+ ℓ2(X,K,N⋆,D) + ℓ3(X,K,N⋆,D) + ℓ4(X,K,N⋆,D), (4.6)
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where (being fgi(x) the frequency of observations on the category x)

ℓ1(X,K,N⋆,D) =
∑

x∈X

G
∑

g=1

log
(

π(g)
x

)

ng
∑

i=1

fgi(x) (4.7)

ℓ2(X,K,N⋆,D) =

=

G
∑

g=1

ng
∑

i=1

Kgi
∑

j=1

log
(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)

, (4.8)

ℓ3(X,K,N⋆,D) =

=

G
∑

g=1

ng
∑

i=1

(

(

N⋆
gi − 1

)

log
(

γ(g)Kgi − 1
)

− N⋆
gi log

(

γ(g)Kgi

))

, (4.9)

ℓ4(X,K,N⋆,D) =
G
∑

g=1

ng
∑

i=1

(

r(g) log
(

1 − θ(g)
)

+

+ (Kgi − 1) log
(

θ(g)
)

+ log

((

r(g) + Kgi − 2

Kgi − 1

)))

. (4.10)

Hence,

∂ℓ

∂α(g)
=

ng
∑

i=1

Kgi
∑

j=1

(

mxgi[j+1]
− µxj

)

e−β(g)Dgij

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

∂ℓ

∂β(g)
= −α(g)

ng
∑

i=1

Kgi
∑

j=1

Dgij

(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

∂2ℓ

∂α(g)2
= −

ng
∑

i=1

Kgi
∑

j=1

(

mxgi[j+1]
− µxgij

)2
e−2β(g)Dgij

(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)2

∂2ℓ

∂α(g)∂β(g)
= −

ng
∑

i=1

Kgi
∑

j=1

Dgij

(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)2

∂2ℓ

∂β(g)2
= α(g)

ng
∑

i=1

Kgi
∑

j=1

D2
gij

(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)2

α̂(g) and β̂(g) are the numerical solution of the following equations:

ng
∑

i=1

Kgi =

ng
∑

i=1

Kgi
∑

j=1

(

1 + α̂(g)
(

mxgi[j+1]
− µxgij

)

e−β̂(g)Dgij

)−1

(4.11)

ng
∑

i=1

N⋆
gi =

ng
∑

i=1

Kgi
∑

j=1

Dgij

(

1 + α̂(g)
(

mxgi[j+1]
− µxgij

)

e−β̂(g)Dgij

)−1

,(4.12)
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for g = 1, 2, . . . , G.

∂ℓ

∂γ(g)
=

ng
∑

i=1

Kgi

(

N⋆
gi − 1

γ(g)Kgi − 1
−

N⋆
gi

γ(g)Kgi

)

∂2ℓ

∂γ(g)2
= −

ng
∑

i=1

K2
gi

(

N⋆
gi − 1

(

γ(g)Kgi − 1
)2 −

N⋆
gi

(

γ(g)Kgi

)2

)

γ̂(g) is the numerical solution of the following equation:

ng =

ng
∑

i=1

N⋆
gi − 1

γ̂(g)Kgi − 1
, g = 1, 2, . . . , G. (4.13)

∂ℓ

∂θ(g)
= − r(g)ng

1 − θ(g)
+

∑ng

i=1 Kgi − ng

θ(g)

∂2ℓ

∂θ(g)2
= − r(g)ng

(

1 − θ(g)
)2 −

∑ng

i=1 Kgi − ng
(

θ(g)
)2

∂ℓ

∂r(g)
= ng log

(

1 − θ(g)
)

+

ng
∑

i=1

Ψ
(

r(g) + kgi − 2
)

− ngΨ
(

r(g)
)

∂2ℓ

∂θ(g)∂r(g)
= − ng

1 − θ(g)

∂2ℓ

∂r(g)2
=

ng
∑

i=1

Ψ
′
(

r(g) + Kgi − 2
)

− ngΨ
′
(

r(g)
)

since

∂

∂r(g)
log

((

r(g) + Kgi − 2

Kgi − 1

))

=

Kgi−2
∑

j=0

1

r(g) + j
= Ψ

(

r(g) + Kgi − 2
)

−Ψ
(

r(g)
)

,

where Ψ(·) is the polygamma function.

