
Perfe
t simulation for a stationary silo with absorbing walls

Nan
y L. Gar
ia

Mariana R. Motta

Universidade Estadual de Campinas

�

January 30, 2002

Abstra
t The obje
tive of this work is to generate random samples of the unique stationary distri-

bution asso
iated to the sto
hasti
 model for grain storage in a �nite bidimensional silo. The support

of this measure is an unbounded and 
ontinuous state spa
e and therefore a trun
ation was ne
essary

to apply the CFTP perfe
t simulation s
heme. The performan
e of the algorithm was measure by


omparing the sample moments to the theoreti
al ones.

Key words: CFTP, invariant measure, granular media

AMS Classi�
ation: Primary: 65C40,60K35; Se
ondary:82C20, 82C22

1 Introdu
tion

In the nearest neighbors one dimensional uniform q-model of for
e 
u
tuations in bead pa
ks ea
h

grain is thought as having weight 1 and supporting the weight of the grains of higher layers. This

weight is distributed between the two neighboring grains of the following lower layer in the silo

a

ording to uniform distribution.

To de�ne the model let (U

t

) := fU

t

(i) : i 2 Z; t � 0; : : :g be a family of independent uniform

random variables in [0; 1℄ and (V

t

) := fV

t

(i) : i 2 Z; t � 0; : : :g be a family of iid positive random

�
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variables with mean 1 and varian
e S = VV

t

(i). Furthermore assume (V

t

) and (U

t

) to be independent

families.

Fix N � 1, 
onsider the �nite box

�

N

:= f1; :::; Ng

and denote W

N

t

(i) the weight 
arried by a grain lo
ated at the ith position at level t. Fix an initial


on�guration W

N

0

2 [0;1)

�

N

and de�ne indu
tively

W

N

t

(i) = V

t

(i) +W

N

t�1

(i+ 1)U

t�1

(i+ 1) +W

N

t�1

(i� 1)(1� U

t�1

(i� 1)) ; for i 2 �

N

W

N

t

(0) = W

N

t

(N + 1) � 0 (1.1)

Let (W

t

) = (W

t

(i) : i 2 �

N

); then (W

N

t

: t � 1) is a dis
rete time Markov 
hain on S := [0;1)

�

N

.

Ea
h grain j of layer t gives a fra
tion 
hosen uniformly in [0; 1℄ of its own weight plus the total

weight it supports from the previous layers to grain j � 1 of the su

essive layer t + 1 (whi
h we


an think is below t) and the remaining to grain j + 1. The weight distributed to grains outside �

N

is thought of as being absorbed by the walls of the silo at sites 0 and N + 1. Denote �S

N

(t) the

measure de�ned by

�S

N

(t)f =

Z

�(dW ) E(f(W

N

t

) jW

N

0

= W ):

where E and P are the expe
tation and probability de�ned with respe
t to the probability spa
e

indu
ed by (U

t

: t � 0)and (V

t

: t � 0).

We say that a measure �

N

is invariant for the pro
ess W

N

t

if �

N

S

N

(t) = �

N

.

If W

N

t

has an invariant measure �

N

its mean heights w

N

(i) := �

N

(W

N

(i)) have to satisfy the

following system of equations (
oming from �

N

S

N

(t)W

N

(i) = �

N

W

N

(i)):

w

N

(i) = 1 +

1

2

w

N

(i� 1) +

1

2

w

N

(i+ 1) ; for i 2 �

N

;

w

N

(i) = 0; for i 2 Z n �

N

: (1.2)

Noti
e that w

N

(i) has quadrati
 pro�le:

w

N

(i) = i(N + 1� i) ; for i = 0; : : : ; N + 1: (1.3)

(It is the expe
ted time to exit �

N

for a symmetri
 nearest neighbor random walk starting at i.)

2



If W

N

0

is distributed a

ording to the invariant measure, so is W

N

1

, and one 
an use (1.1) to show

that �

N

(i; j) satis�es the system of equations:

�

N

(i; i) = S +

1

3

�

N

(i+ 1; i+ 1) +

1

3

�

N

(i� 1; i� 1) +

1

4

�

N

(i� 1; i+ 1)

+

1

4

�

N

(i + 1; i� 1) +

1

12

(w

N

(i + 1))

2

+

1

12

(w

N

(i� 1))

2

; i 2 �

N

�

N

(i; i + 2) =

1

4

�

N

(i + 1; i+ 3) +

1

4

�

N

(i� 1; i+ 3) +

1

4

�

N

(i� 1; i+ 1)

