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Abstract

We use numerical simulations to build theoretical estimates for some ellip-
tic integrals. The procedures explained herein can be generalized to a larger
class of integrals and transcendental functions.

1. Introduction

Elliptic integrals come out naturally in Complex Analysis, particularly in
the Theory of Riemann Surfaces. Special functions can be used in order to
handle these integrals, but they succeed only for the most particular cases. A
large reference of handbooks and tables of integrals provide prompt equali-
ties, which saves a valuable amount of time. Nevertheless, no literature can be
complete in this subject, and it happens frequently that one finds no formal
way to evaluate an integral, or a transcendental function.

The variety of such functions and integrals is infinitely large. Therefore,
cases not included in the literature are handled with the help of numerical
computation. Nevertheless, numerical integration of a function turns out to
be reliable if the function satisfies some special conditions, which depend on
the integration method. For instance, the Simpson integration method on a
closed real interval [a, b], equally partitioned by an even natural n, produces
an absolute error not bigger than (b − a)5M/n4, where M := max |f (4)|/180.
So, the error depends on the fourth derivative of the integrand in [a, b]. In

1



general, one does not compute this error.

Most of times, the integral is considered to be approaching its actual value
if an increase in n produces a small change in the previous result. But this
procedure is not reliable, as illustrated in Figure 1. In some cases, the function
is considered to be “well behaved” if a picture of its graph does not present
too much oscillations. Of course, this concept is imprecise and subject to a
particular sample of points.

Figure 1: An increase in n (dashed lines) with no difference in the area.

This report has the purpose of illustrating how to prove theoretical esti-
mates of elliptic integrals with the help of computer graphs. The numerical
data are used to decide the way we direct our formal demonstrations. This pro-
cedure can be used for a larger class of integrals and transcendental functions.
Each specific case must be handled differently, but the method presented here
is structurally general.

2. First Approach

We shall begin with an example with practical application in the solu-
tion of period problems for minimal surfaces (see [3,p.70-108]). Any complete
minimal surface with finite total curvature in a flat space is conformal to a
compact Riemann surface minus a finite set of points (see [1] and [2]). Because
of that, elliptic integrals come out naturally in the study of these surfaces.
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The following result is part of the existence proof of triply periodic mini-
mal surfaces which cannot be constructed by the Conjugate Plateau Method

(see [3,p.70-108]):

Proposition 2.1. Let λ be a real variable, 0 < λ < 1, and consider the

variable y such that 2λ − 1 < y < λ. Define the functions X(λ, y) :=
λ−1(1 + 2yλ − y2) and 0 < x(λ, y) < 1 such that x + x−1 = X. Hence, for

a certain positive ε < 0.4 one has that every λ ∈ (0; 0.6 + ε) admits a unique

yλ ∈ (2λ − 1, λ) such that, if Xλ is the corresponding value of x = x(λ, y),
then

∫ 1

0

(t + yλ)dt
√

(1 − t2)(t2 + Xλt + 1)(t + λ)
=

∫ λ

0

(t − yλ)dt
√

(1 − t2)(t2 − Xλt + 1)(λ − t)
.

Proof:

We shall simplify notations by defining

II1(λ, y) :=

∫ 1

0

(t + yλ)dt
√

(1 − t2)(t2 + Xλt + 1)(t + λ)

and

II2(λ, y) :=

∫ λ

0

(t − yλ)dt
√

(1 − t2)(t2 − Xλt + 1)(λ − t)
.

Both are continuous functions defined on (0, 1) × (2λ − 1, λ). We use the
intermediate value theorem to prove Proposition 2.1. We do this in three steps:

Step I. II1(λ, λ) > II2(λ, λ):

This is trivial because y = λ implies x = λ. Then

II1(λ, λ) =

∫ 1

0

(t + λ)dt

(t + λ)
√

(t + λ−1)(1 − t2)

and

II2(λ, λ) = −
∫ λ

0

dt
√

(λ−1 − t)(1 − t2)
.

It is clear that II1(λ, λ) is positive and II2(λ, λ) is negative for any λ in
the interval (0, 1).

3



Step II. For 0 < λ ≤ 0.6, one has II1(λ, 2λ − 1) < II2(λ, 2λ − 1).