θ̂(g) and r̂(g) are given respectively by:

θ̂(g) = 1 −
(

1

r̂(g)ng

ng
∑

i=1

Kgi +
r̂(g) − 1

r̂(g)

)−1

(4.14)

and by the numerical solution of

−ng log

(

1

r̂(g)ng

ng
∑

i=1

Kgi +
r̂(g) − 1

r̂(g)

)

+

ng
∑

i=1

Ψ
(

r̂(g) + kgi − 2
)

−ngΨ
(

r̂(g)
)

= 0,

(4.15)
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for g = 1, 2, . . . , G.

∂ℓ

∂π
(g)
x

=

ng
∑

i=1

(

fgi(x)

π
(g)
x

−
Kgi + 1 −∑y∈X ⋆ fgi(y)

1 −∑
y∈X ⋆ π

(g)
y

)

∂2ℓ

∂π
(g)
x

2 = −
ng
∑

i=1







fgi(x)

π
(g)
x

2 +
Kgi + 1 −∑

y∈X ⋆ fgi(y)
(

1 −∑
y∈X ⋆ π

(g)
y

)2







∂2ℓ

∂π
(g)
x ∂π

(g)
z

= −
ng
∑

i=1

Kgi + 1 −∑
y∈X ⋆ fgi(y)

(

1 −∑
y∈X ⋆ π

(g)
y

)2

which is solved by

π̂(g)
x

=

∑ng

i=1 fgi(x)
∑ng

i=1 Kgi + ng

, g = 1, 2, . . . , G and x ∈ X ⋆. (4.16)

All others unmentioned first and second order partial derivatives are zero.

5 Asymptotic Results

In this section we present the asymptotic properties for the estimators defined
by (4.11), (4.12), (4.13), (4.14), (4.15) and (4.16). Joint asymptotic normality
is shown to the whole vector of parameter estimators. Asymptotic variances
and covariances (when applicable) are given for {θ(g), r(g), γ(g), g = 1, 2, . . . , G}.
Due to its dependence structure only rough quotas would be available for the
variance-covariance asymptotic structure of {α̂(g), β̂(g), g = 1, 2, . . . , G}. As
our main concern resides in the {π(g), g = 1, 2, . . . , G} structure we only prove
that the estimators defined by (4.11) and (4.12) are regular, i,e. that a joint
asymptotic normality holds.

The information matrix for {α̂(g), β̂(g), γ̂(g), θ̂(g), r̂(g), π̂(g), g = 1, 2, . . . , G},
given respectively by (4.11), (4.12), (4.13), (4.14), (4.15) and (4.16), can be
written as:








I (α, β)2G×2G 02G×G 02G×2G 02G×64G

0G×2G I (γ)G×G 0G×2G 0G×64G

02G×2G 02G×G I (θ, r)2G×2G 02G×64G

0‖X ⋆‖G×2G 0‖X ⋆‖G×G 0‖X ⋆‖G×2G I (π)‖X ⋆‖G×‖X ⋆‖G









. (5.17)

I (θ, r) = diag
(

I(θ(1), r(1))2×2, I(θ(2), r(2))2×2, . . . , I(θ(G), r(G))2×2

)

, (5.18)
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where

I(θ(g), r(g))1,1 =
r(g)ng

θ(g)
(

1 − θ(g)
)2 I(θ(g), r(g))1,2 =

ng

1 − θ(g)

I(θ(g), r(g))2,2 ≥ ng

r(g)
θ(g)

1 − θ(g) .

I (γ) = diag
(

I(γ(1)), I(γ(2), . . . , I(γ(G))
)

, (5.19)

where

I(γ(g)) ≥
{ ng

(r−1)θγ(g)3
((r − 1) θ (γ + (1 − θ)r) + (1 − θ)) r 6= 1

ng

γ(g)2

(

1 − 1−θ(g)

γ(g)θ(g) log
(

1 − θ(g)
)

)

r = 1.

I (π) = diag
(

I
(

π(1)
)

, I
(

π(2)
)

, . . . , I
(

π(G)
))

. (5.20)

Note that
I
(

π(g)
)

=
[

I
(

π(g)
x

, π(g)
z

)
)]

x,z∈X ⋆
,

where

I
(

π(g)
x

, π(g)
x

)

= ng

(

2 +
r(g)θ(g)

1 − θ(g))

)

(

1

π
(g)
x

+
1

π
(g)
x⋆

)

and

I
(

π(g)
x

, π(g)
z

)

= ng

(

2 +
r(g)θ(g)

1 − θ(g))

)

1

π
(g)
x⋆

.