+

1

6

�

N

(i + 1; i+ 1) �

1

12

(w

N

(i + 1))

2

; i 2 f1; : : : ; N � 2g

�

N

(i; i� 2) =

1

4

�

N

(i + 1; i� 1) +

1

4

�

N

(i� 1; i� 3) +

1

4

�

N

(i+ 1; i� 3)

+

1

6

�

N

(i� 1; i� 1) �

1

12

(w

N

(i� 1))

2

; i 2 f3; : : : ; Ng

�

N

(i; j) =

1

4

�

N

(i + 1; j + 1) +

1

4

�

N

(i� 1; j � 1) +

1

4

�

N

(i� 1; j + 1)

+

1

4

�

N

(i+ 1; j � 1); i; j 2 �

N

; ji� jj � 2

�

N

(i; j) = 0 ; i 2 f0; N + 1g or j 2 f0; N + 1g : (1.4)

The above model in whi
h a grain lies its weight on to the lower neighbors was introdu
ed by

Harr (1977) and explored by others, for example, Liu, Nagel, S
he
ter, Coppersmith, Majumdar,

Narayan and Witten (1995) introdu
ed the model de�ned by (1.1). The model with zero boundary


ondition was studied by Peralta-Fabi, M�alaga and Re
htman (1997). Barros, Ferrari, Gar
ia and

Mart��nez (2001) show the existen
e and uniqueness of the invariant measure. To show uniqueness

they 
ouple two versions of the pro
ess starting with di�erent initial invariant distributions using

the same sequen
e U

t

for both evolutions. However, there is no expli
itly formula for the invariant

measure and to obtain a random sample from this measure we have to resort to sto
hasti
 simulation.

Usually Monte Carlo Markov Chain methods have been used to generate samples from probability

distributions that are not known expli
itly. The most 
ommon approa
h is to identify this distribution

as the invariant measure of a Markov 
hain and run the 
orresponding 
hain for a long time until

its distribution is 
lose to equilibrium. The problem here is to assess how long the 
hain should

run in order to a
hieve the desired approximation. In �nite state Markov 
hains, this is related to

mixing times and 
ut-o� phenomena [see, Aldous and Fill (1999)℄. For un
ountable state spa
e, more

spe
i�
ally for 
ontinuous unbounded state spa
es these te
hniques are not applied. However, after
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the pioneer work of Propp and Wilson (1996) we 
an rea
h a mu
h more ambitious goal: to simulate

perfe
tly from the invariant distribution. Perfe
t simulations or exa
t sampling are labels for a

re
ently developed set of te
hniques designed to produ
e output whose distribution is guaranteed to

follow a given probability law. These te
hniques are parti
ularly useful in relation with Markov Chain

Monte Carlo, and their range of appli
ability is rapidly growing (see Green and Murdo
h (1999),

Se
tion 1.3, and Mira, M�ller and Roberts (1999) and M�ller and Ni
holls (1999) and referen
es

therein, or visit the site http://dima
s.rutgers.edu/~dbwilson/exa
t).

The outbreak of these subje
t 
ome with Propp and Wilson (1996) paper where they suggest

a pra
ti
al method of a
hieving a perfe
t sample of a Markov 
hain with �nite state spa
e. Their

Coupling from the Past (CFTP) algorithm have also been applied for in�nite (or huge) state spa
es

requiring a monotoni
ity property : there must exist a \maximal" and a \minimal" states and a


oupling su
h that the 
oales
en
e of traje
tories starting from these two states imply the 
oales
en
e

of all other traje
tories (\monotone 
oupling"). In the 
ase of unbounded in�nite (or very large) state

spa
e, it is not possible to use the above des
ribed method. Kendall (1998) introdu
ed a modi�
ation

in Propp and Wilson's algorithm in order to apply it to some unbounded pro
esses (Green and

Murdo
h, 1999). It is also 
alled horizontal CFTP (Kendall and M�ller, 1999) and 
oupling into and

from the past (Wilson, 2000). The idea is to �nd another Markov 
hain fC

t

; t 2 Zg | 
hosen in

su
h way that we know how to generate exa
tly from its invariant measure | that dominates the


hain under study. When there is no domination for the pro
ess, as in the 
ase of the silo model,

there is no 
anoni
al solution and the none of the perfe
t simulation s
hemes 
an be applied dire
tly.

