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Abstract

The paper considers the problem of homogeneity among groups by comparison

of genomic sequences. Some alternative procedures that attach less emphasis on the

likelihood approach, and more on alternative measures that deal with similar homo-

geneity problems are considered here. On this approach, a one-sided hypothesis test is

considered and the classical ANOVA decomposition can be directly adapted to sam-

ple measures based on the Hamming distance, without necessarily going through their

second moments. Some results of U-statistics theory will be useful for the decomposi-

tion of the test statistic and to find its asymptotic distribution. An application of this

test with real data is shown and the p-value of the test statistic is found via bootstrap

resampling.
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1 Introduction

Most problems in computational sequence analysis (CSA) are essentially statistical.

Stochastic evolutionary forces act on genomes. In genomic sequence analysis, typically,

we encounter data on a large number (K) of positions or sites, and in each position, we

have a purely qualitative (nucleotides or amino acid labels) categorical response with 4

to 20 categories depending on the DNA or protein sequence. The spatial (functional as

well as stochastic) dependence (or association) patterns of these sites may not be known,

nor can they be taken to be stochastically independent. Also, regular and nearly identical

structures of the DNA solicitate statistical appraisal based on other variational properties

which exhibit more statistical variation and information too.

In this high-dimensional qualitative response setup, it is difficult to incorporate stan-

dard (discrete or continuous) multivariate analysis tools, in a parametric formulation (as

the number of associated parameters may be exceedingly large and the underlying model

may not be that well specified or anticipated).

If we restrict ourselves to a single site, in most cases there is little statistical in-

formation. In a multiple site context, we need to consider high-dimensional qualitative

categorical data models trying to preserve intersite dependence as much as possible, and

then to proceed to CSA statistical appraisals.

Both parametric and nonparametric procedures for categorical data tests are available.

Some attack the problem parametrically on a gene level context (Chernoff and Lander,

1995; Chernoff, 1993). We consider here procedures that attach less emphasis on the like-

lihood approach, and more on alternative measures that deal with homogeneity problems

of nucleotide/amino acid distributions. We may refer to Pinheiro et al. (2000, 2001) for

some related work.

The forementioned works, although different in their paradigms and their level of

analysis (gene vs nucleotide/amino acid), have a common ground. Both situations deal

with single vs multiple sources of variation. For instance, in (Chernoff and Lander, 1995),

hypotheses concern the existence of genetic markers. In Pinheiro et al. (2000, 2001),

one tests homogeneity of nucleotide distribution among groups. Both solutions depend

heavily on asymptotic testing. Moreover, the discrete nature of each problem results in

mixture-type distributions.
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On Section 2, we present the problem and motivate the use of Hamming distance in

its solution. Avoiding second moment considerations, a decomposition of the within and

in between groups is proposed and used in a one-sided hypothesis test. On Section 3 we

review some results of U-statistics theory which will be useful for the decomposition of our

test statistic and to find the asymptotic distribution of the statistic presented on Section

4. Finally, on Section 5 an application of this test with real data is presented and the

p-value of the test statistic is found via bootstrap resampling.

2 Some nonparametrics and the Hamming Distance as a

measure of diversity

Consider a general CSA with K sites, each one having a categorical response with

C(≥ 2) qualitative categories, indexed as 1, . . . , C. For the ith sequence, let Xi =

(Xi1, . . . , XiK)′ be a random vector of responses where Xik denotes the category outcome

c(= 1, . . . , C) at site k(= 1, . . . , K). Recalling that these sites may not be stochasti-

cally independent, we need to have a measure of divergence which takes into account the

inter-site stochastic dependence to a certain extent. The primary motivation for using a

diversity measure stems from the fact that HIV or some other retrovirus have the ability

to have higher mutation rates which can be traced with a diversity index, without going

through some likelihood formulations. With that in mind, we define the Hamming distance

between a pair (i, i′) of sequences as

Dii′ =
1

K

K
∑

k=1

II(Xik 6= Xi′k), (1)

so that Dii′ is the proportion of sites where Xi and Xi′ do not match. Since the K

coordinate indicator functions are not necessarily independent, this measure attempts to

take into account their dependence, albeit in a symmetric manner. It is easy to see that

the expected value of Dii′ is the average (over the K positions) Gini-Simpson diversity

indexes (Gini, 1912), which we denote by H.

