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Abstract

The purpose of this article is to establish conditions under which a positive quadratic
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The problem is carried out to study the simultaneous behavior of two foliations in the plane
having a common point as a singularity.
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1 Introduction

In this paper we deal with special classes of differential forms in dimension two. We present a
geometric method for studying positive quadratic differential forms which consists in an efficient
mechanism for describing the local behavior of such systems. The main result of this article is to
establish conditions under which a positive quadratic differential form is topologically equivalent
to its principal form defined by Newton Polyhedra. Although our methods at first sight have
some resemblance with those ones developed by Brunella & Miari for vector fields new deep
difficulties arise due to the generality of our approach. To be more specific, the problem is carried
out to study the simultaneous behavior of two foliations in the plane having a common point as
a singularity.

We believe that the techniques and the results obtained in this work provide means to study, in
a very efficient way, the phase portrait of a finitely determined singularity of a positive quadratic
differential form. The reason is that the Newton polyhedra indicate a very efficient way of using
the method of blowing-up.
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Let M be a C∞ orientable 2-dimensional manifold. We consider a Cr quadratic differential
form on M expressed by

ω =

n∑

i=1

ϕiψi,

where ϕi, ψi are Cr-differential 1-forms on M . Note that, for each p in M , ω(p) is a quadratic
form defined on the tangent space TpM . We say that ω is positive if for each point p in M we
have that ω−1(0) in TpM is either an union of two transversal lines or all TpM . In the first case,
p is called a regular point of ω; otherwise p is a singular point of ω.

Throughout this paper PQD will refer to the expression: “positive quadratic differential” and
ΩP (M) will denote the set of all PQD forms on M .

If M is orientable and ω is a PQD form then, away from the singular set, there are two
foliations F1 and F2 globally defined. In fact, let p ∈ M be a non singular point of ω. Let
S1 ⊂ TpM be the unitary circle. We say that v1 ∈ S1 is of type one if, given γ : (−ǫ, ǫ) → S1

an orientation preserving mapping with γ(0) = v1 we have that ω(γ(t), γ(t)) < 0 for small t > 0.
Certainly v1 is of type one if, and only if, −v1 is of type one. So by continuity, any vector of type
one generates a one dimensional foliation on M .

Quadratic differential forms have been studied by several authors including, Hartman and
Wintner [11], Sotomayor and Gutierrez [16]-[22], Bruce and Fidal [1], Bruce and Tari [2], Garcia
and Sotomayor [6], Guadalupe, Gutierrez and Tribuzy [7], Guinez [8]-[10], Davydov, [4].

Positive quadratic differential forms can be also found in control theory(as shown by Davydov
in [4]) and in the study of transonic gas flows (see Kuzmin in [13]).

Two PQD forms ω1 and ω2 are topologically equivalent if there exists a homeomorphism h in
M taking the singular points of ω1 to the singular points of ω2 and taking the pair of foliations
defined by ω1 at each regular point p to the pair of foliation defined by ω2 at h(p).

Here we will consider C∞ PQD forms ω defined in the plane. Each ω can be written as

ω(x, y) = a(x, y)dy2 + b(x, y)dxdy + c(x, y)dx2,

where a, b and c are real-valued functions of class C∞, dx, dy are the canonical projections and

∆ω(x, y) = (b2 − 4ac)(x, y) ≥ 0

and
(b2 − 4ac)−1(0) = a−1(0) ∩ b−1(0) ∩ c−1(0).

This work is organized as follows. We start with some preliminaries in Section 2 and illustrate
the construction of a magnification associated to Newton Polyhedra. In Section 3, we prove
the Desingularization Theorem that is the key of the proof of the main results of this article. In
Section 4, we treat the local sector classification of pairs of planar foliations at isolated singularity
and present the proof of Main Theorem. In Section 5, the topological equivalence between a PDQ
form and a quasi-homogeneous component ωj of ω∆ is proven under stronger hypotheses, using
weighted polar blowing up. Finally, in Section 6, we present some applications of the results and
techniques given in this paper.

2 Newton Polyhedra associated to quadratic differential form

First, we describe how to associate Newton Polyhedra to a quadratic differential form.
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Let ω be a quadratic differential form in R
2 with an isolated and singular point at 0 ∈ R

2.
We may expand it in its formal series as follows:

ω =
∑

(n+2,m+2)∈N2

(rnmxnymx2dy2 + snmxnymxydxdy + tnmxnymy2dx2),

with w(0) = 0.
We introduce the following definitions:

Definition 2.1 (i) The Support of ω is the set in R
2 defined by

S = {(n + 2, m + 2) ∈ N
2 : (rnm, snm, tnm) 6= 0}.

(ii) The Newton Polyhedra of ω is the convex envelope Γ of the set

P =
⋃

(k,l)∈S

{(k, l) + R
2
+},

where R
2
+ = [0,∞)2.

(iii) The Newton Diagram of ω is the union γ of the compact faces γi of the Newton Polyhedra
Γ.

(iv) The Principal part ω∆ of ω is the quadratic differential form

ω∆ =
∑

(n,m)∈γ

rnmxnymx2dy2 + snmxnymxydxdy + tnmxnymy2dx2.

(v) The quasi-homogeneous component of ω (resp. of ω∆) relative to the face γi, of the Newton
Polyhedra, is the restriction of ω to the face γi.

Example 2.2 The Newton Polyhedra of the quadratic differential form

ω(x, y) = (2x2 + xy + y3)dy2 + (y2 − xy + 5y3)dxdy − (2x2 + xy + y3)dx2

is illustrated in Figure 1. The principal part of ω is ω∆ = (2x2 + xy + y3)dy2 + (y2 − xy)dxdy −
(x2 + xy)dx2. The quasi-homogeneous components of ω are ω1 = (xy + y3)dy2 + y2dxdy and
ω2 = (2x2 + xy)dy2 + (y2 − xy)dxdy − (x2 + xy)dx2.

Definition 2.3 A magnification of 0 ∈ R
2 is a pair (M, π) such that

1. M is a C∞ 2-dimensional manifold; π : M → R
2 is a C∞ map, surjective and proper.

2. Let Z = π−1(0) be the divisor of the magnification; then Z is the finite union of one
dimensional manifolds in general position on M . Moreover π |M\Z is a diffeomorphism
from M \ Z to R

2 \ {0}.
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Figure 1: The Newton Polyhedra associated to ω in the Example 2.2.

Definition 2.4 A desingularization of a PQD form ω defined in a neighborhood of 0 ∈ R
2, with

ω(0) = 0 is a PQD form ω̃ defined on M , where (M, π) is a magnification such that
(i) the following diagram commutes

Q(TM)
π∗

→ Q(TR
2)

ω̃ ↑ ↑ ω

M
π→ R

2,

where Q(TM) is the fiber bundle of the quadratic forms.
(ii) for any p ∈ Z there exist a neighborhood U of p and a function f : U → R that does not

vanish outside Z, such that ω̃|U = f.α.β, where α and β are 1-forms in U . Moreover, α (resp.
β) has p as either a regular point or a hyperbolic singularity or else a semi-hyperbolic singularity.

