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Abstrat The objetive of this work is to generate random samples of the unique stationary distri-

bution assoiated to the stohasti model for grain storage in a �nite bidimensional silo. The support

of this measure is an unbounded and ontinuous state spae and therefore a trunation was neessary

to apply the CFTP perfet simulation sheme. The performane of the algorithm was measure by

omparing the sample moments to the theoretial ones.
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1 Introdution

In the nearest neighbors one dimensional uniform q-model of fore utuations in bead paks eah

grain is thought as having weight 1 and supporting the weight of the grains of higher layers. This

weight is distributed between the two neighboring grains of the following lower layer in the silo

aording to uniform distribution.

To de�ne the model let (U

t

) := fU

t

(i) : i 2 Z; t � 0; : : :g be a family of independent uniform

random variables in [0; 1℄ and (V

t

) := fV

t

(i) : i 2 Z; t � 0; : : :g be a family of iid positive random

�
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variables with mean 1 and variane S = VV

t

(i). Furthermore assume (V

t

) and (U

t

) to be independent

families.

Fix N � 1, onsider the �nite box

�

N

:= f1; :::; Ng

and denote W

N

t

(i) the weight arried by a grain loated at the ith position at level t. Fix an initial

on�guration W

N

0

2 [0;1)

�

N

and de�ne indutively

W

N

t

(i) = V

t

(i) +W

N

t�1

(i+ 1)U

t�1

(i+ 1) +W

N

t�1

(i� 1)(1� U

t�1

(i� 1)) ; for i 2 �

N

W

N

t

(0) = W

N

t

(N + 1) � 0 (1.1)

Let (W

t

) = (W

t

(i) : i 2 �

N

); then (W

N

t

: t � 1) is a disrete time Markov hain on S := [0;1)

�

N

.

Eah grain j of layer t gives a fration hosen uniformly in [0; 1℄ of its own weight plus the total

weight it supports from the previous layers to grain j � 1 of the suessive layer t + 1 (whih we

an think is below t) and the remaining to grain j + 1. The weight distributed to grains outside �

N

is thought of as being absorbed by the walls of the silo at sites 0 and N + 1. Denote �S

N

(t) the

measure de�ned by

�S

N

(t)f =

Z

�(dW ) E(f(W

N

t

) jW

N

0

= W ):

where E and P are the expetation and probability de�ned with respet to the probability spae

indued by (U

t

: t � 0)and (V

t

: t � 0).

We say that a measure �

N

is invariant for the proess W

N

t

if �

N

S

N

(t) = �

N

.

If W

N

t

has an invariant measure �

N

its mean heights w

N

(i) := �

N

(W

N

(i)) have to satisfy the

following system of equations (oming from �

N

S

N

(t)W

N

(i) = �

N

W

N

(i)):

w

N

(i) = 1 +

1

2

w

N

(i� 1) +

1

2

w

N

(i+ 1) ; for i 2 �

N

;

w

N

(i) = 0; for i 2 Z n �

N

: (1.2)

Notie that w

N

(i) has quadrati pro�le:

w

N

(i) = i(N + 1� i) ; for i = 0; : : : ; N + 1: (1.3)

(It is the expeted time to exit �

N

for a symmetri nearest neighbor random walk starting at i.)
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If W

N

0

is distributed aording to the invariant measure, so is W

N

1

, and one an use (1.1) to show

that �

N

(i; j) satis�es the system of equations:

�

N

(i; i) = S +

1

3

�

N

(i+ 1; i+ 1) +

1

3

�

N

(i� 1; i� 1) +

1

4

�

N

(i� 1; i+ 1)

+

1

4

�

N

(i + 1; i� 1) +

1

12

(w

N

(i + 1))

2

+

1

12

(w

N

(i� 1))

2

; i 2 �

N

�

N

(i; i + 2) =

1

4

�

N

(i + 1; i+ 3) +

1

4

�

N

(i� 1; i+ 3) +

1

4

�

N

(i� 1; i+ 1)

+

1

6

�

N

(i + 1; i+ 1) �

1

12

(w

N

(i + 1))

