Perfect simulation for a stationary silo with absorbing walls
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Abstract The objective of this work is to generate random samples of the unique stationary distri-
bution associated to the stochastic model for grain storage in a finite bidimensional silo. The support
of this measure is an unbounded and continuous state space and therefore a truncation was necessary
to apply the CFTP perfect simulation scheme. The performance of the algorithm was measure by
comparing the sample moments to the theoretical ones.
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1 Introduction

In the nearest neighbors one dimensional uniform g-model of force fluctuations in bead packs each
grain is thought as having weight 1 and supporting the weight of the grains of higher layers. This
weight is distributed between the two neighboring grains of the following lower layer in the silo
according to uniform distribution.

To define the model let (Uy) := {Uy(i) : i € Z,t > 0,...} be a family of independent uniform
random variables in [0, 1] and (V;) := {V;(¢) : i € Z,t > 0,...} be a family of iid positive random
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variables with mean 1 and variance S = VV; (7). Furthermore assume (V;) and (U;) to be independent
families.

Fix N > 1, consider the finite box
AN = {1,..,N}

and denote W/ (i) the weight carried by a grain located at the ith position at level ¢. Fix an initial

configuration W¥ € [0, 00)*" and define inductively

WhNGE) = V(i) + WY G+ DU G+ 1)+ WY, (i —1)(1 U 1(i — 1)), forie AN
whNo) = WNN+1) =0 (1.1)

Let (W) = (W,(i) : i € AN); then (W) : ¢t > 1) is a discrete time Markov chain on 8 := [0, c0)A".
Each grain j of layer ¢ gives a fraction chosen uniformly in [0, 1] of its own weight plus the total
weight it supports from the previous layers to grain j — 1 of the successive layer ¢ + 1 (which we
can think is below ¢) and the remaining to grain j + 1. The weight distributed to grains outside AY
is thought of as being absorbed by the walls of the silo at sites 0 and N + 1. Denote vSY(¢) the

measure defined by

vSH(0)f = [ oW B WY = W),

where E and P are the expectation and probability defined with respect to the probability space
induced by (U : t > 0)and (V; : ¢t > 0).

We say that a measure p? is invariant for the process W¥ if p¥ SN (¢) = p?.

If W) has an invariant measure p its mean heights w? (¢) := p™ (W7 (7)) have to satisfy the

following system of equations (coming from p™ SN ()W (i) = pNWN(4)):

1 1
wh(i) = 1+ in(i —1)+ in(i +1), forie AVN;

wh(i) = 0, forieZ\A"N. (1.2)
Notice that w™ (i) has quadratic profile:
wh(i) = i(N+1—-i), fori=0,...,N+1. (1.3)
(Tt is the expected time to exit A for a symmetric nearest neighbor random walk starting at i.)
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If W{ is distributed according to the invariant measure, so is W{¥, and one can use (1.1) to show

that oV (4, j) satisfies the system of equations:
1 1 1
oN(i,i) = S + g<7N(z'+1,z'+1) + gaN(z'— 1,i—1) + ZaN(z'—1,z'+1)

1 1 1
+=oNi+1,i—1) + — (V@ +1)* + —= (Wi —-1)% ieA"

4 12 12
1 1 1
oN(i,i+2) = ZJN(Z'+1,Z'—|—3)+ZJN(7J—1,7J+3)+ZJN(Z'—I,Z'—FI)
1 1
+60N(i+1,i+1)—E(wN(i+1))2, i€{l,...,N -2}
1 1 1
oN(i,i—2) = ZJN(Z'—i-l,i—l)+ZJN(Z'—1,Z'—3)+ZJN(ZHLI,Z'—B)
1 1
+60N(i— 1,i—1) — E(wN(z'— 1))  i€{3,...,N}
. L N, . 1 oy, . 1 .. .
o (i,j) = ZUN(Z+1,]+1)+ZUN(Z—I,j—l)+ZUN(Z—1,j+1)
1
—l—ZUN(i—l—l,j—l), i,j €AY, |i—j]>2
oV (i,j) = 0, i€ {0,N+1}orje{0,N+1}. (1.4)

The above model in which a grain lies its weight on to the lower neighbors was introduced by
Harr (1977) and explored by others, for example, Liu, Nagel, Schecter, Coppersmith, Majumdar,
Narayan and Witten (1995) introduced the model defined by (1.1). The model with zero boundary
condition was studied by Peralta-Fabi, Mdlaga and Rechtman (1997). Barros, Ferrari, Garcia and
Martinez (2001) show the existence and uniqueness of the invariant measure. To show uniqueness
they couple two versions of the process starting with different initial invariant distributions using
the same sequence U; for both evolutions. However, there is no explicitly formula for the invariant
measure and to obtain a random sample from this measure we have to resort to stochastic simulation.