E(Dii′) =
1

K

K
∑

k=1

P (Xik 6= Xi′k) =
1

K

K
∑

k=1

P (Xik = xik, Xi′k 6= xik)
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=
1

K

K
∑

k=1

C
∑

c=1

πkc(1 − πkc) = 1 − 1

K

K
∑

k=1

C
∑

c=1

π2
kc = H

where πkc is the probability of being in category c at position k.

It is also possible to employ other measures of diversity which have nonparametric

flavor; for details, we refer to Pinheiro et al. (2000).

It may be remarked that an optimal nonparametric estimator of H is the Hoeffding

(1948) U -statistic (corresponding to the kernel Dij of degree 2):

D̄n =

(

n

2

)−1
∑

1≤i<j≤n

Dij . (2)

This U -statistic formulation enables us to use conventional statistical tools for testing ho-

mogeneity of the H for different groups. In conventional way of using ANOVA procedures

based on U -statistics, such tests for homogeneity of the H for the different groups were

considered by Pinheiro et al. (2000, 2001).

Pinheiro et al. (2001) defined the average distance within a group as

D̄gg =

(

ng

2

)−1
1

K

∑

1≤i<j≤ng

K
∑

k=1

II(Xg
ik 6= Xg

jk)

which is a U-statistic of degree 2 (Lee, 1990). Therefore it is an unbiased estimator of the

population average distance within group g, say Hgg.

Hgg = E(D̄gg) =
2

ng(ng − 1)

∑

1≤i<j≤ng

1

K

K
∑

k=1

C
∑

c=1

πkgc(1 − πkgc)

= 1 − 1

K

K
∑

k=1

C
∑

c=1

π2
kgc

The average distance between groups g and g′ is

D̄gg′ =
1

ngng′

ng
∑

i=1

ng′
∑

j=1

1

K

K
∑

k=1

II(Xg
ik 6= Xg′

jk)

which is a two-sample U-statistic of degree (1,1) (Hoeffding, 1948; Puri and Sen, 1971;

Lee, 1990) and therefore, it is an unbiased estimator of the population average distance
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between groups g and g′, say Hgg′ .

Hgg′ = E(D̄gg′) =
1

ngng′

ng
∑

i=1

ng′
∑

j=1

1

K

K
∑

k=1

C
∑

c=1

πkgc(1 − πkg′c)

= 1 − 1

K

K
∑

k=1

C
∑

c=1

πkgcπkg′c

Note that

πkgcπkg′c ≤
1

2
(π2

kgc + π2
kg′c) (3)

Therefore,

Hgg′ ≥ 1 − 1

2

1

K

K
∑

k=1

C
∑

c=1

(π2
kgc + π2

kg′c)

=
1

2

[

1 − 1

K

K
∑

k=1

C
∑

c=1

π2
kgc + 1 − 1

K

K
∑

k=1

C
∑

c=1

π2
kg′c

]

=
1

2

[

Hgg + Hg′g′
]

(4)

Let wgg′ , g, g′ = 1, . . . , G, be a set of nonnegative weights such that
G

∑

g=1

wgg′ = 1.

Also, let wo
g =

G
∑

g=1

wgg′ and w⋆
g = wo

g − wgg =
G

∑

g=1( 6=g′)

wgg′ , g = 1, . . . , G. Thus, we have

G
∑

g=1

wo
g = 1 and

G
∑

g 6=g′=1

wgg′ =
G

∑

g=1

w⋆
g = 1 −

G
∑

g=1

wgg.

Then, it readily follows from (4) that

∑G
g 6=g′=1 wgg′Hgg′
∑G

g 6=g′=1 wgg′
≥

∑G
g=1 w⋆

gHgg
∑G

g=1 w⋆
g

. (5)

The RHS of (5) represents a ”within group” measure, while the LHS is a ”between group”

one; both being nonnegative. This suggests that the classical ANOVA decomposition can

be directly adapted to the sample measures D̄gg′ , 1 ≤ g, g′ ≤ G, without necessarily going

through their second moments (as done in Pinheiro et al, 2001). Motivated by this feature,
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here we pursue the ANOVA decomposition on D̄gg′ , and proceed as follows.