So, up to now, because of its construction, the likelihood was factored in
three parts, respectively ℓ1, ℓ3 and ℓ4, which were solely related to respectively
π’s, γ’s and θ’s, whilst a fourth part, ℓ2 is solely related to the α’s and β’s. We
were able to directly apply the usual asymptotic techniques to ℓ1, ℓ3 and ℓ4. As
ℓ2 has a correlated inner structure one must resort to a different argument. One
can consider each of the partial derivatives of ℓ with respect to {α(g), β(g), g =
1, 2, . . . , G} as a sum of ng independent terms and work with their properties to
enable a feasible Taylor expansion around the true parameter value. Moreover,
since the α(g), β(g) vectors are functionally orthogonal, we will be dealing with G
two-dimensional such expansions. Each score function will have as its expected
value, E

(

∂ℓ/∂α(g)
)

ng
∑

i=1

E





Kgi
∑

j=1

E

(
(

mxgi[j+1]
− µxj

)

e−β(g)Dgij

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

∣

∣Kg1, . . . , Kgng

)



 .

(5.21)
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We then compute the inner expected value of (5.21) conditionally on the
values of Dgij and, for each j, we compute it conditionally on the value of xgij ,
call it Eα (·|K, Dgij ,xgij).

Eα (·|K, Dgij ,xgij) =
∑

y

(

my − µxgij

)

e−β(g)Dgij

1 + α(g)
(

myµxgij

)

e−β(g)Dgij

× π(g)
xgijy

(Dgij) = 0.

On the same spirit for β(g), one has

Eβ (·|K, Dgij ,xgij) = −α(g)
∑

y

Dgij

(

my − µxgij

)

e−β(g)Dgij

1 + α(g)
(

my − µxgij

)

e−β(g)Dgij

×π(g)
xgijy

(Dgij) = 0.

Moreover,

∂3ℓ

∂α(g)3
=

ng
∑

i=1

Kgi
∑

j=1

(

mxgi[j+1]
− µxgij

)3
e−3β(g)Dgij

(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)3

∂3ℓ

∂α(g)2∂β(g)
= 2

ng
∑

i=1

Kgi
∑

j=1

Dgij

(

mxgi[j+1]
− µxgij

)2
e−2β(g)Dgij

(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)3

∂3ℓ

∂α(g)∂β(g)2
=

ng
∑

i=1

Kgi
∑

j=1

D2
gij

(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)3

×
(

1 − α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)

∂3ℓ

∂β(g)3
= −α(g)

ng
∑

i=1

Kgi
∑

j=1

D3
gij

(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

(

1 + α(g)
(

mxgi[j+1]
− µxgij

)

e−β(g)Dgij

)3 .

Basically, all such partial derivatives depend on terms concerning: my −
µx, which is stochastically bounded by 3, Dgije

−aβDgij , which is stochastically
bounded since Dgij ≥ 0, and e−aβDgij , which is stochastically bounded since
Dgij ≥ 0. Using that, each of the partial derivatives above will be bounded
by variables as M

∑ng

i=1 Kgi which has a finite expectation, because ng and M
are real numbers and Kgi’s have finite expectations. One then argues on the

Taylor expansions for
√

ng

(

α̂(g) − α(g)
)

and
√

ng

(

β̂(g) − β(g)
)

and the normal

asymptotics will come out.
Let’s take n0 = min{n1, n2, . . . , ng} → ∞. Let also Rg = limn0→∞ n0/ng

and suppose Rg > 0, g = 1, 2, . . . , G. Then

n0Var (α, β, γ, θ r, π) →









V (α, β) 02G×G 02G×2G 02G×G‖X‖

0G×2G V (γ) 0G×2G 0G×G‖X‖

0G×2G 0G×G V (θ, r) 0G×G‖X‖

0G‖X ⋆‖×2G 0G‖X ⋆‖×G 0G‖X ⋆‖×2G V (π)









,

where each of those variance matrices limits are found from the Fisher informa-
tion matrices derived above and are all finite and bounded away from zero.
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Therefore one has, for each group ‖X ⋆‖ π’s, one θ, one r, one α, one β and
one γ, with a total of G (‖X ⋆‖ + 5) parameters, for which:

• α(g)’s and β(g)’s are estimated numerically, with a block diagonal 2G×2G
Hessian with blocks of size 2 × 2

• γ(g)’s are estimated numerically, with a diagonal G × G Hessian

• θ(g)’s and r(g)’s are estimated numerically, with a block diagonal 2G× 2G
Hessian with blocks of size 2 × 2

• π(g)’s are estimated with an explicit formulae.