The proposal of this work is to trun
ate the initial state and 
ompare the so-
alled perfe
t sample

obtained in this way with the stationary distribution through its �rst and se
ond moment. This

paper is organized as follows: In Se
tion 2, a brief des
ription of CFTP and dominated CFTP is

given as well as the algorithms used for the silo model, Se
tion 3 presents the simulation results.
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2 Perfe
t simulation

2.1 CFTP

Let X

n

be an ergodi
 dis
rete time Markov 
hain with �nite state spa
e S, transition matrix (P

i;j

)

and invariant distribution �. Perfe
t simulation 
an be des
ribed as a pro
edure that provides an

unbiased observation of � through some random me
hanism.

One way of obtaining a perfe
t simulation is des
ribed by Propp and Wilson (1996) as 
oupling

from the past. This approa
h 
an be des
ribed as follows: simulate the Markov 
hain, 
oupling all

the paths beginning from all possible initial states, a predetermined amount of time (from �T to 0),

if all paths 
oales
e at time 0, the 
oales
ent state X

0

has the desired distribution �. If the paths

did not 
oales
e, restart the 
hain at �T

0

< �T , from all possible initial states, preappending new

moves to the old ones. They show that if enough moves are preappended, eventually all the paths

will 
oales
e and the resulting 
oales
ent state X

0

is an unbiased sample from �.

Des
ribing the problem in terms of i.i.d. uniform random variables: letU = f: : : ; U

�3

; U

�2

; U

�1

; U

0

g

be a family of i.i.d. U(0; 1) random variables and let �(�; �) be a deterministi
 fun
tion su
h that

P[�(i; U

0

) = j℄ = P

i;j

for all i; j 2 S. Let �

t

(x; U

t

) = �(x; U

t

) and 
onsider

F

0

�t

(i;U) = �

�1

(�

�2

(:::�

�t+1

(�

�t

(i; U

�t

); U

�t+1

); :::; U

�2

); U

�1

)

to be the state of the 
hain at time 0 starting in state i at time �t. For simulation purposes, noti
e

that we do not have to keep all individual values of �

t

, instead we update F

0

t

through the rule:

F

0

t

(i;U) = F

0

t+1

(�

t

(i; U

t

);U).

Initializing the 
hain in all possible states S, when F

0

�t

(i;U) is 
onstant the all the traje
tories

have 
oales
ed at time 0. De�ne

� := inffM ;F

0

�M

(i;U) = 
onstant, 8 i 2 Sg, (2.1)

as the time of 
oales
en
e. Noti
e that F

0

�M

0

= F

0

��

for all M

0

> �.

When the 
ardinality of the state spa
e is very large, the above argument is not feasible. However

for 
ases where there is a partial ordering in the state spa
e, a maximal (

^

1) and a minimal state
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(

^

0) and moreover, the update of the 
hain is ordering preserving, then only two paths need to be

simulated and 
oupling from the past 
an be used. The pro
edure 
an be des
ribed by the following

pseudo-
ode:

T  1

U

�1

� U(0; 1)

repeat

upper  

^

1

lower  

^

0

for n = �T to � 1

upper  �(upper; U

n

)

lower  �(lower; U

n

)

T  2T

for n = �T to� T=2

U

n

� U(0; 1)

until upper = lower

return upper

Noti
e that the same uniform random variables are used for all loops, for instan
e, U

�1

is going

to be generated only on
e.

2.1.1 Impatient-user bias

The 
oupling from the past algorithm possesses the impatient-user bias. It has a running time whi
h

is not independent of the state sampled, thus if the user aborts a long run of the algorithm a bias is

introdu
ed. The following simple example is presented in Fismen(1997). Consider the Markov 
hain

X with state spa
e f0; 1; 2g and transition matrix

P =

0

B

B

B

�

1=2 1=2 0

1=2 0 1=2

0 1=2 1=2

1

C

C

C

A

:

The stationary distribution is given by � = (1=3; 1=3; 1=3) and this 
hain 
an be update mono-
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toni
ally by using the following transition rule:

�(x; U) =

8

<

:

max(X

t�1

� 1; 0); if U � 0:5

min(X

t�1

+ 1; 2); if U > 0:5

Suppose we initialize the 
hain at the minimal

^

0 = 0 and maximal state

^

1 = 2 and the user abort

the simulation after m

0

= 2 iterations. Let Z be the unique value obtained when there is 
oales
en
e

at t = 0. The following results are possible:

� U

�1

� 0:5 and U

0

� 0:5 : Z = 0;

� U

�1

� 0:5 and U

0

> 0:5 : Z = unde�ned;

� U

�1

> 0:5 and U

0

� 0:5 : Z = unde�ned;

� U

�1

> 0:5 and U

0

> 0:5 : Z = 2.