To simplify notations, let us call Ij = Ij(λ) := IIj(λ, 2λ − 1), j = 1, 2. We
must show that, for 0 < λ ≤ 0.6:

I2 =

∫ λ

0

(t − 2λ + 1)dt

(1 − t)
√

(1 − t2)(λ − t)
> I1 =

∫ 1

0

(t + 2λ − 1)dt

(t + 1)
√

(1 − t2)(t + λ)
.

Since it is too complicated to get the exact values of the integrals, we are
going to make use of the following strategy: first we make some changes of
variables in such a way that the integrands will turn out to be bounded and
defined on the same interval of integration. Then, we compare these new in-
tegrands. If an inequality holds for them on the whole interval of integration,
them the same inequality holds for their integral values. Nevertheless, the
change of variables can lead to integrands whose expressions are more com-
plicated to deal with. For this reason we are going to simplify the comparison
by means of some additional inequalities. However, this will lead to a certain
loss of information. For example, the inequality

1√
a − b

>
1√
a

+
b

2a3/2
(1)

holds for every a, b ∈ IR with a > b > 0 (the right-hand side corresponds to
the first two terms of the Taylor series of the left-hand side). This inequal-
ity takes part in our proof and is used in such a way that we get another
integrand, much simpler to integrate than the former one. Of course, with
this we lose information about the exact value of the former integral, but
this is always done in such a way that we minimize this loss. That is, we
studied some graphic comparisons and they indicate a good approximation
between the integrands. Examples of such comparisons will be shown along
our demonstration of this second step to prove Proposition 2.1.

We begin with by putting the two integrands on the same interval and
making them bounded. For I1 the substitution t = 1 − u2 leads to

I1 = 2

∫ 1

0

(2λ − u2)du

(2 − u2)3/2(1 + λ − u2)1/2
(2)

and for I2 we have that t = λ − λu2 implies

I2 = 2

∫ 1

0

√
λ(1 − λ − λu2)du

(1 − t(u))
√

1 − t2(u)
=

2√
λ

∫ 1

0

(1 − λ − λu2)du

(1 − λ + λu2)
√

λ−2 − (1 − u2)2
.
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Now we use (1) for the integrand of I2, namely

1
√

λ−2 − (1 − u2)2
> λ +

λ3

2
(1 − u2)2, ∀ u, λ ∈ (0, 1). (3)

Figure 2(b) shows how close both sides of the Inequality (3) are. The
function on the left-hand side of this inequality is plotted in bold line style
and the function on the right-hand side is plotted in dashed line style. Notice
that there is practically no difference for both sides of (3) if λ ≤ 0.3.
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Figure 2: (a) Graphic comparisons for the integrand of (2); (b) graphic
comparisons for (3).

Before applying (3) to the integrand of I2 we remark that this integrand
is not always positive for λ > 0.5 and u ∈ (0, 1). It changes sign at u =√

λ−1 − 1, and because of this we cannot directly use (3). Nevertheless, for
λ > 0.5 we introduce the factor

S(λ) =
1

2

(

√

λ

1 − λ
− λ(3 − 4λ + 4λ2)

)

,

which is just the difference from the left- to the right-hand side of (3), calcu-
lated at u =

√
λ−1 − 1. Thus, we obtain:

1
√

λ−2 − (1 − u2)2
≥ λ + λ3

2 (1 − u2)2 + S(λ), u ∈ [0,
√

λ−1 − 1],

1
√

λ−2 − (1 − u2)2
≤ λ + λ3

2 (1 − u2)2 + S(λ), u ∈ [
√

λ−1 − 1, 1].

(4)
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To prove Inequalities (4), one can verify that the U -derivative of the func-

tion 1
√

λ−2 − U
− λ3

2 U is always positive for every (λ,U) ∈ (0, 1) × (0, 1).

Now we are ready to use the above inequalities. From (3) it follows

I2 >
√

λ

∫ 1

0

1 − λ − λu2

1 − λ + λu2
(2 + λ2(1 − u2)2)du = F (u)

∣

∣

∣

∣

u=1

u=0

, λ ∈ (0, 0.5], (5)

where

F (u) =
√

λ

(

(λ2 − 4)u +
2λu3

3
− λ2u5

5

)

+6
√

1 − λ arctan
u√

λ−1 − 1
.