The form ω̃ will be said to be the desingularized form obtained from ω through the magnifi-
cation (M, π). Moreover, we have the following:

Proposition 2.5 Assume that (M, π) is a magnification of 0 ∈ R
2. Let ω1, ω2 be PQD forms in

R
2 with ωi(0) = 0 and ω̃i be the desingularized form obtained from ωi through the magnification

(M, π), i = 1, 2. If ω̃1 is topologically equivalent to ω̃2 in a neighborhood of the divisor Z then ω1

is topologically equivalent to ω2 in a neighborhood of 0 ∈ R
2.

Now we define a magnification (M, π) of 0 ∈ R
2 adapted to the Newton diagram γ of a PQD

form ω on R
2. Let {(ai, bi)} be the collection of vectors in R

2 with mutually prime non-negative
integer components, such that each vector is normal to one of the faces, say γi, of the Newton
Diagram γ. Select a finite collection of vectors {ei = (αi, βi)}n

i=1 in R
2 with mutually prime

non-negative integer components such that the following conditions are satisfied

Condition M {(ai, bi)}k
i=1 ⊂ {(αi, βi)}n

i=1;

Condition N e0 = (α0, β0) = (1, 0) and en = (αn, βn) = (0, 1)

Condition P detPi =

(
αi−1 αi

βi−1 βi

)
= 1, for all i = 1, 2, ..., n.

Condition Q Two consecutive vectors of this collection are not normal to two consecutive faces
of Newton diagram.
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From the Condition P given above we get that any pair of consecutive vectors Bj = {ej−1, ej}
forms a basis of Z

2; the matrix defining the transformation that takes the base Bj to the base Bl,
j, l = 1, 2, ..., n, j 6= l has integer elements and its determinant is equal to ±1. We observe that
Condition Q is not needed to obtain a magnification; meanwhile, it will be used to obtain a simpler
proof of Desingularization Theorem. Actually, Condition Q can always be considered, with no

cost, to the other three as we shall see now. If det

(
αi−1 αi

βi−1 βi

)
= 1, for some i = 1, 2, ..., n, then

det

(
αi−1 αi−1 + αi

βi−1 βi−1 + βi

)
= det

(
αi−1 + αi αi

βi−1 + βi βi

)
= 1, which means that we can always find

the vector (αi−1 + αi, βi−1 + βi) ∈ Z
2 belonging to the interior of the positive cone determined

by the vectors (αi−1, βi−1) and (αi, βi).
To build up the manifold M associated to this collection we proceed as Brunella and Miari

[3]. For every pair {ei−1, ei} there exists an associated chart (φi, Ui) on M , φi : Ui → R
2.

The transition map from (φi, Ui) to (φj , Uj) is given by hij(xi, yi) = (x
aij

i y
bij

i , x
cij

i y
dij

i ), where
(xi, yi) = φi(p) for p ∈ Ui and aij , bij , cij , dij are defined by

(
ei−1

ei

)
=

(
aij bij

cij dij

) (
ej−1

ej

)
.

Consider the set M obtained from gluing the n copies of R
2 by means of the n(n − 1) maps

hij . M is an analytic manifold.
To define the projection π : M → R

2 is enough to express {ei−1, ei} in terms of the basis
{(1, 0), (0, 1)}. The local representation of the projection in the chart (φi, Ui) (a local copy of R

2)
is defined by

hi(xi, yi) = (x
αi−1

i yαi

i , x
βi−1

i y
βi

i ), (1)

as (
ei−1

ei

)
=

(
αi−1 αi

βi−1 βi

) (
e0

en

)
.

Now we will prove that π is a surjective map. To that end, it is enough to show that each hi

is surjective. First, consider the following lemma.

Lemma 2.6 Let αi−1, αi, βi−1, βi ∈ R+ = [0,∞) be such that αi−1βi − αiβi−1 = 1. Given
x0, y0 ∈ [0,∞) there exist x1, y1 ∈ [0,∞) such that

x
αi−1

1 yαi

1 = x0

x
βi−1

1 y
βi

1 = y
(2)

Proof From the system (2) we set

αi−1 log x + βi−1 log y = log x0

βi−1 log x + βi, log y = log y0

which, by Condition P, has the unique solution. ✷

Let i ∈ {1, 2, · · · , n}. The previous lemma shows that hi takes the positive first quadrant onto
itself. We shall describe below the action of hi on the remaining quadrants. It will be convenient
to introduce the following notation: a = αi−1, b = αi, c = βi−1 and d = βi. Recall that ad−bc = 1.
We have the following three alternatives:
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1. if a, d are even then b, c are odd. So hi(x, y) = (xayb, xcyd) fixes the first and the third
quadrant and takes the second and the fourth to the fourth and the second, respectively.

2. If a is even and d is odd (or vice-versa), b and c are odd. The map hi fixes the first quadrant
and takes the second to the fourth, the third to the second and the fourth to the third one.

3. If a, d are odd we have three situations. When b, c are even, the map hi fixes all the
quadrants. When b is even and c is odd, the map h fixes the first and the second quadrants
and exchange the other two. If b is odd and c is even, the map hi fixes the first and the fourth
quadrants and interchanges the others.

Hence, we conclude that π is surjective.
The proof of the next proposition will be omitted.

Proposition 2.7 The projection π, defined above, is an analytic map on M ; moreover it is
surjective and proper. The divisor Z = π−1(0) is the finite union of circles S1 in general position
and π : M \ Z → R

2 \ {0} is a diffeomorphism.

Let us return to the Example 2.2. The finite collection of vectors {(1, 0), (3, 1), (2, 1), (5, 3),
(3, 2), (1, 1), (1, 2), (0, 1)} satisfies the conditions to define a projection in the sense of the above
Proposition. The maps, representing π in local charts, are:

h1(x1, y1) = (x1y
3
1, y1)

h2(x2, y2) = (x3
2y

2
2, x2y2)

...
h6(x6, y6) = (x6y6, x6y

2
6)

h7(x7, y7) = (x7, x
2
7y7)

3 Desingularization Theorem

Now we will show that the magnification (M, π) of 0 ∈ R
2 adapted to Newton diagram γ of a

PQD form ω on R
2 is indeed a desingularization which guarantees the topological equivalence

between ω and ω∆, under non-degeneracy conditions. These conditions are established below.

Definition 3.1 A PQD form ω, with ω(0) = 0, is said to be distinguished if its associated Newton
Diagram intersects the coordinate axes and if each of its quasi-homogeneous components, say ωj

relative to the face γi, does not have a singular point in (R\0)2

If ω is distinguished then the singular points of each quasi-homogeneous forms occur at the
axes x = 0 or y = 0. Moreover, in the terminology of Brunella and Miari, if ω is distinguished its
Newton Polyhedra is favorable.