D̄(o)
n =

(

n

2

)−1




G
∑

g=1

(

ng

2

)

D̄gg +
∑

1≤g<g′≤G

ngng′D̄g,g′



 (6)

which is a linear combination of U-statistics. D̄
(o)
n is the overall distance or the Hamming

distance for the pooled sample of the G groups as a combined set of n =
G

∑

g=1

ng sequences.

Note that we can write

D̄(o)
n =

∑

g 6=g′

ngng′

n(n − 1)
D̄gg′ +

G
∑

g=1

[

ng

n
− ng

n
+

n2
g

n(n − 1)
− ng

n(n − 1)

]

D̄gg

=
G

∑

g=1

ng

n
D̄gg +

∑

g 6=g′

ngng′

n(n − 1)
D̄gg′ −

G
∑

g=1

ng(n − ng)

n(n − 1)
D̄gg

= Dn(W ) + Dn(B)

where

Dn(W ) =
G

∑

g=1

ng

n
D̄gg (7)

and

Dn(B) =
∑

g 6=g′

ngng′

n(n − 1)
D̄gg′ −

G
∑

g=1

ng(n − ng)

n(n − 1)
D̄gg

=
1

n(n − 1)







G−1
∑

g=1

G
∑

g′=g+1

ngng′(2D̄gg′ − D̄gg − D̄g′g′)







(8)

E(D̄(o)
n ) =

G
∑

g=1

ng

n
Hgg +

∑

g 6=g′

ngng′

n(n − 1)
Hgg′ −

G
∑

g=1

ng(n − ng)

n(n − 1)
Hgg

In order to test the hypothesis of homogeneity of H for differente groups, based on

the results given in (3) and (4) we can write the hypothesis

H0 : 2Hgg′ = Hgg + Hg′g′ ,∀g 6= g′

H1 : 2Hgg′ > Hgg + Hg′g′ (9)
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Under the null hypothesis described in (9), it is easy to see that E(Dn(B)) = 0 and also

E0(D
(o)
n ) =

G
∑

g=1

ng

n
Hgg +

∑

g 6=g′

ngng′

n(n − 1)

(Hgg + Hg′g′

2

)

−
G

∑

g=1

ng(n − ng)

n(n − 1)
Hgg

=
G

∑

g=1

ng

n
Hgg = E(Dn(W ))

Therefore, we can define Dn(B), described in (8) as our test statistic.

3 U-statistics Theory Results

Using U-statistic theory we know that if F denotes the distribution function of Xi

and Um is a U-statistic of degree m, computed from a sample of size n, with kernel

φ(X1, . . . , Xm) and E(Um) = θ(F ) = θ.

Um ≡ U(X1, . . . , Xn) =

(

n

m

)−1
∑

1≤i1<···<im≤n

φ(Xi1 , . . . , Xim), n ≥ m (10)

where θ(F ) = EF {φ(X1, . . . , Xm)} =

∫

. . .

∫

φ(x1, . . . , xm) dF (x1) . . . dF (xm)

Let

Ψc(x1, . . . , xc) ≡ E{φ(x1, . . . , xc, Xc+1, . . . , Xm)} (11)

The function Ψc has the following properties (Lee, 1990, p. 11):

(i) Ψc(x1, . . . , xc) = E{Ψd(x1, . . . , xc, Xc+1, . . . , Xd)} for 1 ≤ c < d ≤ m,

(ii) E{Ψc(x1, . . . , xc)} = E{φ(X1, . . . , Xm)}.

Fn(x) is the empirical distribution function (d.f.)

Fn(x) =
1

n

n
∑

i=1

ǫ(x − Xi) x ∈ IRp, n ≥ 1

with ǫ(u) being 1 if all p coordinates of u are nonnegative and 0 otherwise.

We may rewrite (10) as

Um = n−[m]
∑

1≤i1 6=...6=im≤n

∫

IRpm
. . .

∫

φ(x1, . . . , xm)
m
∏

j=1

d(ǫ(xj − Xij )), (12)
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where n−[m] = (n[m])−1 = {n . . . (n − m + 1)}−1.