2

; i 2 f1; : : : ; N � 2g

�

N

(i; i� 2) =

1

4

�

N

(i + 1; i� 1) +

1

4

�

N

(i� 1; i� 3) +

1

4

�

N

(i+ 1; i� 3)

+

1

6

�

N

(i� 1; i� 1) �

1

12

(w

N

(i� 1))

2

; i 2 f3; : : : ; Ng

�

N

(i; j) =

1

4

�

N

(i + 1; j + 1) +

1

4

�

N

(i� 1; j � 1) +

1

4

�

N

(i� 1; j + 1)

+

1

4

�

N

(i+ 1; j � 1); i; j 2 �

N

; ji� jj � 2

�

N

(i; j) = 0 ; i 2 f0; N + 1g or j 2 f0; N + 1g : (1.4)

The above model in whih a grain lies its weight on to the lower neighbors was introdued by

Harr (1977) and explored by others, for example, Liu, Nagel, Sheter, Coppersmith, Majumdar,

Narayan and Witten (1995) introdued the model de�ned by (1.1). The model with zero boundary

ondition was studied by Peralta-Fabi, M�alaga and Rehtman (1997). Barros, Ferrari, Garia and

Mart��nez (2001) show the existene and uniqueness of the invariant measure. To show uniqueness

they ouple two versions of the proess starting with di�erent initial invariant distributions using

the same sequene U

t

for both evolutions. However, there is no expliitly formula for the invariant

measure and to obtain a random sample from this measure we have to resort to stohasti simulation.

Usually Monte Carlo Markov Chain methods have been used to generate samples from probability

distributions that are not known expliitly. The most ommon approah is to identify this distribution

as the invariant measure of a Markov hain and run the orresponding hain for a long time until

its distribution is lose to equilibrium. The problem here is to assess how long the hain should

run in order to ahieve the desired approximation. In �nite state Markov hains, this is related to

mixing times and ut-o� phenomena [see, Aldous and Fill (1999)℄. For unountable state spae, more

spei�ally for ontinuous unbounded state spaes these tehniques are not applied. However, after
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the pioneer work of Propp and Wilson (1996) we an reah a muh more ambitious goal: to simulate

perfetly from the invariant distribution. Perfet simulations or exat sampling are labels for a

reently developed set of tehniques designed to produe output whose distribution is guaranteed to

follow a given probability law. These tehniques are partiularly useful in relation with Markov Chain

Monte Carlo, and their range of appliability is rapidly growing (see Green and Murdoh (1999),

Setion 1.3, and Mira, M�ller and Roberts (1999) and M�ller and Niholls (1999) and referenes

therein, or visit the site http://dimas.rutgers.edu/~dbwilson/exat).

The outbreak of these subjet ome with Propp and Wilson (1996) paper where they suggest

a pratial method of ahieving a perfet sample of a Markov hain with �nite state spae. Their

Coupling from the Past (CFTP) algorithm have also been applied for in�nite (or huge) state spaes

requiring a monotoniity property : there must exist a \maximal" and a \minimal" states and a

oupling suh that the oalesene of trajetories starting from these two states imply the oalesene

of all other trajetories (\monotone oupling"). In the ase of unbounded in�nite (or very large) state

spae, it is not possible to use the above desribed method. Kendall (1998) introdued a modi�ation

in Propp and Wilson's algorithm in order to apply it to some unbounded proesses (Green and

Murdoh, 1999). It is also alled horizontal CFTP (Kendall and M�ller, 1999) and oupling into and

from the past (Wilson, 2000). The idea is to �nd another Markov hain fC

t

; t 2 Zg | hosen in

suh way that we know how to generate exatly from its invariant measure | that dominates the

hain under study. When there is no domination for the proess, as in the ase of the silo model,

there is no anonial solution and the none of the perfet simulation shemes an be applied diretly.

The proposal of this work is to trunate the initial state and ompare the so-alled perfet sample

obtained in this way with the stationary distribution through its �rst and seond moment. This

paper is organized as follows: In Setion 2, a brief desription of CFTP and dominated CFTP is

given as well as the algorithms used for the silo model, Setion 3 presents the simulation results.
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2 Perfet simulation

2.1 CFTP

Let X

n

be an ergodi disrete time Markov hain with �nite state spae S, transition matrix (P

i;j

)

and invariant distribution �. Perfet simulation an be desribed as a proedure that provides an

unbiased observation of � through some random mehanism.