Lemma 3.2 The set of all distinguished PQD forms in the plane is an open and dense subset of
ΩP (R2).

Proof The proof is analogous to the planar vector fields case ([3]). ✷

This lemma guarantees that the distinguished condition is in fact a generic condition.

Theorem 3.3 (Desingularization Theorem) Let ω be an arbitrary smooth distinguished PQD
form, with ω(0) = 0. Let (M, π) be the magnification adapted to the Newton diagram of ω. Then
ω admits a desingularization ω̃ defined on M . Moreover, up to local topological equivalence, the
singularities of ω̃ are the same as those of its principal part ω̃∆
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Proof Write the formal series expansion of the smooth PQD form ω as follows

ω(x, y) =
∑

(n+2,m+2)∈N2

rnmxnym−2dy2 + snmxn−1ym−1dxdy + tnmxn−2ymdx2, (3)

where, for all pair of positive integers (n, m), sn0 = s0m = t0m = t1m = rn0 = rn1 = 0. Moreover,
if (n, m) is a vertex of γ (i.e, if (n, m) belongs to two consecutive faces of the Newton diagram)
then (rnm, snm, tnm) 6= (0, 0, 0).

Choose a collection of vectors {(ai, bi)}n
i=1 such that each vector has mutually prime non-

negative integer components and is normal to a face γi of γ. Extend this collection so that
the resulting collection {(αi, βi)}k

i=1 satisfies Conditions M–P of last section. Let (M, π) be the
magnification associated to this extended collection. Given j = 1, .., k, let

ωj(xj , yj) =
xjyj

xjxyjy − xjyyjx

h∗
jω(xj , yj),

where hj(xj , yj) = (x
αj−1

j y
αj

j , x
βj−1

j y
βj

j ) is the corresponding local representation of π (in the chart
(φj , Uj)).

We may observe that

ωj =
∑

(n,m)∈σ

x
αj−1(n−1)+βj−1(m−1)
j y

αj(n−1)+βj(m−1)
j .[(rnmβ2

j−1 + snmαj−1βj−1+

tnmα2
j−1)y

2
j dx2

j + (2rnmβj−1βj + snm(αj−1βj + αjβj−1) + 2tnmαj−1αj)xjyjdxjdyj

+(rnmβ2
j + snmαjβj + tnmα2

j )x
2
jdy2

j ]

(4)

Define tj = min{αj(n−1)+βj(m−1)}, t0 = 0 = tn and Tj = {(n, m) : αj(n−1)+βj(m−1) =
tj} for all j = 1, 2, ..., n. We have that Tj is either a face of γ or a vertex of the Polyhedra. Let

ω̃j be the quotient of ωj by x
tj−1
j y

tj
j . One has

ω̃j =
∑

(n,m)∈σ

x
αj−1(n−1)+βj−1(m−1)−tj−1

j yαj(n−1)+βj(m−1)−tj .[(rnmβ2
j−1 + snmαj−1βj−1+

tnmα2
j−1)y

2
j dx2

j + (2rnmβj−1βj + snm(αj−1βj + αjβj−1) + 2tnmαj−1αj)xjyjdxjdyj

+(rnmβ2
j + snmαjβj + tnmα2

j )x
2
jdy2

j ]

(5)

Now we establish some notations. For each j = 1, . . . , n we define the expressions

< ej , (n, m) >:= αj(n − 1) + βj(m − 1) (6)

Aj(xj , yj) :=
∑

(n,m)∈σ

x
<ej−1,(n,m)>−tj−1

j y<ej ,(n,m)>−tj .(rnmβ2
j−1 + snmαj−1βj−1 + tnmα2

j−1)

Bj(xj , yj) :=
∑

(n,m)∈σ

x
<ej−1,(n,m)>−tj−1

j y<ej ,(n,m)>−tj .(2rnmβj−1βj + snm(αj−1βj + αjβj−1)

+2tnmαj−1αj)

Cj(xj , yj) :=
∑

(n,m)∈σ

x
<ej−1,(n,m)>−tj−1

j y<ej ,(n,m)>−tj .(rnmβ2
j + snmαjβj + tnmα2

j )
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So we have

ω̃j(xj , yj) = Cj(xj , yj)x
2
jdy2

j + Bj(xj , yj)xjyjdxjdyj + Aj(xj , yj)y
2
j dx2

j . (7)

Since b2 − 4ac ≥ 0 near the origin, B2
j − 4AjCj ≥ 0. Hence, we may write ω̃j = ϕj .ψj , where

ϕj and ψj are 1-forms.
It will be convenient to consider separately ω̃1 and ω̃n and the general case ω̃j .

1. j = 1. Since γ intersects the axes, r0M , tN0 6= 0 for some positive integers M, N . In the
first chart we note that the divisor is Z = {y1 = 0}. We have t0 = 0 and T1 = {(0, M)},
α0 = 1, β0 = 0, α1 6= 0, β1 = 1. Then, ω1(x, 0) = r0Mdy2

1 + h.o.t. is not identically zero.
This means that ω1 is the product w1 = ϕ1.ψ1 of two regular 1-forms in the plane. Besides
(ϕ1 ∧ ψ1)(x1, y1) = y1(2r0M + R(x1, y1)), where R vanishes in the the union of the axes.

2. j = n. Here we can proceed as in (1).

3. 1 < j < n. The divisor here is given by {xj = 0} ∪ {yj = 0}. We shall study the following
two different situations.

(i) Suppose that none the vectors ej−1, ej is normal to any face of Newton Polyhedra
associated to ω. Then Tj−1 = Tj = {(nj , mj)} is a vertex, so we can write

Aj(xj , yj) = a0 + RA(xj , yj),
Bj(xj , yj) = b0 + RB(xj , yj),
Cj(xj , yj) = c0 + RC(xj , yj)

(8)

where RA, RB, RC vanish in both axes.

So the analysis on ω̃j can be performed via the numbers a0, b0, c0.

Now, we shall see that the sequence {(αj , βj)} can always be chosen so that a2
0 + c2

0 > 0. In
fact, suppose that

a0 = rnjmj
β2

j + snjmj
αjβj + tnjmj

α2
j = 0

c0 = rnjmj
β2

j−1 + snjmj
αj−1βj−1 + tnjmj

α2
j−1 = 0,

where (rnm, snm, tnm) 6= (0, 0, 0). Then, we add the vector (αj−1 + αj , βj−1 + βj) to the
collection {(αj , βj)} (see the comments after definition of Condition Q). Due to the fact that
the polynomial rnmv2+snmuv+tnmu2 has at most two roots, for the resulting collection and
for new terms a0, c0 that we keep the same notation, we will have this time that a2

0 +c2
0 > 0.