And from (4) it follows

I2 > F (u)

∣

∣

∣

∣

u=1

u=0

+S2(λ), λ ∈ [0.5, 1), where (6)

S2(λ) =
2S(λ)

λ

(

−
√

λ + 2
√

1 − λ arctan

√

λ

1 − λ

)

.

As mentioned before, the factor S(λ) is the difference between the left- and
right-hand side of (3), calculated at u =

√
λ−1 − 1. Therefore, S(λ) is positive

for every u, λ ∈ (0, 1). Consequently, S2(λ) is also positive for λ ∈ (0.5, 0.8).
This means that (5) is in fact valid for λ ∈ (0, 0.8).

Although Inequality (6) gives us a better evaluation of I2, the term S2(λ)
is too complicated to deal with and numeric computations show that S2(λ) <
0.015 for λ ∈ (0.5, 0.8). For these reasons we are going to simplify our work and
use just Inequality (5) for λ ∈ (0, 0.8). At this point, we explicitly calculate
the integral on the right-hand side of (5). By taking F (1) − F (0) we reach:

I2 > 2
√

λ(
2λ2

5
+

λ

3
− 2) + 6

√
1 − λ arctan

√

λ

1 − λ
, λ ∈ (0, 0.8). (7)

For the other integral I1 we shall have a little bit more of work. Graphics
show that the function in the integrand of (2) is mostly negative for λ ∼= 0
and “almost” constant for λ ∼= 0.5 (see Figure 2(a)). For this second region it
is then reasonable to estimate the integrand of I1 from above by its maximum
in the interval (0,1). The following calculations show that just for a limited
range of λ we have a maximum in (0,1). Therefore we split the analysis of
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I1 in two parts. To simplify matters, take U = u2. Then we consider the
derivative with respect to U :

[

2λ − U

(2 − U)3/2(1 + λ − U)1/2

]′

=
E(U)

(2 − U)3(1 + λ − U)
(8)

where

E(U) = −(2 − U)3/2(1 + λ − U)1/2+

(λ − U
2 )

[

3(2 − U)1/2(1 + λ − U)1/2 +
(2 − U)3/2

(1 + λ − U)1/2

]

.
(9)

For E(U) to be zero on U ∈ (0, 1), we must have

U =
9λ − 1 ± (1 − λ)

√
33

4
.

But U ∈ (0, 1) implies U = [9λ − 1 − (1 − λ)
√

33]/4, and in this case we
must have

m :=
1 +

√
33

9 +
√

33
< λ < M :=

5 +
√

33

9 +
√

33
. (10)

Then, the comparison with the maximum will be useful from λ = m ∼=
0.457 to λ = M ∼= 0.729. To see that the zero-derivative really corresponds
to a maximum just calculate E(U). We obtain

E(1) =
1

2
√

λ
(6λ2 − 3λ − 1) and E(0) =

2√
2 + 2λ

(3λ2 + 3λ − 2).

Then, the derivative in (8) will be negative at U = 1 whenever E(1) is
negative and this occurs for λ varying from 0 until M = (3 +

√
33)/12. The

derivative in (8) will be positive at U = 0 whenever E(0) is positive and this
occurs for λ varying from m = (

√
33 − 3)/6 to 1. This means, for λ ≤ m the

maximum of the integrand (2) in [0,1] is always at U = 0, where the function
takes the value λ/

√
2 + 2λ. For λ inside the limits (10) we use the maximum

value, namely

2λ − U

(2 − U)3/2(1 + λ − U)1/2

∣

∣

∣

∣

U= 9λ−1−(1−λ)
√

33
4

=
A

1 − λ
, where (11)

A =
4(1 +

√
33)

(9 +
√

33)3/2(5 +
√

33)1/2
∼= 0.145.

Remark: The inequality A
1 − λ

≥ λ√
2 + 2λ

holds for every λ ∈ (0, 1).
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Now we are ready to make the final comparisons. Our problem is reduced
to the proof of the following two inequalities, with some eventual further
restriction of the λ-intervals where they are supposed to hold. For this reason,
we have made use of the above remark and settled m/2 as the lower value of
the λ-range for one of the inequalities. We then reduce our demonstration of
I2 > I1 to the proof of the following (recall (2), (7), (10) and (11)):

2
√

λ(
2λ2

5
+

λ

3
− 2) + 6

√
1 − λ arctan

√

λ

1 − λ
>

2λ√
2 + 2λ

, 0 < λ ≤ m,

and

2
√

λ(
2λ2

5
+

λ

3
− 2) + 6

√
1 − λ arctan

√

λ

1 − λ
>

2A

1 − λ
,

m

2
< λ < M.