Writing d(ǫ(xj − Xij )) = dF (xj) + d[ǫ(xj − Xij ) − F (xj)], 1 ≤ j ≤ m, we obtain

Um = θ(F ) +
m

∑

h=1

(

m

h

)

Um
h , n ≥ m (13)

where

Um
h = n−[h]

∑

1≤i1 6=···6=ih≤n

∫

IRph
· · ·

∫

Ψh(x1, . . . , xh)
h

∏

j=1

d[ǫ(xj − Xij ) − F (xj)],

for 1 ≤ h ≤ m.

Further, if we write

Ψ◦
h(x1, . . . , xh) = Ψh(x1, . . . , xh) −

h
∑

j=1

Ψh−1(x1, . . . , xj−1, xj+1, . . . , xh)

+ · · · + (−1)hθ(F ), ∀ (x1, . . . , xh) ∈ IRph,

for 1 ≤ h ≤ m, we obtain

Um
h =

(

n

h

)−1
∑

1≤i1<···<ih≤n

Ψ◦
h(Xi1 , . . . , Xih), 1 ≤ h ≤ m (14)

and the Um
h are themselves U-statistics.

A U-statistic of degree m can be decomposed as

Um = θ(F ) +
m

n

n
∑

i=1

[Ψ1(Xi) − θ(F )] + Op(n
−1) (15)

The decomposition for a two-sample U-statistic of degree (m1, m2) can be developed sim-

ilarly to the one-sample U-statistic as

U (m1,m2) = θ(F) +
m1

n1

n1
∑

i=1

[Ψ10(Xi) − θ(F)] +
m2

n2

n2
∑

i=1

[Ψ01(Yi) − θ(F)]

+ Op(n
−1
0 ) (16)

where n0 = min(n1, n2).
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Note that in our case

Ψ1(x
g
i ) = 1 −

C
∑

c=1

π2
cgk = Hgg

Ψ2(x
g
i ,x

g
j ) = II(Xg

ik 6= Xg
jk)

Ψ10(x
g
i ) = 1 −

C
∑

c=1

πcgkπcg′k = Hgg′

Ψ01(x
g′

i ) = 1 −
C

∑

c=1

πcg′kπcgk = Hgg′

Ψ11(x
g′

i ,xg
i ) = II(Xg

ik 6= Xg′

jk)

Since D̄gg′ is a two-sample U-statistic of degree (1,1) and D̄gg and D̄g′g′ are U-statistics

of degree 1 we can decompose them as

D̄gg′ = Hgg′ +
1

ng

ng
∑

i=1

K
∑

k=1

1

K

{

[1 − Pg′(x
g
ik)] −Hgg′

}

+
1

ng′

ng′
∑

j=1

K
∑

k=1

1

K

{

[1 − Pg(x
g′

jk)] −Hgg′

}

+
1

ngng′

ng
∑

i=1

ng′
∑

j=1

K
∑

k=1

1

K

{

II(Xg
ik 6= Xg′

jk) − [1 − Pg′(x
g
ik)]

− [1 − Pg(x
g′

jk)] + Hgg′

}

D̄gg = Hgg +
2

ng

ng
∑

i=1

K
∑

k=1

1

K

{

[1 − Pg(x
g
ik)] −Hgg

}

+
1

ng(ng − 1)

∑

1≤i<j≤ng

K
∑

k=1

1

K

{

II(Xg
ik 6= Xg

jk) − [1 − Pg(x
g
ik)]

− [1 − Pg(x
g
jk)] + Hgg

}

Therefore,

Dn(B) =
1

n(n − 1)







G−1
∑

g=1

G
∑

g′=g+1

K
∑

k=1

1

K
ngng′

[

2Hgg′ −Hgg −Hg′g′
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+
2

ng

ng
∑

i=1

(

Pg(x
g
ik) − Pg′(x

g
ik) −Hgg′ + Hgg

)

+
2

ng′

ng′
∑

i=1

(

Pg′(x
g′

jk) − Pg(x
g′

jk) −Hgg′ + Hg′g′

)

+
2

ngng′

ng
∑

i=1

ng′
∑

j=1

(

II(Xg
ik 6= Xg′

jk) − (1 − Pg′(x
g
ik))