Therefore, 0 and 2 are the only possible results of this simulation and Z has distribution given by

�

0

= (1=2; 0; 1=2) whi
h is biased. A possible solution would be to in
rease the value of m

0

.

2.2 Dominated CFTP

In the 
ase of unbounded in�nite (or very large) state spa
e, it is not possible to use the above

des
ribed method. Kendall (1998) introdu
ed a modi�
ation in Propp and Wilson's algorithm in

order to apply it to point pro
esses. The idea, however, is not limited to this 
ase and has been used

to generate from 
ontinuous unbounded state spa
e (Green and Murdo
h, 1999). It is also 
alled

horizontal CFTP (Kendall and M�ller, 1999) and 
oupling into and from the past (Wilson, 2000).

The idea is to �nd another Markov 
hain fC

t

; t 2 Zg | 
hosen in su
h way that we know how

to generate exa
tly from its invariant measure | that dominates the 
hain under study. Assume,

without loss of generality, that the state spa
e has a minimal state

^

0, but not a maximal state. In

this 
ase, the ingredients of the algorithm are:

� A 
oupling that guarantees that if for some t we have C

t

� X

t

that the same is true for all sub-

sequent times. That is, there exist �

1

and �

2

su
h that (X

t+1

; C

t+1

) = (�

1

(X

t

; U

t

); �

2

(C

t

; U

t

))

and if x � 
 we have �

1

(x; u) � �

2

(x; u) for all u 2 [0; 1℄.
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� For any value x 2 S and time t < 0, there exists a.s. an s < t su
h that X

t

� C

t

if X

u

= x for

u < s.

� We 
an simulate dire
tly from the invariant distribution of C

t

.

� Given C

t

the 
onditional distribution of (C

t�1

; U

t�1

) is known and we 
an sample from this

distribution. That is, we 
an simulate C

t

into the past. This 
an be obtained easily if C

t

is

reversible.

In this 
ase, we 
an use the CFTP algorithm based on generating an upper pro
ess in the same

way that verti
al CFTP.

3 Perfe
t simulation of the stationary measure of the silo

model

The purpose of this work is to perfe
t simulate a sample from the invariant measure for the Markov

pro
ess given by (1.1) whi
h has as its support the set S = [0;1)

N

and there is no maximal state.

Moreover, the only available information about this distribution is the �rst and se
ond moments and

it is not possible to �nd a 
hain that dominates the pro
ess in order to apply dominated CFTP. The

suggested approa
h in this work is to use as a initial \maximal" state [0; K℄

N

for K suÆ
iently large

and generate a random sample from a new distribution �

K

. The goal is to �nd K big enough so that

the distan
e between � and �

K

is small enough. We 
laim that the bias here is of the same type as

the \impatient-user bias".

3.1 Trun
ation error

Consider the pro
ess W

t

de�ned by (1.1) and let

�(A) = P(W

0

2 A;W

�T (K)

2 [0; K℄

N

jW

�1

= x) (3.1)

+P(W

0

2 A;W

�T (K)

=2 [0; K℄

N

jW

�1

= x)

= �

K

(A)� �(W

�T (K)

2 [0; K℄

N

). (3.2)
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Noti
e that

1� �(W

�T (K)

(x) 2 [0; K℄

N

) = P

�

(W

�T (K)

(x) > K, for some x = 1; :::; N)

�

N

X

x=1

P

�

(W

�T (K)

(x) > K)

�

N

X

x=1

E

�

[W

�T (K)

(x)℄

K

=

N

X

x=1

x(N + 1� x)

K

;

sin
e E

�

[W

�T (K)

(x)℄ = x(N +1� x) by (1.3). Thus, for any Æ > 0 we 
an 
hoose K big enough su
h

that

N

X

x=1

x(N + 1� x)

K

< Æ,

and 
onsequently,

P(W

0

2 A;W

�T (K)

=2 [0; K℄jW

�1

= x) � P(W

�T (K)

=2 [0; K℄jW

�1

= x)

� Æ.