These inequalities involve transcendental functions. To simplify this mat-
ter, we are going to use the three following results, numbered (12), (13) and
(14):

λ√
2 + 2λ

<
λ

2
[(1 −

√
2)λ +

√
2] for 0 < λ < 1. (12)

Inequality (12) is equivalent to a 2nd-degree polynomial inequality.

6
√

1 − λ arctan

√

λ

1 − λ
>

2
√

λ(3 − 4λ)

1 − λ
for 0 < λ < 0.5. (13)

Inequality (13) comes from the Taylor series: arctan τ = τ − τ3/3+ τ5/5−
..., which converges for τ ∈ (−1, 1). Take τ =

√

λ/(1 − λ) for λ ∈ (0, 0.5).

The following inequality considers λ ∈ [0.4, 0.65]. This is because we do
not expect I2 > I1 to hold for λ > 0.65 (see Figure 3).

6
√

1 − λ arctan

√

λ

1 − λ
>

√
λ(r − sλ) for 0.4 < λ < 0.65, (14)

where s ∼= 3.831 and r ∼= 6.564. Inequality (14) will be proved later.

By using (12), (13) and (14) we simplify our work and reduce once more
the demonstration of I2 > I1 to the proof of the following two inequalities:
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Figure 3: Numeric values for I1 and I2.

2(
2λ2

5
+

λ

3
− 2) +

2(3 − 4λ)

1 − λ
> (1 −

√
2)λ3/2 +

√
2λ1/2, 0 < λ ≤ m,

and

2
√

λ(
2λ2

5
+

λ

3
− 2) +

√
λ(r − sλ) >

2A

1 − λ
,

m

2
< λ ≤ M.

Rearranging the terms by decreasing powers of λ we get:

4
5λ3 +(

√
2−1)λ5/2 − 2

15λ2 +(1−2
√

2)λ3/2 + 10
3 λ+

√
2λ1/2 −2 < 0, λ ∈ (0,m),

and
4
5λ7/2 − (s + 2

15)λ5/2 + (r + s− 14
3 )λ3/2 + (4− r)λ1/2 + 2A < 0, λ ∈ (m/2,M).

By making the substitution Λ =
√

λ we get:

4

5
Λ6 +(

√
2−1)Λ5− 2

15
Λ4 +(1−2

√
2)Λ3 +

10

3
Λ2 +

√
2Λ−2 < 0, 0 < Λ ≤

√
m,

and

4

5
Λ7 − (s +

2

15
)Λ5 + (r + s− 14

3
)Λ3 + (4− r)Λ + 2A < 0,

√

m/2 < Λ <
√

M.

Thus, we have reduced our problem to the analysis of two polynomial in-
equalities in certain intervals. The first polynomial is negative at Λ = 0, posi-
tive at Λ = 1 and has positive derivative for Λ ∈ (0, 1). A way of proving this
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is to analyse separately the terms 4
5Λ6− 2

15Λ4 and (1−2
√

2)Λ3 + 10
3 Λ2 +

√
2Λ.

The positive derivative implies that the polynomial has a unique root Λ0 in
the interval (0, 1), and whenever we calculate the value of the polynomial at
a point Λ, we can say if Λ ≥ Λ0 or Λ ≤ Λ0. At Λ = 0.662 = 0.4356 the
polynomial takes a negative value (approximately -0.05), but at Λ =

√
m it

takes a positive one (approximately 0.023). Although this value is smaller
than m we can still make use of the second inequality. In any case, the only
conclusion we can take for now is that I1 < I2 for λ ∈ (0, 0.435].