− (1 − Pg(x
g′

jk)) + Hgg′

)

− 2

ng(ng − 1)

∑

1≤i<j≤ng

(

II(Xg
ik 6= Xg

jk) − (1 − Pg(x
g
ik))

− (1 − Pg(x
g
jk)) + Hgg

)

− 2

ng′(ng′ − 1)

∑

1≤i<j≤ng′

(

II(Xg′

ik 6= Xg′

jk) − (1 − Pg′(x
g′

ik))

− (1 − Pg′(x
g′

jk)) + Hg′g′

) ]}

And under H0,

Dn(B) =
1

n(n − 1)

{

G−1
∑

g=1

G
∑

g′=g+1

K
∑

k=1

1

K
ngng′





2

ngng′

ng
∑

i=1

ng′
∑

j=1

(

II(Xg
ik 6= Xg′

jk)

− (1 − Pg′(x
g
ik)) − (1 − Pg(x

g′

jk))
)

− 2

ng(ng − 1)

∑

1≤i<j≤ng

(

II(Xg
ik 6= Xg

jk) − (1 − Pg(x
g
ik)) − (1 − Pg(x

g
jk))

)

− 2

ng′(ng′ − 1)

∑

1≤i<j≤ng′

(

II(Xg′

ik 6= Xg′

jk) − (1 − Pg′(x
g′

ik))

− (1 − Pg′(x
g′

jk))
)] }

4 Decomposition of U-statistics and Test Statistic

Using the decompositions of U-statistics given in (12) we can write

D̄gg′ =

∫ ∫

φ(x,y)dFng(x)dFng′
(y)

=

∫ ∫

φ(x,y)d[Fg(x) + (Fng(x) − Fg(x))]d[Fg′(y) + (Fng′
(y) − Fg′(y))]
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= Hgg′ +

∫

[1 − Pg(y)]d[Fng′
(y) − Fg′(y)]

+

∫

[1 − Pg′(x)]d[Fng(x) − Fg(x))]

+

∫ ∫

φ(x,y)d[Fng(x) − Fg(x))]d[Fng′
(y) − Fg′(y)]

and similarly,

D̄gg = Hgg +

∫

[1 − Pg(y)]d[Fng(y) − Fg(y)]

+

∫

[1 − Pg(x)]d[Fng(x) − Fg(x)]

+

∫ ∫

φ(x,y)d[Fng(x) − Fg(x))]d[Fng(y) − Fg(y)]

Now, let Tn = 2D̄gg′ − D̄gg − D̄g′g′ . Then, under H0,

Tn =

∫ ∫

φ(x,y)d[Fng′
(y) − Fng(y)]d[Fng(x) − Fng′

(x)]

−
∫ ∫

φ(x,y)d[Fng′
(y) − Fng(y)]d[Fg(x) − Fg′(x)]

+

∫ ∫

φ(x,y)d[Fng(x) − Fg(x))]d[Fg(y) − Fg′(y)]

−
∫ ∫

φ(x,y)d[Fng′
(y) − Fg′(y))]d[Fg(x) − Fg′(x)]

Note that
∫ ∫

φ(x,y)d[Fng′
(y) − Fng(y)]d[Fng(x) − Fng′

(x)] =

=
1

K

K
∑

k=1

C
∑

c=1

D
∑

d=1

(

nkg′c

ng′
− nkgc

ng

) (

nkgd

ng
− nkg′d

ng′

)

− 1

K

K
∑

k=1

C
∑

c=1

(

nkg′c

ng′
− nkgc

ng

) (

nkgc

ng
− nkg′c

ng′

)

=
1

K

K
∑

k=1

C
∑

c=1

(

nkg′c

ng′
− nkgc

ng

)2

Analogously,
∫ ∫

φ(x,y)d[Fng′
(y) − Fng(y)]d[Fg(x) − Fg′(x)] =

= − 1

K

K
∑

k=1

C
∑

c=1

(

nkg′c

ng′
− nkgc

ng

)

(

πkgc − πkg′c

)