Usually Monte Carlo Markov Chain methods have been used to generate samples from probability
distributions that are not known explicitly. The most common approach is to identify this distribution
as the invariant measure of a Markov chain and run the corresponding chain for a long time until
its distribution is close to equilibrium. The problem here is to assess how long the chain should
run in order to achieve the desired approximation. In finite state Markov chains, this is related to
mixing times and cut-off phenomena [see, Aldous and Fill (1999)]. For uncountable state space, more

specifically for continuous unbounded state spaces these techniques are not applied. However, after
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the pioneer work of Propp and Wilson (1996) we can reach a much more ambitious goal: to simulate
perfectly from the invariant distribution. Perfect simulations or exact sampling are labels for a
recently developed set of techniques designed to produce output whose distribution is guaranteed to
follow a given probability law. These techniques are particularly useful in relation with Markov Chain
Monte Carlo, and their range of applicability is rapidly growing (see Green and Murdoch (1999),
Section 1.3, and Mira, Mgller and Roberts (1999) and Mpgller and Nicholls (1999) and references
therein, or visit the site http://dimacs.rutgers.edu/ ~dbwilson/exact).

The outbreak of these subject come with Propp and Wilson (1996) paper where they suggest
a practical method of achieving a perfect sample of a Markov chain with finite state space. Their
Coupling from the Past (CFTP) algorithm have also been applied for infinite (or huge) state spaces
requiring a monotonicity property: there must exist a “maximal” and a “minimal” states and a
coupling such that the coalescence of trajectories starting from these two states imply the coalescence
of all other trajectories (“monotone coupling”). In the case of unbounded infinite (or very large) state
space, it is not possible to use the above described method. Kendall (1998) introduced a modification
in Propp and Wilson’s algorithm in order to apply it to some unbounded processes (Green and
Murdoch, 1999). It is also called horizontal CFTP (Kendall and Mgller, 1999) and coupling into and
from the past (Wilson, 2000). The idea is to find another Markov chain {C},t € Z} — chosen in
such way that we know how to generate exactly from its invariant measure — that dominates the
chain under study. When there is no domination for the process, as in the case of the silo model,
there is no canonical solution and the none of the perfect simulation schemes can be applied directly.
The proposal of this work is to truncate the initial state and compare the so-called perfect sample
obtained in this way with the stationary distribution through its first and second moment. This
paper is organized as follows: In Section 2, a brief description of CFTP and dominated CFTP is

given as well as the algorithms used for the silo model, Section 3 presents the simulation results.



2 Perfect simulation

2.1 CFTP

Let X,, be an ergodic discrete time Markov chain with finite state space S, transition matrix (P )
and invariant distribution 7. Perfect simulation can be described as a procedure that provides an
unbiased observation of 7 through some random mechanism.

One way of obtaining a perfect simulation is described by Propp and Wilson (1996) as coupling
from the past. This approach can be described as follows: simulate the Markov chain, coupling all
the paths beginning from all possible initial states, a predetermined amount of time (from —7" to 0),
if all paths coalesce at time 0, the coalescent state X has the desired distribution 7. If the paths
did not coalesce, restart the chain at —T" < —T, from all possible initial states, preappending new
moves to the old ones. They show that if enough moves are preappended, eventually all the paths
will coalesce and the resulting coalescent state X is an unbiased sample from 7.

Describing the problem in terms of i.i.d. uniform random variables: let U = {..., U 3, U 5,U 1, Uy}

be a family of i.i.d. U(0,1) random variables and let ¢(-,-) be a deterministic function such that
Plo(i, Uy) = jl = Fi;
for all 4, j € S. Let ¢y(x,U;) = ¢(x, U;) and consider

th(iv U) = ¢—1(¢—2("'¢—t+1(¢—t(i7 U—t)7 U—t+1)= ) U—2)7 U—l)

to be the state of the chain at time 0 starting in state ¢ at time —¢. For simulation purposes, notice
that we do not have to keep all individual values of ¢;, instead we update F? through the rule:
Fto(ia U) = thi-l((ﬁt(iv Up), U).