The second polynomial is negative at Λ = 0.5, positive at Λ = 1 and its
derivative is always positive in the interval [0.5, 1]. A way of proving this is
to observe that the first derivative is a 3rd-degree polynomial in Λ2, which is
clearly negative for Λ ≤ 0, and has a unique real root. Since the derivative is
positive for Λ = 0.5, it will then be positive for any Λ ∈ [0.5,∞). Once again,
this implies that the second polynomial has a unique root Λ0 in the interval
[0.5, 1] and whenever we calculate the value of the polynomial at a point Λ we
can say if Λ ≥ Λ0 or Λ ≤ Λ0. At Λ0 =

√
0.6 = 0.7746 the polynomial takes a

negative value, which is approximately -0.005. Then, the inequality holds for
0.5 < Λ ≤ 0.7746, or equivalently, for 0.25 < λ ≤ 0.6. Our final conclusion is
that I1 < I2 for λ ∈ (0, 0.6 + ε), for some ε > 0. We show in the next section
that ε < 0.2. Graphic comparisons indicate that ε is small, namely ε ∼= 0.05
(see Figure 3).

To complete our proof, we outline the arguments for Inequality (14). We
want to analyse what happens for λ ∈ [0.4, 0.65]. So take the limit values
k =

√

0.4/(1 − 0.4) ∼= 0.817 and K =
√

0.65/(1 − 0.65) ∼= 1.363. Then, for
κ ∈ [k,K] we have

arctan κ

κ
≤ p(κ − k) + q (15)

where p = (κ−1 arctan κ)′|κ=k
∼= −0.292 and q = (κ−1 arctan κ)|κ=k

∼= 0.839.
To prove (15) just take the derivatives of arctan κ and κ(p(κ − k) + q) and
compare them for κ ∈ [k,K].

Now consider κ =
√

λ/(1 − λ), λ ∈ [0.4, 0.65]. We can write our primary
inequality as follows:

6
√

1 − λ arctan

√

λ

1 − λ
> 6

√
λ

[

p(

√

λ

1 − λ
− k) + q

]

=

6|p|
√

λ

(

−
√

λ

1 − λ
+ k + q/|p|

)

.
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Now we take a linear approximation of
√

λ/(1 − λ) for the required λ-
interval. It is

√

λ

1 − λ
≤ (b − a)

λ − 0.4

0.65 − 0.4
+ a

where a =
√

λ/(1 − λ)

∣

∣

∣

∣

λ=0.4

∼= 0.817 and b =
√

λ/(1 − λ)

∣

∣

∣

∣

λ=0.65

∼= 1.363.

This last inequality is easy to be proved: one reaches a 3rd-degree polyno-
mial equation with negative 2nd derivative. Since the functions on both sides
agree at the extremes, the inequality (in this case) must hold in the whole
interval. By joining the last two inequalities we finally get

6
√

1 − λ arctan

√

λ

1 − λ
>

√
λ(r − sλ), λ ∈ [0.4, 0.65],

where s = 24|p|(b−a) ∼= 3.831 and r = 6|p|(−1.6(a−b)−a+k+q/|p|) ∼= 6.564.

Step III. The solution of is unique.

This last step proves monotonicity and this is important in the study of
limit members of a continuous family of surfaces.

We find a yλ such that II1(λ, yλ) = II2(λ, yλ), where

II1(λ, y) :=

∫ 1

0

(t + y)dt
√

(1 − t2)(t2 + Xt + 1)(t + λ)
,

and

II2(λ, y) :=

∫ λ

0

(t − y)dt
√

(1 − t2)(t2 − Xt + 1)(λ − t)
.

The variable X is defined in (4) with y ∈ (2λ − 1, λ). For every fixed
λ ∈ (0, 1), denote Xy the derivative of X with respect to y:

Xy = 2

(

1 − y

λ

)

. (16)

Because of y < λ, from (16) it follows that Xy > 0. On one hand, for any
fixed t ∈ (0, 1) we can prove that the function

t + y√
t2 + Xt + 1

(17)
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is increasing if y varies from 2λ − 1 to λ. On the other hand, for any fixed
t ∈ (0, λ) we can prove that the function

t − y√
t2 − Xt + 1

(18)

is decreasing if y varies from 2λ− 1 to λ. Because of that, the integral values
II1 and II2 are increasing and decreasing, respectively, for this variation of
y. Then, we conclude that the solution of the period problem is unique. To
prove what was asserted about the function at (17), just verify that any of
the following steps is a consequence of the previous one.