We shall only consider the case a0 6= 0. Then we may write ω̃j = ϕj .ψj , where

ϕj = 2Ajxjdyj + (Bj +
√

B2
j − 4AjCj)yjdxj ,

ψj = 2Ajxjdyj + (Bj −
√

B2
j − 4AjCj)yjdxj .

Then ϕj and ψj are tangent to the axes and transversal to each other, outside the axes.
Moreover, the topological type of ϕj and ψj depends on (a0, b0, c0), where

(a) If c0 6= 0, ϕj and ψj have hyperbolic singularities at the origin;

(b) If c0 = 0 and b0 6= 0, ϕj has a hyperbolic singularity at the origin and ψj has a
semi-hyperbolic singularity at the origin;
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(c) If c0 = 0 = b0, ϕj and ψj have semi-hyperbolic singularities at the origin; moreover,
the central manifold is contained in one of the axes.

(ii) If ej is normal to γl. Then Tj = γl and Tj−1 = {(nj , mj)} is an endpoint of γl. The
behavior of the foliations near the origin can be studied in the same way as item (i). To
study the foliations around yj = 0 (when the case (i) is excluded) we observe that there
must exist u 6= 0 such that Aj(u, 0) = 0 (which implies that ω̃j(u, 0) = 0). Using the
assumptions of this theorem, we shall prove that Cj(u, 0) 6= 0. Otherwise we derive that
the following expressions are zero

Aj(u, 0).utj−1 =
aγj

(uαj−1 ,uβj−1 )

uαj−1−βj−1
β2

j−1 +
bγj

(uαj−1 ,uβj−1)

uαj−1−βj−1
αj−1βj−1 +

cγj
(uαj−1 ,uβj−1)

uαj−1−βj−1
α2

j−1

Cj(u, 0).utj−1 =
aγj

(uαj−1 ,uβj−1)

uαj−1−βj−1
β2

j +
bγj

(uαj−1 ,uβj−1 )

uαj−1−βj−1
αjβj +

cγj
(uαj−1 ,uβj−1 )

uαj−1−βj−1
α2

j .

where tj−1 = min{αj−1(n − 1) + βj−1(m − 1)}, with (n, m) ∈ γj .

As in case (i) we can add a vector (belonging to the positive cone generated by (αj−1, βj−1)
and (αj , βj)), say (ᾱ, β̄), to the collection {(αi, βi)} such that the degree two homogeneous
polynomial

Pj(z, w) =
aγj

(uαj−1 , uβj )

uαj−βj
w2 +

bγj
(uαj , uβj )

uαj−βj
zw +

cγj
(uαj , uβj )

uαj−βj
z2

cannot vanish at (z, w) = (ᾱ, β̄) unless that all the coefficients of Pj(z, w) are zero. From
our assumptions Pj(z, w) is not identically zero. Therefore, considering the new collection
obtained by adding the vector (ᾱ, β̄), we will have that Aj(u, 0)2 + Cj(u, 0)2 > 0.

Under these conditions, ω̃j = ϕj , ψj , where

ϕj = 2Cjyjdxj + (Bj +
√

B2
j − 4AjCj)xjdyj

ψj = 2Cjyjdxj + (Bj −
√

B2
j − 4AjCj)xjdyj .

Moreover, ψj has a semi-hyperbolic singularity at (u, 0) and ϕj is regular. In fact, since
Aj(u, 0) = 0 we get (B2

j −4AjCj)(u, 0) = B2
j (u, 0) ≥ 0. Observe that if Bj(u, 0) = 0 then ψj

and ϕj have contact outside the divisor what contradicts the assumption (b2 − 4ac)−1(0) =
a−1(0) ∩ b−1(0) ∩ c−1(0).

(iii) The case where ej−1 is normal to a face of Newton Polyhedra is similar to the case (ii).

Then we can conclude that (M, π) is indeed a magnification to ω. ✷

Remarks:
1. The form ω̃ of theorem above will be called the Newton Desingularization of ω.
2. We obtain the same result if we replace the favorable condition of the Newton Diagram by

the singularity of ω∆ is isolated.
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4 Local sector classification of isolated singularities

As in case of vector fields (see [12]), we shall obtain a local sector classification of isolated sin-
gularities of the foliations induced by a smooth distinguished PQD form ω at 0 ∈ R

2. (see
([5]).

Let (M, π) be the magnification adapted to the Newton diagram of ω and ω̃ be the Newton

desingularization of ω (See Theorem 3.3). Here we shall denote by F1 and F2 (resp. F̃1 and F̃2)
the foliations induced by ω (resp. ω̃) in a neighborhood V (resp. Ṽ ) of 0 (resp. Z = π−1(0)).
We will suppose that V = π(Ṽ ). Given p ∈ Z there exists a neighborhood W of p in M such

that ω̃|W = ϕ1 · ϕ2, where each ϕi is a 1-form tangent to F̃i at W . We shall say that F̃i has at
p a hyperbolic singularity (resp. saddle, node, etc) if this happens for ϕi, i = 1, 2. Notice that

1-forms can be seen as vector fields and so any local orientation of F̃i will refer to that induced
by ϕi. Let Z be the divisor of ω̃.

Given a F̃i-singularity p ∈ Z we shall select a pair of integral curves of F̃i (separating curves

of F̃i) which will have the following properties:

(i) p will be either the ω or α-limit set of each one of these curves;

(ii) π restricted to a separating curve is injective;

(iii) associated to each singularity p ∈ Z there will be two separatrices of p contained in Z.

The referred selected separating curves are the following ones:

1. If p is a hyperbolic saddle, then the two curves are the separatrices of p which do not meet
Z \ {p}.

2. If p is a node singularity, then we consider the two connected components γ1 and γ2 of
W

F̃i
(p) \ {p}, where W

F̃i
(p) is its weak invariant manifold (unstable or stable, according to

an orientation of F̃i) at p. These curves will be called pseudo-separatrices of p.

3. If p is a saddle-node singularity (the strong manifold of p is contained in Z), then the first
curve is the separatrix between the two hyperbolic sectors of p. The second curve will be the
connected component of W c(p) \ {p} contained in the nodal part of p, where W c(p) denotes
some arbitrary center manifold of p. This second curve will be called a pseudo-separatrix
of p. (contained in the nodal part) and it is not uniquely determined.

Definition 4.1 The set Sc(i) of the union of these selected curves is called a family of separating

curves of F̃i and their union will be denoted by Si, i = 1, 2. Let Fi = π(F̃i) be the planar foliations
induced by ω. The set π(Sc(i)) will be said to be a family of separating curves of Fi.

Let Ṽ be a small neighborhood of Z = π−1(0), such that ∂Ṽ is a smooth curve and any

separating curve of F̃i meets ∂Ṽ exactly once.

Definition 4.2 Given a connected component U of Ṽ \ (Z ∪ Si) we say that

(i) π(U) is a hyperbolic sector of Fi if ∂U ∩ Si is constituted by two saddle separatrices.

(ii) π(U) is a parabolic sector of Fi if ∂U ∩Si is constituted by a saddle separatrix and a pseudo-
separatrix.