Therefore, we 
an make the total variation distan
e k �(A) � �

K

(A) k as small as we wish by

taking K suÆ
iently large,

k �(A)� �

K

(A) k = sup

A

j�

K

(A)[�(W

�T (K)

2 [0; K℄

N

)� 1℄

+ P(W

0

2 A;W

�T (K)

=2 [0; K℄jW

�1

= x)j

� sup

A

j�

K

(A)[1� �(W

�T (K)

2 [0; K℄

N

)℄j

+ sup

A

jP(W

0

2 A;W

�T (K)

=2 [0; K℄jW

�1

= x)j

= sup

A

j�

K

(A)j � j[1� �(W

�T (K)

2 [0; K℄

N

)℄j

+ sup

A

jP(W

0

2 A;W

�T (K)

=2 [0; K℄jW

�1

= x)j

� 2Æ: (3.3)
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3.2 CFTP applied to the silo model

Let M

N

be the spa
e of N � N square matri
es with elements belonging to [0; 1℄. De�ne � :

[0;1)

N

� M

N

! [0;1)

N

by

�(W;U) = 11 + UW ,

with 11 = (1; : : : ; 1)

0

. Denote W

t

= (W

t

(1); : : : ;W

t

(N))

0

and

U

t

=

0

B

B

B

B

B

B

B

B

B

�

0 U

t

(2) 0 : : : 0 0 0

1� U

t

(2) 0 U

t

(3) : : : : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1� U

t

(N � 1) 0 U

t

(N)

0 0 0 : : : 0 1� U

t

(N � 1) 0

1

C

C

C

C

C

C

C

C

C

A

.

where ffU

t

(j); j = 1; : : : ; Ng; t = 0; 1; : : :g is a family of i.i.d. U(0; 1) random variables. The silo

model 
an be rewritten in the matri
ial form as

W

t

= 11 + U

t�1

W

t�1

= �(W

t�1

;U

t�1

): (3.4)

Consider the initial time to be t = �L, then and W

(i)

�L

= i, then

W

0

= �

�1

(�

�2

(�

�3

(:::; �

�L+1

(�

�L

(W

(i)

�L

;U

�L

);U

�L+1

); :::;U

�3

);U

�2

);U

�1

)

= 11 + U

�1

11 + U

�1

U

�2

11 + U

�1

U

�2

U

�3

11 + : : :+ U

�1

U

�2

U

�3

:::U

�L+1

11 +

U

�1

U

�2

U

�3

:::U

�L

W

(i)

�L

. (3.5)

Pseudo-algorithm: De�ne

^

0 = (0; : : : ; 0)

0

and

^

1 = (K; :::; K)

0

(K is going to be de�ned latter for ea
h

N in order to 
ontrol the error given by (3.3)), to be the minimal and maximal state, respe
tively.

Therefore, using the same uniform random variables to update both pro
esses, the system is attra
tive

and if W

^

(0)

0

(x) � W

^

(1)

0

(x) for x 2 f1; :::; Ng, then W

^

(0)

t

(x) � W

^

(1)

t

(x) for all x 2 f1; :::; Ng and t � 1.

t 0

A (0; :::; 0)

0

1�N

11 (1; :::; 1)

0

1�N
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V  II

N

(II

N

= identity matrix of order N)

Repeat

t t� 1

W

(

^

0)

t

 

^

0

W

(

^

1)

t

 

^

1

Generate U

t

V  V � U

t

W

(

^

0)

0

 11 +A+ V �W

(

^

0)

t

W

(

^

1)

0

 11 +A+ V �W

(

^

1)

t

A A+ V � 11

Until kW

(

^

1)

0

�W

(

^

0)

0

k

1

< �.

The fun
tion k : k

1

is the sup norm. In the simulation pro
edures � = 10

�5

.

4 Simulation results

We simulate m = 100 samples of size n = 50 for ea
h silo size N = 5; 15; 21. The trun
ation error

was �xed to be around 3%, the trun
ation 
onstants were 
omputed using (3.3) (see Table 4.2). We

represent ea
h sample of size n by

fW

(1;i)

; :::;W

(n;i)

g, for i = 1; :::; m. (4.1)

Noti
e that ea
h 
olumn is an iid random ve
tor with distribution �

K

, with mean � and 
ovarian
e

matrix �. Therefore, we 
an apply the multivariate 
entral limit theorem to test if the mean and

varian
e of the generated sample 
oin
ides with the theoreti
al results given by (1.3) and (1.4)

respe
tively. For i = 1; : : : ; m, de�ne

W

(i)

=

W

(1;i)

+ :::+W

(n;i)

n

: (4.2)

We want to test the following hypothesis:

H

0

: � = w

N

� H

1

: � 6= w

N

, (4.3)
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where w

N

is given by (1.3). The appropriate test statisti
s to be used are:

T

2

= m(W � w

N

)

0

S

�1

(W � w

N

),

where

W =

W

(1)

+ :::+W

(m)

m

and

S

2

=

1

m� 1

m

X

j=1

(W

(j)

�W )(W

(j)

�W )

0

.