(a) The y-derivative of
t + y

√

t2 + Xt + 1
is positive;

(b) t2 + Xt + 1 >

(

1 − y
λ

)

t(t + y), 0 < t < 1;

(c) X + 2 >

(

1 − y
λ

)

(1 + y);

(d) 1
λ

+ y > −1 − y
λ

;

(e) (2λ − 1)(1 + λ) > −1 − λ;

(f) 0 < λ.

To prove what was asserted about the function at (18), just verify that

t2 − Xt + 1 >

(

1 − y
λ

)

t(t − y), 0 < t < λ. This implies that the y-derivative

of
t − y

√

t2 − Xt + 1
is positive.

q.e.d.

The next section is devoted to the refinement of Proposition 2.1, in the
sense that we find an upper bound for λ. This will imply that ε < 0.2.

3. Second Approach

At Step III of the above demonstration we showed that, for every fixed λ ∈
(0, 1), the integral values II1(λ, y) and II2(λ, y) are increasing and decreasing
with y, respectively. Therefore,

II2(λ, y) < II2(λ, 2λ − 1) and II1(λ, 2λ − 1) < II1(λ, y).

To simplify notations, let us define Ij := IIj(λ, 2λ − 1), j = 1, 2. Hence,
the non-existence of solutions will be proved if we show that I2 < I1 for every
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λ > 0.8. The integrals I1 and I2 can be written as follows:

I1 = 2

∫ 1

0

(2λ − u2)du

(2 − u2)3/2(1 + λ − u2)1/2
(19)

and

I2 =

∫ λ

0

(t − 2λ + 1)dt

(1 − t)
√

(1 − t2)(λ − t)
=

2√
λ

∫ 1

0

(1 − λ − λu2)du

(1 − λ + λu2)
√

λ−2 − (1 − u2)2
.

(20)
We shall make use of the following proposition, which will be proved in

the next section:

Proposition 3.1. The integral I1(λ) is increasing with λ. For λ > 1
2 , the

integral I2(λ) is decreasing with λ.

We want to show that II1(λ, y) and II2(λ, y) cannot be equal for λ > 0.8.
By using Proposition 3.1, it is sufficient to prove that I2(0.8) < I1(0.8). To
do this, we must work with inequalities valid for a smaller value of λ. Our
analysis considers λ > 0.6, hence 2λ − u2 > 0 for u ∈ (0, 1). Because of this,
for the integrand of I1 in (19) we use the following inequality, which is valid
for any positive reals a and b with a > b:

1√
a − b

>
1√
a

+
b

2a3/2
. (21)

By applying (21) to (19) we get:

(2λ − u2)

(2 − u2)
√

2 − u2
√

1 + λ − u2
>

2λ − u2

2 − u2

(

1√
2
+

u2

4
√

2

)(

1√
1 + λ

+
u2

2(1 + λ)3/2

)

=
1

8
√

2(1 + λ)3/2

(

u4 +8u2 − 4(λ2 +λ− 6)+
24(λ2 + λ − 2)

2 − u2

)

.

Therefore,

I1 >
43/15 − 4(λ2 + λ − 6)

4
√

2(1 + λ)3/2
+ 3 ln(1 +

√
2)

λ2 + λ − 2

(1 + λ)3/2
. (22)

For the integrand of I2 in (20) we use the following two inequalities:

1 − λ − λu2

1 − λ + λu2
<

1 − λ − λu2

1 − λ
, u ∈ (0,

√

λ−1 − 1), λ ∈ (
1

2
, 1), (23)
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and
1 − λ − λu2

1 − λ + λu2
< 1 − λ − λu2, u ∈ (

√

λ−1 − 1, 1), λ ∈ (
1

2
, 1). (24)

Now we apply (23) and (24) to I2 and obtain

I2 <
2√
λ

∫ 1

0

du
√

λ−2 − (1 − u2)2
− 2

√
λ

∫ 1

√
λ−1−1

du
√

λ−2 − (1 − u2)2

− 2
√

λ

1 − λ

∫

√
λ−1−1

0

u2du
√

λ−2 − (1 − u2)2
− 2

√
λ

∫ 1

√
λ−1−1

u2du
√

λ−2 − (1 − u2)2
.