Initializing the chain in all possible states S, when F°,(i, U) is constant the all the trajectories

have coalesced at time 0. Define
I :=inf{M; F°,,(i,U) = constant, V i € S}, (2.1)

as the time of coalescence. Notice that F,, = F°. for all M’ > T.
When the cardinality of the state space is very large, the above argument is not feasible. However

for cases where there is a partial ordering in the state space, a maximal (1) and a minimal state
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(0) and moreover, the update of the chain is ordering preserving, then only two paths need to be
simulated and coupling from the past can be used. The procedure can be described by the following
pseudo-code:
T<+1
U_1 ~U(0,1)
repeat
upper < 1
lower < 0
forn=-Tto —1
upper < ¢(upper,U,)
lower < ¢(lower,Uy,)
T+ 2T
for n=-T to—T/2
U, ~ U(0,1)
until upper = lower
return upper
Notice that the same uniform random variables are used for all loops, for instance, U_; is going

to be generated only once.

2.1.1 Impatient-user bias

The coupling from the past algorithm possesses the impatient-user bias. It has a running time which
is not independent of the state sampled, thus if the user aborts a long run of the algorithm a bias is
introduced. The following simple example is presented in Fismen(1997). Consider the Markov chain

X with state space {0, 1,2} and transition matrix

1/2 1/2 0
P=11/2 0 1/2
0 1/2 1/2

The stationary distribution is given by = = (1/3,1/3,1/3) and this chain can be update mono-



tonically by using the following transition rule:

max(X; ; —1,0), ifU <05

¢z, U) =9 .
min(X;_, +1,2), ifU>0.5

Suppose we initialize the chain at the minimal 0 = 0 and maximal state 1 = 2 and the user abort
the simulation after mg = 2 iterations. Let Z be the unique value obtained when there is coalescence

at t = 0. The following results are possible:

° U,1§0.5and U()SOE) ZZO,
e U_ 1 <0.5and Uy > 0.5: Z = undefined;
e U_; >0.5and Uy <0.5: Z = undefined;

e U_;>05and Uy >05: Z=2.

Therefore, 0 and 2 are the only possible results of this simulation and Z has distribution given by

' = (1/2,0,1/2) which is biased. A possible solution would be to increase the value of m.

2.2 Dominated CFTP

In the case of unbounded infinite (or very large) state space, it is not possible to use the above
described method. Kendall (1998) introduced a modification in Propp and Wilson’s algorithm in
order to apply it to point processes. The idea, however, is not limited to this case and has been used
to generate from continuous unbounded state space (Green and Murdoch, 1999). It is also called
horizontal CFTP (Kendall and Mgller, 1999) and coupling into and from the past (Wilson, 2000).
The idea is to find another Markov chain {C},t € Z} — chosen in such way that we know how
to generate exactly from its invariant measure — that dominates the chain under study. Assume,
without loss of generality, that the state space has a minimal state 0, but not a maximal state. In

this case, the ingredients of the algorithm are:

e A coupling that guarantees that if for some t we have C; > X; that the same is true for all sub-
sequent times. That is, there exist ¢; and ¢ such that (X, 1, Ciy1) = (91(Xy, Up), ¢2(Cy, Uy))

and if z < ¢ we have ¢ (z,u) < ¢o(z,u) for all u € [0, 1].
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e For any value x € § and time ¢ < 0, there exists a.s. an s < t such that X; < C; if X, =z for

u < s.
e We can simulate directly from the invariant distribution of C;.

e Given C; the conditional distribution of (Cy 1,U; 1) is known and we can sample from this
distribution. That is, we can simulate C; into the past. This can be obtained easily if C; is

reversible.

In this case, we can use the CF'TP algorithm based on generating an upper process in the same

way that vertical CF'TP.

3 Perfect simulation of the stationary measure of the silo
model

The purpose of this work is to perfect simulate a sample from the invariant measure for the Markov
process given by (1.1) which has as its support the set S = [0,00)" and there is no maximal state.
Moreover, the only available information about this distribution is the first and second moments and
it is not possible to find a chain that dominates the process in order to apply dominated CFTP. The
suggested approach in this work is to use as a initial “maximal” state [0, K| for K sufficiently large
and generate a random sample from a new distribution vx. The goal is to find K big enough so that
the distance between v and vk is small enough. We claim that the bias here is of the same type as

the “impatient-user bias”.