One way of obtaining a perfet simulation is desribed by Propp and Wilson (1996) as oupling

from the past. This approah an be desribed as follows: simulate the Markov hain, oupling all

the paths beginning from all possible initial states, a predetermined amount of time (from �T to 0),

if all paths oalese at time 0, the oalesent state X

0

has the desired distribution �. If the paths

did not oalese, restart the hain at �T

0

< �T , from all possible initial states, preappending new

moves to the old ones. They show that if enough moves are preappended, eventually all the paths

will oalese and the resulting oalesent state X

0

is an unbiased sample from �.

Desribing the problem in terms of i.i.d. uniform random variables: letU = f: : : ; U

�3

; U

�2

; U

�1

; U

0

g

be a family of i.i.d. U(0; 1) random variables and let �(�; �) be a deterministi funtion suh that

P[�(i; U

0

) = j℄ = P

i;j

for all i; j 2 S. Let �

t

(x; U

t

) = �(x; U

t

) and onsider

F

0

�t

(i;U) = �

�1

(�

�2

(:::�

�t+1

(�

�t

(i; U

�t

); U

�t+1

); :::; U

�2

); U

�1

)

to be the state of the hain at time 0 starting in state i at time �t. For simulation purposes, notie

that we do not have to keep all individual values of �

t

, instead we update F

0

t

through the rule:

F

0

t

(i;U) = F

0

t+1

(�

t

(i; U

t

);U).

Initializing the hain in all possible states S, when F

0

�t

(i;U) is onstant the all the trajetories

have oalesed at time 0. De�ne

� := inffM ;F

0

�M

(i;U) = onstant, 8 i 2 Sg, (2.1)

as the time of oalesene. Notie that F

0

�M

0

= F

0

��

for all M

0

> �.

When the ardinality of the state spae is very large, the above argument is not feasible. However

for ases where there is a partial ordering in the state spae, a maximal (

^

1) and a minimal state
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(

^

0) and moreover, the update of the hain is ordering preserving, then only two paths need to be

simulated and oupling from the past an be used. The proedure an be desribed by the following

pseudo-ode:

T  1

U

�1

� U(0; 1)

repeat

upper  

^

1

lower  

^

0

for n = �T to � 1

upper  �(upper; U

n

)

lower  �(lower; U

n

)

T  2T

for n = �T to� T=2

U

n

� U(0; 1)

until upper = lower

return upper

Notie that the same uniform random variables are used for all loops, for instane, U

�1

is going

to be generated only one.

2.1.1 Impatient-user bias

The oupling from the past algorithm possesses the impatient-user bias. It has a running time whih

is not independent of the state sampled, thus if the user aborts a long run of the algorithm a bias is

introdued. The following simple example is presented in Fismen(1997). Consider the Markov hain

X with state spae f0; 1; 2g and transition matrix

P =

0

B

B

B

�

1=2 1=2 0

1=2 0 1=2

0 1=2 1=2

1

C

C

C

A

:

The stationary distribution is given by � = (1=3; 1=3; 1=3) and this hain an be update mono-
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tonially by using the following transition rule:

�(x; U) =

8

<

:

max(X

t�1

� 1; 0); if U � 0:5

min(X

t�1

+ 1; 2); if U > 0:5

Suppose we initialize the hain at the minimal

^

0 = 0 and maximal state

^

1 = 2 and the user abort

the simulation after m

0

= 2 iterations. Let Z be the unique value obtained when there is oalesene

at t = 0. The following results are possible:

� U

�1

� 0:5 and U

0

� 0:5 : Z = 0;

� U

�1

� 0:5 and U

0

> 0:5 : Z = unde�ned;

� U

�1

> 0:5 and U

0

� 0:5 : Z = unde�ned;

� U

�1

> 0:5 and U

0

> 0:5 : Z = 2.

Therefore, 0 and 2 are the only possible results of this simulation and Z has distribution given by

�

0

= (1=2; 0; 1=2) whih is biased. A possible solution would be to inrease the value of m

0

.