(iii) π(U) is an elliptic sector of Fi if ∂U ∩ Si is constituted by two pseudo-separatrices.

10



(C)(B)(A)

Figure 2: Sectors of a foliation in a singularity

Our main result shows that there is a topological equivalence between ω and ω∆. To this end,
we will study the behavior of the foliations induced by ω̃.

Theorem 4.3 Let ω be a smooth distinguished PQD form defined in a neighborhood of 0 ∈ R
2,

with ω(0) = 0. Let F be one of the foliations induced by ω. Then, there is a neighborhood V of
0 which can be decomposed in a finite number of elliptic, hyperbolic and parabolic sectors of F ;
moreover, V and a family of separating curves of F can be chosen so that ∂V is smooth and any
separating curve of the family meets ∂V exactly once.

Proof Let ω̃ be the Newton Desingularization of ω. The foliations induced by ω̃ have only
hyperbolic or semi-hyperbolic singularities (See Theorem 3.3 and its proof) where either both
invariant manifolds belong to the divisor (in this case both foliations are singular) or one of them
belongs to the divisor and the other one is transversal to the divisor (in this case one foliation is
singular and the second is regular in a neighborhood of the singularity). Then, we get from the
Hartman’s local sector classification of isolated singularities of a foliation (see [12], Chapter 8)
the conclusions of this theorem. ✷

In the following Lemmas we shall assume that ω is a smooth distinguished PQD form defined
in a neighborhood of 0 ∈ R

2, with ω(0) = 0 and F1 and F2 are the pair of foliations induced by
ω.

Lemma 4.4 If S is a hyperbolic sector of F1, then

1. there exists at least one leaf of F2 that approaches the origin (i.e. a characteristic orbit)
through the sector S; this leaf does not intersect the separatrices of S;

2. the union of the characteristic orbits of F2 approaching the origin through the sector S,
when not reduced to a single leaf, forms a parabolic sector of F2. When the above union is
reduced to a single leaf it is a separating curve of F2.

Proof Within this proof we shall refer as leaves of Fi to those ones which are actually leaves
of (Fi, S). Recall that, as ω is distinguished, F1 and F2 are transversal to each other outside the
origin. Denote by γ1 and γ2 the leaves of F1 that are the separatrices of the sector S. Fix a leaf
γ of F1. Due to the transversality condition, given i ∈ {1, 2}, there exists a point pi ∈ γ such
that the leaf of F2 at pi meets transversally both γ and γi. See Figure 3 (A). It follows from this
that if p is a point belonging to the subarc

⌢
p1p2 of γ, the F2-orbit on p either intersects γ1 or

11
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Figure 3: Hyperbolic sector and elliptic sector of F1

intersects γ2 or else is a characteristic orbit. As F1 and F2 are transversal to each other, a leaf
of F2 cannot meet simultaneously both γ1 and γ2 (see Figure 3(A)).

Therefore, there exists a point p0 ∈ γ such that the leaf of F2 approaches the origin (which
proves item 1.); moreover, if there are two such points p0 and p′0 in γ belonging to characteristic

orbits such that no point of γ\
⌢

p0p
′
0 is in a characteristic orbit, then the leaves of F2 passing

through points of
⌢

p0p
′
0⊂ γ are characteristic orbits whose union forms a parabolic sector of

(F2, S) (because the transversality condition). By the construction it follows that, when there is
only one leaf of F2 approaching the origin through the sector S, this leaf is a saddle separatrix
of F2. ✷

The proof of the following lemma is similar to that of Lemma 4.4 and will be omitted.

Lemma 4.5 If S is an elliptic sector of F1, then there exist characteristic orbits of F2 that does
not intersect the separatrices of S and every orbit of (F2, S) is a characteristic orbit. Moreover,
we can select a characteristic curve as a pseudo-separatrix (i.e. separating curve) of F2 in S.

To consider parabolic sectors we shall need one more definition. Let ω, F and V be as in
Theorem 4.3. Two sectors of F in V are said to be adjacent if they meet to each other exactly
at a common separating curve. Notice that an elliptic sector can only be adjacent to either
a parabolic sector or an elliptic sector. Then any finite sequence formed by adjacent sectors
is obtained by concatenation of one of the following types: hyperbolic-hyperbolic, hyperbolic-
parabolic-hyperbolic, hyperbolic-parabolic-elliptic, elliptic-parabolic-elliptic, elliptic- elliptic.

Now we shall study the adjacent sectors of each Fi.

Proposition 4.6 Let (F1,F2) be the planar foliations induced by a distinguished form ω. Let V1

and V2 be neighborhoods, associated to F1 and F2, respectively, as in Theorem 4.3. Suppose that
S1, S2 are two adjacent hyperbolic (resp. elliptic) sectors of F1|V1

. Then there exists a hyperbolic
(resp. elliptic) sector S of F2|V2

which meets S1 ∪ S2 and its separating curves approaches the
origin through the interior of each sector Si, i = 1, 2. See Figures 4.

Proof If S1, S2 are adjacent hyperbolic sectors of F1|V1
, consider characteristic orbits γ1 and γ2

of F2 in S1 and S2, respectively, as in the Lemma 4.4. Denote by γ the common separating curve
of S1 and S2. As the pair (F1,F2) is transversal outside the origin, through each point p ∈ γ we
get a non-characteristic orbit of F2. On the other hand, if there exists a characteristic orbit for
some p ∈ γ, this orbit meets some F1-orbit at two points, which is a contradiction. Hence this
orbit has a transversal intersection with the leaves of F1 and the region between γ1 and γ2 will
be a hyperbolic sector of F2.

The same argument works in the case of a pair of adjacent elliptic sectors. ✷
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The behavior of a PQD form possessing a pair of adjacent sectors as in previous proposition
can be illustraded by is the following normal form: (xdy − ydx, (x + y)dy − (x− y)dx), to y ≥ 0.

Using similar arguments of the last Proposition we can study what happens in adjacent sectors
of F1.

Proposition 4.7 Let (F1,F2) be the planar foliations induced by a distinguished form ω. Let V1

and V2 be neighborhoods, associated to F1 and F2, respectively, as in Theorem 4.3. Suppose that
S0, S1, S2 are consecutive adjacent sectors of F1|V1

, where S0 and S2 are hyperbolic sectors and
S1 is a parabolic one. Then there exists a hyperbolic sector of F2|V2

which meets S0 ∪ S1 ∪ S2

provided that there is no separating curve of F2 contained in S2. On the other hand, there is a
hyperbolic sector adjacent to a parabolic sector of F2 which meets S0 ∪ S1 ∪ S2. See Figure 5.