3.1 Truncation error
Consider the process W; defined by (1.1) and let
v(A) = P(Wy € A, W_r@) € [0, K]V |W_y = 2) (3.1)

+P(Wo € A, W_pi) & [0, K]N|W_oo = )
= vg(A) x v(W_ru) € [0, K]V). (3.2)



Notice that

1 —v(W_opao(z) € [0,K]Y) = P,(W_ru)(z) > K, for some z = 1,...,N)

IN

Z P, (W—T(K) (z) > K)

E, [W_r(i)(2)]
K

IN

(N +1—ux)
K Y

since By, [W_y(k)(z)] = (N + 1 — ) by (1.3). Thus, for any 6 > 0 we can choose K big enough such
that

N

and consequently,

IN

PWy € A, W k) ¢ [0, K|[W_oo = ) P(W_rx) & [0, K]|W_s = )

J.

IN

Therefore, we can make the total variation distance || v(A4) — vk (A) || as small as we wish by

taking K sufficiently large,

I v(A) — v (A) ||

sup e (A) V(W10 € [0, K1) 1]

P(Wg € A, WfT(K) ¢ [O,K”W_oo = ZL‘)|

IN -+

sup [vic(A)[1 = v(Worr € [0, K1)

_|_

Slflxp P(Wo € A, W_rky ¢ [0, K||W_o = 7)|

sup [vge (A)| < |[1 = v(Wora) € [0, K]

Slip |]P)(W0 S A, W—T(K) §7_f [0, K”W_oo = .’L‘)|

IN -+

26, (3.3)



3.2 CFTP applied to the silo model

Let My be the space of N x N square matrices with elements belonging to [0,1]. Define ¢ :
[0, 00)N x My — [0,00)" by
(W, U) =1+ UW,

with 1 = (1,...,1)". Denote Wy = (W;(1),..., Wy(N)) and

0 U2 0 ... 0 0 0
1-U(2) 0 U(3) 0 0
U, = .
0 0 0 ... 1-U(N-1) 0 U,(N)
0 0 0 ... 0 1-U(N-1) 0

where {{U;(j),7 = 1,...,N},t = 0,1,...} is a family of i.i.d. U(0,1) random variables. The silo

model can be rewritten in the matricial form as

Wy = 14+U_ W,y
— ¢(Wt71,Ut71)- (34)

Consider the initial time to be t = —L, then and WE% =1, then

Wo = ¢-1(d-2(d-3(e 0 1a (G- (W), U_1), U 41),...,Uoy), Up), Uy)
=1 + U,1]1 + IU,lIU,Q]l + UflU,QUfg]l +...+ UflU,QUfg...U,[rFl]l +

U_ Uy U_s.. U_ W, (3.5)

Pseudo-algorithm: Define 0 = (0,...,0) and 1 = (K, ..., K)' (K is going to be defined latter for each
N in order to control the error given by (3.3)), to be the minimal and maximal state, respectively.
Therefore, using the same uniform random variables to update both processes, the system is attractive
and if Wéﬁ)(x) < Wéi)(x) for z € {1,..., N}, then Wt(ﬁ)(x) < Wt(i)(x) forallz € {1,..., N} and ¢t > 1.
t<0
A+ (0,...,0)]  x

1 (1,.,1)]
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V « Iy (Iy = identity matrix of order N)

Repeat

t—t—1

Wt(ﬁ) «0

w® 1

Generate U;

V&Vl

W 1+ a+vsw

w1+ arvswd

A—A+V x1
vntil | W - w9 o< e

The function || . ||« is the sup norm. In the simulation procedures e = 107°.