2.2 Dominated CFTP

In the ase of unbounded in�nite (or very large) state spae, it is not possible to use the above

desribed method. Kendall (1998) introdued a modi�ation in Propp and Wilson's algorithm in

order to apply it to point proesses. The idea, however, is not limited to this ase and has been used

to generate from ontinuous unbounded state spae (Green and Murdoh, 1999). It is also alled

horizontal CFTP (Kendall and M�ller, 1999) and oupling into and from the past (Wilson, 2000).

The idea is to �nd another Markov hain fC

t

; t 2 Zg | hosen in suh way that we know how

to generate exatly from its invariant measure | that dominates the hain under study. Assume,

without loss of generality, that the state spae has a minimal state

^

0, but not a maximal state. In

this ase, the ingredients of the algorithm are:

� A oupling that guarantees that if for some t we have C

t

� X

t

that the same is true for all sub-

sequent times. That is, there exist �

1

and �

2

suh that (X

t+1

; C

t+1

) = (�

1

(X

t

; U

t

); �

2

(C

t

; U

t

))

and if x �  we have �

1

(x; u) � �

2

(x; u) for all u 2 [0; 1℄.
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� For any value x 2 S and time t < 0, there exists a.s. an s < t suh that X

t

� C

t

if X

u

= x for

u < s.

� We an simulate diretly from the invariant distribution of C

t

.

� Given C

t

the onditional distribution of (C

t�1

; U

t�1

) is known and we an sample from this

distribution. That is, we an simulate C

t

into the past. This an be obtained easily if C

t

is

reversible.

In this ase, we an use the CFTP algorithm based on generating an upper proess in the same

way that vertial CFTP.

3 Perfet simulation of the stationary measure of the silo

model

The purpose of this work is to perfet simulate a sample from the invariant measure for the Markov

proess given by (1.1) whih has as its support the set S = [0;1)

N

and there is no maximal state.

Moreover, the only available information about this distribution is the �rst and seond moments and

it is not possible to �nd a hain that dominates the proess in order to apply dominated CFTP. The

suggested approah in this work is to use as a initial \maximal" state [0; K℄

N

for K suÆiently large

and generate a random sample from a new distribution �

K

. The goal is to �nd K big enough so that

the distane between � and �

K

is small enough. We laim that the bias here is of the same type as

the \impatient-user bias".

3.1 Trunation error

Consider the proess W

t

de�ned by (1.1) and let

�(A) = P(W

0

2 A;W

�T (K)

2 [0; K℄

N

jW

�1

= x) (3.1)

+P(W

0

2 A;W

�T (K)

=2 [0; K℄

N

jW

�1

= x)

= �

K

(A)� �(W

�T (K)

2 [0; K℄

N

). (3.2)
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Notie that

1� �(W

�T (K)

(x) 2 [0; K℄

N

) = P

�

(W

�T (K)

(x) > K, for some x = 1; :::; N)

�

N

X

x=1

P

�

(W

�T (K)

(x) > K)

�

N

X

x=1

E

�

[W

�T (K)

(x)℄

K

=

N

X

x=1

x(N + 1� x)

K

;

sine E

�

[W

�T (K)

(x)℄ = x(N +1� x) by (1.3). Thus, for any Æ > 0 we an hoose K big enough suh

that

N

X

x=1

x(N + 1� x)

K

< Æ,

and onsequently,

P(W

0

2 A;W

�T (K)

=2 [0; K℄jW

�1

= x) � P(W

�T (K)

=2 [0; K℄jW

�1

= x)

� Æ.