Figure 5: Sector of F̃2 in S0 ∪ S1 ∪ S2

Proof Notice that F1 has three adjacent sectors as described above if only if there is an interval
of the divisor Z such that the separating curves associated to the F̃1-singularities, belonging to
the interval, appear orderly as follows: two saddle separatrices, a pseudo-separatrix and two
saddle-separatrices. Moreover, from Lemma 4.4, we know that there is a saddle-separatrix of
F̃2 between each pair of consecutive saddle-separatrices of F̃1. There are two alternatives to be
considered:

- There is no separating curve of F̃2 approaching the interval J between the saddle separatrix
of F̃2 in S0 and the saddle separatrix of F̃2 in S1. In this case, we can proceed as in the previous
proposition to show that there is a hyperbolic sector of F2 in S0 ∪ S1 ∪ S2.

- Otherwise, because there is no tangency between F1 and F2 outside the origin we conclude
that there are two separating curves of F̃2 in the interval J : one pseudo-separatrix and one saddle
separatrix. See Figure 5. Under these conditions, there exist parabolic and hyperbolic sectors of
F2 in S0 ∪ S1 ∪ S2. ✷
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Proposition 4.8 Let (F1,F2) be the planar foliations induced by a distinguished form ω. Let
V1 and V2 be neighborhoods, associated to F1 and F2, respectively, as in Theorem 4.3. Suppose
that S0, S1, S2 are consecutive adjacent sectors of F1|V1

, where S0 is a hyperbolic sector, S1 is
a parabolic sector and S2 is an elliptic sector of F1|V1

. Then there exists a parabolic sector S

of F2|V2
which meets S1 ∪ S2 ∪ S3 provided that there is no separating curves of F2 on S2. On

the other hand, there is the following ordered sequence of adjacent sectors of F2 in S1 ∪ S2 ∪ S3:
hyperbolic, parabolic, elliptic sectors. See Figure 6.

Figure 6: Sector of F̃2 in S0 ∪ S1 ∪ S2

Proof Under our hypotheses there is an interval of the divisor Z such that the separating
curves associated to the F̃1-singularities, belonging to the interval, appear orderly as follows: two
saddle-separatrices and two pseudo-separatrices. From the Lemma 4.4, we conclude that there
is a saddle-separatrix (resp. pseudo-separatrix) of F̃2 in S0 (resp. S2). Then, working as in the
proof of the later proposition, we observe:

- if there are no separating curves of F̃2 approaching the interval between the saddle-separatrix
of F̃2 in S0 and the pseudo-separatrix of F̃2 in S2 then there is a parabolic sector of F2 in
S1 ∪ S2 ∪ S3.

- otherwise, because the pair have no tangency outside the origin there is a saddle-separatrix
and a pseudo-separatrix of F̃2 in the later interval. Then we observe the existence of one hyper-
bolic, one parabolic and one elliptic sector of F2 on S0 ∪ S1 ∪ S2. ✷

Proposition 4.9 Let (F1,F2) be the planar foliations induced by a distinguished form ω. Let V1

and V2 be neighborhoods, associated to F1 and F2, respectively, as in Theorem 4.3. Suppose that
S0, S1, S2 are adjacent sectors of F1|V1

(in this ordered sequence), where S0 and S2 are elliptic
sectors and S1 is a parabolic sector of F1|V1

. Then there is an elliptic sector S of F2|V2
which

meets S1 ∪ S2 ∪ S3 provided that there is no separating curves of F2 on S2. On the other hand,
there are one elliptic and one parabolic sectors of F2 in the union S0 ∪ S1 ∪ S2. See Figure 7

Figure 7: Sector of F̃2 in S0 ∪ S1 ∪ S2

The proof here uses similar arguments of the above propositions.

Now, to conclude the proof of MAIN THEOREM, we need one more result.
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Consider an arbitrary distinguished form ω. Let Ṽ be a neighborhood of its divisor Z as
described in Definition 4.2. As the induced foliations of ω are transversal outside the origin,
only three non-equivalent pair of foliations can be found in an arbitrary connected component of
Ṽ \ (Z ∩ Sc). They are represented in Figure 8 (A) - (C). Therefore the induced foliations of ω̃

in Ṽ is obtained through the gluing of finitely many of these connected components.

(A)
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2
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1 γ
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Figure 8: Sector of F̃2 in S0 ∪ S1 ∪ S2

We also observe that in Figure 8 (A) and (C), their separating curves belong to different
foliations and both are either saddle-separatrices or pseudo-separatrices. In Figure 8 (B), both
separating curves belong to the same foliation, one of the separating curve is a saddle-separatrix
while the other one is a pseudo-separatrix. The second foliation is regular in this component.

Let ω1 and ω2 be two distinguished PQD forms at origin. Denote by Zi their divisor, by Si

the set of all separating curves of the induced foliations of ω̃i and denote by βi the set Z ∩ Si,
i = 1, 2.

Proposition 4.10 Let ωi, i = 1, 2 be two distinguished forms at 0 ∈ R
2 and Zi, i = 1, 2 its

divisors. Let F̃j (resp. G̃j), j = 1, 2, be the foliations associated to ω̃1 (resp. ω̃2). The forms
ω1 and ω2 are equivalent at a neighborhood of the origin if only if there is a homeomorphism
h : Z1 → Z2 that sends β1 to β2 and satisfies the following: if p ∈ β1 then the restriction of h to a
small neighborhood of p in Z1 can be extended to a local topological equivalence between (F̃1, F̃2)

at p and (G̃1, G̃2) at h(p), for j = 1, 2.

Proof If there exists a topological equivalence H between two forms ω1 and ω2 it is immediate
to show the existence of the map h satisfying the above conditions. Now we show the converse.

Assume that ω1 and ω2 are distinguished forms and h is a map in the assumptions of this
proposition. We show how to build the equivalence between these two forms. First we will extend
h (in an appropriate way) to the union of all separating curves of F̃1 and F̃2. Then we will be
able to extend it to a neighborhood of Z1.

• The extension. Let Ṽi be a neighborhood of Zi, i = 1, 2, as in the Definition 4.2 and S̃i (resp.

T̃i) be the set of all separating curves of F̃i (resp. G̃i), i = 1, 2. We can define an equivalence

relation in S1 (resp. T̃1): given γ1 and γ2 two separating curves of F̃1 (resp. G̃1) we say that

γ1 ≃ γ2 if only if there is a horizontal “virtual” flow box of F̃2 whose vertical edges are γ1 and γ2

(this “flow box” fails to be a real flow box because F̃2 has singularities at Z1). Analogously we

can define an equivalence relation in S̃2 (resp. T̃2).