;
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∫ ∫

φ(x,y)d[Fng(x) − Fg(x))]d[Fg(y) − Fg′(y)] =

=
1

K

K
∑

k=1

C
∑

c=1

nkgc

ng
(πkg′c − πkgc) −Hgg + Hgg′

and
∫ ∫

φ(x,y)d[Fng′
(y) − Fg′(y))]d[Fg(x) − Fg′(x)] =

=
1

K

K
∑

k=1

C
∑

c=1

nkg′c

ng′
(πkg′c − πkgc) −Hgg′ + Hg′g′

Also, note that under H0,

1

K

K
∑

k=1

C
∑

c=1

(πkg′c − πkgc)
2 = 2Hgg′ −Hgg −Hg′g′ = 0 ⇒

⇒ πkg′c − πkgc = 0 ⇒ πkg′c = πkgc ∀ c = 1, . . . C (17)

Therefore, under H0,

Tn =
1

K

K
∑

k=1

C
∑

c=1

(

nkg′c

ng′
− πkg′c

)2

+
1

K

K
∑

k=1

C
∑

c=1

(

nkgc

ng
− πkgc

)2

− 2
1

K

K
∑

k=1

C
∑

c=1

(

nkg′c

ng′
− πkg′c

) (

nkgc

ng
− πkgc

)

By (8), we have

Dn(B) =
1

n(n − 1)

1

K

K
∑

k=1

G
∑

g=1

(n − ng)ng

C
∑

c=1

(

nkgc

ng
− πkgc

)2

− 1

n(n − 1)

1

K

K
∑

k=1

∑

g 6=g′

ngng′

C
∑

c=1

(

nkg′c

ng′
− πkg′c

) (

nkgc

ng
− πkgc

)

=
1

n(n − 1)

1

K

K
∑

k=1







G
∑

g=1

(n − ng)Z
′
kgZkg −

∑

g 6=g′

n1/2
g n

1/2
g′ Z′

kg′Zkg







where Zkg =
√

ng

[(

nkg1

ng
− πkg1

)

, . . . ,
(

nkgC

ng
− πkgC

)]′
and

Zkg′ =
√

ng′

[(

nkg′1

ng′
− πkg′1

)

, . . . ,
(

nkg′C

ng′
− πkg′C

)]′
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It is easy to see that as ng → ∞,

Zkg
D−→ N(0,Σkg)

where Σkg = Diag(πkg) − πkgπ
′
kg is a C × C matrix and

πkg = (πkg1, . . . , πkgC)′.

Also, since Zkg is asymptotically N(0,Σkg),

Z′
kgZkg ≈

C
∑

i=1

λi(χ
2
1)i, (18)

where λi are the characteristic roots of Σkg. In other words, the asymptotic distribution

of Z′
kgZkg is a linear combination of independent χ2 random variables with 1 degree of

freedom.

Further, we can write Zk = (Z′
k1,Z

′
k2, . . . ,Z

′
kG)′ as a GC×1 vector and Z = (Z′

1,Z2, . . . ,Z
′
K)′ =

(Z′
11, . . . ,Z

′
1G,Z′

21, . . . ,Z
′
2G, . . . ,Z′

K1, . . . ,Z
′
KG) as a CGK × 1 vector. Since the positions

and groups are assumed to be independent,

Zk
D−→ N(0,Σk) and Z

D−→ N(0,Σ),

where Σk = Σkg ⊗ IG and Σ = Σkg ⊗ IKG are block diagonal matrices of dimensions

CG × CG and CGK × CGK, respectively.

Alternatively, we can write

(n − 1)Dn(B) =
1

K

K
∑

k=1







G
∑

g=1

(

1 − ng

n

)

Z′
kgZkg −

∑

g 6=g′

√
ng

√
ng′

n
Z′

kg′Zkg







=
1

K

K
∑

k=1

Z′
kAnZk.

Note that An → A = [Aij ], where

Aij =

{

(1 − pi) IC , i = j

−√
pipj IC , i 6= j

and ni/n → pi, i = 1, 2, . . . , G.
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Then,

(n − 1)Dn(B) −→ 1

K

K
∑

k=1

Z′
kAZk ≈ 1

K

K
∑

k=1

CG
∑

i=1

λki

(

χ2
1

)

ki

where λki are the characteristic roots of AΣk. In other words, Z′
kAZk has as asymp-

totic distribution a linear combination of chi-square random variables with one degree of

freedom.