On one hand,

∫ 1

0

du
√

λ−2 − (1 − u2)2
<

∫ 1

0

du
√

λ−2 − (1 − u2)
= Asinh

λ√
1 − λ2

. (25)

On the other hand, for the negative coefficients we use (21) and get

∫

u2du
√

λ−2 − (1 − u2)2
>

∫
(

λ +
λ3

2
(1 − u2)2

)

u2du = F1(u) (26)

and
∫

du
√

λ−2 − (1 − u2)2
>

∫
(

λ +
λ3

2
(1 − u2)2

)

du = F2(u), (27)

where

F1(u) = λu3

[

1

3
+

λ2

2

(

1

3
− 2u2

5
+

u4

7

)]

, and

F2(u) = λu

[

1 +
λ2

2

(

1 − 2u2

3
+

u4

5

)]

.

Now we apply (25), (26) and (27) and obtain

I2 <
2√
λ

Asinh
λ√

1 − λ2
− 2

√
λ(F1(u) + F2(u))

∣

∣

∣

∣

1

√
λ−1−1

− 2
√

λ

1 − λ
F1(

√

λ−1 − 1).

(28)

We apply the value λ = 0.8 to (22) and (28) and get the following inequal-
ity: I2(0.8) < 0.9 < I1(0.8).

q.e.d.
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4. Enhancements

We have already proved the existence of an ε > 0 such that the equa-
tion II1(λ, y) = II2(λ, y) is uniquely solvable for every λ ∈ (0; 0.6 + ε). From
the last section, it is clear that ε < 0.8 − 0.6 = 0.2. Moreover, Proposition
3.1 allows us to conclude the following: if ε0 is the biggest value of ε, then
the equation II1(λ, y) = II2(λ, y) is unsolvable for every λ > 0.6 + ε0. In
other words, the family of solutions is unique in the sense that there are no
other subintervals of (0,1), except (0; 0.6+ε0), in which one can find solutions.

This section is devoted to the proof of Proposition 3.1. From (19), it is

easy to calculate the derivative dI1
dλ

and verify that it is positive, for every

u, λ ∈ (0, 1). For the integral I2, it is difficult to differentiate (20) with respect
to λ. We could try to differentiate the original formula of I2, namely:

I2 =

∫ λ

0

(t − 2λ + 1)dt

(1 − t)
√

(1 − t2)(λ − t)
. (29)

Nevertheless, it leads to a difference of two infinite terms. To overcome this
difficulty, we are going to split up the integration interval of (29) in two parts.
We recall that our analysis is been done for λ > 0.5. The two integration
intervals will be (0, 2λ − 1) and (2λ− 1, 1). Notice that 2λ− 1 is the value at
which the integrand vanishes. Hence:

I2 =

∫ 2λ−1

0

(t − 2λ + 1)dt

(1 − t)
√

(1 − t2)(λ − t)
+

∫ λ

2λ−1

(t − 2λ + 1)dt

(1 − t)
√

(1 − t2)(λ − t)
. (30)

For the second integral term of (30) we use the substitution t = λ− v and
obtain

I2 =

∫ 2λ−1

0

(t − 2λ + 1)dt

(1 − t)
√

(1 − t2)(λ − t)
+

∫ 1−λ

0

(1 − λ − v)dv

(1 − λ + v)
√

(1 − (λ − v)2)v
.

(31)

Now define

f1(t, λ) :=
(t − 2λ + 1)

(1 − t)
√

(1 − t2)(λ − t)
,∀(t, λ) ∈ (0, 2λ − 1) × (

1

2
, 1) and

f2(v, λ) :=
(1 − λ − v)

(1 − λ + v)
√

(1 − (λ − v)2)v
,∀(v, λ) ∈ (0, 1 − λ) × (

1

2
, 1).
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The functions f1 and f2 are decreasing with respect to λ. An easy way
to conclude it for f2 is taking the λ-derivative of f2

2 . We reach the following

expression for dI2
dλ

:

dI2

dλ
=

∫ 2λ−1

0

∂f1

∂λ
dt + 2f1(2λ − 1, λ) +

∫ 1−λ

0

∂f2

∂λ
dv − f2(1 − λ, λ). (32)

Since f1(2λ − 1, λ) = 0 and f2(1 − λ, λ) = 0, we have dI2
dλ < 0.

q.e.d.
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