Now select one element in each equivalence class of S̃1 (resp. T̃1) and extend it continuously
to the selected element homeomorphically onto its corresponding one. By definition of the equiv-
alence relation we may use the holonomy induced by F̃2 (resp. G̃2) to extend to all elements in
an equivalent class.
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In the same way we define an extension from the set of all separating curves of F̃2 to the set
of all separating curve of G̃2. This extension determines a correspondence h between connected
component of Ṽ1\(S̃1∪S̃2∪Z1) and Ṽ2\(T̃1∪T̃2∪Z2). In the following we shall extend h : Ṽ1 → Ṽ2

preserving this correspondence.
• The equivalence in each connected component of Ṽ1 \ (S̃1 ∪ S̃2 ∪ Z1). Let p be a point in

such a connected component Ũ1. Let Ũ2 be the connected component of Ṽ2 \ (T̃1 ∪ T̃2 ∪ Z2) that

corresponds to Ũ1. Thanks to Propositions 4.6 - 4.9 as we have already observed, we only need
to consider two situations:

1. Suppose that p belongs to a connected component as drawn in Figure 8 (A) or (C) of ω1.

Through p there are unique leaves ϕ1 and ϕ2 of F̃1 and F̃2, respectively. These leaves meet the
separating curves γ1 and γ′

1 in p1 and p2, respectively. From the assumptions there are points

h(q1) = q2 ∈ γ2 and h(q′1) = q′2 ∈ γ′
2. Through these points consider the leaves of G̃1 and G̃2,

respectively. These leaves meet to each other at a unique point q. Then define H(p) = q. The

application H : Ũ1 → Ũ2 is a homeomorphism which is a local equivalence between the induced
foliations of ω̃1 and ω̃2.

2. Otherwise, p belongs to a connected component Ũ1 as in Figure (C) of ω1. Assume that

F̃2 is regular in this connected component. Fix one leaf C1 of F̃2|Ũ1

. Notice that C1 connects
two equivalent separating curves γ1 and γ2 (according to the relation “≃”). Let C2 be the leaf of

G̃2|Ũ2

connecting h(γ1 ∩ C1) with h(γ2 ∩ C1).
Now we extend the mapping to a homeomorphism between C1 and C2. Sliding along the leaf

of F̃2 through p we find a unique point p2 ∈ γ1 and sliding along of the leaf of F̃1 we get a unique
point p1 in C1. Then consider the leaf of G̃2 through h(p2) and the leaf of G̃1 through h(p1) ∈ C2.
These leaves meet to each other in a unique point q ∈ U2. The map defined by H(p) = q as above
is a local equivalence between the induced foliations by ω̃1|Ũ1

and by ω̃2|Ũ2

.
In this way we have defined a topological equivalence between ω̃1|Ṽ1\Z1

and ω̃2|Ṽ2\Z2

. This

map induces a topological equivalence between ω1|V1
and ω2|V2

. ✷

Definition 4.11 A PQD form ω is called a complete positive form if each one of the directions
field (or foliations) induced by ω possesses characteristic directions.

MAIN THEOREM Let ω be a PQD form in the plane with ω(0) = 0. The form ω is equivalent
to its principal part ω∆ provided that it is distinguished and complete.

Proof From the Desingularizarion Theorem we conclude that the pair of foliation induced
by a distinguished form in the plane has finite many sectors in a neighborhood of the origin.
Moreover there exists an equivalence between the divisors of ω and ω∆ as required in the previous
proposition. Then the existence of an equivalence between two pairs of induced foliations at a
neighborhood of the origin is guaranteed. ✷

5 Weighted Polar Blowing up

As in the case of planar vector fields, we obtain an equivalence between a PQD form and its
restriction to a compact face of the Newton Diagram under suitable conditions. To do this, we
need to introduce a definition.

Definition 5.1 A function f : R
2 → R, is called quasi-homogeneous of type (α, β) ∈ N

2 and of
degree k if it satisfies

f(tαx, tβy) = tkf(x, y),∀t ∈ R.
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A PQD form ω = a(x, y)dy2 + b(x, y)dxdy + c(x, y)dx2 is called quasi-homogeneous of type
(α, β) and degree k if the functions a, b, c are quasi-homogeneous functions of type (α, β) and
degree k + 2α, k + α + β and k + 2β, respectively.

Given a PQD form, we can decompose it as ω =
∑

j≥k

ωj (sum of quasi-homogeneous forms of

the degree j), where k is the first positive integer such that ωk is not identically null. We call k

as such the order of ω.
Consider the weighted polar coordinates

x = rαCs θ

y = rβSn θ

where Cs and Sn are defined by the Cauchy problem





d
dθCs θ = −Sn2α−1θ
d
dθSn θ = Cs2β−1θ

Cs 0 = 1
Sn 0 = 0.

The functions Cs and Sn are T -periodic functions, where

T =
2α(1−2α)/2α

β1/2α

∫ 1

0
(1 − t)(1−2α)/2αt(1−2β)/2βdt,

and
βSn2αθ + αCs2βθ = α. (9)

We define the equivalence relation in R: x ∼ y if and only if x−y = nT , n ∈ Z and S1
T = R\ ∼.

Then, if ω ∈ ΩP (R2), with ω(0) = 0, let ω̃ ∈ ΩP (S1
T × R) be define through the diagram

Q(T (S1
T × R))

π∗

→ Q(TR
2)

ω̃ ↑ ↑ ω

S1
T × R

π→ R
2

where π : S1
T × R → R

2 is the weighted polar map and Q(T (S1
T × R)) is the fiber bundle of

the quadratic forms in T (S1
T × R). The map π is a surjective and proper map. Moreover it is a

diffeomorphism outside the set π−1(0) = S1
T × {0} onto its image.

Theorem 5.2 Let ω be a PQD form with ω(0) = 0. Suppose that there exists a quasi-homo-
geneous component ωγ of the principal part ω∆, such that 0 is an isolated singularity of ωγ. Then
in a neighborhood of 0 ∈ R

2, ω is topologically equivalent to ωγ provided that ωγ is a complete
positive form.

Proof Applying the weighted polar map in ω and dividing it by rk+2α+2β−2, where k is the
order of ω, we can write

ω̃(θ, r) =
∑

j≥k

{α2Cs2θaγj
(θ) + αβCsθSnθ bγj

(θ) + β2Sn2θcγj
(θ)}rj−kdr2 +

{−2αCs θSn2α−1θaγj
(θ) + (αCs2βθ − βSn2αθ)bγj

(θ) + 2βCs2β−1Sn θcγj
(θ)}rj−k+1drdθ

+ {Sn4α−2θaγj
(θ) − Cs2β−1θSn2α−1θbγj

(θ) + Cs4β−2θcγj
(θ)}rj−k+2dθ2,
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where aγj
(θ) = aγj

(Cs θ, Sn θ), bγj
(θ) = bγj

(Cs θ, Sn θ) and cγj
(θ) = cγj

(Cs θ, Sn θ).

As ω is a PQD form and we can re-write it as ω̃(θ, r) = K(θ, r)dr2 + M(θ, r)rdrdθ +
N(θ, r)r2dθ2. Moreover, it is convenient to consider this form as a product of two direction
fields ϕ and ψ in a neighborhood of the origin, where

ϕ = 2N(θ, r)rdθ + (M(θ, r) +
√

∆)dr,

ψ = 2N(θ, r)rdθ + (M(θ, r) −
√

∆)dr

and ∆ = ∆(θ, r) = (M2 − 4NK)(θ, r) ≥ 0.
Notice that ω̃(θ, 0) = K(θ, 0) = 0 if and only if,

α2Cs2θaγk
(Cs θ, Sn θ) + αβCsθSnθbγk

(Cs θ, Sn θ) + β2Sn2θcγk
(Cs θ, Sn θ) = 0.