Therefore, we an make the total variation distane k �(A) � �

K

(A) k as small as we wish by

taking K suÆiently large,

k �(A)� �

K

(A) k = sup

A

j�

K

(A)[�(W

�T (K)

2 [0; K℄

N

)� 1℄

+ P(W

0

2 A;W

�T (K)

=2 [0; K℄jW

�1

= x)j

� sup

A

j�

K

(A)[1� �(W

�T (K)

2 [0; K℄

N

)℄j

+ sup

A

jP(W

0

2 A;W

�T (K)

=2 [0; K℄jW

�1

= x)j

= sup

A

j�

K

(A)j � j[1� �(W

�T (K)

2 [0; K℄

N

)℄j

+ sup

A

jP(W

0

2 A;W

�T (K)

=2 [0; K℄jW

�1

= x)j

� 2Æ: (3.3)
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3.2 CFTP applied to the silo model

Let M

N

be the spae of N � N square matries with elements belonging to [0; 1℄. De�ne � :

[0;1)

N

� M

N

! [0;1)

N

by

�(W;U) = 11 + UW ,

with 11 = (1; : : : ; 1)

0

. Denote W

t

= (W

t

(1); : : : ;W

t

(N))

0

and

U

t

=

0

B

B

B

B

B

B

B

B

B

�

0 U

t

(2) 0 : : : 0 0 0

1� U

t

(2) 0 U

t

(3) : : : : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1� U

t

(N � 1) 0 U

t

(N)

0 0 0 : : : 0 1� U

t

(N � 1) 0

1

C

C

C

C

C

C

C

C

C

A

.

where ffU

t

(j); j = 1; : : : ; Ng; t = 0; 1; : : :g is a family of i.i.d. U(0; 1) random variables. The silo

model an be rewritten in the matriial form as

W

t

= 11 + U

t�1

W

t�1

= �(W

t�1

;U

t�1

): (3.4)

Consider the initial time to be t = �L, then and W

(i)

�L

= i, then

W

0

= �

�1

(�

�2

(�

�3

(:::; �

�L+1

(�

�L

(W

(i)

�L

;U

�L

);U

�L+1

); :::;U

�3

);U

�2

);U

�1

)

= 11 + U

�1

11 + U

�1

U

�2

11 + U

�1

U

�2

U

�3

11 + : : :+ U

�1

U

�2

U

�3

:::U

�L+1

11 +

U

�1

U

�2

U

�3

:::U

�L

W

(i)

�L

. (3.5)

Pseudo-algorithm: De�ne

^

0 = (0; : : : ; 0)

0

and

^

1 = (K; :::; K)

0

(K is going to be de�ned latter for eah

N in order to ontrol the error given by (3.3)), to be the minimal and maximal state, respetively.

Therefore, using the same uniform random variables to update both proesses, the system is attrative

and if W

^

(0)

0

(x) � W

^

(1)

0

(x) for x 2 f1; :::; Ng, then W

^

(0)

t

(x) � W

^

(1)

t

(x) for all x 2 f1; :::; Ng and t � 1.

t 0

A (0; :::; 0)

0

1�N

11 (1; :::; 1)

0

1�N
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V  II

N

(II

N

= identity matrix of order N)

Repeat

t t� 1

W

(

^

0)

t

 

^

0

W

(

^

1)

t

 

^

1

Generate U

t

V  V � U

t

W

(

^

0)

0

 11 +A+ V �W

(

^

0)

t

W

(

^

1)

0

 11 +A+ V �W

(

^

1)

t

A A+ V � 11

Until kW

(

^

1)

0

�W

(

^

0)

0

k

1

< �.

The funtion k : k

1

is the sup norm. In the simulation proedures � = 10

�5

.

4 Simulation results

We simulate m = 100 samples of size n = 50 for eah silo size N = 5; 15; 21. The trunation error

was �xed to be around 3%, the trunation onstants were omputed using (3.3) (see Table 4.2). We

represent eah sample of size n by

fW

(1;i)

; :::;W

(n;i)

g, for i = 1; :::; m. (4.1)

Notie that eah olumn is an iid random vetor with distribution �

K

, with mean � and ovariane

matrix �. Therefore, we an apply the multivariate entral limit theorem to test if the mean and

variane of the generated sample oinides with the theoretial results given by (1.3) and (1.4)

respetively. For i = 1; : : : ; m, de�ne

W

(i)

=

W

(1;i)

+ :::+W

(n;i)

n

: (4.2)

We want to test the following hypothesis:

H

0

: � = w

N

� H

1

: � 6= w

N

, (4.3)
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where w

N

is given by (1.3). The appropriate test statistis to be used are:

T

2

= m(W � w

N

)

0

S

�1

(W � w

N

),

where

W =

W

(1)

+ :::+W

(m)

m

and

S

2

=

1

m� 1

m

X

j=1

(W

(j)

�W )(W

(j)

�W )

0

.