The sample statisti
s T

2

has asymptoti
 distribution given by

(m�1)N

(m�N)

F

N;m�N

, where F

N;m�N

denotes

a random variable with distribution F with N and (m�N) degrees of freedom.

In order to test the equality of the 
ovarian
e matrix, we want to test

H

0

0

: � = �

N

=n � H

0

1

: � 6= �

N

=n, (4.4)

where �

N

(i; j) is given by system (1.4) and the likelihood ratio test was used. The test statisti
 is

given by

� =

sup

�

L(�;�

N

)

sup

�;�

L(�;�)

, (4.5)

where

L(�;�) = (det�)

�m=2

exp(tra
e(�1=2�

�1

A))exp[�1=2m(W � �)

0

�

�1

(W � �)℄.

In the last expression, A = mS

2

. The numerator and denominator in (4.5) are easily determined by

taking � =W and � =W e � =

A

m

, respe
tively.

The 
riti
al region for this test is of the form �2 log � � 
 with 
 
hosen to guarantee the size of

the test to be 0:05. The distribution of �2 log �, under the null hypothesis is des
ribed by Muirhead

(1946).

4.1 Numeri
al results

Figures 4.1 through 4.2 show that the sample mean is very 
lose to the theoreti
al mean with

quadrati
 pro�le. Table 4.1 shows the signi�
an
e values (p-values) for the hypothesis testing, we


an see that we do not have eviden
e to reje
t the hypothesis of equality of means and varian
e.
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Figure 4.1: Average sample weight and mean weight for silo of size N = 5
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Figure 4.2: Average sample weight and mean weight for silo of size N = 15
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Table 4.1: p-values for the hypothesis testing of equality of means and equality of 
ovarian
es

N

(m�N)

[(m�1)N ℄

T

2

p-value (means) �2 log � p-value (
ovarian
es)

5 1:14 0:34 21:05 0:876

15 1:23 0:27 137:6 0:877

21 1:05 0:41 235:6 0:584

4.2 Coales
en
e times

In order to study the distribution of the 
oales
en
e time, histograms were used (see Figures 4.4

through 4.6), in this 
ase it seems reasonable to 
onsider that the 
oales
en
e time follows a normal

distribution. Table 4.2 presents the 
on�den
e interval for the mean 
oales
en
e time 
onsidering

the normal approximation.

Table 4.2: Con�den
e interval for the mean 
oales
en
e time (E [T (K)℄),
onsidering a trun
ation for

the initial state spa
e to be [0; K℄

N K E [T (K)℄ S CI(95%)

5 10:000 140:2 12 (139:89; 140:55)

15 30:000 1160:4 54:5 (1159:9; 1161:9)

21 50:000 2268:7 87:5 (2266:25; 2271:11)

4.2.1 Coales
en
e time as a fun
tion of silo width (N)

In order to empiri
ally verify the relationship between 
oales
en
e time T (K) and silo width N we

generate for ea
h size N , one sample with 
orresponding 
oales
en
e time T (K). The model we are


onsidering is that the 
oales
en
e time in
reases exponentially with the silo width; that is

log(T (K)) = � log(N) + C, (4.6)

14



for some � and C. The observations 
an be found in Table 4.3, adjusting a linear regression we �nd

that a good estimate for the model is

log(

b

T (K)) = 1:96 log(N) + 1:82. (4.7)

Table 4.3: Coales
en
e time (T (K))

N T (K) N T (K)

5 132 115 82328

15 1233 125 95160

25 3524 135 112647

35 6978 145 135361

45 11353 155 152432

55 16760 165 172733

65 24382 175 196077

75 33157 185 221404

85 44529 195 246185

95 55541 205 271789

105 65801

Although we do not know the true distribution �, we 
an see, from the sample generated by

trun
ated CFTP, there is equality of the �rst two moments of � and �

K

. Moreover, it seems that

there is an exponential relationship between the 
oales
en
e time and the size of the silo.
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Figure 4.3: Average sample weight and mean weight for silo of size N = 21
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Figure 4.4: Histogram for the 
oales
en
e time for a silo of size 5
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Figure 4.5: Histogram for the 
oales
en
e time for a silo of size 15
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Figure 4.6: Histogram for the 
oales
en
e time for a silo of size 21
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