4 Simulation results

We simulate m = 100 samples of size n = 50 for each silo size N = 5,15,21. The truncation error
was fixed to be around 3%, the truncation constants were computed using (3.3) (see Table 4.2). We

represent each sample of size n by
(wd W for i =1, ..., m. (4.1)

Notice that each column is an iid random vector with distribution v, with mean g and covariance
matrix Y. Therefore, we can apply the multivariate central limit theorem to test if the mean and

variance of the generated sample coincides with the theoretical results given by (1.3) and (1.4)

respectively. For ¢ = 1,...,m, define
—w W) 4w
= o . (4.2)
n
We want to test the following hypothesis:
Hy:p=w" x H :p#w", (4.3)
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where w? is given by (1.3). The appropriate test statistics to be used are:

T* =m(W — w™) S HW — w™),

where
(1) 7 (m)
e W+ ..+ W
m
and
m—1 =

(m—1)N
(m=N)

The sample statistics 7% has asymptotic distribution given by FN -, where Fiy ,, n denotes
a random variable with distribution F with NV and (m — N) degrees of freedom.

In order to test the equality of the covariance matrix, we want to test
Hy:S=Y/n x H :X#3V/n, (4.4)

where ¥V (i, j) is given by system (1.4) and the likelihood ratio test was used. The test statistic is
given by
sup, L(p, EN)

A= ,
supusL(p, X)

(4.5)
where
L(p, ¥) = (det¥) ™™ 2exp(trace(—1/25 " A))exp[—1/2m(W — p)'S™H(W — p)].

In the last expression, A = mS?. The numerator and denominator in (4.5) are easily determined by
taking u =W and p =W e ¥ = %, respectively.

The critical region for this test is of the form —2 log A < ¢ with ¢ chosen to guarantee the size of
the test to be 0.05. The distribution of —2 log A, under the null hypothesis is described by Muirhead

(1946).

4.1 Numerical results

Figures 4.1 through 4.2 show that the sample mean is very close to the theoretical mean with
quadratic profile. Table 4.1 shows the significance values (p-values) for the hypothesis testing, we

can see that we do not have evidence to reject the hypothesis of equality of means and variance.
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Figure 4.1: Average sample weight and mean weight for silo of size N =5
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Figure 4.2: Average sample weight and mean weight for silo of size
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Table 4.1: p-values for the hypothesis testing of equality of means and equality of covariances

N | =N 72 | 5 value (means) | —2 log A | p-value (covariances)

[(m—1)N]
5 1.14 0.34 21.05 0.876
15 1.23 0.27 137.6 0.877
21 1.05 0.41 235.6 0.584

4.2 Coalescence times

In order to study the distribution of the coalescence time, histograms were used (see Figures 4.4
through 4.6), in this case it seems reasonable to consider that the coalescence time follows a normal
distribution. Table 4.2 presents the confidence interval for the mean coalescence time considering

the normal approximation.

Table 4.2: Confidence interval for the mean coalescence time (E[T'(K)]),considering a truncation for

the initial state space to be [0, K]

N| K |ET(K)]| S CI(95%)

5 10000 | 1402 | 12 | (139.89;140.55)
15 | 30.000 | 1160.4 |54.5 | (1159.9;1161.9)
21 | 50.000 | 2268.7 | 87.5 | (2266.25;2271.11)

4.2.1 Coalescence time as a function of silo width ()

In order to empirically verify the relationship between coalescence time T'(K) and silo width N we
generate for each size N, one sample with corresponding coalescence time T'(K). The model we are

considering is that the coalescence time increases exponentially with the silo width; that is

log(T'(K)) = alog(N) + C, (4.6)
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for some o and C. The observations can be found in Table 4.3, adjusting a linear regression we find

that a good estimate for the model is

log(T'(K)) = 1.96 log(IN) + 1.82. (4.7)

Table 4.3: Coalescence time (T'(K))

N |T(K)| N | T(K)
5 | 132 | 115 82328
15 | 1233 | 125 | 95160
25 | 3524 | 135 | 112647
35 | 6978 | 145 | 135361
45 | 11353 | 155 | 152432
55 | 16760 | 165 | 172733
65 | 24382 | 175 | 196077
75 | 33157 | 185 | 221404
85 | 44529 | 195 | 246185
95 | 55541 | 205 | 271789
105 | 65801

Although we do not know the true distribution v, we can see, from the sample generated by
truncated CF'TP, there is equality of the first two moments of v and vg. Moreover, it seems that

there is an exponential relationship between the coalescence time and the size of the silo.
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Figure 4.3: Average sample weight and mean weight for silo of size N = 21
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relative frequence

Figure 4.4: Histogram for the coalescence time for a silo of size 5
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Figure 4.5: Histogram for the coalescence time for a silo of size 15
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relative frequence

Figure 4.6: Histogram for the coalescence time for a silo of size 21
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