In cases where the asymptotic results are not applicable, we can generate the empirical

distribution of the test statistic Dn(B) by resampling techniques such as the bootstrap.

The empirical distribution can be generated under the null hypothesis of homogeneity

among groups and then a p-value can be computed based on this distribution.

5 Application

The data set consists of mitochondrial sequences on the nucleotide level from several

organisms. All the sequences can be downloaded from the address

http://www.mitomap.org/MITOMAP/euk mitos.html. The groups of sequences were de-

fined according to taxonomic characteristics of the organisms. The proposed nonparamet-

ric test performance is illustrated on a comparison between Homo sapiens and a group of

other primates, which include Gorillas, Chimpanzees, Orangutan and Gibbon specimens.

The original data (called Case 1) is composed of 87 mitochondrial sequences from

the Catarrhini infraorder lineage, of which 58 are from the species Homo sapiens (called

Group 1) and 29 sequences of other primates (called Group 2). From these 29, 28 are

from the Hominidae family and one from the Hylobatidae family. The sequences were

aligned using BLAST2 (see www.ncbi.nlm.nih.gov) to a total of 438 positions located at

the NADH dehydrogenase subunit 5 (ND5) gene. The null hypothesis of interest is that

there is homogeneity between group 1 and group 2, i.e., H0 : 2H12 = H11 + H22. The

test statistic Dn(B) is computed for the data set and its p-value is found via bootstrap

resampling. We use two resample sizes, 2000 and 10000 for which little difference was

found.

As a measure of scale, Dn(B) is also computed on an artificially designed data set

as follows. The original 58 sequences from group 1 were regrouped randomly into two

14



subgroups of 29 sequences each. That procedure was performed for each resample size.

They are respectively called Case 2 and Case 3 for 2000 and 10000 bootstraps.

Table 1 shows the observed values of D̄
(o)
n , Dn(B) and Dn(W ) for cases 1,2 and 3.

Bootstrap p-values for Case 1 are zero for either 2000 or 10000 repetitions. Bootstrap

p-values for Cases 2 and 3 are, respectively, 0.5615 and 0.6863.

Table 1: Observed values of the test statistics
Comparisons D̄

(o)
n Dn(B) Dn(W )

Case 1 0.0874 0.0348 0.0527

Case 2 0.0266 −1.183 × 10−5 0.0267

Case 3 0.0266 −2.308 × 10−5 0.0267

On Table 2 we show the quartiles of the empirical distributions. One can notice

that Dn(B) values are extremely small compared to the overall distances D̄
(o)
n in Case

1. Moreover, for all cases their bootstrap distributions are concentrated on the negative

values which can be interpreted as purely random observations of very small numbers.

Table 2: Bootstrap quartiles of the empirical distributions

Cases (B) Dn(B) (×10−6) D̄
(o)
n Bootstrap

Q1 Q2 Q3 Q1 Q3 p-value

Case 1 (2000) -488.8 -180.0 310.0 0.0746 0.0969 < 1/2000

Case 1 (10000) -493.2 -197.5 295.4 0.0745 0.0962 < 1/10000

Case 2 (2000) -27.37 -7.152 27.87 0.0029 0.0490 0.5615

Case 3 (10000) -28.21 -9.471 23.28 0.0030 0.0491 0.6863

By looking at these results, one concludes that the test detects differences between

the Homo sapiens and other primates on the molecular level. Also, the null hypotheses

of homogeneity between the two pseudo-groups of Homo sapiens cannot be rejected, since

both p-values are greater than 0.5.

On the necessary resample size, some comments are in hand. For Case 1 its group

difference is so strong that both p-values are zero (actually, < 1/B). For Cases 2 and 3 p-

15



values are both very big (0.5615 for B = 2000 and 0.6863 for B = 10000) and they support

the arbitrary choice of grouping. Moreover, a larger p-value for B = 10000 strengths the

null hypothesis. Looking at Figure 1, one can also see that there is not much difference

between the empirical distributions generated by 2000 or 10000 bootstraps for Case 1.

Those results show no need of large resampling for such an example.
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Figure 1: Empirical distributions under the null hypothesis of homogeneity between Homo

sapiens and other primates.
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