So, the Fisher information matrix will be a block diagonal G (‖X ⋆‖ + 5) ×
G (‖X ⋆‖ + 5), for which there will be four major blocks ([α,β]; [γ]; [θ,r] and

[π]). The number of non-zero elements will be roughly 4G+G+4G+(G‖X ⋆‖)2.
Although large, those last (G‖X ⋆‖)2 elements have a product multinomial struc-
ture.

6 Hypothesis Testing

One hypothesis in which there is a lot of interested is that of coding material
equivalence among groups. In our model that can be expressed as

H0 : π(g)
x

= π(1)
x

∀x ∈ X g = 1, 2, . . . , G.

We know, from (4.6)-(4.10) that the log-likelihood can be factored in four
parts and, from those, only ℓ1 is directly related to H0. Therefore, the likelihood
ratio statistic can be written as:

Λn0 = ℓ1

(

π̂(g)
x

, x ∈ X , g = 1, 2, . . . , G
)

− ℓ1

(

π̂(0)
x

, x ∈ X
)

.

where

ℓ1

(

π̂(g)
x

, x ∈ X , g = 1, 2, . . . , G
)

=
∑

x∈X

G
∑

g=1

log

( ∑ng

i=1 fgi(x)
∑ng

i=1 Kgi + ng

) ng
∑

i=1

fgi(x)

Under H0, the maximum likelihood estimators are

π̂(0)
x

=

∑G

g=1

∑ng

i=1 fgi(x)
∑G

g=1

∑ng

i=1 Kgi + n
, x ∈ X ,

and the corresponding log-likelihood is given by

ℓ1

(

π̂(0)
x

, x ∈ X
)

=
∑

x∈X

log

(

∑G
g=1

∑ng

i=1 fgi(x)
∑G

g=1

∑ng

i=1 Kgi + n

)

G
∑

g=1

ng
∑

i=1

fgi(x).
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Finally,

Λn0 =
∑

x∈X

(

G
∑

g=1

ng
∑

i=1

fgi(x)

)[

log

(

∑ng

i=1 fgi(x)/
∑ng

i=1 Kgi + ng
∑G

g=1

∑ng

i=1 fgi(x)/
∑G

g=1

∑ng

i=1 Kgi + n

)]

(6.22)
will be such that −2ln (Λn0) → Z2, where Z2 has a chi-squared distribution
with (G − 1)‖X‖ degrees of freedom.

7 References

Bahadur, R. R. (1961). A representation of the joint distribution of responses
to n dichotomous items. In Studies in Item Analysis and Prediction (ed.
H. Solomon), Stanford Univ. Press, CA pp. 158-176.

Besag, J. (1974). Spatial interaction and the statistical analysis of life systems
(with discussion). J. Roy. Statist. Soc. Ser. B 48, 192-236.

Chatterjee, S. K. and Sen, P. K. (1964). Nonparametric tests for the bivariate
two-sample location problem. Calcutta Statist. Assoc. Bull. 13, 18-58.

Deutsch, Michael and Long, Manyuan (1999). Intron-exon structures of eu-
karyotic model organisms. Nucleic Acids Research 27, 3219-3228.

Ewens, W. J. and Grant, G. R. (2001). Statistical Methods in Bioinformatics:
An Introduction, Springer, New York, NY.

Hartl, D. L. (2000). A Primer of Population Genetics, Sinauer, Massachusetts.

Lange, K. (1997). Mathematical and Statistical Methods for Genetic Analysis,
Springer, New York, NY.

Li, Wen-Hsiung and Graur, Dan (1991). Fundamentals of Molecular Evolution,
Sinauer Associates, Massachusetts.

Pinheiro, H., Seillier-Moiseiwitsch, Sen, P. K. and Eron, J. (2000). Genomic
sequence analysis and quasi-multivariate CATANOVA. In Handbook of
Statistics, Volume 18 : Bioenvironmental and Public Health Statistics (eds.
P. K. Sen and C. R. Rao), Elsevier, Amsterdam, pp. 713-746.

Pinheiro, H., Seillier-Moiseiwitsch, and Sen, P. K. (2001). Analysis of variance
for Hamming distances applied to unbalanced designs. Research Report
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