But if K(θ, 0) = 0 then ∆(θ, 0) = M2(θ, 0) 6= 0. In fact, assume for instance that K(θ, 0) =
0 = M(θ, 0). Then we have the following equations

α2Cs2θaγk
(Csθ, Snθ) + αβCsθSnθbγk

(Csθ, Snθ) + β2Sn2θcγk
(Csθ, Snθ) = 0

Sn4α−2θaγj
(Cs θ, Sn θ) − Cs2β−1θSn2α−1θbγj

(Cs θ, Sn θ) + Cs4β−2θcγj
(Cs θ, Sn θ) = 0.

As each solution of the first equation is also a solution of the second one, we conclude that
either

αCs2βθ = βSn2αθ

or there exists θ such that aγj
(Csθ, Snθ) = bγj

(Csθ, Snθ) = cγj
(Csθ, Snθ) = 0. Since the first

equation is not possible (because of (9)) and the later can never occur (because of the hypotheses)
we conclude that M(θ, 0) 6= 0 provided that K(θ, 0) = 0.

We also observe that given (θ0, 0) such that K(θ0, 0) = 0 then N(θ0, 0) 6= 0. In fact, this
quadratic equation has only the trivial solution: aγj

(Csθ, Snθ) = bγj
(Csθ, Snθ) = cγj

(Csθ, Snθ) =
0.

Then we conclude that ψ and ϕ, the induced vector fields of π∗(ω), have distinct and hyperbolic
singularities on S1

T . So applying Proposition 4.10 we conclude this proof.
✷

Remark: The methods presented in this work do not permit an easy transference of the
phase portrait obtained on M or S1

T into R
2.

6 Applications

We present here some applications from results and techniques given through out this paper.

1. Normal form for a pair of foliations in the plane
We present the usefulness of the later results to obtain models for certain singular pairs of

foliations in the plane. In [15] models of pairs of type regular/singular-exact are exhibited for
pairs of type (df, dg), where f has the non-zero 1-jet at 0 and g is as arbitrary smooth real-valued
function in the plane. When J1f and J1g are non zero, formal classification of the pairs (df, dg)
are presented in [14]. Here we are interested in pairs given by level sets of smooth functions
f, g : R

2, 0 → R, 0. Observe that α.β defines a PQD form in the plane.

Proposition 6.1 Let α = df and β = dg be pairs of 1-forms in the plane, where f, g are smooth
germs of functions with j2f(x, y) = x2 − y2, j2g(x, y) = ax2 + bxy + cy2 and a.c.b 6= 0. The PQD
form ω = α.β is topologically equivalent to (2ax2 + bxy)dx2 + (bx2 + 2(c − a)xy − by2)dxdy −
(bxy + 2cy2)dy2 provided that (a − c)2 < b2.

18



Proof From the hypotheses we have j1(α) = xdx−ydy and j1(β) = (2ax+by)dx+(bx+2cy)dy.
Moreover both 1-forms have characteristic orbits provide that (a − c)2 − b2 ≤ 0 and the contact
between the 1-forms is characterized by the sign of the equation (a − c)2 + b2. So the conditions
on a, b, c guarantee the transversality outside the origin.

Consider the quadratic form ω = α.β and the associated Newton Polyhedra Γ of ω. As
a.b.c 6= 0 Γ has only one face (homogeneous case) and ω∆ is distinguished. From the Main
Theorem, we conclude that ω is topological equivalent to ω∆, that is the product of j1(α) and
j1(β). ✷

2. Non-equivalent PQD forms
Consider the one-parameter family expressed by the following product

αλ = (x + λ)dy − (x + y)dx

β = (y − x)dy + (x + y)dx

where λ ∈ (−ǫ, ǫ) ⊂ R.
To each λ0 fixed, αλ and β are transversal outside origin and both foliations have a node

singularity at origin. We also observe that αλ is topological equivalent to α0 to each λ 6= 0.
The PQD form ωλ = αλ.β can be expressed as

ωλ = ((1 − λ)xy − x2 + λy2)dy2 − (2x2 + (1 + λ)xy + (λ − 1)y2)dxdy − (x2 + 2xy + y2)dx2.

From the Main Theorem we conclude that ω0 and ωλ (λ 6= 0) are topologically equivalent to
their principal parts. But the PQDF forms ω0 and ωλ are not, since they have non topologically
equivalent adjacent sectors. In Figure 9 we can observe the mentioned sectors.

S’S

Figure 9: Non-equivalent PQD forms.

Remark: There are situations where the main result of this paper is true but Newton Diagram
does not intersect the coordinate axes, as in the example before. This happens because we can
substitute the condition of Newton Diagram intersecting the coordinates axes by the condition
of the singularity to be an isolated point.

3. Partial Differential Equations
Many Physics, Biology, Economy phenomena are modelled by the following partial differential

equation (PDE)

c(x, y)uyy + 2b(x, y)uxy + a(x, y)uxx + α(x, y)ux + β(x, y)uy + d(x, y)u = f(x, y)
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where x, y are the independent variables.
Given a PDE as above, we have associated to it characteristic curves. The characteristic curves

give, for example, information about the propagation of a singularity of the PDE. Moreover, they
are defined as solutions of the quadratic form

a(x, y)dy2 − 2b(x, y)dxdy + c(x, y)dx2 = 0.

In the case where the quadratic form is called hyperbolic ((b2 +4ac)(x, y) > 0), the associated
characteristic curve represents a PQD form. Then our equivalence can be used in the study of
the propagation of the singularities of these kind of PDE’s.
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[10] V. Gúıñez, Rank 2 codimension 1 singularities of PQD forms, Nonlinearity 10 (1997), 631-654.

[11] P. Hartman and A. Wintner, On the singularities in nets of curves defined by differential equations,
Amer. J. Math. 75, (1953), 277-297

[12] P. Hartman, Ordinary differential equations. Reprint second edition. Birkhuser, Boston, Mass., 1982

[13] Kuz’min, A. G. Non-classical Equations of Mixed Type and their applications in Gas Dynamics,
Internacional Series of Numerical Mathematics, vol 109, (1992).

[14] R. D. S. Oliveira and F. Tari, On pairs of foliations in the plane, Discrete Contin. Dyn. Syst. 6 (2000),
no. 3, 519-536.

[15] R. D. S. Oliveira, Families of pairs of Hamiltonian vector fields in the plane, Preprint 2002.

[16] J. Sotomayor and C. Gutierrez, Structural stable configurations of lines os principal curvature,
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