The sample statistis T

2

has asymptoti distribution given by

(m�1)N

(m�N)

F

N;m�N

, where F

N;m�N

denotes

a random variable with distribution F with N and (m�N) degrees of freedom.

In order to test the equality of the ovariane matrix, we want to test

H

0

0

: � = �

N

=n � H

0

1

: � 6= �

N

=n, (4.4)

where �

N

(i; j) is given by system (1.4) and the likelihood ratio test was used. The test statisti is

given by

� =

sup

�

L(�;�

N

)

sup

�;�

L(�;�)

, (4.5)

where

L(�;�) = (det�)

�m=2

exp(trae(�1=2�

�1

A))exp[�1=2m(W � �)

0

�

�1

(W � �)℄.

In the last expression, A = mS

2

. The numerator and denominator in (4.5) are easily determined by

taking � =W and � =W e � =

A

m

, respetively.

The ritial region for this test is of the form �2 log � �  with  hosen to guarantee the size of

the test to be 0:05. The distribution of �2 log �, under the null hypothesis is desribed by Muirhead

(1946).

4.1 Numerial results

Figures 4.1 through 4.2 show that the sample mean is very lose to the theoretial mean with

quadrati pro�le. Table 4.1 shows the signi�ane values (p-values) for the hypothesis testing, we

an see that we do not have evidene to rejet the hypothesis of equality of means and variane.
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Figure 4.1: Average sample weight and mean weight for silo of size N = 5
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Figure 4.2: Average sample weight and mean weight for silo of size N = 15
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Table 4.1: p-values for the hypothesis testing of equality of means and equality of ovarianes

N

(m�N)

[(m�1)N ℄

T

2

p-value (means) �2 log � p-value (ovarianes)

5 1:14 0:34 21:05 0:876

15 1:23 0:27 137:6 0:877

21 1:05 0:41 235:6 0:584

4.2 Coalesene times

In order to study the distribution of the oalesene time, histograms were used (see Figures 4.4

through 4.6), in this ase it seems reasonable to onsider that the oalesene time follows a normal

distribution. Table 4.2 presents the on�dene interval for the mean oalesene time onsidering

the normal approximation.

Table 4.2: Con�dene interval for the mean oalesene time (E [T (K)℄),onsidering a trunation for

the initial state spae to be [0; K℄

N K E [T (K)℄ S CI(95%)

5 10:000 140:2 12 (139:89; 140:55)

15 30:000 1160:4 54:5 (1159:9; 1161:9)

21 50:000 2268:7 87:5 (2266:25; 2271:11)

4.2.1 Coalesene time as a funtion of silo width (N)

In order to empirially verify the relationship between oalesene time T (K) and silo width N we

generate for eah size N , one sample with orresponding oalesene time T (K). The model we are

onsidering is that the oalesene time inreases exponentially with the silo width; that is

log(T (K)) = � log(N) + C, (4.6)
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for some � and C. The observations an be found in Table 4.3, adjusting a linear regression we �nd

that a good estimate for the model is

log(

b

T (K)) = 1:96 log(N) + 1:82. (4.7)

Table 4.3: Coalesene time (T (K))

N T (K) N T (K)

5 132 115 82328

15 1233 125 95160

25 3524 135 112647

35 6978 145 135361

45 11353 155 152432

55 16760 165 172733

65 24382 175 196077

75 33157 185 221404

85 44529 195 246185

95 55541 205 271789

105 65801

Although we do not know the true distribution �, we an see, from the sample generated by

trunated CFTP, there is equality of the �rst two moments of � and �

K

. Moreover, it seems that

there is an exponential relationship between the oalesene time and the size of the silo.
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Figure 4.3: Average sample weight and mean weight for silo of size N = 21
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Figure 4.4: Histogram for the oalesene time for a silo of size 5
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Figure 4.5: Histogram for the oalesene time for a silo of size 15
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Figure 4.6: Histogram for the oalesene time for a silo of size 21
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